1 /* SPDX-License-Identifier: GPL-2.0 */
3 * linux/cgroup-defs.h - basic definitions for cgroup
5 * This file provides basic type and interface. Include this file directly
6 * only if necessary to avoid cyclic dependencies.
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/u64_stats_sync.h>
21 #include <linux/workqueue.h>
22 #include <linux/bpf-cgroup.h>
23 #include <linux/psi_types.h>
30 struct cgroup_taskset;
33 struct kernfs_open_file;
35 struct poll_table_struct;
37 #define MAX_CGROUP_TYPE_NAMELEN 32
38 #define MAX_CGROUP_ROOT_NAMELEN 64
39 #define MAX_CFTYPE_NAME 64
41 /* define the enumeration of all cgroup subsystems */
42 #define SUBSYS(_x) _x ## _cgrp_id,
43 enum cgroup_subsys_id {
44 #include <linux/cgroup_subsys.h>
49 /* bits in struct cgroup_subsys_state flags field */
51 CSS_NO_REF = (1 << 0), /* no reference counting for this css */
52 CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */
53 CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */
54 CSS_VISIBLE = (1 << 3), /* css is visible to userland */
55 CSS_DYING = (1 << 4), /* css is dying */
58 /* bits in struct cgroup flags field */
60 /* Control Group requires release notifications to userspace */
61 CGRP_NOTIFY_ON_RELEASE,
63 * Clone the parent's configuration when creating a new child
64 * cpuset cgroup. For historical reasons, this option can be
65 * specified at mount time and thus is implemented here.
67 CGRP_CPUSET_CLONE_CHILDREN,
69 /* Control group has to be frozen. */
72 /* Cgroup is frozen. */
76 /* cgroup_root->flags */
78 CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */
79 CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */
82 * Consider namespaces as delegation boundaries. If this flag is
83 * set, controller specific interface files in a namespace root
84 * aren't writeable from inside the namespace.
86 CGRP_ROOT_NS_DELEGATE = (1 << 3),
89 * Enable cpuset controller in v1 cgroup to use v2 behavior.
91 CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
94 * Enable legacy local memory.events.
96 CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 5),
99 * Enable recursive subtree protection
101 CGRP_ROOT_MEMORY_RECURSIVE_PROT = (1 << 6),
106 CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */
107 CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */
108 CFTYPE_NS_DELEGATABLE = (1 << 2), /* writeable beyond delegation boundaries */
110 CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */
111 CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */
112 CFTYPE_DEBUG = (1 << 5), /* create when cgroup_debug */
114 /* internal flags, do not use outside cgroup core proper */
115 __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */
116 __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */
120 * cgroup_file is the handle for a file instance created in a cgroup which
121 * is used, for example, to generate file changed notifications. This can
122 * be obtained by setting cftype->file_offset.
125 /* do not access any fields from outside cgroup core */
126 struct kernfs_node *kn;
127 unsigned long notified_at;
128 struct timer_list notify_timer;
132 * Per-subsystem/per-cgroup state maintained by the system. This is the
133 * fundamental structural building block that controllers deal with.
135 * Fields marked with "PI:" are public and immutable and may be accessed
136 * directly without synchronization.
138 struct cgroup_subsys_state {
139 /* PI: the cgroup that this css is attached to */
140 struct cgroup *cgroup;
142 /* PI: the cgroup subsystem that this css is attached to */
143 struct cgroup_subsys *ss;
145 /* reference count - access via css_[try]get() and css_put() */
146 struct percpu_ref refcnt;
148 /* siblings list anchored at the parent's ->children */
149 struct list_head sibling;
150 struct list_head children;
152 /* flush target list anchored at cgrp->rstat_css_list */
153 struct list_head rstat_css_node;
156 * PI: Subsys-unique ID. 0 is unused and root is always 1. The
157 * matching css can be looked up using css_from_id().
164 * Monotonically increasing unique serial number which defines a
165 * uniform order among all csses. It's guaranteed that all
166 * ->children lists are in the ascending order of ->serial_nr and
167 * used to allow interrupting and resuming iterations.
172 * Incremented by online self and children. Used to guarantee that
173 * parents are not offlined before their children.
177 /* percpu_ref killing and RCU release */
178 struct work_struct destroy_work;
179 struct rcu_work destroy_rwork;
182 * PI: the parent css. Placed here for cache proximity to following
183 * fields of the containing structure.
185 struct cgroup_subsys_state *parent;
189 * A css_set is a structure holding pointers to a set of
190 * cgroup_subsys_state objects. This saves space in the task struct
191 * object and speeds up fork()/exit(), since a single inc/dec and a
192 * list_add()/del() can bump the reference count on the entire cgroup
197 * Set of subsystem states, one for each subsystem. This array is
198 * immutable after creation apart from the init_css_set during
199 * subsystem registration (at boot time).
201 struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
203 /* reference count */
207 * For a domain cgroup, the following points to self. If threaded,
208 * to the matching cset of the nearest domain ancestor. The
209 * dom_cset provides access to the domain cgroup and its csses to
210 * which domain level resource consumptions should be charged.
212 struct css_set *dom_cset;
214 /* the default cgroup associated with this css_set */
215 struct cgroup *dfl_cgrp;
217 /* internal task count, protected by css_set_lock */
221 * Lists running through all tasks using this cgroup group.
222 * mg_tasks lists tasks which belong to this cset but are in the
223 * process of being migrated out or in. Protected by
224 * css_set_rwsem, but, during migration, once tasks are moved to
225 * mg_tasks, it can be read safely while holding cgroup_mutex.
227 struct list_head tasks;
228 struct list_head mg_tasks;
229 struct list_head dying_tasks;
231 /* all css_task_iters currently walking this cset */
232 struct list_head task_iters;
235 * On the default hierarhcy, ->subsys[ssid] may point to a css
236 * attached to an ancestor instead of the cgroup this css_set is
237 * associated with. The following node is anchored at
238 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
239 * iterate through all css's attached to a given cgroup.
241 struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
243 /* all threaded csets whose ->dom_cset points to this cset */
244 struct list_head threaded_csets;
245 struct list_head threaded_csets_node;
248 * List running through all cgroup groups in the same hash
249 * slot. Protected by css_set_lock
251 struct hlist_node hlist;
254 * List of cgrp_cset_links pointing at cgroups referenced from this
255 * css_set. Protected by css_set_lock.
257 struct list_head cgrp_links;
260 * List of csets participating in the on-going migration either as
261 * source or destination. Protected by cgroup_mutex.
263 struct list_head mg_preload_node;
264 struct list_head mg_node;
267 * If this cset is acting as the source of migration the following
268 * two fields are set. mg_src_cgrp and mg_dst_cgrp are
269 * respectively the source and destination cgroups of the on-going
270 * migration. mg_dst_cset is the destination cset the target tasks
271 * on this cset should be migrated to. Protected by cgroup_mutex.
273 struct cgroup *mg_src_cgrp;
274 struct cgroup *mg_dst_cgrp;
275 struct css_set *mg_dst_cset;
277 /* dead and being drained, ignore for migration */
280 /* For RCU-protected deletion */
281 struct rcu_head rcu_head;
284 struct cgroup_base_stat {
285 struct task_cputime cputime;
289 * rstat - cgroup scalable recursive statistics. Accounting is done
290 * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
291 * hierarchy on reads.
293 * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
294 * linked into the updated tree. On the following read, propagation only
295 * considers and consumes the updated tree. This makes reading O(the
296 * number of descendants which have been active since last read) instead of
297 * O(the total number of descendants).
299 * This is important because there can be a lot of (draining) cgroups which
300 * aren't active and stat may be read frequently. The combination can
301 * become very expensive. By propagating selectively, increasing reading
302 * frequency decreases the cost of each read.
304 * This struct hosts both the fields which implement the above -
305 * updated_children and updated_next - and the fields which track basic
306 * resource statistics on top of it - bsync, bstat and last_bstat.
308 struct cgroup_rstat_cpu {
310 * ->bsync protects ->bstat. These are the only fields which get
311 * updated in the hot path.
313 struct u64_stats_sync bsync;
314 struct cgroup_base_stat bstat;
317 * Snapshots at the last reading. These are used to calculate the
318 * deltas to propagate to the global counters.
320 struct cgroup_base_stat last_bstat;
323 * Child cgroups with stat updates on this cpu since the last read
324 * are linked on the parent's ->updated_children through
327 * In addition to being more compact, singly-linked list pointing
328 * to the cgroup makes it unnecessary for each per-cpu struct to
329 * point back to the associated cgroup.
331 * Protected by per-cpu cgroup_rstat_cpu_lock.
333 struct cgroup *updated_children; /* terminated by self cgroup */
334 struct cgroup *updated_next; /* NULL iff not on the list */
337 struct cgroup_freezer_state {
338 /* Should the cgroup and its descendants be frozen. */
341 /* Should the cgroup actually be frozen? */
344 /* Fields below are protected by css_set_lock */
346 /* Number of frozen descendant cgroups */
347 int nr_frozen_descendants;
350 * Number of tasks, which are counted as frozen:
351 * frozen, SIGSTOPped, and PTRACEd.
357 /* self css with NULL ->ss, points back to this cgroup */
358 struct cgroup_subsys_state self;
360 unsigned long flags; /* "unsigned long" so bitops work */
363 * The depth this cgroup is at. The root is at depth zero and each
364 * step down the hierarchy increments the level. This along with
365 * ancestor_ids[] can determine whether a given cgroup is a
366 * descendant of another without traversing the hierarchy.
370 /* Maximum allowed descent tree depth */
374 * Keep track of total numbers of visible and dying descent cgroups.
375 * Dying cgroups are cgroups which were deleted by a user,
376 * but are still existing because someone else is holding a reference.
377 * max_descendants is a maximum allowed number of descent cgroups.
379 * nr_descendants and nr_dying_descendants are protected
380 * by cgroup_mutex and css_set_lock. It's fine to read them holding
381 * any of cgroup_mutex and css_set_lock; for writing both locks
385 int nr_dying_descendants;
389 * Each non-empty css_set associated with this cgroup contributes
390 * one to nr_populated_csets. The counter is zero iff this cgroup
391 * doesn't have any tasks.
393 * All children which have non-zero nr_populated_csets and/or
394 * nr_populated_children of their own contribute one to either
395 * nr_populated_domain_children or nr_populated_threaded_children
396 * depending on their type. Each counter is zero iff all cgroups
397 * of the type in the subtree proper don't have any tasks.
399 int nr_populated_csets;
400 int nr_populated_domain_children;
401 int nr_populated_threaded_children;
403 int nr_threaded_children; /* # of live threaded child cgroups */
405 struct kernfs_node *kn; /* cgroup kernfs entry */
406 struct cgroup_file procs_file; /* handle for "cgroup.procs" */
407 struct cgroup_file events_file; /* handle for "cgroup.events" */
410 * The bitmask of subsystems enabled on the child cgroups.
411 * ->subtree_control is the one configured through
412 * "cgroup.subtree_control" while ->child_ss_mask is the effective
413 * one which may have more subsystems enabled. Controller knobs
414 * are made available iff it's enabled in ->subtree_control.
418 u16 old_subtree_control;
419 u16 old_subtree_ss_mask;
421 /* Private pointers for each registered subsystem */
422 struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
424 struct cgroup_root *root;
427 * List of cgrp_cset_links pointing at css_sets with tasks in this
428 * cgroup. Protected by css_set_lock.
430 struct list_head cset_links;
433 * On the default hierarchy, a css_set for a cgroup with some
434 * susbsys disabled will point to css's which are associated with
435 * the closest ancestor which has the subsys enabled. The
436 * following lists all css_sets which point to this cgroup's css
437 * for the given subsystem.
439 struct list_head e_csets[CGROUP_SUBSYS_COUNT];
442 * If !threaded, self. If threaded, it points to the nearest
443 * domain ancestor. Inside a threaded subtree, cgroups are exempt
444 * from process granularity and no-internal-task constraint.
445 * Domain level resource consumptions which aren't tied to a
446 * specific task are charged to the dom_cgrp.
448 struct cgroup *dom_cgrp;
449 struct cgroup *old_dom_cgrp; /* used while enabling threaded */
451 /* per-cpu recursive resource statistics */
452 struct cgroup_rstat_cpu __percpu *rstat_cpu;
453 struct list_head rstat_css_list;
455 /* cgroup basic resource statistics */
456 struct cgroup_base_stat last_bstat;
457 struct cgroup_base_stat bstat;
458 struct prev_cputime prev_cputime; /* for printing out cputime */
461 * list of pidlists, up to two for each namespace (one for procs, one
462 * for tasks); created on demand.
464 struct list_head pidlists;
465 struct mutex pidlist_mutex;
467 /* used to wait for offlining of csses */
468 wait_queue_head_t offline_waitq;
470 /* used to schedule release agent */
471 struct work_struct release_agent_work;
473 /* used to track pressure stalls */
474 struct psi_group psi;
476 /* used to store eBPF programs */
477 struct cgroup_bpf bpf;
479 /* If there is block congestion on this cgroup. */
480 atomic_t congestion_count;
482 /* Used to store internal freezer state */
483 struct cgroup_freezer_state freezer;
485 /* ids of the ancestors at each level including self */
490 * A cgroup_root represents the root of a cgroup hierarchy, and may be
491 * associated with a kernfs_root to form an active hierarchy. This is
492 * internal to cgroup core. Don't access directly from controllers.
495 struct kernfs_root *kf_root;
497 /* The bitmask of subsystems attached to this hierarchy */
498 unsigned int subsys_mask;
500 /* Unique id for this hierarchy. */
503 /* The root cgroup. Root is destroyed on its release. */
506 /* for cgrp->ancestor_ids[0] */
507 u64 cgrp_ancestor_id_storage;
509 /* Number of cgroups in the hierarchy, used only for /proc/cgroups */
512 /* A list running through the active hierarchies */
513 struct list_head root_list;
515 /* Hierarchy-specific flags */
518 /* The path to use for release notifications. */
519 char release_agent_path[PATH_MAX];
521 /* The name for this hierarchy - may be empty */
522 char name[MAX_CGROUP_ROOT_NAMELEN];
526 * struct cftype: handler definitions for cgroup control files
528 * When reading/writing to a file:
529 * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
530 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata
534 * By convention, the name should begin with the name of the
535 * subsystem, followed by a period. Zero length string indicates
536 * end of cftype array.
538 char name[MAX_CFTYPE_NAME];
539 unsigned long private;
542 * The maximum length of string, excluding trailing nul, that can
543 * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
545 size_t max_write_len;
551 * If non-zero, should contain the offset from the start of css to
552 * a struct cgroup_file field. cgroup will record the handle of
553 * the created file into it. The recorded handle can be used as
554 * long as the containing css remains accessible.
556 unsigned int file_offset;
559 * Fields used for internal bookkeeping. Initialized automatically
560 * during registration.
562 struct cgroup_subsys *ss; /* NULL for cgroup core files */
563 struct list_head node; /* anchored at ss->cfts */
564 struct kernfs_ops *kf_ops;
566 int (*open)(struct kernfs_open_file *of);
567 void (*release)(struct kernfs_open_file *of);
570 * read_u64() is a shortcut for the common case of returning a
571 * single integer. Use it in place of read()
573 u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
575 * read_s64() is a signed version of read_u64()
577 s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
579 /* generic seq_file read interface */
580 int (*seq_show)(struct seq_file *sf, void *v);
582 /* optional ops, implement all or none */
583 void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
584 void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
585 void (*seq_stop)(struct seq_file *sf, void *v);
588 * write_u64() is a shortcut for the common case of accepting
589 * a single integer (as parsed by simple_strtoull) from
590 * userspace. Use in place of write(); return 0 or error.
592 int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
595 * write_s64() is a signed version of write_u64()
597 int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
601 * write() is the generic write callback which maps directly to
602 * kernfs write operation and overrides all other operations.
603 * Maximum write size is determined by ->max_write_len. Use
604 * of_css/cft() to access the associated css and cft.
606 ssize_t (*write)(struct kernfs_open_file *of,
607 char *buf, size_t nbytes, loff_t off);
609 __poll_t (*poll)(struct kernfs_open_file *of,
610 struct poll_table_struct *pt);
612 #ifdef CONFIG_DEBUG_LOCK_ALLOC
613 struct lock_class_key lockdep_key;
618 * Control Group subsystem type.
619 * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details
621 struct cgroup_subsys {
622 struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
623 int (*css_online)(struct cgroup_subsys_state *css);
624 void (*css_offline)(struct cgroup_subsys_state *css);
625 void (*css_released)(struct cgroup_subsys_state *css);
626 void (*css_free)(struct cgroup_subsys_state *css);
627 void (*css_reset)(struct cgroup_subsys_state *css);
628 void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
629 int (*css_extra_stat_show)(struct seq_file *seq,
630 struct cgroup_subsys_state *css);
632 int (*can_attach)(struct cgroup_taskset *tset);
633 void (*cancel_attach)(struct cgroup_taskset *tset);
634 void (*attach)(struct cgroup_taskset *tset);
635 void (*post_attach)(void);
636 int (*can_fork)(struct task_struct *task,
637 struct css_set *cset);
638 void (*cancel_fork)(struct task_struct *task, struct css_set *cset);
639 void (*fork)(struct task_struct *task);
640 void (*exit)(struct task_struct *task);
641 void (*release)(struct task_struct *task);
642 void (*bind)(struct cgroup_subsys_state *root_css);
647 * If %true, the controller, on the default hierarchy, doesn't show
648 * up in "cgroup.controllers" or "cgroup.subtree_control", is
649 * implicitly enabled on all cgroups on the default hierarchy, and
650 * bypasses the "no internal process" constraint. This is for
651 * utility type controllers which is transparent to userland.
653 * An implicit controller can be stolen from the default hierarchy
654 * anytime and thus must be okay with offline csses from previous
655 * hierarchies coexisting with csses for the current one.
657 bool implicit_on_dfl:1;
660 * If %true, the controller, supports threaded mode on the default
661 * hierarchy. In a threaded subtree, both process granularity and
662 * no-internal-process constraint are ignored and a threaded
663 * controllers should be able to handle that.
665 * Note that as an implicit controller is automatically enabled on
666 * all cgroups on the default hierarchy, it should also be
667 * threaded. implicit && !threaded is not supported.
671 /* the following two fields are initialized automtically during boot */
675 /* optional, initialized automatically during boot if not set */
676 const char *legacy_name;
678 /* link to parent, protected by cgroup_lock() */
679 struct cgroup_root *root;
681 /* idr for css->id */
685 * List of cftypes. Each entry is the first entry of an array
686 * terminated by zero length name.
688 struct list_head cfts;
691 * Base cftypes which are automatically registered. The two can
692 * point to the same array.
694 struct cftype *dfl_cftypes; /* for the default hierarchy */
695 struct cftype *legacy_cftypes; /* for the legacy hierarchies */
698 * A subsystem may depend on other subsystems. When such subsystem
699 * is enabled on a cgroup, the depended-upon subsystems are enabled
700 * together if available. Subsystems enabled due to dependency are
701 * not visible to userland until explicitly enabled. The following
702 * specifies the mask of subsystems that this one depends on.
704 unsigned int depends_on;
707 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
710 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
713 * Allows cgroup operations to synchronize against threadgroup changes
714 * using a percpu_rw_semaphore.
716 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
718 percpu_down_read(&cgroup_threadgroup_rwsem);
722 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
725 * Counterpart of cgroup_threadcgroup_change_begin().
727 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
729 percpu_up_read(&cgroup_threadgroup_rwsem);
732 #else /* CONFIG_CGROUPS */
734 #define CGROUP_SUBSYS_COUNT 0
736 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
741 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
743 #endif /* CONFIG_CGROUPS */
745 #ifdef CONFIG_SOCK_CGROUP_DATA
748 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
749 * per-socket cgroup information except for memcg association.
751 * On legacy hierarchies, net_prio and net_cls controllers directly set
752 * attributes on each sock which can then be tested by the network layer.
753 * On the default hierarchy, each sock is associated with the cgroup it was
754 * created in and the networking layer can match the cgroup directly.
756 * To avoid carrying all three cgroup related fields separately in sock,
757 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
758 * On boot, sock_cgroup_data records the cgroup that the sock was created
759 * in so that cgroup2 matches can be made; however, once either net_prio or
760 * net_cls starts being used, the area is overriden to carry prioidx and/or
761 * classid. The two modes are distinguished by whether the lowest bit is
762 * set. Clear bit indicates cgroup pointer while set bit prioidx and
765 * While userland may start using net_prio or net_cls at any time, once
766 * either is used, cgroup2 matching no longer works. There is no reason to
767 * mix the two and this is in line with how legacy and v2 compatibility is
768 * handled. On mode switch, cgroup references which are already being
769 * pointed to by socks may be leaked. While this can be remedied by adding
770 * synchronization around sock_cgroup_data, given that the number of leaked
771 * cgroups is bound and highly unlikely to be high, this seems to be the
774 struct sock_cgroup_data {
776 #ifdef __LITTLE_ENDIAN
800 * There's a theoretical window where the following accessors race with
801 * updaters and return part of the previous pointer as the prioidx or
802 * classid. Such races are short-lived and the result isn't critical.
804 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
806 /* fallback to 1 which is always the ID of the root cgroup */
807 return (skcd->is_data & 1) ? skcd->prioidx : 1;
810 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
812 /* fallback to 0 which is the unconfigured default classid */
813 return (skcd->is_data & 1) ? skcd->classid : 0;
817 * If invoked concurrently, the updaters may clobber each other. The
818 * caller is responsible for synchronization.
820 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
823 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
825 if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
828 if (!(skcd_buf.is_data & 1)) {
830 skcd_buf.is_data = 1;
833 skcd_buf.prioidx = prioidx;
834 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
837 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
840 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
842 if (sock_cgroup_classid(&skcd_buf) == classid)
845 if (!(skcd_buf.is_data & 1)) {
847 skcd_buf.is_data = 1;
850 skcd_buf.classid = classid;
851 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
854 #else /* CONFIG_SOCK_CGROUP_DATA */
856 struct sock_cgroup_data {
859 #endif /* CONFIG_SOCK_CGROUP_DATA */
861 #endif /* _LINUX_CGROUP_DEFS_H */