Merge tag 'drm-misc-fixes-2022-07-14' of git://anongit.freedesktop.org/drm/drm-misc...
[linux-2.6-microblaze.git] / include / linux / energy_model.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_ENERGY_MODEL_H
3 #define _LINUX_ENERGY_MODEL_H
4 #include <linux/cpumask.h>
5 #include <linux/device.h>
6 #include <linux/jump_label.h>
7 #include <linux/kobject.h>
8 #include <linux/rcupdate.h>
9 #include <linux/sched/cpufreq.h>
10 #include <linux/sched/topology.h>
11 #include <linux/types.h>
12
13 /**
14  * struct em_perf_state - Performance state of a performance domain
15  * @frequency:  The frequency in KHz, for consistency with CPUFreq
16  * @power:      The power consumed at this level (by 1 CPU or by a registered
17  *              device). It can be a total power: static and dynamic.
18  * @cost:       The cost coefficient associated with this level, used during
19  *              energy calculation. Equal to: power * max_frequency / frequency
20  * @flags:      see "em_perf_state flags" description below.
21  */
22 struct em_perf_state {
23         unsigned long frequency;
24         unsigned long power;
25         unsigned long cost;
26         unsigned long flags;
27 };
28
29 /*
30  * em_perf_state flags:
31  *
32  * EM_PERF_STATE_INEFFICIENT: The performance state is inefficient. There is
33  * in this em_perf_domain, another performance state with a higher frequency
34  * but a lower or equal power cost. Such inefficient states are ignored when
35  * using em_pd_get_efficient_*() functions.
36  */
37 #define EM_PERF_STATE_INEFFICIENT BIT(0)
38
39 /**
40  * struct em_perf_domain - Performance domain
41  * @table:              List of performance states, in ascending order
42  * @nr_perf_states:     Number of performance states
43  * @flags:              See "em_perf_domain flags"
44  * @cpus:               Cpumask covering the CPUs of the domain. It's here
45  *                      for performance reasons to avoid potential cache
46  *                      misses during energy calculations in the scheduler
47  *                      and simplifies allocating/freeing that memory region.
48  *
49  * In case of CPU device, a "performance domain" represents a group of CPUs
50  * whose performance is scaled together. All CPUs of a performance domain
51  * must have the same micro-architecture. Performance domains often have
52  * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus
53  * field is unused.
54  */
55 struct em_perf_domain {
56         struct em_perf_state *table;
57         int nr_perf_states;
58         unsigned long flags;
59         unsigned long cpus[];
60 };
61
62 /*
63  *  em_perf_domain flags:
64  *
65  *  EM_PERF_DOMAIN_MILLIWATTS: The power values are in milli-Watts or some
66  *  other scale.
67  *
68  *  EM_PERF_DOMAIN_SKIP_INEFFICIENCIES: Skip inefficient states when estimating
69  *  energy consumption.
70  *
71  *  EM_PERF_DOMAIN_ARTIFICIAL: The power values are artificial and might be
72  *  created by platform missing real power information
73  */
74 #define EM_PERF_DOMAIN_MILLIWATTS BIT(0)
75 #define EM_PERF_DOMAIN_SKIP_INEFFICIENCIES BIT(1)
76 #define EM_PERF_DOMAIN_ARTIFICIAL BIT(2)
77
78 #define em_span_cpus(em) (to_cpumask((em)->cpus))
79 #define em_is_artificial(em) ((em)->flags & EM_PERF_DOMAIN_ARTIFICIAL)
80
81 #ifdef CONFIG_ENERGY_MODEL
82 #define EM_MAX_POWER 0xFFFF
83
84 /*
85  * Increase resolution of energy estimation calculations for 64-bit
86  * architectures. The extra resolution improves decision made by EAS for the
87  * task placement when two Performance Domains might provide similar energy
88  * estimation values (w/o better resolution the values could be equal).
89  *
90  * We increase resolution only if we have enough bits to allow this increased
91  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
92  * are pretty high and the returns do not justify the increased costs.
93  */
94 #ifdef CONFIG_64BIT
95 #define em_scale_power(p) ((p) * 1000)
96 #else
97 #define em_scale_power(p) (p)
98 #endif
99
100 struct em_data_callback {
101         /**
102          * active_power() - Provide power at the next performance state of
103          *              a device
104          * @dev         : Device for which we do this operation (can be a CPU)
105          * @power       : Active power at the performance state
106          *              (modified)
107          * @freq        : Frequency at the performance state in kHz
108          *              (modified)
109          *
110          * active_power() must find the lowest performance state of 'dev' above
111          * 'freq' and update 'power' and 'freq' to the matching active power
112          * and frequency.
113          *
114          * In case of CPUs, the power is the one of a single CPU in the domain,
115          * expressed in milli-Watts or an abstract scale. It is expected to
116          * fit in the [0, EM_MAX_POWER] range.
117          *
118          * Return 0 on success.
119          */
120         int (*active_power)(struct device *dev, unsigned long *power,
121                             unsigned long *freq);
122
123         /**
124          * get_cost() - Provide the cost at the given performance state of
125          *              a device
126          * @dev         : Device for which we do this operation (can be a CPU)
127          * @freq        : Frequency at the performance state in kHz
128          * @cost        : The cost value for the performance state
129          *              (modified)
130          *
131          * In case of CPUs, the cost is the one of a single CPU in the domain.
132          * It is expected to fit in the [0, EM_MAX_POWER] range due to internal
133          * usage in EAS calculation.
134          *
135          * Return 0 on success, or appropriate error value in case of failure.
136          */
137         int (*get_cost)(struct device *dev, unsigned long freq,
138                         unsigned long *cost);
139 };
140 #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) ((em_cb).active_power = cb)
141 #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb)      \
142         { .active_power = _active_power_cb,             \
143           .get_cost = _cost_cb }
144 #define EM_DATA_CB(_active_power_cb)                    \
145                 EM_ADV_DATA_CB(_active_power_cb, NULL)
146
147 struct em_perf_domain *em_cpu_get(int cpu);
148 struct em_perf_domain *em_pd_get(struct device *dev);
149 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
150                                 struct em_data_callback *cb, cpumask_t *span,
151                                 bool milliwatts);
152 void em_dev_unregister_perf_domain(struct device *dev);
153
154 /**
155  * em_pd_get_efficient_state() - Get an efficient performance state from the EM
156  * @pd   : Performance domain for which we want an efficient frequency
157  * @freq : Frequency to map with the EM
158  *
159  * It is called from the scheduler code quite frequently and as a consequence
160  * doesn't implement any check.
161  *
162  * Return: An efficient performance state, high enough to meet @freq
163  * requirement.
164  */
165 static inline
166 struct em_perf_state *em_pd_get_efficient_state(struct em_perf_domain *pd,
167                                                 unsigned long freq)
168 {
169         struct em_perf_state *ps;
170         int i;
171
172         for (i = 0; i < pd->nr_perf_states; i++) {
173                 ps = &pd->table[i];
174                 if (ps->frequency >= freq) {
175                         if (pd->flags & EM_PERF_DOMAIN_SKIP_INEFFICIENCIES &&
176                             ps->flags & EM_PERF_STATE_INEFFICIENT)
177                                 continue;
178                         break;
179                 }
180         }
181
182         return ps;
183 }
184
185 /**
186  * em_cpu_energy() - Estimates the energy consumed by the CPUs of a
187  *              performance domain
188  * @pd          : performance domain for which energy has to be estimated
189  * @max_util    : highest utilization among CPUs of the domain
190  * @sum_util    : sum of the utilization of all CPUs in the domain
191  * @allowed_cpu_cap     : maximum allowed CPU capacity for the @pd, which
192  *                        might reflect reduced frequency (due to thermal)
193  *
194  * This function must be used only for CPU devices. There is no validation,
195  * i.e. if the EM is a CPU type and has cpumask allocated. It is called from
196  * the scheduler code quite frequently and that is why there is not checks.
197  *
198  * Return: the sum of the energy consumed by the CPUs of the domain assuming
199  * a capacity state satisfying the max utilization of the domain.
200  */
201 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
202                                 unsigned long max_util, unsigned long sum_util,
203                                 unsigned long allowed_cpu_cap)
204 {
205         unsigned long freq, scale_cpu;
206         struct em_perf_state *ps;
207         int cpu;
208
209         if (!sum_util)
210                 return 0;
211
212         /*
213          * In order to predict the performance state, map the utilization of
214          * the most utilized CPU of the performance domain to a requested
215          * frequency, like schedutil. Take also into account that the real
216          * frequency might be set lower (due to thermal capping). Thus, clamp
217          * max utilization to the allowed CPU capacity before calculating
218          * effective frequency.
219          */
220         cpu = cpumask_first(to_cpumask(pd->cpus));
221         scale_cpu = arch_scale_cpu_capacity(cpu);
222         ps = &pd->table[pd->nr_perf_states - 1];
223
224         max_util = map_util_perf(max_util);
225         max_util = min(max_util, allowed_cpu_cap);
226         freq = map_util_freq(max_util, ps->frequency, scale_cpu);
227
228         /*
229          * Find the lowest performance state of the Energy Model above the
230          * requested frequency.
231          */
232         ps = em_pd_get_efficient_state(pd, freq);
233
234         /*
235          * The capacity of a CPU in the domain at the performance state (ps)
236          * can be computed as:
237          *
238          *             ps->freq * scale_cpu
239          *   ps->cap = --------------------                          (1)
240          *                 cpu_max_freq
241          *
242          * So, ignoring the costs of idle states (which are not available in
243          * the EM), the energy consumed by this CPU at that performance state
244          * is estimated as:
245          *
246          *             ps->power * cpu_util
247          *   cpu_nrg = --------------------                          (2)
248          *                   ps->cap
249          *
250          * since 'cpu_util / ps->cap' represents its percentage of busy time.
251          *
252          *   NOTE: Although the result of this computation actually is in
253          *         units of power, it can be manipulated as an energy value
254          *         over a scheduling period, since it is assumed to be
255          *         constant during that interval.
256          *
257          * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
258          * of two terms:
259          *
260          *             ps->power * cpu_max_freq   cpu_util
261          *   cpu_nrg = ------------------------ * ---------          (3)
262          *                    ps->freq            scale_cpu
263          *
264          * The first term is static, and is stored in the em_perf_state struct
265          * as 'ps->cost'.
266          *
267          * Since all CPUs of the domain have the same micro-architecture, they
268          * share the same 'ps->cost', and the same CPU capacity. Hence, the
269          * total energy of the domain (which is the simple sum of the energy of
270          * all of its CPUs) can be factorized as:
271          *
272          *            ps->cost * \Sum cpu_util
273          *   pd_nrg = ------------------------                       (4)
274          *                  scale_cpu
275          */
276         return ps->cost * sum_util / scale_cpu;
277 }
278
279 /**
280  * em_pd_nr_perf_states() - Get the number of performance states of a perf.
281  *                              domain
282  * @pd          : performance domain for which this must be done
283  *
284  * Return: the number of performance states in the performance domain table
285  */
286 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
287 {
288         return pd->nr_perf_states;
289 }
290
291 #else
292 struct em_data_callback {};
293 #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) { }
294 #define EM_DATA_CB(_active_power_cb) { }
295 #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) do { } while (0)
296
297 static inline
298 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
299                                 struct em_data_callback *cb, cpumask_t *span,
300                                 bool milliwatts)
301 {
302         return -EINVAL;
303 }
304 static inline void em_dev_unregister_perf_domain(struct device *dev)
305 {
306 }
307 static inline struct em_perf_domain *em_cpu_get(int cpu)
308 {
309         return NULL;
310 }
311 static inline struct em_perf_domain *em_pd_get(struct device *dev)
312 {
313         return NULL;
314 }
315 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
316                         unsigned long max_util, unsigned long sum_util,
317                         unsigned long allowed_cpu_cap)
318 {
319         return 0;
320 }
321 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
322 {
323         return 0;
324 }
325 #endif
326
327 #endif