ccc4a4a58c7273cac8a8be3555ba0c856c083957
[linux-2.6-microblaze.git] / include / linux / filter.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/capability.h>
18 #include <linux/set_memory.h>
19 #include <linux/kallsyms.h>
20 #include <linux/if_vlan.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sockptr.h>
23 #include <crypto/sha1.h>
24 #include <linux/u64_stats_sync.h>
25
26 #include <net/sch_generic.h>
27
28 #include <asm/byteorder.h>
29 #include <uapi/linux/filter.h>
30
31 struct sk_buff;
32 struct sock;
33 struct seccomp_data;
34 struct bpf_prog_aux;
35 struct xdp_rxq_info;
36 struct xdp_buff;
37 struct sock_reuseport;
38 struct ctl_table;
39 struct ctl_table_header;
40
41 /* ArgX, context and stack frame pointer register positions. Note,
42  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
43  * calls in BPF_CALL instruction.
44  */
45 #define BPF_REG_ARG1    BPF_REG_1
46 #define BPF_REG_ARG2    BPF_REG_2
47 #define BPF_REG_ARG3    BPF_REG_3
48 #define BPF_REG_ARG4    BPF_REG_4
49 #define BPF_REG_ARG5    BPF_REG_5
50 #define BPF_REG_CTX     BPF_REG_6
51 #define BPF_REG_FP      BPF_REG_10
52
53 /* Additional register mappings for converted user programs. */
54 #define BPF_REG_A       BPF_REG_0
55 #define BPF_REG_X       BPF_REG_7
56 #define BPF_REG_TMP     BPF_REG_2       /* scratch reg */
57 #define BPF_REG_D       BPF_REG_8       /* data, callee-saved */
58 #define BPF_REG_H       BPF_REG_9       /* hlen, callee-saved */
59
60 /* Kernel hidden auxiliary/helper register. */
61 #define BPF_REG_AX              MAX_BPF_REG
62 #define MAX_BPF_EXT_REG         (MAX_BPF_REG + 1)
63 #define MAX_BPF_JIT_REG         MAX_BPF_EXT_REG
64
65 /* unused opcode to mark special call to bpf_tail_call() helper */
66 #define BPF_TAIL_CALL   0xf0
67
68 /* unused opcode to mark special load instruction. Same as BPF_ABS */
69 #define BPF_PROBE_MEM   0x20
70
71 /* unused opcode to mark call to interpreter with arguments */
72 #define BPF_CALL_ARGS   0xe0
73
74 /* unused opcode to mark speculation barrier for mitigating
75  * Speculative Store Bypass
76  */
77 #define BPF_NOSPEC      0xc0
78
79 /* As per nm, we expose JITed images as text (code) section for
80  * kallsyms. That way, tools like perf can find it to match
81  * addresses.
82  */
83 #define BPF_SYM_ELF_TYPE        't'
84
85 /* BPF program can access up to 512 bytes of stack space. */
86 #define MAX_BPF_STACK   512
87
88 /* Helper macros for filter block array initializers. */
89
90 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
91
92 #define BPF_ALU64_REG(OP, DST, SRC)                             \
93         ((struct bpf_insn) {                                    \
94                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,        \
95                 .dst_reg = DST,                                 \
96                 .src_reg = SRC,                                 \
97                 .off   = 0,                                     \
98                 .imm   = 0 })
99
100 #define BPF_ALU32_REG(OP, DST, SRC)                             \
101         ((struct bpf_insn) {                                    \
102                 .code  = BPF_ALU | BPF_OP(OP) | BPF_X,          \
103                 .dst_reg = DST,                                 \
104                 .src_reg = SRC,                                 \
105                 .off   = 0,                                     \
106                 .imm   = 0 })
107
108 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
109
110 #define BPF_ALU64_IMM(OP, DST, IMM)                             \
111         ((struct bpf_insn) {                                    \
112                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,        \
113                 .dst_reg = DST,                                 \
114                 .src_reg = 0,                                   \
115                 .off   = 0,                                     \
116                 .imm   = IMM })
117
118 #define BPF_ALU32_IMM(OP, DST, IMM)                             \
119         ((struct bpf_insn) {                                    \
120                 .code  = BPF_ALU | BPF_OP(OP) | BPF_K,          \
121                 .dst_reg = DST,                                 \
122                 .src_reg = 0,                                   \
123                 .off   = 0,                                     \
124                 .imm   = IMM })
125
126 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
127
128 #define BPF_ENDIAN(TYPE, DST, LEN)                              \
129         ((struct bpf_insn) {                                    \
130                 .code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),     \
131                 .dst_reg = DST,                                 \
132                 .src_reg = 0,                                   \
133                 .off   = 0,                                     \
134                 .imm   = LEN })
135
136 /* Short form of mov, dst_reg = src_reg */
137
138 #define BPF_MOV64_REG(DST, SRC)                                 \
139         ((struct bpf_insn) {                                    \
140                 .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
141                 .dst_reg = DST,                                 \
142                 .src_reg = SRC,                                 \
143                 .off   = 0,                                     \
144                 .imm   = 0 })
145
146 #define BPF_MOV32_REG(DST, SRC)                                 \
147         ((struct bpf_insn) {                                    \
148                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
149                 .dst_reg = DST,                                 \
150                 .src_reg = SRC,                                 \
151                 .off   = 0,                                     \
152                 .imm   = 0 })
153
154 /* Short form of mov, dst_reg = imm32 */
155
156 #define BPF_MOV64_IMM(DST, IMM)                                 \
157         ((struct bpf_insn) {                                    \
158                 .code  = BPF_ALU64 | BPF_MOV | BPF_K,           \
159                 .dst_reg = DST,                                 \
160                 .src_reg = 0,                                   \
161                 .off   = 0,                                     \
162                 .imm   = IMM })
163
164 #define BPF_MOV32_IMM(DST, IMM)                                 \
165         ((struct bpf_insn) {                                    \
166                 .code  = BPF_ALU | BPF_MOV | BPF_K,             \
167                 .dst_reg = DST,                                 \
168                 .src_reg = 0,                                   \
169                 .off   = 0,                                     \
170                 .imm   = IMM })
171
172 /* Special form of mov32, used for doing explicit zero extension on dst. */
173 #define BPF_ZEXT_REG(DST)                                       \
174         ((struct bpf_insn) {                                    \
175                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
176                 .dst_reg = DST,                                 \
177                 .src_reg = DST,                                 \
178                 .off   = 0,                                     \
179                 .imm   = 1 })
180
181 static inline bool insn_is_zext(const struct bpf_insn *insn)
182 {
183         return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
184 }
185
186 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
187 #define BPF_LD_IMM64(DST, IMM)                                  \
188         BPF_LD_IMM64_RAW(DST, 0, IMM)
189
190 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)                         \
191         ((struct bpf_insn) {                                    \
192                 .code  = BPF_LD | BPF_DW | BPF_IMM,             \
193                 .dst_reg = DST,                                 \
194                 .src_reg = SRC,                                 \
195                 .off   = 0,                                     \
196                 .imm   = (__u32) (IMM) }),                      \
197         ((struct bpf_insn) {                                    \
198                 .code  = 0, /* zero is reserved opcode */       \
199                 .dst_reg = 0,                                   \
200                 .src_reg = 0,                                   \
201                 .off   = 0,                                     \
202                 .imm   = ((__u64) (IMM)) >> 32 })
203
204 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
205 #define BPF_LD_MAP_FD(DST, MAP_FD)                              \
206         BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
207
208 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
209
210 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)                      \
211         ((struct bpf_insn) {                                    \
212                 .code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),   \
213                 .dst_reg = DST,                                 \
214                 .src_reg = SRC,                                 \
215                 .off   = 0,                                     \
216                 .imm   = IMM })
217
218 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)                      \
219         ((struct bpf_insn) {                                    \
220                 .code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),     \
221                 .dst_reg = DST,                                 \
222                 .src_reg = SRC,                                 \
223                 .off   = 0,                                     \
224                 .imm   = IMM })
225
226 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
227
228 #define BPF_LD_ABS(SIZE, IMM)                                   \
229         ((struct bpf_insn) {                                    \
230                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,     \
231                 .dst_reg = 0,                                   \
232                 .src_reg = 0,                                   \
233                 .off   = 0,                                     \
234                 .imm   = IMM })
235
236 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
237
238 #define BPF_LD_IND(SIZE, SRC, IMM)                              \
239         ((struct bpf_insn) {                                    \
240                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,     \
241                 .dst_reg = 0,                                   \
242                 .src_reg = SRC,                                 \
243                 .off   = 0,                                     \
244                 .imm   = IMM })
245
246 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
247
248 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)                        \
249         ((struct bpf_insn) {                                    \
250                 .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,    \
251                 .dst_reg = DST,                                 \
252                 .src_reg = SRC,                                 \
253                 .off   = OFF,                                   \
254                 .imm   = 0 })
255
256 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
257
258 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)                        \
259         ((struct bpf_insn) {                                    \
260                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,    \
261                 .dst_reg = DST,                                 \
262                 .src_reg = SRC,                                 \
263                 .off   = OFF,                                   \
264                 .imm   = 0 })
265
266
267 /*
268  * Atomic operations:
269  *
270  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
271  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
272  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
273  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
274  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
275  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
276  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
277  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
278  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
279  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
280  */
281
282 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)                  \
283         ((struct bpf_insn) {                                    \
284                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
285                 .dst_reg = DST,                                 \
286                 .src_reg = SRC,                                 \
287                 .off   = OFF,                                   \
288                 .imm   = OP })
289
290 /* Legacy alias */
291 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
292
293 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
294
295 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)                         \
296         ((struct bpf_insn) {                                    \
297                 .code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,     \
298                 .dst_reg = DST,                                 \
299                 .src_reg = 0,                                   \
300                 .off   = OFF,                                   \
301                 .imm   = IMM })
302
303 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
304
305 #define BPF_JMP_REG(OP, DST, SRC, OFF)                          \
306         ((struct bpf_insn) {                                    \
307                 .code  = BPF_JMP | BPF_OP(OP) | BPF_X,          \
308                 .dst_reg = DST,                                 \
309                 .src_reg = SRC,                                 \
310                 .off   = OFF,                                   \
311                 .imm   = 0 })
312
313 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
314
315 #define BPF_JMP_IMM(OP, DST, IMM, OFF)                          \
316         ((struct bpf_insn) {                                    \
317                 .code  = BPF_JMP | BPF_OP(OP) | BPF_K,          \
318                 .dst_reg = DST,                                 \
319                 .src_reg = 0,                                   \
320                 .off   = OFF,                                   \
321                 .imm   = IMM })
322
323 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
324
325 #define BPF_JMP32_REG(OP, DST, SRC, OFF)                        \
326         ((struct bpf_insn) {                                    \
327                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,        \
328                 .dst_reg = DST,                                 \
329                 .src_reg = SRC,                                 \
330                 .off   = OFF,                                   \
331                 .imm   = 0 })
332
333 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
334
335 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)                        \
336         ((struct bpf_insn) {                                    \
337                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,        \
338                 .dst_reg = DST,                                 \
339                 .src_reg = 0,                                   \
340                 .off   = OFF,                                   \
341                 .imm   = IMM })
342
343 /* Unconditional jumps, goto pc + off16 */
344
345 #define BPF_JMP_A(OFF)                                          \
346         ((struct bpf_insn) {                                    \
347                 .code  = BPF_JMP | BPF_JA,                      \
348                 .dst_reg = 0,                                   \
349                 .src_reg = 0,                                   \
350                 .off   = OFF,                                   \
351                 .imm   = 0 })
352
353 /* Relative call */
354
355 #define BPF_CALL_REL(TGT)                                       \
356         ((struct bpf_insn) {                                    \
357                 .code  = BPF_JMP | BPF_CALL,                    \
358                 .dst_reg = 0,                                   \
359                 .src_reg = BPF_PSEUDO_CALL,                     \
360                 .off   = 0,                                     \
361                 .imm   = TGT })
362
363 /* Convert function address to BPF immediate */
364
365 #define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base)
366
367 #define BPF_EMIT_CALL(FUNC)                                     \
368         ((struct bpf_insn) {                                    \
369                 .code  = BPF_JMP | BPF_CALL,                    \
370                 .dst_reg = 0,                                   \
371                 .src_reg = 0,                                   \
372                 .off   = 0,                                     \
373                 .imm   = BPF_CALL_IMM(FUNC) })
374
375 /* Raw code statement block */
376
377 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)                  \
378         ((struct bpf_insn) {                                    \
379                 .code  = CODE,                                  \
380                 .dst_reg = DST,                                 \
381                 .src_reg = SRC,                                 \
382                 .off   = OFF,                                   \
383                 .imm   = IMM })
384
385 /* Program exit */
386
387 #define BPF_EXIT_INSN()                                         \
388         ((struct bpf_insn) {                                    \
389                 .code  = BPF_JMP | BPF_EXIT,                    \
390                 .dst_reg = 0,                                   \
391                 .src_reg = 0,                                   \
392                 .off   = 0,                                     \
393                 .imm   = 0 })
394
395 /* Speculation barrier */
396
397 #define BPF_ST_NOSPEC()                                         \
398         ((struct bpf_insn) {                                    \
399                 .code  = BPF_ST | BPF_NOSPEC,                   \
400                 .dst_reg = 0,                                   \
401                 .src_reg = 0,                                   \
402                 .off   = 0,                                     \
403                 .imm   = 0 })
404
405 /* Internal classic blocks for direct assignment */
406
407 #define __BPF_STMT(CODE, K)                                     \
408         ((struct sock_filter) BPF_STMT(CODE, K))
409
410 #define __BPF_JUMP(CODE, K, JT, JF)                             \
411         ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
412
413 #define bytes_to_bpf_size(bytes)                                \
414 ({                                                              \
415         int bpf_size = -EINVAL;                                 \
416                                                                 \
417         if (bytes == sizeof(u8))                                \
418                 bpf_size = BPF_B;                               \
419         else if (bytes == sizeof(u16))                          \
420                 bpf_size = BPF_H;                               \
421         else if (bytes == sizeof(u32))                          \
422                 bpf_size = BPF_W;                               \
423         else if (bytes == sizeof(u64))                          \
424                 bpf_size = BPF_DW;                              \
425                                                                 \
426         bpf_size;                                               \
427 })
428
429 #define bpf_size_to_bytes(bpf_size)                             \
430 ({                                                              \
431         int bytes = -EINVAL;                                    \
432                                                                 \
433         if (bpf_size == BPF_B)                                  \
434                 bytes = sizeof(u8);                             \
435         else if (bpf_size == BPF_H)                             \
436                 bytes = sizeof(u16);                            \
437         else if (bpf_size == BPF_W)                             \
438                 bytes = sizeof(u32);                            \
439         else if (bpf_size == BPF_DW)                            \
440                 bytes = sizeof(u64);                            \
441                                                                 \
442         bytes;                                                  \
443 })
444
445 #define BPF_SIZEOF(type)                                        \
446         ({                                                      \
447                 const int __size = bytes_to_bpf_size(sizeof(type)); \
448                 BUILD_BUG_ON(__size < 0);                       \
449                 __size;                                         \
450         })
451
452 #define BPF_FIELD_SIZEOF(type, field)                           \
453         ({                                                      \
454                 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
455                 BUILD_BUG_ON(__size < 0);                       \
456                 __size;                                         \
457         })
458
459 #define BPF_LDST_BYTES(insn)                                    \
460         ({                                                      \
461                 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
462                 WARN_ON(__size < 0);                            \
463                 __size;                                         \
464         })
465
466 #define __BPF_MAP_0(m, v, ...) v
467 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
468 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
469 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
470 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
471 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
472
473 #define __BPF_REG_0(...) __BPF_PAD(5)
474 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
475 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
476 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
477 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
478 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
479
480 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
481 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
482
483 #define __BPF_CAST(t, a)                                                       \
484         (__force t)                                                            \
485         (__force                                                               \
486          typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
487                                       (unsigned long)0, (t)0))) a
488 #define __BPF_V void
489 #define __BPF_N
490
491 #define __BPF_DECL_ARGS(t, a) t   a
492 #define __BPF_DECL_REGS(t, a) u64 a
493
494 #define __BPF_PAD(n)                                                           \
495         __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
496                   u64, __ur_3, u64, __ur_4, u64, __ur_5)
497
498 #define BPF_CALL_x(x, name, ...)                                               \
499         static __always_inline                                                 \
500         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
501         typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
502         u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));         \
503         u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))          \
504         {                                                                      \
505                 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
506         }                                                                      \
507         static __always_inline                                                 \
508         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
509
510 #define BPF_CALL_0(name, ...)   BPF_CALL_x(0, name, __VA_ARGS__)
511 #define BPF_CALL_1(name, ...)   BPF_CALL_x(1, name, __VA_ARGS__)
512 #define BPF_CALL_2(name, ...)   BPF_CALL_x(2, name, __VA_ARGS__)
513 #define BPF_CALL_3(name, ...)   BPF_CALL_x(3, name, __VA_ARGS__)
514 #define BPF_CALL_4(name, ...)   BPF_CALL_x(4, name, __VA_ARGS__)
515 #define BPF_CALL_5(name, ...)   BPF_CALL_x(5, name, __VA_ARGS__)
516
517 #define bpf_ctx_range(TYPE, MEMBER)                                             \
518         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
519 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)                              \
520         offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
521 #if BITS_PER_LONG == 64
522 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
523         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
524 #else
525 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
526         offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
527 #endif /* BITS_PER_LONG == 64 */
528
529 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)                            \
530         ({                                                                      \
531                 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));             \
532                 *(PTR_SIZE) = (SIZE);                                           \
533                 offsetof(TYPE, MEMBER);                                         \
534         })
535
536 /* A struct sock_filter is architecture independent. */
537 struct compat_sock_fprog {
538         u16             len;
539         compat_uptr_t   filter; /* struct sock_filter * */
540 };
541
542 struct sock_fprog_kern {
543         u16                     len;
544         struct sock_filter      *filter;
545 };
546
547 /* Some arches need doubleword alignment for their instructions and/or data */
548 #define BPF_IMAGE_ALIGNMENT 8
549
550 struct bpf_binary_header {
551         u32 size;
552         u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
553 };
554
555 struct bpf_prog_stats {
556         u64_stats_t cnt;
557         u64_stats_t nsecs;
558         u64_stats_t misses;
559         struct u64_stats_sync syncp;
560 } __aligned(2 * sizeof(u64));
561
562 struct sk_filter {
563         refcount_t      refcnt;
564         struct rcu_head rcu;
565         struct bpf_prog *prog;
566 };
567
568 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
569
570 extern struct mutex nf_conn_btf_access_lock;
571 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
572                                      const struct bpf_reg_state *reg,
573                                      int off, int size, enum bpf_access_type atype,
574                                      u32 *next_btf_id, enum bpf_type_flag *flag);
575
576 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
577                                           const struct bpf_insn *insnsi,
578                                           unsigned int (*bpf_func)(const void *,
579                                                                    const struct bpf_insn *));
580
581 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
582                                           const void *ctx,
583                                           bpf_dispatcher_fn dfunc)
584 {
585         u32 ret;
586
587         cant_migrate();
588         if (static_branch_unlikely(&bpf_stats_enabled_key)) {
589                 struct bpf_prog_stats *stats;
590                 u64 start = sched_clock();
591                 unsigned long flags;
592
593                 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
594                 stats = this_cpu_ptr(prog->stats);
595                 flags = u64_stats_update_begin_irqsave(&stats->syncp);
596                 u64_stats_inc(&stats->cnt);
597                 u64_stats_add(&stats->nsecs, sched_clock() - start);
598                 u64_stats_update_end_irqrestore(&stats->syncp, flags);
599         } else {
600                 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
601         }
602         return ret;
603 }
604
605 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
606 {
607         return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
608 }
609
610 /*
611  * Use in preemptible and therefore migratable context to make sure that
612  * the execution of the BPF program runs on one CPU.
613  *
614  * This uses migrate_disable/enable() explicitly to document that the
615  * invocation of a BPF program does not require reentrancy protection
616  * against a BPF program which is invoked from a preempting task.
617  */
618 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
619                                           const void *ctx)
620 {
621         u32 ret;
622
623         migrate_disable();
624         ret = bpf_prog_run(prog, ctx);
625         migrate_enable();
626         return ret;
627 }
628
629 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
630
631 struct bpf_skb_data_end {
632         struct qdisc_skb_cb qdisc_cb;
633         void *data_meta;
634         void *data_end;
635 };
636
637 struct bpf_nh_params {
638         u32 nh_family;
639         union {
640                 u32 ipv4_nh;
641                 struct in6_addr ipv6_nh;
642         };
643 };
644
645 struct bpf_redirect_info {
646         u64 tgt_index;
647         void *tgt_value;
648         struct bpf_map *map;
649         u32 flags;
650         u32 kern_flags;
651         u32 map_id;
652         enum bpf_map_type map_type;
653         struct bpf_nh_params nh;
654 };
655
656 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
657
658 /* flags for bpf_redirect_info kern_flags */
659 #define BPF_RI_F_RF_NO_DIRECT   BIT(0)  /* no napi_direct on return_frame */
660
661 /* Compute the linear packet data range [data, data_end) which
662  * will be accessed by various program types (cls_bpf, act_bpf,
663  * lwt, ...). Subsystems allowing direct data access must (!)
664  * ensure that cb[] area can be written to when BPF program is
665  * invoked (otherwise cb[] save/restore is necessary).
666  */
667 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
668 {
669         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
670
671         BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
672         cb->data_meta = skb->data - skb_metadata_len(skb);
673         cb->data_end  = skb->data + skb_headlen(skb);
674 }
675
676 /* Similar to bpf_compute_data_pointers(), except that save orginal
677  * data in cb->data and cb->meta_data for restore.
678  */
679 static inline void bpf_compute_and_save_data_end(
680         struct sk_buff *skb, void **saved_data_end)
681 {
682         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
683
684         *saved_data_end = cb->data_end;
685         cb->data_end  = skb->data + skb_headlen(skb);
686 }
687
688 /* Restore data saved by bpf_compute_data_pointers(). */
689 static inline void bpf_restore_data_end(
690         struct sk_buff *skb, void *saved_data_end)
691 {
692         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
693
694         cb->data_end = saved_data_end;
695 }
696
697 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
698 {
699         /* eBPF programs may read/write skb->cb[] area to transfer meta
700          * data between tail calls. Since this also needs to work with
701          * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
702          *
703          * In some socket filter cases, the cb unfortunately needs to be
704          * saved/restored so that protocol specific skb->cb[] data won't
705          * be lost. In any case, due to unpriviledged eBPF programs
706          * attached to sockets, we need to clear the bpf_skb_cb() area
707          * to not leak previous contents to user space.
708          */
709         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
710         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
711                      sizeof_field(struct qdisc_skb_cb, data));
712
713         return qdisc_skb_cb(skb)->data;
714 }
715
716 /* Must be invoked with migration disabled */
717 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
718                                          const void *ctx)
719 {
720         const struct sk_buff *skb = ctx;
721         u8 *cb_data = bpf_skb_cb(skb);
722         u8 cb_saved[BPF_SKB_CB_LEN];
723         u32 res;
724
725         if (unlikely(prog->cb_access)) {
726                 memcpy(cb_saved, cb_data, sizeof(cb_saved));
727                 memset(cb_data, 0, sizeof(cb_saved));
728         }
729
730         res = bpf_prog_run(prog, skb);
731
732         if (unlikely(prog->cb_access))
733                 memcpy(cb_data, cb_saved, sizeof(cb_saved));
734
735         return res;
736 }
737
738 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
739                                        struct sk_buff *skb)
740 {
741         u32 res;
742
743         migrate_disable();
744         res = __bpf_prog_run_save_cb(prog, skb);
745         migrate_enable();
746         return res;
747 }
748
749 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
750                                         struct sk_buff *skb)
751 {
752         u8 *cb_data = bpf_skb_cb(skb);
753         u32 res;
754
755         if (unlikely(prog->cb_access))
756                 memset(cb_data, 0, BPF_SKB_CB_LEN);
757
758         res = bpf_prog_run_pin_on_cpu(prog, skb);
759         return res;
760 }
761
762 DECLARE_BPF_DISPATCHER(xdp)
763
764 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
765
766 u32 xdp_master_redirect(struct xdp_buff *xdp);
767
768 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
769                                             struct xdp_buff *xdp)
770 {
771         /* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
772          * under local_bh_disable(), which provides the needed RCU protection
773          * for accessing map entries.
774          */
775         u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
776
777         if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) {
778                 if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev))
779                         act = xdp_master_redirect(xdp);
780         }
781
782         return act;
783 }
784
785 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
786
787 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
788 {
789         return prog->len * sizeof(struct bpf_insn);
790 }
791
792 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
793 {
794         return round_up(bpf_prog_insn_size(prog) +
795                         sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
796 }
797
798 static inline unsigned int bpf_prog_size(unsigned int proglen)
799 {
800         return max(sizeof(struct bpf_prog),
801                    offsetof(struct bpf_prog, insns[proglen]));
802 }
803
804 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
805 {
806         /* When classic BPF programs have been loaded and the arch
807          * does not have a classic BPF JIT (anymore), they have been
808          * converted via bpf_migrate_filter() to eBPF and thus always
809          * have an unspec program type.
810          */
811         return prog->type == BPF_PROG_TYPE_UNSPEC;
812 }
813
814 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
815 {
816         const u32 size_machine = sizeof(unsigned long);
817
818         if (size > size_machine && size % size_machine == 0)
819                 size = size_machine;
820
821         return size;
822 }
823
824 static inline bool
825 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
826 {
827         return size <= size_default && (size & (size - 1)) == 0;
828 }
829
830 static inline u8
831 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
832 {
833         u8 access_off = off & (size_default - 1);
834
835 #ifdef __LITTLE_ENDIAN
836         return access_off;
837 #else
838         return size_default - (access_off + size);
839 #endif
840 }
841
842 #define bpf_ctx_wide_access_ok(off, size, type, field)                  \
843         (size == sizeof(__u64) &&                                       \
844         off >= offsetof(type, field) &&                                 \
845         off + sizeof(__u64) <= offsetofend(type, field) &&              \
846         off % sizeof(__u64) == 0)
847
848 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
849
850 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
851 {
852 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
853         if (!fp->jited) {
854                 set_vm_flush_reset_perms(fp);
855                 set_memory_ro((unsigned long)fp, fp->pages);
856         }
857 #endif
858 }
859
860 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
861 {
862         set_vm_flush_reset_perms(hdr);
863         set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
864 }
865
866 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
867 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
868 {
869         return sk_filter_trim_cap(sk, skb, 1);
870 }
871
872 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
873 void bpf_prog_free(struct bpf_prog *fp);
874
875 bool bpf_opcode_in_insntable(u8 code);
876
877 void bpf_prog_free_linfo(struct bpf_prog *prog);
878 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
879                                const u32 *insn_to_jit_off);
880 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
881 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
882
883 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
884 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
885 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
886                                   gfp_t gfp_extra_flags);
887 void __bpf_prog_free(struct bpf_prog *fp);
888
889 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
890 {
891         __bpf_prog_free(fp);
892 }
893
894 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
895                                        unsigned int flen);
896
897 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
898 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
899                               bpf_aux_classic_check_t trans, bool save_orig);
900 void bpf_prog_destroy(struct bpf_prog *fp);
901
902 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
903 int sk_attach_bpf(u32 ufd, struct sock *sk);
904 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
905 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
906 void sk_reuseport_prog_free(struct bpf_prog *prog);
907 int sk_detach_filter(struct sock *sk);
908 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
909
910 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
911 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
912
913 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
914 #define __bpf_call_base_args \
915         ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
916          (void *)__bpf_call_base)
917
918 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
919 void bpf_jit_compile(struct bpf_prog *prog);
920 bool bpf_jit_needs_zext(void);
921 bool bpf_jit_supports_subprog_tailcalls(void);
922 bool bpf_jit_supports_kfunc_call(void);
923 bool bpf_helper_changes_pkt_data(void *func);
924
925 static inline bool bpf_dump_raw_ok(const struct cred *cred)
926 {
927         /* Reconstruction of call-sites is dependent on kallsyms,
928          * thus make dump the same restriction.
929          */
930         return kallsyms_show_value(cred);
931 }
932
933 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
934                                        const struct bpf_insn *patch, u32 len);
935 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
936
937 void bpf_clear_redirect_map(struct bpf_map *map);
938
939 static inline bool xdp_return_frame_no_direct(void)
940 {
941         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
942
943         return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
944 }
945
946 static inline void xdp_set_return_frame_no_direct(void)
947 {
948         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
949
950         ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
951 }
952
953 static inline void xdp_clear_return_frame_no_direct(void)
954 {
955         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
956
957         ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
958 }
959
960 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
961                                  unsigned int pktlen)
962 {
963         unsigned int len;
964
965         if (unlikely(!(fwd->flags & IFF_UP)))
966                 return -ENETDOWN;
967
968         len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
969         if (pktlen > len)
970                 return -EMSGSIZE;
971
972         return 0;
973 }
974
975 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
976  * same cpu context. Further for best results no more than a single map
977  * for the do_redirect/do_flush pair should be used. This limitation is
978  * because we only track one map and force a flush when the map changes.
979  * This does not appear to be a real limitation for existing software.
980  */
981 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
982                             struct xdp_buff *xdp, struct bpf_prog *prog);
983 int xdp_do_redirect(struct net_device *dev,
984                     struct xdp_buff *xdp,
985                     struct bpf_prog *prog);
986 int xdp_do_redirect_frame(struct net_device *dev,
987                           struct xdp_buff *xdp,
988                           struct xdp_frame *xdpf,
989                           struct bpf_prog *prog);
990 void xdp_do_flush(void);
991
992 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
993  * it is no longer only flushing maps. Keep this define for compatibility
994  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
995  */
996 #define xdp_do_flush_map xdp_do_flush
997
998 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
999
1000 #ifdef CONFIG_INET
1001 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1002                                   struct bpf_prog *prog, struct sk_buff *skb,
1003                                   struct sock *migrating_sk,
1004                                   u32 hash);
1005 #else
1006 static inline struct sock *
1007 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1008                      struct bpf_prog *prog, struct sk_buff *skb,
1009                      struct sock *migrating_sk,
1010                      u32 hash)
1011 {
1012         return NULL;
1013 }
1014 #endif
1015
1016 #ifdef CONFIG_BPF_JIT
1017 extern int bpf_jit_enable;
1018 extern int bpf_jit_harden;
1019 extern int bpf_jit_kallsyms;
1020 extern long bpf_jit_limit;
1021 extern long bpf_jit_limit_max;
1022
1023 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1024
1025 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1026
1027 struct bpf_binary_header *
1028 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1029                      unsigned int alignment,
1030                      bpf_jit_fill_hole_t bpf_fill_ill_insns);
1031 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1032 u64 bpf_jit_alloc_exec_limit(void);
1033 void *bpf_jit_alloc_exec(unsigned long size);
1034 void bpf_jit_free_exec(void *addr);
1035 void bpf_jit_free(struct bpf_prog *fp);
1036 struct bpf_binary_header *
1037 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1038
1039 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1040 void bpf_prog_pack_free(struct bpf_binary_header *hdr);
1041
1042 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1043 {
1044         return list_empty(&fp->aux->ksym.lnode) ||
1045                fp->aux->ksym.lnode.prev == LIST_POISON2;
1046 }
1047
1048 struct bpf_binary_header *
1049 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1050                           unsigned int alignment,
1051                           struct bpf_binary_header **rw_hdr,
1052                           u8 **rw_image,
1053                           bpf_jit_fill_hole_t bpf_fill_ill_insns);
1054 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1055                                  struct bpf_binary_header *ro_header,
1056                                  struct bpf_binary_header *rw_header);
1057 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1058                               struct bpf_binary_header *rw_header);
1059
1060 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1061                                 struct bpf_jit_poke_descriptor *poke);
1062
1063 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1064                           const struct bpf_insn *insn, bool extra_pass,
1065                           u64 *func_addr, bool *func_addr_fixed);
1066
1067 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1068 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1069
1070 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1071                                 u32 pass, void *image)
1072 {
1073         pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1074                proglen, pass, image, current->comm, task_pid_nr(current));
1075
1076         if (image)
1077                 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1078                                16, 1, image, proglen, false);
1079 }
1080
1081 static inline bool bpf_jit_is_ebpf(void)
1082 {
1083 # ifdef CONFIG_HAVE_EBPF_JIT
1084         return true;
1085 # else
1086         return false;
1087 # endif
1088 }
1089
1090 static inline bool ebpf_jit_enabled(void)
1091 {
1092         return bpf_jit_enable && bpf_jit_is_ebpf();
1093 }
1094
1095 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1096 {
1097         return fp->jited && bpf_jit_is_ebpf();
1098 }
1099
1100 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1101 {
1102         /* These are the prerequisites, should someone ever have the
1103          * idea to call blinding outside of them, we make sure to
1104          * bail out.
1105          */
1106         if (!bpf_jit_is_ebpf())
1107                 return false;
1108         if (!prog->jit_requested)
1109                 return false;
1110         if (!bpf_jit_harden)
1111                 return false;
1112         if (bpf_jit_harden == 1 && bpf_capable())
1113                 return false;
1114
1115         return true;
1116 }
1117
1118 static inline bool bpf_jit_kallsyms_enabled(void)
1119 {
1120         /* There are a couple of corner cases where kallsyms should
1121          * not be enabled f.e. on hardening.
1122          */
1123         if (bpf_jit_harden)
1124                 return false;
1125         if (!bpf_jit_kallsyms)
1126                 return false;
1127         if (bpf_jit_kallsyms == 1)
1128                 return true;
1129
1130         return false;
1131 }
1132
1133 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1134                                  unsigned long *off, char *sym);
1135 bool is_bpf_text_address(unsigned long addr);
1136 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1137                     char *sym);
1138
1139 static inline const char *
1140 bpf_address_lookup(unsigned long addr, unsigned long *size,
1141                    unsigned long *off, char **modname, char *sym)
1142 {
1143         const char *ret = __bpf_address_lookup(addr, size, off, sym);
1144
1145         if (ret && modname)
1146                 *modname = NULL;
1147         return ret;
1148 }
1149
1150 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1151 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1152
1153 #else /* CONFIG_BPF_JIT */
1154
1155 static inline bool ebpf_jit_enabled(void)
1156 {
1157         return false;
1158 }
1159
1160 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1161 {
1162         return false;
1163 }
1164
1165 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1166 {
1167         return false;
1168 }
1169
1170 static inline int
1171 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1172                             struct bpf_jit_poke_descriptor *poke)
1173 {
1174         return -ENOTSUPP;
1175 }
1176
1177 static inline void bpf_jit_free(struct bpf_prog *fp)
1178 {
1179         bpf_prog_unlock_free(fp);
1180 }
1181
1182 static inline bool bpf_jit_kallsyms_enabled(void)
1183 {
1184         return false;
1185 }
1186
1187 static inline const char *
1188 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1189                      unsigned long *off, char *sym)
1190 {
1191         return NULL;
1192 }
1193
1194 static inline bool is_bpf_text_address(unsigned long addr)
1195 {
1196         return false;
1197 }
1198
1199 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1200                                   char *type, char *sym)
1201 {
1202         return -ERANGE;
1203 }
1204
1205 static inline const char *
1206 bpf_address_lookup(unsigned long addr, unsigned long *size,
1207                    unsigned long *off, char **modname, char *sym)
1208 {
1209         return NULL;
1210 }
1211
1212 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1213 {
1214 }
1215
1216 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1217 {
1218 }
1219
1220 #endif /* CONFIG_BPF_JIT */
1221
1222 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1223
1224 #define BPF_ANC         BIT(15)
1225
1226 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1227 {
1228         switch (first->code) {
1229         case BPF_RET | BPF_K:
1230         case BPF_LD | BPF_W | BPF_LEN:
1231                 return false;
1232
1233         case BPF_LD | BPF_W | BPF_ABS:
1234         case BPF_LD | BPF_H | BPF_ABS:
1235         case BPF_LD | BPF_B | BPF_ABS:
1236                 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1237                         return true;
1238                 return false;
1239
1240         default:
1241                 return true;
1242         }
1243 }
1244
1245 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1246 {
1247         BUG_ON(ftest->code & BPF_ANC);
1248
1249         switch (ftest->code) {
1250         case BPF_LD | BPF_W | BPF_ABS:
1251         case BPF_LD | BPF_H | BPF_ABS:
1252         case BPF_LD | BPF_B | BPF_ABS:
1253 #define BPF_ANCILLARY(CODE)     case SKF_AD_OFF + SKF_AD_##CODE:        \
1254                                 return BPF_ANC | SKF_AD_##CODE
1255                 switch (ftest->k) {
1256                 BPF_ANCILLARY(PROTOCOL);
1257                 BPF_ANCILLARY(PKTTYPE);
1258                 BPF_ANCILLARY(IFINDEX);
1259                 BPF_ANCILLARY(NLATTR);
1260                 BPF_ANCILLARY(NLATTR_NEST);
1261                 BPF_ANCILLARY(MARK);
1262                 BPF_ANCILLARY(QUEUE);
1263                 BPF_ANCILLARY(HATYPE);
1264                 BPF_ANCILLARY(RXHASH);
1265                 BPF_ANCILLARY(CPU);
1266                 BPF_ANCILLARY(ALU_XOR_X);
1267                 BPF_ANCILLARY(VLAN_TAG);
1268                 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1269                 BPF_ANCILLARY(PAY_OFFSET);
1270                 BPF_ANCILLARY(RANDOM);
1271                 BPF_ANCILLARY(VLAN_TPID);
1272                 }
1273                 fallthrough;
1274         default:
1275                 return ftest->code;
1276         }
1277 }
1278
1279 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1280                                            int k, unsigned int size);
1281
1282 static inline int bpf_tell_extensions(void)
1283 {
1284         return SKF_AD_MAX;
1285 }
1286
1287 struct bpf_sock_addr_kern {
1288         struct sock *sk;
1289         struct sockaddr *uaddr;
1290         /* Temporary "register" to make indirect stores to nested structures
1291          * defined above. We need three registers to make such a store, but
1292          * only two (src and dst) are available at convert_ctx_access time
1293          */
1294         u64 tmp_reg;
1295         void *t_ctx;    /* Attach type specific context. */
1296 };
1297
1298 struct bpf_sock_ops_kern {
1299         struct  sock *sk;
1300         union {
1301                 u32 args[4];
1302                 u32 reply;
1303                 u32 replylong[4];
1304         };
1305         struct sk_buff  *syn_skb;
1306         struct sk_buff  *skb;
1307         void    *skb_data_end;
1308         u8      op;
1309         u8      is_fullsock;
1310         u8      remaining_opt_len;
1311         u64     temp;                   /* temp and everything after is not
1312                                          * initialized to 0 before calling
1313                                          * the BPF program. New fields that
1314                                          * should be initialized to 0 should
1315                                          * be inserted before temp.
1316                                          * temp is scratch storage used by
1317                                          * sock_ops_convert_ctx_access
1318                                          * as temporary storage of a register.
1319                                          */
1320 };
1321
1322 struct bpf_sysctl_kern {
1323         struct ctl_table_header *head;
1324         struct ctl_table *table;
1325         void *cur_val;
1326         size_t cur_len;
1327         void *new_val;
1328         size_t new_len;
1329         int new_updated;
1330         int write;
1331         loff_t *ppos;
1332         /* Temporary "register" for indirect stores to ppos. */
1333         u64 tmp_reg;
1334 };
1335
1336 #define BPF_SOCKOPT_KERN_BUF_SIZE       32
1337 struct bpf_sockopt_buf {
1338         u8              data[BPF_SOCKOPT_KERN_BUF_SIZE];
1339 };
1340
1341 struct bpf_sockopt_kern {
1342         struct sock     *sk;
1343         u8              *optval;
1344         u8              *optval_end;
1345         s32             level;
1346         s32             optname;
1347         s32             optlen;
1348         /* for retval in struct bpf_cg_run_ctx */
1349         struct task_struct *current_task;
1350         /* Temporary "register" for indirect stores to ppos. */
1351         u64             tmp_reg;
1352 };
1353
1354 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1355
1356 struct bpf_sk_lookup_kern {
1357         u16             family;
1358         u16             protocol;
1359         __be16          sport;
1360         u16             dport;
1361         struct {
1362                 __be32 saddr;
1363                 __be32 daddr;
1364         } v4;
1365         struct {
1366                 const struct in6_addr *saddr;
1367                 const struct in6_addr *daddr;
1368         } v6;
1369         struct sock     *selected_sk;
1370         u32             ingress_ifindex;
1371         bool            no_reuseport;
1372 };
1373
1374 extern struct static_key_false bpf_sk_lookup_enabled;
1375
1376 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1377  *
1378  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1379  * SK_DROP. Their meaning is as follows:
1380  *
1381  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1382  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1383  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1384  *
1385  * This macro aggregates return values and selected sockets from
1386  * multiple BPF programs according to following rules in order:
1387  *
1388  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1389  *     macro result is SK_PASS and last ctx.selected_sk is used.
1390  *  2. If any program returned SK_DROP return value,
1391  *     macro result is SK_DROP.
1392  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1393  *
1394  * Caller must ensure that the prog array is non-NULL, and that the
1395  * array as well as the programs it contains remain valid.
1396  */
1397 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)                  \
1398         ({                                                              \
1399                 struct bpf_sk_lookup_kern *_ctx = &(ctx);               \
1400                 struct bpf_prog_array_item *_item;                      \
1401                 struct sock *_selected_sk = NULL;                       \
1402                 bool _no_reuseport = false;                             \
1403                 struct bpf_prog *_prog;                                 \
1404                 bool _all_pass = true;                                  \
1405                 u32 _ret;                                               \
1406                                                                         \
1407                 migrate_disable();                                      \
1408                 _item = &(array)->items[0];                             \
1409                 while ((_prog = READ_ONCE(_item->prog))) {              \
1410                         /* restore most recent selection */             \
1411                         _ctx->selected_sk = _selected_sk;               \
1412                         _ctx->no_reuseport = _no_reuseport;             \
1413                                                                         \
1414                         _ret = func(_prog, _ctx);                       \
1415                         if (_ret == SK_PASS && _ctx->selected_sk) {     \
1416                                 /* remember last non-NULL socket */     \
1417                                 _selected_sk = _ctx->selected_sk;       \
1418                                 _no_reuseport = _ctx->no_reuseport;     \
1419                         } else if (_ret == SK_DROP && _all_pass) {      \
1420                                 _all_pass = false;                      \
1421                         }                                               \
1422                         _item++;                                        \
1423                 }                                                       \
1424                 _ctx->selected_sk = _selected_sk;                       \
1425                 _ctx->no_reuseport = _no_reuseport;                     \
1426                 migrate_enable();                                       \
1427                 _all_pass || _selected_sk ? SK_PASS : SK_DROP;          \
1428          })
1429
1430 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1431                                         const __be32 saddr, const __be16 sport,
1432                                         const __be32 daddr, const u16 dport,
1433                                         const int ifindex, struct sock **psk)
1434 {
1435         struct bpf_prog_array *run_array;
1436         struct sock *selected_sk = NULL;
1437         bool no_reuseport = false;
1438
1439         rcu_read_lock();
1440         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1441         if (run_array) {
1442                 struct bpf_sk_lookup_kern ctx = {
1443                         .family         = AF_INET,
1444                         .protocol       = protocol,
1445                         .v4.saddr       = saddr,
1446                         .v4.daddr       = daddr,
1447                         .sport          = sport,
1448                         .dport          = dport,
1449                         .ingress_ifindex        = ifindex,
1450                 };
1451                 u32 act;
1452
1453                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1454                 if (act == SK_PASS) {
1455                         selected_sk = ctx.selected_sk;
1456                         no_reuseport = ctx.no_reuseport;
1457                 } else {
1458                         selected_sk = ERR_PTR(-ECONNREFUSED);
1459                 }
1460         }
1461         rcu_read_unlock();
1462         *psk = selected_sk;
1463         return no_reuseport;
1464 }
1465
1466 #if IS_ENABLED(CONFIG_IPV6)
1467 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1468                                         const struct in6_addr *saddr,
1469                                         const __be16 sport,
1470                                         const struct in6_addr *daddr,
1471                                         const u16 dport,
1472                                         const int ifindex, struct sock **psk)
1473 {
1474         struct bpf_prog_array *run_array;
1475         struct sock *selected_sk = NULL;
1476         bool no_reuseport = false;
1477
1478         rcu_read_lock();
1479         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1480         if (run_array) {
1481                 struct bpf_sk_lookup_kern ctx = {
1482                         .family         = AF_INET6,
1483                         .protocol       = protocol,
1484                         .v6.saddr       = saddr,
1485                         .v6.daddr       = daddr,
1486                         .sport          = sport,
1487                         .dport          = dport,
1488                         .ingress_ifindex        = ifindex,
1489                 };
1490                 u32 act;
1491
1492                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1493                 if (act == SK_PASS) {
1494                         selected_sk = ctx.selected_sk;
1495                         no_reuseport = ctx.no_reuseport;
1496                 } else {
1497                         selected_sk = ERR_PTR(-ECONNREFUSED);
1498                 }
1499         }
1500         rcu_read_unlock();
1501         *psk = selected_sk;
1502         return no_reuseport;
1503 }
1504 #endif /* IS_ENABLED(CONFIG_IPV6) */
1505
1506 static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1507                                                   u64 flags, const u64 flag_mask,
1508                                                   void *lookup_elem(struct bpf_map *map, u32 key))
1509 {
1510         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1511         const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1512
1513         /* Lower bits of the flags are used as return code on lookup failure */
1514         if (unlikely(flags & ~(action_mask | flag_mask)))
1515                 return XDP_ABORTED;
1516
1517         ri->tgt_value = lookup_elem(map, index);
1518         if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1519                 /* If the lookup fails we want to clear out the state in the
1520                  * redirect_info struct completely, so that if an eBPF program
1521                  * performs multiple lookups, the last one always takes
1522                  * precedence.
1523                  */
1524                 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1525                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
1526                 return flags & action_mask;
1527         }
1528
1529         ri->tgt_index = index;
1530         ri->map_id = map->id;
1531         ri->map_type = map->map_type;
1532
1533         if (flags & BPF_F_BROADCAST) {
1534                 WRITE_ONCE(ri->map, map);
1535                 ri->flags = flags;
1536         } else {
1537                 WRITE_ONCE(ri->map, NULL);
1538                 ri->flags = 0;
1539         }
1540
1541         return XDP_REDIRECT;
1542 }
1543
1544 #endif /* __LINUX_FILTER_H__ */