Merge tag 'drm-fixes-2019-05-24-1' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-microblaze.git] / include / crypto / hash.h
1 /*
2  * Hash: Hash algorithms under the crypto API
3  * 
4  * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option) 
9  * any later version.
10  *
11  */
12
13 #ifndef _CRYPTO_HASH_H
14 #define _CRYPTO_HASH_H
15
16 #include <linux/crypto.h>
17 #include <linux/string.h>
18
19 struct crypto_ahash;
20
21 /**
22  * DOC: Message Digest Algorithm Definitions
23  *
24  * These data structures define modular message digest algorithm
25  * implementations, managed via crypto_register_ahash(),
26  * crypto_register_shash(), crypto_unregister_ahash() and
27  * crypto_unregister_shash().
28  */
29
30 /**
31  * struct hash_alg_common - define properties of message digest
32  * @digestsize: Size of the result of the transformation. A buffer of this size
33  *              must be available to the @final and @finup calls, so they can
34  *              store the resulting hash into it. For various predefined sizes,
35  *              search include/crypto/ using
36  *              git grep _DIGEST_SIZE include/crypto.
37  * @statesize: Size of the block for partial state of the transformation. A
38  *             buffer of this size must be passed to the @export function as it
39  *             will save the partial state of the transformation into it. On the
40  *             other side, the @import function will load the state from a
41  *             buffer of this size as well.
42  * @base: Start of data structure of cipher algorithm. The common data
43  *        structure of crypto_alg contains information common to all ciphers.
44  *        The hash_alg_common data structure now adds the hash-specific
45  *        information.
46  */
47 struct hash_alg_common {
48         unsigned int digestsize;
49         unsigned int statesize;
50
51         struct crypto_alg base;
52 };
53
54 struct ahash_request {
55         struct crypto_async_request base;
56
57         unsigned int nbytes;
58         struct scatterlist *src;
59         u8 *result;
60
61         /* This field may only be used by the ahash API code. */
62         void *priv;
63
64         void *__ctx[] CRYPTO_MINALIGN_ATTR;
65 };
66
67 #define AHASH_REQUEST_ON_STACK(name, ahash) \
68         char __##name##_desc[sizeof(struct ahash_request) + \
69                 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
70         struct ahash_request *name = (void *)__##name##_desc
71
72 /**
73  * struct ahash_alg - asynchronous message digest definition
74  * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
75  *        state of the HASH transformation at the beginning. This shall fill in
76  *        the internal structures used during the entire duration of the whole
77  *        transformation. No data processing happens at this point. Driver code
78  *        implementation must not use req->result.
79  * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
80  *         function actually pushes blocks of data from upper layers into the
81  *         driver, which then passes those to the hardware as seen fit. This
82  *         function must not finalize the HASH transformation by calculating the
83  *         final message digest as this only adds more data into the
84  *         transformation. This function shall not modify the transformation
85  *         context, as this function may be called in parallel with the same
86  *         transformation object. Data processing can happen synchronously
87  *         [SHASH] or asynchronously [AHASH] at this point. Driver must not use
88  *         req->result.
89  * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
90  *         transformation and retrieves the resulting hash from the driver and
91  *         pushes it back to upper layers. No data processing happens at this
92  *         point unless hardware requires it to finish the transformation
93  *         (then the data buffered by the device driver is processed).
94  * @finup: **[optional]** Combination of @update and @final. This function is effectively a
95  *         combination of @update and @final calls issued in sequence. As some
96  *         hardware cannot do @update and @final separately, this callback was
97  *         added to allow such hardware to be used at least by IPsec. Data
98  *         processing can happen synchronously [SHASH] or asynchronously [AHASH]
99  *         at this point.
100  * @digest: Combination of @init and @update and @final. This function
101  *          effectively behaves as the entire chain of operations, @init,
102  *          @update and @final issued in sequence. Just like @finup, this was
103  *          added for hardware which cannot do even the @finup, but can only do
104  *          the whole transformation in one run. Data processing can happen
105  *          synchronously [SHASH] or asynchronously [AHASH] at this point.
106  * @setkey: Set optional key used by the hashing algorithm. Intended to push
107  *          optional key used by the hashing algorithm from upper layers into
108  *          the driver. This function can store the key in the transformation
109  *          context or can outright program it into the hardware. In the former
110  *          case, one must be careful to program the key into the hardware at
111  *          appropriate time and one must be careful that .setkey() can be
112  *          called multiple times during the existence of the transformation
113  *          object. Not  all hashing algorithms do implement this function as it
114  *          is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
115  *          implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
116  *          this function. This function must be called before any other of the
117  *          @init, @update, @final, @finup, @digest is called. No data
118  *          processing happens at this point.
119  * @export: Export partial state of the transformation. This function dumps the
120  *          entire state of the ongoing transformation into a provided block of
121  *          data so it can be @import 'ed back later on. This is useful in case
122  *          you want to save partial result of the transformation after
123  *          processing certain amount of data and reload this partial result
124  *          multiple times later on for multiple re-use. No data processing
125  *          happens at this point. Driver must not use req->result.
126  * @import: Import partial state of the transformation. This function loads the
127  *          entire state of the ongoing transformation from a provided block of
128  *          data so the transformation can continue from this point onward. No
129  *          data processing happens at this point. Driver must not use
130  *          req->result.
131  * @halg: see struct hash_alg_common
132  */
133 struct ahash_alg {
134         int (*init)(struct ahash_request *req);
135         int (*update)(struct ahash_request *req);
136         int (*final)(struct ahash_request *req);
137         int (*finup)(struct ahash_request *req);
138         int (*digest)(struct ahash_request *req);
139         int (*export)(struct ahash_request *req, void *out);
140         int (*import)(struct ahash_request *req, const void *in);
141         int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
142                       unsigned int keylen);
143
144         struct hash_alg_common halg;
145 };
146
147 struct shash_desc {
148         struct crypto_shash *tfm;
149         void *__ctx[] CRYPTO_MINALIGN_ATTR;
150 };
151
152 #define HASH_MAX_DIGESTSIZE      64
153
154 /*
155  * Worst case is hmac(sha3-224-generic).  Its context is a nested 'shash_desc'
156  * containing a 'struct sha3_state'.
157  */
158 #define HASH_MAX_DESCSIZE       (sizeof(struct shash_desc) + 360)
159
160 #define HASH_MAX_STATESIZE      512
161
162 #define SHASH_DESC_ON_STACK(shash, ctx)                           \
163         char __##shash##_desc[sizeof(struct shash_desc) +         \
164                 HASH_MAX_DESCSIZE] CRYPTO_MINALIGN_ATTR; \
165         struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
166
167 /**
168  * struct shash_alg - synchronous message digest definition
169  * @init: see struct ahash_alg
170  * @update: see struct ahash_alg
171  * @final: see struct ahash_alg
172  * @finup: see struct ahash_alg
173  * @digest: see struct ahash_alg
174  * @export: see struct ahash_alg
175  * @import: see struct ahash_alg
176  * @setkey: see struct ahash_alg
177  * @digestsize: see struct ahash_alg
178  * @statesize: see struct ahash_alg
179  * @descsize: Size of the operational state for the message digest. This state
180  *            size is the memory size that needs to be allocated for
181  *            shash_desc.__ctx
182  * @base: internally used
183  */
184 struct shash_alg {
185         int (*init)(struct shash_desc *desc);
186         int (*update)(struct shash_desc *desc, const u8 *data,
187                       unsigned int len);
188         int (*final)(struct shash_desc *desc, u8 *out);
189         int (*finup)(struct shash_desc *desc, const u8 *data,
190                      unsigned int len, u8 *out);
191         int (*digest)(struct shash_desc *desc, const u8 *data,
192                       unsigned int len, u8 *out);
193         int (*export)(struct shash_desc *desc, void *out);
194         int (*import)(struct shash_desc *desc, const void *in);
195         int (*setkey)(struct crypto_shash *tfm, const u8 *key,
196                       unsigned int keylen);
197
198         unsigned int descsize;
199
200         /* These fields must match hash_alg_common. */
201         unsigned int digestsize
202                 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
203         unsigned int statesize;
204
205         struct crypto_alg base;
206 };
207
208 struct crypto_ahash {
209         int (*init)(struct ahash_request *req);
210         int (*update)(struct ahash_request *req);
211         int (*final)(struct ahash_request *req);
212         int (*finup)(struct ahash_request *req);
213         int (*digest)(struct ahash_request *req);
214         int (*export)(struct ahash_request *req, void *out);
215         int (*import)(struct ahash_request *req, const void *in);
216         int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
217                       unsigned int keylen);
218
219         unsigned int reqsize;
220         struct crypto_tfm base;
221 };
222
223 struct crypto_shash {
224         unsigned int descsize;
225         struct crypto_tfm base;
226 };
227
228 /**
229  * DOC: Asynchronous Message Digest API
230  *
231  * The asynchronous message digest API is used with the ciphers of type
232  * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
233  *
234  * The asynchronous cipher operation discussion provided for the
235  * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
236  */
237
238 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
239 {
240         return container_of(tfm, struct crypto_ahash, base);
241 }
242
243 /**
244  * crypto_alloc_ahash() - allocate ahash cipher handle
245  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
246  *            ahash cipher
247  * @type: specifies the type of the cipher
248  * @mask: specifies the mask for the cipher
249  *
250  * Allocate a cipher handle for an ahash. The returned struct
251  * crypto_ahash is the cipher handle that is required for any subsequent
252  * API invocation for that ahash.
253  *
254  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
255  *         of an error, PTR_ERR() returns the error code.
256  */
257 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
258                                         u32 mask);
259
260 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
261 {
262         return &tfm->base;
263 }
264
265 /**
266  * crypto_free_ahash() - zeroize and free the ahash handle
267  * @tfm: cipher handle to be freed
268  */
269 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
270 {
271         crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
272 }
273
274 /**
275  * crypto_has_ahash() - Search for the availability of an ahash.
276  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
277  *            ahash
278  * @type: specifies the type of the ahash
279  * @mask: specifies the mask for the ahash
280  *
281  * Return: true when the ahash is known to the kernel crypto API; false
282  *         otherwise
283  */
284 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
285
286 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
287 {
288         return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
289 }
290
291 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
292 {
293         return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
294 }
295
296 static inline unsigned int crypto_ahash_alignmask(
297         struct crypto_ahash *tfm)
298 {
299         return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
300 }
301
302 /**
303  * crypto_ahash_blocksize() - obtain block size for cipher
304  * @tfm: cipher handle
305  *
306  * The block size for the message digest cipher referenced with the cipher
307  * handle is returned.
308  *
309  * Return: block size of cipher
310  */
311 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
312 {
313         return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
314 }
315
316 static inline struct hash_alg_common *__crypto_hash_alg_common(
317         struct crypto_alg *alg)
318 {
319         return container_of(alg, struct hash_alg_common, base);
320 }
321
322 static inline struct hash_alg_common *crypto_hash_alg_common(
323         struct crypto_ahash *tfm)
324 {
325         return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
326 }
327
328 /**
329  * crypto_ahash_digestsize() - obtain message digest size
330  * @tfm: cipher handle
331  *
332  * The size for the message digest created by the message digest cipher
333  * referenced with the cipher handle is returned.
334  *
335  *
336  * Return: message digest size of cipher
337  */
338 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
339 {
340         return crypto_hash_alg_common(tfm)->digestsize;
341 }
342
343 /**
344  * crypto_ahash_statesize() - obtain size of the ahash state
345  * @tfm: cipher handle
346  *
347  * Return the size of the ahash state. With the crypto_ahash_export()
348  * function, the caller can export the state into a buffer whose size is
349  * defined with this function.
350  *
351  * Return: size of the ahash state
352  */
353 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
354 {
355         return crypto_hash_alg_common(tfm)->statesize;
356 }
357
358 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
359 {
360         return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
361 }
362
363 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
364 {
365         crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
366 }
367
368 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
369 {
370         crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
371 }
372
373 /**
374  * crypto_ahash_reqtfm() - obtain cipher handle from request
375  * @req: asynchronous request handle that contains the reference to the ahash
376  *       cipher handle
377  *
378  * Return the ahash cipher handle that is registered with the asynchronous
379  * request handle ahash_request.
380  *
381  * Return: ahash cipher handle
382  */
383 static inline struct crypto_ahash *crypto_ahash_reqtfm(
384         struct ahash_request *req)
385 {
386         return __crypto_ahash_cast(req->base.tfm);
387 }
388
389 /**
390  * crypto_ahash_reqsize() - obtain size of the request data structure
391  * @tfm: cipher handle
392  *
393  * Return: size of the request data
394  */
395 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
396 {
397         return tfm->reqsize;
398 }
399
400 static inline void *ahash_request_ctx(struct ahash_request *req)
401 {
402         return req->__ctx;
403 }
404
405 /**
406  * crypto_ahash_setkey - set key for cipher handle
407  * @tfm: cipher handle
408  * @key: buffer holding the key
409  * @keylen: length of the key in bytes
410  *
411  * The caller provided key is set for the ahash cipher. The cipher
412  * handle must point to a keyed hash in order for this function to succeed.
413  *
414  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
415  */
416 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
417                         unsigned int keylen);
418
419 /**
420  * crypto_ahash_finup() - update and finalize message digest
421  * @req: reference to the ahash_request handle that holds all information
422  *       needed to perform the cipher operation
423  *
424  * This function is a "short-hand" for the function calls of
425  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
426  * meaning as discussed for those separate functions.
427  *
428  * Return: see crypto_ahash_final()
429  */
430 int crypto_ahash_finup(struct ahash_request *req);
431
432 /**
433  * crypto_ahash_final() - calculate message digest
434  * @req: reference to the ahash_request handle that holds all information
435  *       needed to perform the cipher operation
436  *
437  * Finalize the message digest operation and create the message digest
438  * based on all data added to the cipher handle. The message digest is placed
439  * into the output buffer registered with the ahash_request handle.
440  *
441  * Return:
442  * 0            if the message digest was successfully calculated;
443  * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later;
444  * -EBUSY       if queue is full and request should be resubmitted later;
445  * other < 0    if an error occurred
446  */
447 int crypto_ahash_final(struct ahash_request *req);
448
449 /**
450  * crypto_ahash_digest() - calculate message digest for a buffer
451  * @req: reference to the ahash_request handle that holds all information
452  *       needed to perform the cipher operation
453  *
454  * This function is a "short-hand" for the function calls of crypto_ahash_init,
455  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
456  * meaning as discussed for those separate three functions.
457  *
458  * Return: see crypto_ahash_final()
459  */
460 int crypto_ahash_digest(struct ahash_request *req);
461
462 /**
463  * crypto_ahash_export() - extract current message digest state
464  * @req: reference to the ahash_request handle whose state is exported
465  * @out: output buffer of sufficient size that can hold the hash state
466  *
467  * This function exports the hash state of the ahash_request handle into the
468  * caller-allocated output buffer out which must have sufficient size (e.g. by
469  * calling crypto_ahash_statesize()).
470  *
471  * Return: 0 if the export was successful; < 0 if an error occurred
472  */
473 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
474 {
475         return crypto_ahash_reqtfm(req)->export(req, out);
476 }
477
478 /**
479  * crypto_ahash_import() - import message digest state
480  * @req: reference to ahash_request handle the state is imported into
481  * @in: buffer holding the state
482  *
483  * This function imports the hash state into the ahash_request handle from the
484  * input buffer. That buffer should have been generated with the
485  * crypto_ahash_export function.
486  *
487  * Return: 0 if the import was successful; < 0 if an error occurred
488  */
489 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
490 {
491         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
492
493         if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
494                 return -ENOKEY;
495
496         return tfm->import(req, in);
497 }
498
499 /**
500  * crypto_ahash_init() - (re)initialize message digest handle
501  * @req: ahash_request handle that already is initialized with all necessary
502  *       data using the ahash_request_* API functions
503  *
504  * The call (re-)initializes the message digest referenced by the ahash_request
505  * handle. Any potentially existing state created by previous operations is
506  * discarded.
507  *
508  * Return: see crypto_ahash_final()
509  */
510 static inline int crypto_ahash_init(struct ahash_request *req)
511 {
512         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
513
514         if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
515                 return -ENOKEY;
516
517         return tfm->init(req);
518 }
519
520 /**
521  * crypto_ahash_update() - add data to message digest for processing
522  * @req: ahash_request handle that was previously initialized with the
523  *       crypto_ahash_init call.
524  *
525  * Updates the message digest state of the &ahash_request handle. The input data
526  * is pointed to by the scatter/gather list registered in the &ahash_request
527  * handle
528  *
529  * Return: see crypto_ahash_final()
530  */
531 static inline int crypto_ahash_update(struct ahash_request *req)
532 {
533         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
534         struct crypto_alg *alg = tfm->base.__crt_alg;
535         unsigned int nbytes = req->nbytes;
536         int ret;
537
538         crypto_stats_get(alg);
539         ret = crypto_ahash_reqtfm(req)->update(req);
540         crypto_stats_ahash_update(nbytes, ret, alg);
541         return ret;
542 }
543
544 /**
545  * DOC: Asynchronous Hash Request Handle
546  *
547  * The &ahash_request data structure contains all pointers to data
548  * required for the asynchronous cipher operation. This includes the cipher
549  * handle (which can be used by multiple &ahash_request instances), pointer
550  * to plaintext and the message digest output buffer, asynchronous callback
551  * function, etc. It acts as a handle to the ahash_request_* API calls in a
552  * similar way as ahash handle to the crypto_ahash_* API calls.
553  */
554
555 /**
556  * ahash_request_set_tfm() - update cipher handle reference in request
557  * @req: request handle to be modified
558  * @tfm: cipher handle that shall be added to the request handle
559  *
560  * Allow the caller to replace the existing ahash handle in the request
561  * data structure with a different one.
562  */
563 static inline void ahash_request_set_tfm(struct ahash_request *req,
564                                          struct crypto_ahash *tfm)
565 {
566         req->base.tfm = crypto_ahash_tfm(tfm);
567 }
568
569 /**
570  * ahash_request_alloc() - allocate request data structure
571  * @tfm: cipher handle to be registered with the request
572  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
573  *
574  * Allocate the request data structure that must be used with the ahash
575  * message digest API calls. During
576  * the allocation, the provided ahash handle
577  * is registered in the request data structure.
578  *
579  * Return: allocated request handle in case of success, or NULL if out of memory
580  */
581 static inline struct ahash_request *ahash_request_alloc(
582         struct crypto_ahash *tfm, gfp_t gfp)
583 {
584         struct ahash_request *req;
585
586         req = kmalloc(sizeof(struct ahash_request) +
587                       crypto_ahash_reqsize(tfm), gfp);
588
589         if (likely(req))
590                 ahash_request_set_tfm(req, tfm);
591
592         return req;
593 }
594
595 /**
596  * ahash_request_free() - zeroize and free the request data structure
597  * @req: request data structure cipher handle to be freed
598  */
599 static inline void ahash_request_free(struct ahash_request *req)
600 {
601         kzfree(req);
602 }
603
604 static inline void ahash_request_zero(struct ahash_request *req)
605 {
606         memzero_explicit(req, sizeof(*req) +
607                               crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
608 }
609
610 static inline struct ahash_request *ahash_request_cast(
611         struct crypto_async_request *req)
612 {
613         return container_of(req, struct ahash_request, base);
614 }
615
616 /**
617  * ahash_request_set_callback() - set asynchronous callback function
618  * @req: request handle
619  * @flags: specify zero or an ORing of the flags
620  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
621  *         increase the wait queue beyond the initial maximum size;
622  *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
623  * @compl: callback function pointer to be registered with the request handle
624  * @data: The data pointer refers to memory that is not used by the kernel
625  *        crypto API, but provided to the callback function for it to use. Here,
626  *        the caller can provide a reference to memory the callback function can
627  *        operate on. As the callback function is invoked asynchronously to the
628  *        related functionality, it may need to access data structures of the
629  *        related functionality which can be referenced using this pointer. The
630  *        callback function can access the memory via the "data" field in the
631  *        &crypto_async_request data structure provided to the callback function.
632  *
633  * This function allows setting the callback function that is triggered once
634  * the cipher operation completes.
635  *
636  * The callback function is registered with the &ahash_request handle and
637  * must comply with the following template::
638  *
639  *      void callback_function(struct crypto_async_request *req, int error)
640  */
641 static inline void ahash_request_set_callback(struct ahash_request *req,
642                                               u32 flags,
643                                               crypto_completion_t compl,
644                                               void *data)
645 {
646         req->base.complete = compl;
647         req->base.data = data;
648         req->base.flags = flags;
649 }
650
651 /**
652  * ahash_request_set_crypt() - set data buffers
653  * @req: ahash_request handle to be updated
654  * @src: source scatter/gather list
655  * @result: buffer that is filled with the message digest -- the caller must
656  *          ensure that the buffer has sufficient space by, for example, calling
657  *          crypto_ahash_digestsize()
658  * @nbytes: number of bytes to process from the source scatter/gather list
659  *
660  * By using this call, the caller references the source scatter/gather list.
661  * The source scatter/gather list points to the data the message digest is to
662  * be calculated for.
663  */
664 static inline void ahash_request_set_crypt(struct ahash_request *req,
665                                            struct scatterlist *src, u8 *result,
666                                            unsigned int nbytes)
667 {
668         req->src = src;
669         req->nbytes = nbytes;
670         req->result = result;
671 }
672
673 /**
674  * DOC: Synchronous Message Digest API
675  *
676  * The synchronous message digest API is used with the ciphers of type
677  * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
678  *
679  * The message digest API is able to maintain state information for the
680  * caller.
681  *
682  * The synchronous message digest API can store user-related context in in its
683  * shash_desc request data structure.
684  */
685
686 /**
687  * crypto_alloc_shash() - allocate message digest handle
688  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
689  *            message digest cipher
690  * @type: specifies the type of the cipher
691  * @mask: specifies the mask for the cipher
692  *
693  * Allocate a cipher handle for a message digest. The returned &struct
694  * crypto_shash is the cipher handle that is required for any subsequent
695  * API invocation for that message digest.
696  *
697  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
698  *         of an error, PTR_ERR() returns the error code.
699  */
700 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
701                                         u32 mask);
702
703 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
704 {
705         return &tfm->base;
706 }
707
708 /**
709  * crypto_free_shash() - zeroize and free the message digest handle
710  * @tfm: cipher handle to be freed
711  */
712 static inline void crypto_free_shash(struct crypto_shash *tfm)
713 {
714         crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
715 }
716
717 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
718 {
719         return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
720 }
721
722 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
723 {
724         return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
725 }
726
727 static inline unsigned int crypto_shash_alignmask(
728         struct crypto_shash *tfm)
729 {
730         return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
731 }
732
733 /**
734  * crypto_shash_blocksize() - obtain block size for cipher
735  * @tfm: cipher handle
736  *
737  * The block size for the message digest cipher referenced with the cipher
738  * handle is returned.
739  *
740  * Return: block size of cipher
741  */
742 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
743 {
744         return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
745 }
746
747 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
748 {
749         return container_of(alg, struct shash_alg, base);
750 }
751
752 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
753 {
754         return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
755 }
756
757 /**
758  * crypto_shash_digestsize() - obtain message digest size
759  * @tfm: cipher handle
760  *
761  * The size for the message digest created by the message digest cipher
762  * referenced with the cipher handle is returned.
763  *
764  * Return: digest size of cipher
765  */
766 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
767 {
768         return crypto_shash_alg(tfm)->digestsize;
769 }
770
771 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
772 {
773         return crypto_shash_alg(tfm)->statesize;
774 }
775
776 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
777 {
778         return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
779 }
780
781 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
782 {
783         crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
784 }
785
786 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
787 {
788         crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
789 }
790
791 /**
792  * crypto_shash_descsize() - obtain the operational state size
793  * @tfm: cipher handle
794  *
795  * The size of the operational state the cipher needs during operation is
796  * returned for the hash referenced with the cipher handle. This size is
797  * required to calculate the memory requirements to allow the caller allocating
798  * sufficient memory for operational state.
799  *
800  * The operational state is defined with struct shash_desc where the size of
801  * that data structure is to be calculated as
802  * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
803  *
804  * Return: size of the operational state
805  */
806 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
807 {
808         return tfm->descsize;
809 }
810
811 static inline void *shash_desc_ctx(struct shash_desc *desc)
812 {
813         return desc->__ctx;
814 }
815
816 /**
817  * crypto_shash_setkey() - set key for message digest
818  * @tfm: cipher handle
819  * @key: buffer holding the key
820  * @keylen: length of the key in bytes
821  *
822  * The caller provided key is set for the keyed message digest cipher. The
823  * cipher handle must point to a keyed message digest cipher in order for this
824  * function to succeed.
825  *
826  * Context: Any context.
827  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
828  */
829 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
830                         unsigned int keylen);
831
832 /**
833  * crypto_shash_digest() - calculate message digest for buffer
834  * @desc: see crypto_shash_final()
835  * @data: see crypto_shash_update()
836  * @len: see crypto_shash_update()
837  * @out: see crypto_shash_final()
838  *
839  * This function is a "short-hand" for the function calls of crypto_shash_init,
840  * crypto_shash_update and crypto_shash_final. The parameters have the same
841  * meaning as discussed for those separate three functions.
842  *
843  * Context: Any context.
844  * Return: 0 if the message digest creation was successful; < 0 if an error
845  *         occurred
846  */
847 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
848                         unsigned int len, u8 *out);
849
850 /**
851  * crypto_shash_export() - extract operational state for message digest
852  * @desc: reference to the operational state handle whose state is exported
853  * @out: output buffer of sufficient size that can hold the hash state
854  *
855  * This function exports the hash state of the operational state handle into the
856  * caller-allocated output buffer out which must have sufficient size (e.g. by
857  * calling crypto_shash_descsize).
858  *
859  * Context: Any context.
860  * Return: 0 if the export creation was successful; < 0 if an error occurred
861  */
862 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
863 {
864         return crypto_shash_alg(desc->tfm)->export(desc, out);
865 }
866
867 /**
868  * crypto_shash_import() - import operational state
869  * @desc: reference to the operational state handle the state imported into
870  * @in: buffer holding the state
871  *
872  * This function imports the hash state into the operational state handle from
873  * the input buffer. That buffer should have been generated with the
874  * crypto_ahash_export function.
875  *
876  * Context: Any context.
877  * Return: 0 if the import was successful; < 0 if an error occurred
878  */
879 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
880 {
881         struct crypto_shash *tfm = desc->tfm;
882
883         if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
884                 return -ENOKEY;
885
886         return crypto_shash_alg(tfm)->import(desc, in);
887 }
888
889 /**
890  * crypto_shash_init() - (re)initialize message digest
891  * @desc: operational state handle that is already filled
892  *
893  * The call (re-)initializes the message digest referenced by the
894  * operational state handle. Any potentially existing state created by
895  * previous operations is discarded.
896  *
897  * Context: Any context.
898  * Return: 0 if the message digest initialization was successful; < 0 if an
899  *         error occurred
900  */
901 static inline int crypto_shash_init(struct shash_desc *desc)
902 {
903         struct crypto_shash *tfm = desc->tfm;
904
905         if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
906                 return -ENOKEY;
907
908         return crypto_shash_alg(tfm)->init(desc);
909 }
910
911 /**
912  * crypto_shash_update() - add data to message digest for processing
913  * @desc: operational state handle that is already initialized
914  * @data: input data to be added to the message digest
915  * @len: length of the input data
916  *
917  * Updates the message digest state of the operational state handle.
918  *
919  * Context: Any context.
920  * Return: 0 if the message digest update was successful; < 0 if an error
921  *         occurred
922  */
923 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
924                         unsigned int len);
925
926 /**
927  * crypto_shash_final() - calculate message digest
928  * @desc: operational state handle that is already filled with data
929  * @out: output buffer filled with the message digest
930  *
931  * Finalize the message digest operation and create the message digest
932  * based on all data added to the cipher handle. The message digest is placed
933  * into the output buffer. The caller must ensure that the output buffer is
934  * large enough by using crypto_shash_digestsize.
935  *
936  * Context: Any context.
937  * Return: 0 if the message digest creation was successful; < 0 if an error
938  *         occurred
939  */
940 int crypto_shash_final(struct shash_desc *desc, u8 *out);
941
942 /**
943  * crypto_shash_finup() - calculate message digest of buffer
944  * @desc: see crypto_shash_final()
945  * @data: see crypto_shash_update()
946  * @len: see crypto_shash_update()
947  * @out: see crypto_shash_final()
948  *
949  * This function is a "short-hand" for the function calls of
950  * crypto_shash_update and crypto_shash_final. The parameters have the same
951  * meaning as discussed for those separate functions.
952  *
953  * Context: Any context.
954  * Return: 0 if the message digest creation was successful; < 0 if an error
955  *         occurred
956  */
957 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
958                        unsigned int len, u8 *out);
959
960 static inline void shash_desc_zero(struct shash_desc *desc)
961 {
962         memzero_explicit(desc,
963                          sizeof(*desc) + crypto_shash_descsize(desc->tfm));
964 }
965
966 #endif  /* _CRYPTO_HASH_H */