Merge tag 'dmaengine-6.0-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[linux-2.6-microblaze.git] / include / crypto / skcipher.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Symmetric key ciphers.
4  * 
5  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6  */
7
8 #ifndef _CRYPTO_SKCIPHER_H
9 #define _CRYPTO_SKCIPHER_H
10
11 #include <linux/container_of.h>
12 #include <linux/crypto.h>
13 #include <linux/slab.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16
17 struct scatterlist;
18
19 /**
20  *      struct skcipher_request - Symmetric key cipher request
21  *      @cryptlen: Number of bytes to encrypt or decrypt
22  *      @iv: Initialisation Vector
23  *      @src: Source SG list
24  *      @dst: Destination SG list
25  *      @base: Underlying async request
26  *      @__ctx: Start of private context data
27  */
28 struct skcipher_request {
29         unsigned int cryptlen;
30
31         u8 *iv;
32
33         struct scatterlist *src;
34         struct scatterlist *dst;
35
36         struct crypto_async_request base;
37
38         void *__ctx[] CRYPTO_MINALIGN_ATTR;
39 };
40
41 struct crypto_skcipher {
42         unsigned int reqsize;
43
44         struct crypto_tfm base;
45 };
46
47 struct crypto_sync_skcipher {
48         struct crypto_skcipher base;
49 };
50
51 /**
52  * struct skcipher_alg - symmetric key cipher definition
53  * @min_keysize: Minimum key size supported by the transformation. This is the
54  *               smallest key length supported by this transformation algorithm.
55  *               This must be set to one of the pre-defined values as this is
56  *               not hardware specific. Possible values for this field can be
57  *               found via git grep "_MIN_KEY_SIZE" include/crypto/
58  * @max_keysize: Maximum key size supported by the transformation. This is the
59  *               largest key length supported by this transformation algorithm.
60  *               This must be set to one of the pre-defined values as this is
61  *               not hardware specific. Possible values for this field can be
62  *               found via git grep "_MAX_KEY_SIZE" include/crypto/
63  * @setkey: Set key for the transformation. This function is used to either
64  *          program a supplied key into the hardware or store the key in the
65  *          transformation context for programming it later. Note that this
66  *          function does modify the transformation context. This function can
67  *          be called multiple times during the existence of the transformation
68  *          object, so one must make sure the key is properly reprogrammed into
69  *          the hardware. This function is also responsible for checking the key
70  *          length for validity. In case a software fallback was put in place in
71  *          the @cra_init call, this function might need to use the fallback if
72  *          the algorithm doesn't support all of the key sizes.
73  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
74  *           the supplied scatterlist containing the blocks of data. The crypto
75  *           API consumer is responsible for aligning the entries of the
76  *           scatterlist properly and making sure the chunks are correctly
77  *           sized. In case a software fallback was put in place in the
78  *           @cra_init call, this function might need to use the fallback if
79  *           the algorithm doesn't support all of the key sizes. In case the
80  *           key was stored in transformation context, the key might need to be
81  *           re-programmed into the hardware in this function. This function
82  *           shall not modify the transformation context, as this function may
83  *           be called in parallel with the same transformation object.
84  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
85  *           and the conditions are exactly the same.
86  * @init: Initialize the cryptographic transformation object. This function
87  *        is used to initialize the cryptographic transformation object.
88  *        This function is called only once at the instantiation time, right
89  *        after the transformation context was allocated. In case the
90  *        cryptographic hardware has some special requirements which need to
91  *        be handled by software, this function shall check for the precise
92  *        requirement of the transformation and put any software fallbacks
93  *        in place.
94  * @exit: Deinitialize the cryptographic transformation object. This is a
95  *        counterpart to @init, used to remove various changes set in
96  *        @init.
97  * @ivsize: IV size applicable for transformation. The consumer must provide an
98  *          IV of exactly that size to perform the encrypt or decrypt operation.
99  * @chunksize: Equal to the block size except for stream ciphers such as
100  *             CTR where it is set to the underlying block size.
101  * @walksize: Equal to the chunk size except in cases where the algorithm is
102  *            considerably more efficient if it can operate on multiple chunks
103  *            in parallel. Should be a multiple of chunksize.
104  * @base: Definition of a generic crypto algorithm.
105  *
106  * All fields except @ivsize are mandatory and must be filled.
107  */
108 struct skcipher_alg {
109         int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
110                       unsigned int keylen);
111         int (*encrypt)(struct skcipher_request *req);
112         int (*decrypt)(struct skcipher_request *req);
113         int (*init)(struct crypto_skcipher *tfm);
114         void (*exit)(struct crypto_skcipher *tfm);
115
116         unsigned int min_keysize;
117         unsigned int max_keysize;
118         unsigned int ivsize;
119         unsigned int chunksize;
120         unsigned int walksize;
121
122         struct crypto_alg base;
123 };
124
125 #define MAX_SYNC_SKCIPHER_REQSIZE      384
126 /*
127  * This performs a type-check against the "tfm" argument to make sure
128  * all users have the correct skcipher tfm for doing on-stack requests.
129  */
130 #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
131         char __##name##_desc[sizeof(struct skcipher_request) + \
132                              MAX_SYNC_SKCIPHER_REQSIZE + \
133                              (!(sizeof((struct crypto_sync_skcipher *)1 == \
134                                        (typeof(tfm))1))) \
135                             ] CRYPTO_MINALIGN_ATTR; \
136         struct skcipher_request *name = (void *)__##name##_desc
137
138 /**
139  * DOC: Symmetric Key Cipher API
140  *
141  * Symmetric key cipher API is used with the ciphers of type
142  * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
143  *
144  * Asynchronous cipher operations imply that the function invocation for a
145  * cipher request returns immediately before the completion of the operation.
146  * The cipher request is scheduled as a separate kernel thread and therefore
147  * load-balanced on the different CPUs via the process scheduler. To allow
148  * the kernel crypto API to inform the caller about the completion of a cipher
149  * request, the caller must provide a callback function. That function is
150  * invoked with the cipher handle when the request completes.
151  *
152  * To support the asynchronous operation, additional information than just the
153  * cipher handle must be supplied to the kernel crypto API. That additional
154  * information is given by filling in the skcipher_request data structure.
155  *
156  * For the symmetric key cipher API, the state is maintained with the tfm
157  * cipher handle. A single tfm can be used across multiple calls and in
158  * parallel. For asynchronous block cipher calls, context data supplied and
159  * only used by the caller can be referenced the request data structure in
160  * addition to the IV used for the cipher request. The maintenance of such
161  * state information would be important for a crypto driver implementer to
162  * have, because when calling the callback function upon completion of the
163  * cipher operation, that callback function may need some information about
164  * which operation just finished if it invoked multiple in parallel. This
165  * state information is unused by the kernel crypto API.
166  */
167
168 static inline struct crypto_skcipher *__crypto_skcipher_cast(
169         struct crypto_tfm *tfm)
170 {
171         return container_of(tfm, struct crypto_skcipher, base);
172 }
173
174 /**
175  * crypto_alloc_skcipher() - allocate symmetric key cipher handle
176  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
177  *            skcipher cipher
178  * @type: specifies the type of the cipher
179  * @mask: specifies the mask for the cipher
180  *
181  * Allocate a cipher handle for an skcipher. The returned struct
182  * crypto_skcipher is the cipher handle that is required for any subsequent
183  * API invocation for that skcipher.
184  *
185  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
186  *         of an error, PTR_ERR() returns the error code.
187  */
188 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
189                                               u32 type, u32 mask);
190
191 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
192                                               u32 type, u32 mask);
193
194 static inline struct crypto_tfm *crypto_skcipher_tfm(
195         struct crypto_skcipher *tfm)
196 {
197         return &tfm->base;
198 }
199
200 /**
201  * crypto_free_skcipher() - zeroize and free cipher handle
202  * @tfm: cipher handle to be freed
203  *
204  * If @tfm is a NULL or error pointer, this function does nothing.
205  */
206 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
207 {
208         crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
209 }
210
211 static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
212 {
213         crypto_free_skcipher(&tfm->base);
214 }
215
216 /**
217  * crypto_has_skcipher() - Search for the availability of an skcipher.
218  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
219  *            skcipher
220  * @type: specifies the type of the skcipher
221  * @mask: specifies the mask for the skcipher
222  *
223  * Return: true when the skcipher is known to the kernel crypto API; false
224  *         otherwise
225  */
226 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask);
227
228 static inline const char *crypto_skcipher_driver_name(
229         struct crypto_skcipher *tfm)
230 {
231         return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
232 }
233
234 static inline struct skcipher_alg *crypto_skcipher_alg(
235         struct crypto_skcipher *tfm)
236 {
237         return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
238                             struct skcipher_alg, base);
239 }
240
241 static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
242 {
243         return alg->ivsize;
244 }
245
246 /**
247  * crypto_skcipher_ivsize() - obtain IV size
248  * @tfm: cipher handle
249  *
250  * The size of the IV for the skcipher referenced by the cipher handle is
251  * returned. This IV size may be zero if the cipher does not need an IV.
252  *
253  * Return: IV size in bytes
254  */
255 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
256 {
257         return crypto_skcipher_alg(tfm)->ivsize;
258 }
259
260 static inline unsigned int crypto_sync_skcipher_ivsize(
261         struct crypto_sync_skcipher *tfm)
262 {
263         return crypto_skcipher_ivsize(&tfm->base);
264 }
265
266 /**
267  * crypto_skcipher_blocksize() - obtain block size of cipher
268  * @tfm: cipher handle
269  *
270  * The block size for the skcipher referenced with the cipher handle is
271  * returned. The caller may use that information to allocate appropriate
272  * memory for the data returned by the encryption or decryption operation
273  *
274  * Return: block size of cipher
275  */
276 static inline unsigned int crypto_skcipher_blocksize(
277         struct crypto_skcipher *tfm)
278 {
279         return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
280 }
281
282 static inline unsigned int crypto_skcipher_alg_chunksize(
283         struct skcipher_alg *alg)
284 {
285         return alg->chunksize;
286 }
287
288 /**
289  * crypto_skcipher_chunksize() - obtain chunk size
290  * @tfm: cipher handle
291  *
292  * The block size is set to one for ciphers such as CTR.  However,
293  * you still need to provide incremental updates in multiples of
294  * the underlying block size as the IV does not have sub-block
295  * granularity.  This is known in this API as the chunk size.
296  *
297  * Return: chunk size in bytes
298  */
299 static inline unsigned int crypto_skcipher_chunksize(
300         struct crypto_skcipher *tfm)
301 {
302         return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
303 }
304
305 static inline unsigned int crypto_sync_skcipher_blocksize(
306         struct crypto_sync_skcipher *tfm)
307 {
308         return crypto_skcipher_blocksize(&tfm->base);
309 }
310
311 static inline unsigned int crypto_skcipher_alignmask(
312         struct crypto_skcipher *tfm)
313 {
314         return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
315 }
316
317 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
318 {
319         return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
320 }
321
322 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
323                                                u32 flags)
324 {
325         crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
326 }
327
328 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
329                                                  u32 flags)
330 {
331         crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
332 }
333
334 static inline u32 crypto_sync_skcipher_get_flags(
335         struct crypto_sync_skcipher *tfm)
336 {
337         return crypto_skcipher_get_flags(&tfm->base);
338 }
339
340 static inline void crypto_sync_skcipher_set_flags(
341         struct crypto_sync_skcipher *tfm, u32 flags)
342 {
343         crypto_skcipher_set_flags(&tfm->base, flags);
344 }
345
346 static inline void crypto_sync_skcipher_clear_flags(
347         struct crypto_sync_skcipher *tfm, u32 flags)
348 {
349         crypto_skcipher_clear_flags(&tfm->base, flags);
350 }
351
352 /**
353  * crypto_skcipher_setkey() - set key for cipher
354  * @tfm: cipher handle
355  * @key: buffer holding the key
356  * @keylen: length of the key in bytes
357  *
358  * The caller provided key is set for the skcipher referenced by the cipher
359  * handle.
360  *
361  * Note, the key length determines the cipher type. Many block ciphers implement
362  * different cipher modes depending on the key size, such as AES-128 vs AES-192
363  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
364  * is performed.
365  *
366  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
367  */
368 int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
369                            const u8 *key, unsigned int keylen);
370
371 static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
372                                          const u8 *key, unsigned int keylen)
373 {
374         return crypto_skcipher_setkey(&tfm->base, key, keylen);
375 }
376
377 static inline unsigned int crypto_skcipher_min_keysize(
378         struct crypto_skcipher *tfm)
379 {
380         return crypto_skcipher_alg(tfm)->min_keysize;
381 }
382
383 static inline unsigned int crypto_skcipher_max_keysize(
384         struct crypto_skcipher *tfm)
385 {
386         return crypto_skcipher_alg(tfm)->max_keysize;
387 }
388
389 /**
390  * crypto_skcipher_reqtfm() - obtain cipher handle from request
391  * @req: skcipher_request out of which the cipher handle is to be obtained
392  *
393  * Return the crypto_skcipher handle when furnishing an skcipher_request
394  * data structure.
395  *
396  * Return: crypto_skcipher handle
397  */
398 static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
399         struct skcipher_request *req)
400 {
401         return __crypto_skcipher_cast(req->base.tfm);
402 }
403
404 static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
405         struct skcipher_request *req)
406 {
407         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
408
409         return container_of(tfm, struct crypto_sync_skcipher, base);
410 }
411
412 /**
413  * crypto_skcipher_encrypt() - encrypt plaintext
414  * @req: reference to the skcipher_request handle that holds all information
415  *       needed to perform the cipher operation
416  *
417  * Encrypt plaintext data using the skcipher_request handle. That data
418  * structure and how it is filled with data is discussed with the
419  * skcipher_request_* functions.
420  *
421  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
422  */
423 int crypto_skcipher_encrypt(struct skcipher_request *req);
424
425 /**
426  * crypto_skcipher_decrypt() - decrypt ciphertext
427  * @req: reference to the skcipher_request handle that holds all information
428  *       needed to perform the cipher operation
429  *
430  * Decrypt ciphertext data using the skcipher_request handle. That data
431  * structure and how it is filled with data is discussed with the
432  * skcipher_request_* functions.
433  *
434  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
435  */
436 int crypto_skcipher_decrypt(struct skcipher_request *req);
437
438 /**
439  * DOC: Symmetric Key Cipher Request Handle
440  *
441  * The skcipher_request data structure contains all pointers to data
442  * required for the symmetric key cipher operation. This includes the cipher
443  * handle (which can be used by multiple skcipher_request instances), pointer
444  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
445  * as a handle to the skcipher_request_* API calls in a similar way as
446  * skcipher handle to the crypto_skcipher_* API calls.
447  */
448
449 /**
450  * crypto_skcipher_reqsize() - obtain size of the request data structure
451  * @tfm: cipher handle
452  *
453  * Return: number of bytes
454  */
455 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
456 {
457         return tfm->reqsize;
458 }
459
460 /**
461  * skcipher_request_set_tfm() - update cipher handle reference in request
462  * @req: request handle to be modified
463  * @tfm: cipher handle that shall be added to the request handle
464  *
465  * Allow the caller to replace the existing skcipher handle in the request
466  * data structure with a different one.
467  */
468 static inline void skcipher_request_set_tfm(struct skcipher_request *req,
469                                             struct crypto_skcipher *tfm)
470 {
471         req->base.tfm = crypto_skcipher_tfm(tfm);
472 }
473
474 static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
475                                             struct crypto_sync_skcipher *tfm)
476 {
477         skcipher_request_set_tfm(req, &tfm->base);
478 }
479
480 static inline struct skcipher_request *skcipher_request_cast(
481         struct crypto_async_request *req)
482 {
483         return container_of(req, struct skcipher_request, base);
484 }
485
486 /**
487  * skcipher_request_alloc() - allocate request data structure
488  * @tfm: cipher handle to be registered with the request
489  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
490  *
491  * Allocate the request data structure that must be used with the skcipher
492  * encrypt and decrypt API calls. During the allocation, the provided skcipher
493  * handle is registered in the request data structure.
494  *
495  * Return: allocated request handle in case of success, or NULL if out of memory
496  */
497 static inline struct skcipher_request *skcipher_request_alloc(
498         struct crypto_skcipher *tfm, gfp_t gfp)
499 {
500         struct skcipher_request *req;
501
502         req = kmalloc(sizeof(struct skcipher_request) +
503                       crypto_skcipher_reqsize(tfm), gfp);
504
505         if (likely(req))
506                 skcipher_request_set_tfm(req, tfm);
507
508         return req;
509 }
510
511 /**
512  * skcipher_request_free() - zeroize and free request data structure
513  * @req: request data structure cipher handle to be freed
514  */
515 static inline void skcipher_request_free(struct skcipher_request *req)
516 {
517         kfree_sensitive(req);
518 }
519
520 static inline void skcipher_request_zero(struct skcipher_request *req)
521 {
522         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
523
524         memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
525 }
526
527 /**
528  * skcipher_request_set_callback() - set asynchronous callback function
529  * @req: request handle
530  * @flags: specify zero or an ORing of the flags
531  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
532  *         increase the wait queue beyond the initial maximum size;
533  *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
534  * @compl: callback function pointer to be registered with the request handle
535  * @data: The data pointer refers to memory that is not used by the kernel
536  *        crypto API, but provided to the callback function for it to use. Here,
537  *        the caller can provide a reference to memory the callback function can
538  *        operate on. As the callback function is invoked asynchronously to the
539  *        related functionality, it may need to access data structures of the
540  *        related functionality which can be referenced using this pointer. The
541  *        callback function can access the memory via the "data" field in the
542  *        crypto_async_request data structure provided to the callback function.
543  *
544  * This function allows setting the callback function that is triggered once the
545  * cipher operation completes.
546  *
547  * The callback function is registered with the skcipher_request handle and
548  * must comply with the following template::
549  *
550  *      void callback_function(struct crypto_async_request *req, int error)
551  */
552 static inline void skcipher_request_set_callback(struct skcipher_request *req,
553                                                  u32 flags,
554                                                  crypto_completion_t compl,
555                                                  void *data)
556 {
557         req->base.complete = compl;
558         req->base.data = data;
559         req->base.flags = flags;
560 }
561
562 /**
563  * skcipher_request_set_crypt() - set data buffers
564  * @req: request handle
565  * @src: source scatter / gather list
566  * @dst: destination scatter / gather list
567  * @cryptlen: number of bytes to process from @src
568  * @iv: IV for the cipher operation which must comply with the IV size defined
569  *      by crypto_skcipher_ivsize
570  *
571  * This function allows setting of the source data and destination data
572  * scatter / gather lists.
573  *
574  * For encryption, the source is treated as the plaintext and the
575  * destination is the ciphertext. For a decryption operation, the use is
576  * reversed - the source is the ciphertext and the destination is the plaintext.
577  */
578 static inline void skcipher_request_set_crypt(
579         struct skcipher_request *req,
580         struct scatterlist *src, struct scatterlist *dst,
581         unsigned int cryptlen, void *iv)
582 {
583         req->src = src;
584         req->dst = dst;
585         req->cryptlen = cryptlen;
586         req->iv = iv;
587 }
588
589 #endif  /* _CRYPTO_SKCIPHER_H */
590