Merge tag 'block-5.13-2021-06-12' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / include / linux / filter.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7
8 #include <stdarg.h>
9
10 #include <linux/atomic.h>
11 #include <linux/refcount.h>
12 #include <linux/compat.h>
13 #include <linux/skbuff.h>
14 #include <linux/linkage.h>
15 #include <linux/printk.h>
16 #include <linux/workqueue.h>
17 #include <linux/sched.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26
27 #include <net/sch_generic.h>
28
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31 #include <uapi/linux/bpf.h>
32
33 struct sk_buff;
34 struct sock;
35 struct seccomp_data;
36 struct bpf_prog_aux;
37 struct xdp_rxq_info;
38 struct xdp_buff;
39 struct sock_reuseport;
40 struct ctl_table;
41 struct ctl_table_header;
42
43 /* ArgX, context and stack frame pointer register positions. Note,
44  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
45  * calls in BPF_CALL instruction.
46  */
47 #define BPF_REG_ARG1    BPF_REG_1
48 #define BPF_REG_ARG2    BPF_REG_2
49 #define BPF_REG_ARG3    BPF_REG_3
50 #define BPF_REG_ARG4    BPF_REG_4
51 #define BPF_REG_ARG5    BPF_REG_5
52 #define BPF_REG_CTX     BPF_REG_6
53 #define BPF_REG_FP      BPF_REG_10
54
55 /* Additional register mappings for converted user programs. */
56 #define BPF_REG_A       BPF_REG_0
57 #define BPF_REG_X       BPF_REG_7
58 #define BPF_REG_TMP     BPF_REG_2       /* scratch reg */
59 #define BPF_REG_D       BPF_REG_8       /* data, callee-saved */
60 #define BPF_REG_H       BPF_REG_9       /* hlen, callee-saved */
61
62 /* Kernel hidden auxiliary/helper register. */
63 #define BPF_REG_AX              MAX_BPF_REG
64 #define MAX_BPF_EXT_REG         (MAX_BPF_REG + 1)
65 #define MAX_BPF_JIT_REG         MAX_BPF_EXT_REG
66
67 /* unused opcode to mark special call to bpf_tail_call() helper */
68 #define BPF_TAIL_CALL   0xf0
69
70 /* unused opcode to mark special load instruction. Same as BPF_ABS */
71 #define BPF_PROBE_MEM   0x20
72
73 /* unused opcode to mark call to interpreter with arguments */
74 #define BPF_CALL_ARGS   0xe0
75
76 /* As per nm, we expose JITed images as text (code) section for
77  * kallsyms. That way, tools like perf can find it to match
78  * addresses.
79  */
80 #define BPF_SYM_ELF_TYPE        't'
81
82 /* BPF program can access up to 512 bytes of stack space. */
83 #define MAX_BPF_STACK   512
84
85 /* Helper macros for filter block array initializers. */
86
87 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
88
89 #define BPF_ALU64_REG(OP, DST, SRC)                             \
90         ((struct bpf_insn) {                                    \
91                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,        \
92                 .dst_reg = DST,                                 \
93                 .src_reg = SRC,                                 \
94                 .off   = 0,                                     \
95                 .imm   = 0 })
96
97 #define BPF_ALU32_REG(OP, DST, SRC)                             \
98         ((struct bpf_insn) {                                    \
99                 .code  = BPF_ALU | BPF_OP(OP) | BPF_X,          \
100                 .dst_reg = DST,                                 \
101                 .src_reg = SRC,                                 \
102                 .off   = 0,                                     \
103                 .imm   = 0 })
104
105 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
106
107 #define BPF_ALU64_IMM(OP, DST, IMM)                             \
108         ((struct bpf_insn) {                                    \
109                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,        \
110                 .dst_reg = DST,                                 \
111                 .src_reg = 0,                                   \
112                 .off   = 0,                                     \
113                 .imm   = IMM })
114
115 #define BPF_ALU32_IMM(OP, DST, IMM)                             \
116         ((struct bpf_insn) {                                    \
117                 .code  = BPF_ALU | BPF_OP(OP) | BPF_K,          \
118                 .dst_reg = DST,                                 \
119                 .src_reg = 0,                                   \
120                 .off   = 0,                                     \
121                 .imm   = IMM })
122
123 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
124
125 #define BPF_ENDIAN(TYPE, DST, LEN)                              \
126         ((struct bpf_insn) {                                    \
127                 .code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),     \
128                 .dst_reg = DST,                                 \
129                 .src_reg = 0,                                   \
130                 .off   = 0,                                     \
131                 .imm   = LEN })
132
133 /* Short form of mov, dst_reg = src_reg */
134
135 #define BPF_MOV64_REG(DST, SRC)                                 \
136         ((struct bpf_insn) {                                    \
137                 .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
138                 .dst_reg = DST,                                 \
139                 .src_reg = SRC,                                 \
140                 .off   = 0,                                     \
141                 .imm   = 0 })
142
143 #define BPF_MOV32_REG(DST, SRC)                                 \
144         ((struct bpf_insn) {                                    \
145                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
146                 .dst_reg = DST,                                 \
147                 .src_reg = SRC,                                 \
148                 .off   = 0,                                     \
149                 .imm   = 0 })
150
151 /* Short form of mov, dst_reg = imm32 */
152
153 #define BPF_MOV64_IMM(DST, IMM)                                 \
154         ((struct bpf_insn) {                                    \
155                 .code  = BPF_ALU64 | BPF_MOV | BPF_K,           \
156                 .dst_reg = DST,                                 \
157                 .src_reg = 0,                                   \
158                 .off   = 0,                                     \
159                 .imm   = IMM })
160
161 #define BPF_MOV32_IMM(DST, IMM)                                 \
162         ((struct bpf_insn) {                                    \
163                 .code  = BPF_ALU | BPF_MOV | BPF_K,             \
164                 .dst_reg = DST,                                 \
165                 .src_reg = 0,                                   \
166                 .off   = 0,                                     \
167                 .imm   = IMM })
168
169 /* Special form of mov32, used for doing explicit zero extension on dst. */
170 #define BPF_ZEXT_REG(DST)                                       \
171         ((struct bpf_insn) {                                    \
172                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
173                 .dst_reg = DST,                                 \
174                 .src_reg = DST,                                 \
175                 .off   = 0,                                     \
176                 .imm   = 1 })
177
178 static inline bool insn_is_zext(const struct bpf_insn *insn)
179 {
180         return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
181 }
182
183 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
184 #define BPF_LD_IMM64(DST, IMM)                                  \
185         BPF_LD_IMM64_RAW(DST, 0, IMM)
186
187 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)                         \
188         ((struct bpf_insn) {                                    \
189                 .code  = BPF_LD | BPF_DW | BPF_IMM,             \
190                 .dst_reg = DST,                                 \
191                 .src_reg = SRC,                                 \
192                 .off   = 0,                                     \
193                 .imm   = (__u32) (IMM) }),                      \
194         ((struct bpf_insn) {                                    \
195                 .code  = 0, /* zero is reserved opcode */       \
196                 .dst_reg = 0,                                   \
197                 .src_reg = 0,                                   \
198                 .off   = 0,                                     \
199                 .imm   = ((__u64) (IMM)) >> 32 })
200
201 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
202 #define BPF_LD_MAP_FD(DST, MAP_FD)                              \
203         BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
204
205 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
206
207 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)                      \
208         ((struct bpf_insn) {                                    \
209                 .code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),   \
210                 .dst_reg = DST,                                 \
211                 .src_reg = SRC,                                 \
212                 .off   = 0,                                     \
213                 .imm   = IMM })
214
215 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)                      \
216         ((struct bpf_insn) {                                    \
217                 .code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),     \
218                 .dst_reg = DST,                                 \
219                 .src_reg = SRC,                                 \
220                 .off   = 0,                                     \
221                 .imm   = IMM })
222
223 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
224
225 #define BPF_LD_ABS(SIZE, IMM)                                   \
226         ((struct bpf_insn) {                                    \
227                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,     \
228                 .dst_reg = 0,                                   \
229                 .src_reg = 0,                                   \
230                 .off   = 0,                                     \
231                 .imm   = IMM })
232
233 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
234
235 #define BPF_LD_IND(SIZE, SRC, IMM)                              \
236         ((struct bpf_insn) {                                    \
237                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,     \
238                 .dst_reg = 0,                                   \
239                 .src_reg = SRC,                                 \
240                 .off   = 0,                                     \
241                 .imm   = IMM })
242
243 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
244
245 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)                        \
246         ((struct bpf_insn) {                                    \
247                 .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,    \
248                 .dst_reg = DST,                                 \
249                 .src_reg = SRC,                                 \
250                 .off   = OFF,                                   \
251                 .imm   = 0 })
252
253 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
254
255 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)                        \
256         ((struct bpf_insn) {                                    \
257                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,    \
258                 .dst_reg = DST,                                 \
259                 .src_reg = SRC,                                 \
260                 .off   = OFF,                                   \
261                 .imm   = 0 })
262
263
264 /*
265  * Atomic operations:
266  *
267  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
268  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
269  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
270  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
271  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
272  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
273  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
274  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
275  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
276  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
277  */
278
279 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)                  \
280         ((struct bpf_insn) {                                    \
281                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
282                 .dst_reg = DST,                                 \
283                 .src_reg = SRC,                                 \
284                 .off   = OFF,                                   \
285                 .imm   = OP })
286
287 /* Legacy alias */
288 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
289
290 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
291
292 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)                         \
293         ((struct bpf_insn) {                                    \
294                 .code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,     \
295                 .dst_reg = DST,                                 \
296                 .src_reg = 0,                                   \
297                 .off   = OFF,                                   \
298                 .imm   = IMM })
299
300 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
301
302 #define BPF_JMP_REG(OP, DST, SRC, OFF)                          \
303         ((struct bpf_insn) {                                    \
304                 .code  = BPF_JMP | BPF_OP(OP) | BPF_X,          \
305                 .dst_reg = DST,                                 \
306                 .src_reg = SRC,                                 \
307                 .off   = OFF,                                   \
308                 .imm   = 0 })
309
310 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
311
312 #define BPF_JMP_IMM(OP, DST, IMM, OFF)                          \
313         ((struct bpf_insn) {                                    \
314                 .code  = BPF_JMP | BPF_OP(OP) | BPF_K,          \
315                 .dst_reg = DST,                                 \
316                 .src_reg = 0,                                   \
317                 .off   = OFF,                                   \
318                 .imm   = IMM })
319
320 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
321
322 #define BPF_JMP32_REG(OP, DST, SRC, OFF)                        \
323         ((struct bpf_insn) {                                    \
324                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,        \
325                 .dst_reg = DST,                                 \
326                 .src_reg = SRC,                                 \
327                 .off   = OFF,                                   \
328                 .imm   = 0 })
329
330 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
331
332 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)                        \
333         ((struct bpf_insn) {                                    \
334                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,        \
335                 .dst_reg = DST,                                 \
336                 .src_reg = 0,                                   \
337                 .off   = OFF,                                   \
338                 .imm   = IMM })
339
340 /* Unconditional jumps, goto pc + off16 */
341
342 #define BPF_JMP_A(OFF)                                          \
343         ((struct bpf_insn) {                                    \
344                 .code  = BPF_JMP | BPF_JA,                      \
345                 .dst_reg = 0,                                   \
346                 .src_reg = 0,                                   \
347                 .off   = OFF,                                   \
348                 .imm   = 0 })
349
350 /* Relative call */
351
352 #define BPF_CALL_REL(TGT)                                       \
353         ((struct bpf_insn) {                                    \
354                 .code  = BPF_JMP | BPF_CALL,                    \
355                 .dst_reg = 0,                                   \
356                 .src_reg = BPF_PSEUDO_CALL,                     \
357                 .off   = 0,                                     \
358                 .imm   = TGT })
359
360 /* Function call */
361
362 #define BPF_CAST_CALL(x)                                        \
363                 ((u64 (*)(u64, u64, u64, u64, u64))(x))
364
365 #define BPF_EMIT_CALL(FUNC)                                     \
366         ((struct bpf_insn) {                                    \
367                 .code  = BPF_JMP | BPF_CALL,                    \
368                 .dst_reg = 0,                                   \
369                 .src_reg = 0,                                   \
370                 .off   = 0,                                     \
371                 .imm   = ((FUNC) - __bpf_call_base) })
372
373 /* Raw code statement block */
374
375 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)                  \
376         ((struct bpf_insn) {                                    \
377                 .code  = CODE,                                  \
378                 .dst_reg = DST,                                 \
379                 .src_reg = SRC,                                 \
380                 .off   = OFF,                                   \
381                 .imm   = IMM })
382
383 /* Program exit */
384
385 #define BPF_EXIT_INSN()                                         \
386         ((struct bpf_insn) {                                    \
387                 .code  = BPF_JMP | BPF_EXIT,                    \
388                 .dst_reg = 0,                                   \
389                 .src_reg = 0,                                   \
390                 .off   = 0,                                     \
391                 .imm   = 0 })
392
393 /* Internal classic blocks for direct assignment */
394
395 #define __BPF_STMT(CODE, K)                                     \
396         ((struct sock_filter) BPF_STMT(CODE, K))
397
398 #define __BPF_JUMP(CODE, K, JT, JF)                             \
399         ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
400
401 #define bytes_to_bpf_size(bytes)                                \
402 ({                                                              \
403         int bpf_size = -EINVAL;                                 \
404                                                                 \
405         if (bytes == sizeof(u8))                                \
406                 bpf_size = BPF_B;                               \
407         else if (bytes == sizeof(u16))                          \
408                 bpf_size = BPF_H;                               \
409         else if (bytes == sizeof(u32))                          \
410                 bpf_size = BPF_W;                               \
411         else if (bytes == sizeof(u64))                          \
412                 bpf_size = BPF_DW;                              \
413                                                                 \
414         bpf_size;                                               \
415 })
416
417 #define bpf_size_to_bytes(bpf_size)                             \
418 ({                                                              \
419         int bytes = -EINVAL;                                    \
420                                                                 \
421         if (bpf_size == BPF_B)                                  \
422                 bytes = sizeof(u8);                             \
423         else if (bpf_size == BPF_H)                             \
424                 bytes = sizeof(u16);                            \
425         else if (bpf_size == BPF_W)                             \
426                 bytes = sizeof(u32);                            \
427         else if (bpf_size == BPF_DW)                            \
428                 bytes = sizeof(u64);                            \
429                                                                 \
430         bytes;                                                  \
431 })
432
433 #define BPF_SIZEOF(type)                                        \
434         ({                                                      \
435                 const int __size = bytes_to_bpf_size(sizeof(type)); \
436                 BUILD_BUG_ON(__size < 0);                       \
437                 __size;                                         \
438         })
439
440 #define BPF_FIELD_SIZEOF(type, field)                           \
441         ({                                                      \
442                 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
443                 BUILD_BUG_ON(__size < 0);                       \
444                 __size;                                         \
445         })
446
447 #define BPF_LDST_BYTES(insn)                                    \
448         ({                                                      \
449                 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
450                 WARN_ON(__size < 0);                            \
451                 __size;                                         \
452         })
453
454 #define __BPF_MAP_0(m, v, ...) v
455 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
456 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
457 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
458 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
459 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
460
461 #define __BPF_REG_0(...) __BPF_PAD(5)
462 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
463 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
464 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
465 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
466 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
467
468 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
469 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
470
471 #define __BPF_CAST(t, a)                                                       \
472         (__force t)                                                            \
473         (__force                                                               \
474          typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
475                                       (unsigned long)0, (t)0))) a
476 #define __BPF_V void
477 #define __BPF_N
478
479 #define __BPF_DECL_ARGS(t, a) t   a
480 #define __BPF_DECL_REGS(t, a) u64 a
481
482 #define __BPF_PAD(n)                                                           \
483         __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
484                   u64, __ur_3, u64, __ur_4, u64, __ur_5)
485
486 #define BPF_CALL_x(x, name, ...)                                               \
487         static __always_inline                                                 \
488         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
489         typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
490         u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));         \
491         u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))          \
492         {                                                                      \
493                 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
494         }                                                                      \
495         static __always_inline                                                 \
496         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
497
498 #define BPF_CALL_0(name, ...)   BPF_CALL_x(0, name, __VA_ARGS__)
499 #define BPF_CALL_1(name, ...)   BPF_CALL_x(1, name, __VA_ARGS__)
500 #define BPF_CALL_2(name, ...)   BPF_CALL_x(2, name, __VA_ARGS__)
501 #define BPF_CALL_3(name, ...)   BPF_CALL_x(3, name, __VA_ARGS__)
502 #define BPF_CALL_4(name, ...)   BPF_CALL_x(4, name, __VA_ARGS__)
503 #define BPF_CALL_5(name, ...)   BPF_CALL_x(5, name, __VA_ARGS__)
504
505 #define bpf_ctx_range(TYPE, MEMBER)                                             \
506         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
507 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)                              \
508         offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
509 #if BITS_PER_LONG == 64
510 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
511         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
512 #else
513 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
514         offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
515 #endif /* BITS_PER_LONG == 64 */
516
517 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)                            \
518         ({                                                                      \
519                 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));             \
520                 *(PTR_SIZE) = (SIZE);                                           \
521                 offsetof(TYPE, MEMBER);                                         \
522         })
523
524 /* A struct sock_filter is architecture independent. */
525 struct compat_sock_fprog {
526         u16             len;
527         compat_uptr_t   filter; /* struct sock_filter * */
528 };
529
530 struct sock_fprog_kern {
531         u16                     len;
532         struct sock_filter      *filter;
533 };
534
535 /* Some arches need doubleword alignment for their instructions and/or data */
536 #define BPF_IMAGE_ALIGNMENT 8
537
538 struct bpf_binary_header {
539         u32 pages;
540         u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
541 };
542
543 struct bpf_prog_stats {
544         u64 cnt;
545         u64 nsecs;
546         u64 misses;
547         struct u64_stats_sync syncp;
548 } __aligned(2 * sizeof(u64));
549
550 struct bpf_prog {
551         u16                     pages;          /* Number of allocated pages */
552         u16                     jited:1,        /* Is our filter JIT'ed? */
553                                 jit_requested:1,/* archs need to JIT the prog */
554                                 gpl_compatible:1, /* Is filter GPL compatible? */
555                                 cb_access:1,    /* Is control block accessed? */
556                                 dst_needed:1,   /* Do we need dst entry? */
557                                 blinded:1,      /* Was blinded */
558                                 is_func:1,      /* program is a bpf function */
559                                 kprobe_override:1, /* Do we override a kprobe? */
560                                 has_callchain_buf:1, /* callchain buffer allocated? */
561                                 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
562                                 call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */
563         enum bpf_prog_type      type;           /* Type of BPF program */
564         enum bpf_attach_type    expected_attach_type; /* For some prog types */
565         u32                     len;            /* Number of filter blocks */
566         u32                     jited_len;      /* Size of jited insns in bytes */
567         u8                      tag[BPF_TAG_SIZE];
568         struct bpf_prog_stats __percpu *stats;
569         int __percpu            *active;
570         unsigned int            (*bpf_func)(const void *ctx,
571                                             const struct bpf_insn *insn);
572         struct bpf_prog_aux     *aux;           /* Auxiliary fields */
573         struct sock_fprog_kern  *orig_prog;     /* Original BPF program */
574         /* Instructions for interpreter */
575         struct sock_filter      insns[0];
576         struct bpf_insn         insnsi[];
577 };
578
579 struct sk_filter {
580         refcount_t      refcnt;
581         struct rcu_head rcu;
582         struct bpf_prog *prog;
583 };
584
585 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
586
587 #define __BPF_PROG_RUN(prog, ctx, dfunc)        ({                      \
588         u32 __ret;                                                      \
589         cant_migrate();                                                 \
590         if (static_branch_unlikely(&bpf_stats_enabled_key)) {           \
591                 struct bpf_prog_stats *__stats;                         \
592                 u64 __start = sched_clock();                            \
593                 __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);   \
594                 __stats = this_cpu_ptr(prog->stats);                    \
595                 u64_stats_update_begin(&__stats->syncp);                \
596                 __stats->cnt++;                                         \
597                 __stats->nsecs += sched_clock() - __start;              \
598                 u64_stats_update_end(&__stats->syncp);                  \
599         } else {                                                        \
600                 __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);   \
601         }                                                               \
602         __ret; })
603
604 #define BPF_PROG_RUN(prog, ctx)                                         \
605         __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func)
606
607 /*
608  * Use in preemptible and therefore migratable context to make sure that
609  * the execution of the BPF program runs on one CPU.
610  *
611  * This uses migrate_disable/enable() explicitly to document that the
612  * invocation of a BPF program does not require reentrancy protection
613  * against a BPF program which is invoked from a preempting task.
614  *
615  * For non RT enabled kernels migrate_disable/enable() maps to
616  * preempt_disable/enable(), i.e. it disables also preemption.
617  */
618 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
619                                           const void *ctx)
620 {
621         u32 ret;
622
623         migrate_disable();
624         ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func);
625         migrate_enable();
626         return ret;
627 }
628
629 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
630
631 struct bpf_skb_data_end {
632         struct qdisc_skb_cb qdisc_cb;
633         void *data_meta;
634         void *data_end;
635 };
636
637 struct bpf_nh_params {
638         u32 nh_family;
639         union {
640                 u32 ipv4_nh;
641                 struct in6_addr ipv6_nh;
642         };
643 };
644
645 struct bpf_redirect_info {
646         u32 flags;
647         u32 tgt_index;
648         void *tgt_value;
649         u32 map_id;
650         enum bpf_map_type map_type;
651         u32 kern_flags;
652         struct bpf_nh_params nh;
653 };
654
655 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
656
657 /* flags for bpf_redirect_info kern_flags */
658 #define BPF_RI_F_RF_NO_DIRECT   BIT(0)  /* no napi_direct on return_frame */
659
660 /* Compute the linear packet data range [data, data_end) which
661  * will be accessed by various program types (cls_bpf, act_bpf,
662  * lwt, ...). Subsystems allowing direct data access must (!)
663  * ensure that cb[] area can be written to when BPF program is
664  * invoked (otherwise cb[] save/restore is necessary).
665  */
666 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
667 {
668         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
669
670         BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
671         cb->data_meta = skb->data - skb_metadata_len(skb);
672         cb->data_end  = skb->data + skb_headlen(skb);
673 }
674
675 /* Similar to bpf_compute_data_pointers(), except that save orginal
676  * data in cb->data and cb->meta_data for restore.
677  */
678 static inline void bpf_compute_and_save_data_end(
679         struct sk_buff *skb, void **saved_data_end)
680 {
681         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
682
683         *saved_data_end = cb->data_end;
684         cb->data_end  = skb->data + skb_headlen(skb);
685 }
686
687 /* Restore data saved by bpf_compute_data_pointers(). */
688 static inline void bpf_restore_data_end(
689         struct sk_buff *skb, void *saved_data_end)
690 {
691         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
692
693         cb->data_end = saved_data_end;
694 }
695
696 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
697 {
698         /* eBPF programs may read/write skb->cb[] area to transfer meta
699          * data between tail calls. Since this also needs to work with
700          * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
701          *
702          * In some socket filter cases, the cb unfortunately needs to be
703          * saved/restored so that protocol specific skb->cb[] data won't
704          * be lost. In any case, due to unpriviledged eBPF programs
705          * attached to sockets, we need to clear the bpf_skb_cb() area
706          * to not leak previous contents to user space.
707          */
708         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
709         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
710                      sizeof_field(struct qdisc_skb_cb, data));
711
712         return qdisc_skb_cb(skb)->data;
713 }
714
715 /* Must be invoked with migration disabled */
716 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
717                                          struct sk_buff *skb)
718 {
719         u8 *cb_data = bpf_skb_cb(skb);
720         u8 cb_saved[BPF_SKB_CB_LEN];
721         u32 res;
722
723         if (unlikely(prog->cb_access)) {
724                 memcpy(cb_saved, cb_data, sizeof(cb_saved));
725                 memset(cb_data, 0, sizeof(cb_saved));
726         }
727
728         res = BPF_PROG_RUN(prog, skb);
729
730         if (unlikely(prog->cb_access))
731                 memcpy(cb_data, cb_saved, sizeof(cb_saved));
732
733         return res;
734 }
735
736 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
737                                        struct sk_buff *skb)
738 {
739         u32 res;
740
741         migrate_disable();
742         res = __bpf_prog_run_save_cb(prog, skb);
743         migrate_enable();
744         return res;
745 }
746
747 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
748                                         struct sk_buff *skb)
749 {
750         u8 *cb_data = bpf_skb_cb(skb);
751         u32 res;
752
753         if (unlikely(prog->cb_access))
754                 memset(cb_data, 0, BPF_SKB_CB_LEN);
755
756         res = bpf_prog_run_pin_on_cpu(prog, skb);
757         return res;
758 }
759
760 DECLARE_BPF_DISPATCHER(xdp)
761
762 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
763                                             struct xdp_buff *xdp)
764 {
765         /* Caller needs to hold rcu_read_lock() (!), otherwise program
766          * can be released while still running, or map elements could be
767          * freed early while still having concurrent users. XDP fastpath
768          * already takes rcu_read_lock() when fetching the program, so
769          * it's not necessary here anymore.
770          */
771         return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
772 }
773
774 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
775
776 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
777 {
778         return prog->len * sizeof(struct bpf_insn);
779 }
780
781 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
782 {
783         return round_up(bpf_prog_insn_size(prog) +
784                         sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
785 }
786
787 static inline unsigned int bpf_prog_size(unsigned int proglen)
788 {
789         return max(sizeof(struct bpf_prog),
790                    offsetof(struct bpf_prog, insns[proglen]));
791 }
792
793 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
794 {
795         /* When classic BPF programs have been loaded and the arch
796          * does not have a classic BPF JIT (anymore), they have been
797          * converted via bpf_migrate_filter() to eBPF and thus always
798          * have an unspec program type.
799          */
800         return prog->type == BPF_PROG_TYPE_UNSPEC;
801 }
802
803 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
804 {
805         const u32 size_machine = sizeof(unsigned long);
806
807         if (size > size_machine && size % size_machine == 0)
808                 size = size_machine;
809
810         return size;
811 }
812
813 static inline bool
814 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
815 {
816         return size <= size_default && (size & (size - 1)) == 0;
817 }
818
819 static inline u8
820 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
821 {
822         u8 access_off = off & (size_default - 1);
823
824 #ifdef __LITTLE_ENDIAN
825         return access_off;
826 #else
827         return size_default - (access_off + size);
828 #endif
829 }
830
831 #define bpf_ctx_wide_access_ok(off, size, type, field)                  \
832         (size == sizeof(__u64) &&                                       \
833         off >= offsetof(type, field) &&                                 \
834         off + sizeof(__u64) <= offsetofend(type, field) &&              \
835         off % sizeof(__u64) == 0)
836
837 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
838
839 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
840 {
841 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
842         if (!fp->jited) {
843                 set_vm_flush_reset_perms(fp);
844                 set_memory_ro((unsigned long)fp, fp->pages);
845         }
846 #endif
847 }
848
849 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
850 {
851         set_vm_flush_reset_perms(hdr);
852         set_memory_ro((unsigned long)hdr, hdr->pages);
853         set_memory_x((unsigned long)hdr, hdr->pages);
854 }
855
856 static inline struct bpf_binary_header *
857 bpf_jit_binary_hdr(const struct bpf_prog *fp)
858 {
859         unsigned long real_start = (unsigned long)fp->bpf_func;
860         unsigned long addr = real_start & PAGE_MASK;
861
862         return (void *)addr;
863 }
864
865 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
866 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
867 {
868         return sk_filter_trim_cap(sk, skb, 1);
869 }
870
871 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
872 void bpf_prog_free(struct bpf_prog *fp);
873
874 bool bpf_opcode_in_insntable(u8 code);
875
876 void bpf_prog_free_linfo(struct bpf_prog *prog);
877 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
878                                const u32 *insn_to_jit_off);
879 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
880 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
881
882 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
883 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
884 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
885                                   gfp_t gfp_extra_flags);
886 void __bpf_prog_free(struct bpf_prog *fp);
887
888 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
889 {
890         __bpf_prog_free(fp);
891 }
892
893 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
894                                        unsigned int flen);
895
896 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
897 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
898                               bpf_aux_classic_check_t trans, bool save_orig);
899 void bpf_prog_destroy(struct bpf_prog *fp);
900
901 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
902 int sk_attach_bpf(u32 ufd, struct sock *sk);
903 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
904 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
905 void sk_reuseport_prog_free(struct bpf_prog *prog);
906 int sk_detach_filter(struct sock *sk);
907 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
908                   unsigned int len);
909
910 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
911 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
912
913 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
914 #define __bpf_call_base_args \
915         ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
916          (void *)__bpf_call_base)
917
918 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
919 void bpf_jit_compile(struct bpf_prog *prog);
920 bool bpf_jit_needs_zext(void);
921 bool bpf_jit_supports_kfunc_call(void);
922 bool bpf_helper_changes_pkt_data(void *func);
923
924 static inline bool bpf_dump_raw_ok(const struct cred *cred)
925 {
926         /* Reconstruction of call-sites is dependent on kallsyms,
927          * thus make dump the same restriction.
928          */
929         return kallsyms_show_value(cred);
930 }
931
932 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
933                                        const struct bpf_insn *patch, u32 len);
934 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
935
936 void bpf_clear_redirect_map(struct bpf_map *map);
937
938 static inline bool xdp_return_frame_no_direct(void)
939 {
940         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
941
942         return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
943 }
944
945 static inline void xdp_set_return_frame_no_direct(void)
946 {
947         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
948
949         ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
950 }
951
952 static inline void xdp_clear_return_frame_no_direct(void)
953 {
954         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
955
956         ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
957 }
958
959 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
960                                  unsigned int pktlen)
961 {
962         unsigned int len;
963
964         if (unlikely(!(fwd->flags & IFF_UP)))
965                 return -ENETDOWN;
966
967         len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
968         if (pktlen > len)
969                 return -EMSGSIZE;
970
971         return 0;
972 }
973
974 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
975  * same cpu context. Further for best results no more than a single map
976  * for the do_redirect/do_flush pair should be used. This limitation is
977  * because we only track one map and force a flush when the map changes.
978  * This does not appear to be a real limitation for existing software.
979  */
980 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
981                             struct xdp_buff *xdp, struct bpf_prog *prog);
982 int xdp_do_redirect(struct net_device *dev,
983                     struct xdp_buff *xdp,
984                     struct bpf_prog *prog);
985 void xdp_do_flush(void);
986
987 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
988  * it is no longer only flushing maps. Keep this define for compatibility
989  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
990  */
991 #define xdp_do_flush_map xdp_do_flush
992
993 void bpf_warn_invalid_xdp_action(u32 act);
994
995 #ifdef CONFIG_INET
996 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
997                                   struct bpf_prog *prog, struct sk_buff *skb,
998                                   u32 hash);
999 #else
1000 static inline struct sock *
1001 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1002                      struct bpf_prog *prog, struct sk_buff *skb,
1003                      u32 hash)
1004 {
1005         return NULL;
1006 }
1007 #endif
1008
1009 #ifdef CONFIG_BPF_JIT
1010 extern int bpf_jit_enable;
1011 extern int bpf_jit_harden;
1012 extern int bpf_jit_kallsyms;
1013 extern long bpf_jit_limit;
1014
1015 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1016
1017 struct bpf_binary_header *
1018 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1019                      unsigned int alignment,
1020                      bpf_jit_fill_hole_t bpf_fill_ill_insns);
1021 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1022 u64 bpf_jit_alloc_exec_limit(void);
1023 void *bpf_jit_alloc_exec(unsigned long size);
1024 void bpf_jit_free_exec(void *addr);
1025 void bpf_jit_free(struct bpf_prog *fp);
1026
1027 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1028                                 struct bpf_jit_poke_descriptor *poke);
1029
1030 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1031                           const struct bpf_insn *insn, bool extra_pass,
1032                           u64 *func_addr, bool *func_addr_fixed);
1033
1034 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1035 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1036
1037 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1038                                 u32 pass, void *image)
1039 {
1040         pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1041                proglen, pass, image, current->comm, task_pid_nr(current));
1042
1043         if (image)
1044                 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1045                                16, 1, image, proglen, false);
1046 }
1047
1048 static inline bool bpf_jit_is_ebpf(void)
1049 {
1050 # ifdef CONFIG_HAVE_EBPF_JIT
1051         return true;
1052 # else
1053         return false;
1054 # endif
1055 }
1056
1057 static inline bool ebpf_jit_enabled(void)
1058 {
1059         return bpf_jit_enable && bpf_jit_is_ebpf();
1060 }
1061
1062 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1063 {
1064         return fp->jited && bpf_jit_is_ebpf();
1065 }
1066
1067 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1068 {
1069         /* These are the prerequisites, should someone ever have the
1070          * idea to call blinding outside of them, we make sure to
1071          * bail out.
1072          */
1073         if (!bpf_jit_is_ebpf())
1074                 return false;
1075         if (!prog->jit_requested)
1076                 return false;
1077         if (!bpf_jit_harden)
1078                 return false;
1079         if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1080                 return false;
1081
1082         return true;
1083 }
1084
1085 static inline bool bpf_jit_kallsyms_enabled(void)
1086 {
1087         /* There are a couple of corner cases where kallsyms should
1088          * not be enabled f.e. on hardening.
1089          */
1090         if (bpf_jit_harden)
1091                 return false;
1092         if (!bpf_jit_kallsyms)
1093                 return false;
1094         if (bpf_jit_kallsyms == 1)
1095                 return true;
1096
1097         return false;
1098 }
1099
1100 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1101                                  unsigned long *off, char *sym);
1102 bool is_bpf_text_address(unsigned long addr);
1103 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1104                     char *sym);
1105
1106 static inline const char *
1107 bpf_address_lookup(unsigned long addr, unsigned long *size,
1108                    unsigned long *off, char **modname, char *sym)
1109 {
1110         const char *ret = __bpf_address_lookup(addr, size, off, sym);
1111
1112         if (ret && modname)
1113                 *modname = NULL;
1114         return ret;
1115 }
1116
1117 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1118 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1119
1120 #else /* CONFIG_BPF_JIT */
1121
1122 static inline bool ebpf_jit_enabled(void)
1123 {
1124         return false;
1125 }
1126
1127 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1128 {
1129         return false;
1130 }
1131
1132 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1133 {
1134         return false;
1135 }
1136
1137 static inline int
1138 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1139                             struct bpf_jit_poke_descriptor *poke)
1140 {
1141         return -ENOTSUPP;
1142 }
1143
1144 static inline void bpf_jit_free(struct bpf_prog *fp)
1145 {
1146         bpf_prog_unlock_free(fp);
1147 }
1148
1149 static inline bool bpf_jit_kallsyms_enabled(void)
1150 {
1151         return false;
1152 }
1153
1154 static inline const char *
1155 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1156                      unsigned long *off, char *sym)
1157 {
1158         return NULL;
1159 }
1160
1161 static inline bool is_bpf_text_address(unsigned long addr)
1162 {
1163         return false;
1164 }
1165
1166 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1167                                   char *type, char *sym)
1168 {
1169         return -ERANGE;
1170 }
1171
1172 static inline const char *
1173 bpf_address_lookup(unsigned long addr, unsigned long *size,
1174                    unsigned long *off, char **modname, char *sym)
1175 {
1176         return NULL;
1177 }
1178
1179 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1180 {
1181 }
1182
1183 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1184 {
1185 }
1186
1187 #endif /* CONFIG_BPF_JIT */
1188
1189 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1190
1191 #define BPF_ANC         BIT(15)
1192
1193 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1194 {
1195         switch (first->code) {
1196         case BPF_RET | BPF_K:
1197         case BPF_LD | BPF_W | BPF_LEN:
1198                 return false;
1199
1200         case BPF_LD | BPF_W | BPF_ABS:
1201         case BPF_LD | BPF_H | BPF_ABS:
1202         case BPF_LD | BPF_B | BPF_ABS:
1203                 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1204                         return true;
1205                 return false;
1206
1207         default:
1208                 return true;
1209         }
1210 }
1211
1212 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1213 {
1214         BUG_ON(ftest->code & BPF_ANC);
1215
1216         switch (ftest->code) {
1217         case BPF_LD | BPF_W | BPF_ABS:
1218         case BPF_LD | BPF_H | BPF_ABS:
1219         case BPF_LD | BPF_B | BPF_ABS:
1220 #define BPF_ANCILLARY(CODE)     case SKF_AD_OFF + SKF_AD_##CODE:        \
1221                                 return BPF_ANC | SKF_AD_##CODE
1222                 switch (ftest->k) {
1223                 BPF_ANCILLARY(PROTOCOL);
1224                 BPF_ANCILLARY(PKTTYPE);
1225                 BPF_ANCILLARY(IFINDEX);
1226                 BPF_ANCILLARY(NLATTR);
1227                 BPF_ANCILLARY(NLATTR_NEST);
1228                 BPF_ANCILLARY(MARK);
1229                 BPF_ANCILLARY(QUEUE);
1230                 BPF_ANCILLARY(HATYPE);
1231                 BPF_ANCILLARY(RXHASH);
1232                 BPF_ANCILLARY(CPU);
1233                 BPF_ANCILLARY(ALU_XOR_X);
1234                 BPF_ANCILLARY(VLAN_TAG);
1235                 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1236                 BPF_ANCILLARY(PAY_OFFSET);
1237                 BPF_ANCILLARY(RANDOM);
1238                 BPF_ANCILLARY(VLAN_TPID);
1239                 }
1240                 fallthrough;
1241         default:
1242                 return ftest->code;
1243         }
1244 }
1245
1246 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1247                                            int k, unsigned int size);
1248
1249 static inline int bpf_tell_extensions(void)
1250 {
1251         return SKF_AD_MAX;
1252 }
1253
1254 struct bpf_sock_addr_kern {
1255         struct sock *sk;
1256         struct sockaddr *uaddr;
1257         /* Temporary "register" to make indirect stores to nested structures
1258          * defined above. We need three registers to make such a store, but
1259          * only two (src and dst) are available at convert_ctx_access time
1260          */
1261         u64 tmp_reg;
1262         void *t_ctx;    /* Attach type specific context. */
1263 };
1264
1265 struct bpf_sock_ops_kern {
1266         struct  sock *sk;
1267         union {
1268                 u32 args[4];
1269                 u32 reply;
1270                 u32 replylong[4];
1271         };
1272         struct sk_buff  *syn_skb;
1273         struct sk_buff  *skb;
1274         void    *skb_data_end;
1275         u8      op;
1276         u8      is_fullsock;
1277         u8      remaining_opt_len;
1278         u64     temp;                   /* temp and everything after is not
1279                                          * initialized to 0 before calling
1280                                          * the BPF program. New fields that
1281                                          * should be initialized to 0 should
1282                                          * be inserted before temp.
1283                                          * temp is scratch storage used by
1284                                          * sock_ops_convert_ctx_access
1285                                          * as temporary storage of a register.
1286                                          */
1287 };
1288
1289 struct bpf_sysctl_kern {
1290         struct ctl_table_header *head;
1291         struct ctl_table *table;
1292         void *cur_val;
1293         size_t cur_len;
1294         void *new_val;
1295         size_t new_len;
1296         int new_updated;
1297         int write;
1298         loff_t *ppos;
1299         /* Temporary "register" for indirect stores to ppos. */
1300         u64 tmp_reg;
1301 };
1302
1303 #define BPF_SOCKOPT_KERN_BUF_SIZE       32
1304 struct bpf_sockopt_buf {
1305         u8              data[BPF_SOCKOPT_KERN_BUF_SIZE];
1306 };
1307
1308 struct bpf_sockopt_kern {
1309         struct sock     *sk;
1310         u8              *optval;
1311         u8              *optval_end;
1312         s32             level;
1313         s32             optname;
1314         s32             optlen;
1315         s32             retval;
1316 };
1317
1318 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1319
1320 struct bpf_sk_lookup_kern {
1321         u16             family;
1322         u16             protocol;
1323         __be16          sport;
1324         u16             dport;
1325         struct {
1326                 __be32 saddr;
1327                 __be32 daddr;
1328         } v4;
1329         struct {
1330                 const struct in6_addr *saddr;
1331                 const struct in6_addr *daddr;
1332         } v6;
1333         struct sock     *selected_sk;
1334         bool            no_reuseport;
1335 };
1336
1337 extern struct static_key_false bpf_sk_lookup_enabled;
1338
1339 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1340  *
1341  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1342  * SK_DROP. Their meaning is as follows:
1343  *
1344  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1345  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1346  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1347  *
1348  * This macro aggregates return values and selected sockets from
1349  * multiple BPF programs according to following rules in order:
1350  *
1351  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1352  *     macro result is SK_PASS and last ctx.selected_sk is used.
1353  *  2. If any program returned SK_DROP return value,
1354  *     macro result is SK_DROP.
1355  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1356  *
1357  * Caller must ensure that the prog array is non-NULL, and that the
1358  * array as well as the programs it contains remain valid.
1359  */
1360 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)                  \
1361         ({                                                              \
1362                 struct bpf_sk_lookup_kern *_ctx = &(ctx);               \
1363                 struct bpf_prog_array_item *_item;                      \
1364                 struct sock *_selected_sk = NULL;                       \
1365                 bool _no_reuseport = false;                             \
1366                 struct bpf_prog *_prog;                                 \
1367                 bool _all_pass = true;                                  \
1368                 u32 _ret;                                               \
1369                                                                         \
1370                 migrate_disable();                                      \
1371                 _item = &(array)->items[0];                             \
1372                 while ((_prog = READ_ONCE(_item->prog))) {              \
1373                         /* restore most recent selection */             \
1374                         _ctx->selected_sk = _selected_sk;               \
1375                         _ctx->no_reuseport = _no_reuseport;             \
1376                                                                         \
1377                         _ret = func(_prog, _ctx);                       \
1378                         if (_ret == SK_PASS && _ctx->selected_sk) {     \
1379                                 /* remember last non-NULL socket */     \
1380                                 _selected_sk = _ctx->selected_sk;       \
1381                                 _no_reuseport = _ctx->no_reuseport;     \
1382                         } else if (_ret == SK_DROP && _all_pass) {      \
1383                                 _all_pass = false;                      \
1384                         }                                               \
1385                         _item++;                                        \
1386                 }                                                       \
1387                 _ctx->selected_sk = _selected_sk;                       \
1388                 _ctx->no_reuseport = _no_reuseport;                     \
1389                 migrate_enable();                                       \
1390                 _all_pass || _selected_sk ? SK_PASS : SK_DROP;          \
1391          })
1392
1393 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1394                                         const __be32 saddr, const __be16 sport,
1395                                         const __be32 daddr, const u16 dport,
1396                                         struct sock **psk)
1397 {
1398         struct bpf_prog_array *run_array;
1399         struct sock *selected_sk = NULL;
1400         bool no_reuseport = false;
1401
1402         rcu_read_lock();
1403         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1404         if (run_array) {
1405                 struct bpf_sk_lookup_kern ctx = {
1406                         .family         = AF_INET,
1407                         .protocol       = protocol,
1408                         .v4.saddr       = saddr,
1409                         .v4.daddr       = daddr,
1410                         .sport          = sport,
1411                         .dport          = dport,
1412                 };
1413                 u32 act;
1414
1415                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1416                 if (act == SK_PASS) {
1417                         selected_sk = ctx.selected_sk;
1418                         no_reuseport = ctx.no_reuseport;
1419                 } else {
1420                         selected_sk = ERR_PTR(-ECONNREFUSED);
1421                 }
1422         }
1423         rcu_read_unlock();
1424         *psk = selected_sk;
1425         return no_reuseport;
1426 }
1427
1428 #if IS_ENABLED(CONFIG_IPV6)
1429 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1430                                         const struct in6_addr *saddr,
1431                                         const __be16 sport,
1432                                         const struct in6_addr *daddr,
1433                                         const u16 dport,
1434                                         struct sock **psk)
1435 {
1436         struct bpf_prog_array *run_array;
1437         struct sock *selected_sk = NULL;
1438         bool no_reuseport = false;
1439
1440         rcu_read_lock();
1441         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1442         if (run_array) {
1443                 struct bpf_sk_lookup_kern ctx = {
1444                         .family         = AF_INET6,
1445                         .protocol       = protocol,
1446                         .v6.saddr       = saddr,
1447                         .v6.daddr       = daddr,
1448                         .sport          = sport,
1449                         .dport          = dport,
1450                 };
1451                 u32 act;
1452
1453                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1454                 if (act == SK_PASS) {
1455                         selected_sk = ctx.selected_sk;
1456                         no_reuseport = ctx.no_reuseport;
1457                 } else {
1458                         selected_sk = ERR_PTR(-ECONNREFUSED);
1459                 }
1460         }
1461         rcu_read_unlock();
1462         *psk = selected_sk;
1463         return no_reuseport;
1464 }
1465 #endif /* IS_ENABLED(CONFIG_IPV6) */
1466
1467 static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex, u64 flags,
1468                                                   void *lookup_elem(struct bpf_map *map, u32 key))
1469 {
1470         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1471
1472         /* Lower bits of the flags are used as return code on lookup failure */
1473         if (unlikely(flags > XDP_TX))
1474                 return XDP_ABORTED;
1475
1476         ri->tgt_value = lookup_elem(map, ifindex);
1477         if (unlikely(!ri->tgt_value)) {
1478                 /* If the lookup fails we want to clear out the state in the
1479                  * redirect_info struct completely, so that if an eBPF program
1480                  * performs multiple lookups, the last one always takes
1481                  * precedence.
1482                  */
1483                 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1484                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
1485                 return flags;
1486         }
1487
1488         ri->tgt_index = ifindex;
1489         ri->map_id = map->id;
1490         ri->map_type = map->map_type;
1491
1492         return XDP_REDIRECT;
1493 }
1494
1495 #endif /* __LINUX_FILTER_H__ */