Merge tag 'linux-kselftest-kunit-5.20-rc1' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / include / crypto / aead.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * AEAD: Authenticated Encryption with Associated Data
4  * 
5  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6  */
7
8 #ifndef _CRYPTO_AEAD_H
9 #define _CRYPTO_AEAD_H
10
11 #include <linux/container_of.h>
12 #include <linux/crypto.h>
13 #include <linux/slab.h>
14 #include <linux/types.h>
15
16 /**
17  * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
18  *
19  * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
20  * (listed as type "aead" in /proc/crypto)
21  *
22  * The most prominent examples for this type of encryption is GCM and CCM.
23  * However, the kernel supports other types of AEAD ciphers which are defined
24  * with the following cipher string:
25  *
26  *      authenc(keyed message digest, block cipher)
27  *
28  * For example: authenc(hmac(sha256), cbc(aes))
29  *
30  * The example code provided for the symmetric key cipher operation
31  * applies here as well. Naturally all *skcipher* symbols must be exchanged
32  * the *aead* pendants discussed in the following. In addition, for the AEAD
33  * operation, the aead_request_set_ad function must be used to set the
34  * pointer to the associated data memory location before performing the
35  * encryption or decryption operation. In case of an encryption, the associated
36  * data memory is filled during the encryption operation. For decryption, the
37  * associated data memory must contain data that is used to verify the integrity
38  * of the decrypted data. Another deviation from the asynchronous block cipher
39  * operation is that the caller should explicitly check for -EBADMSG of the
40  * crypto_aead_decrypt. That error indicates an authentication error, i.e.
41  * a breach in the integrity of the message. In essence, that -EBADMSG error
42  * code is the key bonus an AEAD cipher has over "standard" block chaining
43  * modes.
44  *
45  * Memory Structure:
46  *
47  * The source scatterlist must contain the concatenation of
48  * associated data || plaintext or ciphertext.
49  *
50  * The destination scatterlist has the same layout, except that the plaintext
51  * (resp. ciphertext) will grow (resp. shrink) by the authentication tag size
52  * during encryption (resp. decryption).
53  *
54  * In-place encryption/decryption is enabled by using the same scatterlist
55  * pointer for both the source and destination.
56  *
57  * Even in the out-of-place case, space must be reserved in the destination for
58  * the associated data, even though it won't be written to.  This makes the
59  * in-place and out-of-place cases more consistent.  It is permissible for the
60  * "destination" associated data to alias the "source" associated data.
61  *
62  * As with the other scatterlist crypto APIs, zero-length scatterlist elements
63  * are not allowed in the used part of the scatterlist.  Thus, if there is no
64  * associated data, the first element must point to the plaintext/ciphertext.
65  *
66  * To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309,
67  * rfc4543, and rfc7539esp ciphers.  For these ciphers, the final 'ivsize' bytes
68  * of the associated data buffer must contain a second copy of the IV.  This is
69  * in addition to the copy passed to aead_request_set_crypt().  These two IV
70  * copies must not differ; different implementations of the same algorithm may
71  * behave differently in that case.  Note that the algorithm might not actually
72  * treat the IV as associated data; nevertheless the length passed to
73  * aead_request_set_ad() must include it.
74  */
75
76 struct crypto_aead;
77 struct scatterlist;
78
79 /**
80  *      struct aead_request - AEAD request
81  *      @base: Common attributes for async crypto requests
82  *      @assoclen: Length in bytes of associated data for authentication
83  *      @cryptlen: Length of data to be encrypted or decrypted
84  *      @iv: Initialisation vector
85  *      @src: Source data
86  *      @dst: Destination data
87  *      @__ctx: Start of private context data
88  */
89 struct aead_request {
90         struct crypto_async_request base;
91
92         unsigned int assoclen;
93         unsigned int cryptlen;
94
95         u8 *iv;
96
97         struct scatterlist *src;
98         struct scatterlist *dst;
99
100         void *__ctx[] CRYPTO_MINALIGN_ATTR;
101 };
102
103 /**
104  * struct aead_alg - AEAD cipher definition
105  * @maxauthsize: Set the maximum authentication tag size supported by the
106  *               transformation. A transformation may support smaller tag sizes.
107  *               As the authentication tag is a message digest to ensure the
108  *               integrity of the encrypted data, a consumer typically wants the
109  *               largest authentication tag possible as defined by this
110  *               variable.
111  * @setauthsize: Set authentication size for the AEAD transformation. This
112  *               function is used to specify the consumer requested size of the
113  *               authentication tag to be either generated by the transformation
114  *               during encryption or the size of the authentication tag to be
115  *               supplied during the decryption operation. This function is also
116  *               responsible for checking the authentication tag size for
117  *               validity.
118  * @setkey: see struct skcipher_alg
119  * @encrypt: see struct skcipher_alg
120  * @decrypt: see struct skcipher_alg
121  * @ivsize: see struct skcipher_alg
122  * @chunksize: see struct skcipher_alg
123  * @init: Initialize the cryptographic transformation object. This function
124  *        is used to initialize the cryptographic transformation object.
125  *        This function is called only once at the instantiation time, right
126  *        after the transformation context was allocated. In case the
127  *        cryptographic hardware has some special requirements which need to
128  *        be handled by software, this function shall check for the precise
129  *        requirement of the transformation and put any software fallbacks
130  *        in place.
131  * @exit: Deinitialize the cryptographic transformation object. This is a
132  *        counterpart to @init, used to remove various changes set in
133  *        @init.
134  * @base: Definition of a generic crypto cipher algorithm.
135  *
136  * All fields except @ivsize is mandatory and must be filled.
137  */
138 struct aead_alg {
139         int (*setkey)(struct crypto_aead *tfm, const u8 *key,
140                       unsigned int keylen);
141         int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
142         int (*encrypt)(struct aead_request *req);
143         int (*decrypt)(struct aead_request *req);
144         int (*init)(struct crypto_aead *tfm);
145         void (*exit)(struct crypto_aead *tfm);
146
147         unsigned int ivsize;
148         unsigned int maxauthsize;
149         unsigned int chunksize;
150
151         struct crypto_alg base;
152 };
153
154 struct crypto_aead {
155         unsigned int authsize;
156         unsigned int reqsize;
157
158         struct crypto_tfm base;
159 };
160
161 static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
162 {
163         return container_of(tfm, struct crypto_aead, base);
164 }
165
166 /**
167  * crypto_alloc_aead() - allocate AEAD cipher handle
168  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
169  *           AEAD cipher
170  * @type: specifies the type of the cipher
171  * @mask: specifies the mask for the cipher
172  *
173  * Allocate a cipher handle for an AEAD. The returned struct
174  * crypto_aead is the cipher handle that is required for any subsequent
175  * API invocation for that AEAD.
176  *
177  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
178  *         of an error, PTR_ERR() returns the error code.
179  */
180 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
181
182 static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
183 {
184         return &tfm->base;
185 }
186
187 /**
188  * crypto_free_aead() - zeroize and free aead handle
189  * @tfm: cipher handle to be freed
190  *
191  * If @tfm is a NULL or error pointer, this function does nothing.
192  */
193 static inline void crypto_free_aead(struct crypto_aead *tfm)
194 {
195         crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
196 }
197
198 static inline const char *crypto_aead_driver_name(struct crypto_aead *tfm)
199 {
200         return crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm));
201 }
202
203 static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
204 {
205         return container_of(crypto_aead_tfm(tfm)->__crt_alg,
206                             struct aead_alg, base);
207 }
208
209 static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
210 {
211         return alg->ivsize;
212 }
213
214 /**
215  * crypto_aead_ivsize() - obtain IV size
216  * @tfm: cipher handle
217  *
218  * The size of the IV for the aead referenced by the cipher handle is
219  * returned. This IV size may be zero if the cipher does not need an IV.
220  *
221  * Return: IV size in bytes
222  */
223 static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
224 {
225         return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
226 }
227
228 /**
229  * crypto_aead_authsize() - obtain maximum authentication data size
230  * @tfm: cipher handle
231  *
232  * The maximum size of the authentication data for the AEAD cipher referenced
233  * by the AEAD cipher handle is returned. The authentication data size may be
234  * zero if the cipher implements a hard-coded maximum.
235  *
236  * The authentication data may also be known as "tag value".
237  *
238  * Return: authentication data size / tag size in bytes
239  */
240 static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
241 {
242         return tfm->authsize;
243 }
244
245 static inline unsigned int crypto_aead_alg_maxauthsize(struct aead_alg *alg)
246 {
247         return alg->maxauthsize;
248 }
249
250 static inline unsigned int crypto_aead_maxauthsize(struct crypto_aead *aead)
251 {
252         return crypto_aead_alg_maxauthsize(crypto_aead_alg(aead));
253 }
254
255 /**
256  * crypto_aead_blocksize() - obtain block size of cipher
257  * @tfm: cipher handle
258  *
259  * The block size for the AEAD referenced with the cipher handle is returned.
260  * The caller may use that information to allocate appropriate memory for the
261  * data returned by the encryption or decryption operation
262  *
263  * Return: block size of cipher
264  */
265 static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
266 {
267         return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
268 }
269
270 static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
271 {
272         return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
273 }
274
275 static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
276 {
277         return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
278 }
279
280 static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
281 {
282         crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
283 }
284
285 static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
286 {
287         crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
288 }
289
290 /**
291  * crypto_aead_setkey() - set key for cipher
292  * @tfm: cipher handle
293  * @key: buffer holding the key
294  * @keylen: length of the key in bytes
295  *
296  * The caller provided key is set for the AEAD referenced by the cipher
297  * handle.
298  *
299  * Note, the key length determines the cipher type. Many block ciphers implement
300  * different cipher modes depending on the key size, such as AES-128 vs AES-192
301  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
302  * is performed.
303  *
304  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
305  */
306 int crypto_aead_setkey(struct crypto_aead *tfm,
307                        const u8 *key, unsigned int keylen);
308
309 /**
310  * crypto_aead_setauthsize() - set authentication data size
311  * @tfm: cipher handle
312  * @authsize: size of the authentication data / tag in bytes
313  *
314  * Set the authentication data size / tag size. AEAD requires an authentication
315  * tag (or MAC) in addition to the associated data.
316  *
317  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
318  */
319 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
320
321 static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
322 {
323         return __crypto_aead_cast(req->base.tfm);
324 }
325
326 /**
327  * crypto_aead_encrypt() - encrypt plaintext
328  * @req: reference to the aead_request handle that holds all information
329  *       needed to perform the cipher operation
330  *
331  * Encrypt plaintext data using the aead_request handle. That data structure
332  * and how it is filled with data is discussed with the aead_request_*
333  * functions.
334  *
335  * IMPORTANT NOTE The encryption operation creates the authentication data /
336  *                tag. That data is concatenated with the created ciphertext.
337  *                The ciphertext memory size is therefore the given number of
338  *                block cipher blocks + the size defined by the
339  *                crypto_aead_setauthsize invocation. The caller must ensure
340  *                that sufficient memory is available for the ciphertext and
341  *                the authentication tag.
342  *
343  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
344  */
345 int crypto_aead_encrypt(struct aead_request *req);
346
347 /**
348  * crypto_aead_decrypt() - decrypt ciphertext
349  * @req: reference to the aead_request handle that holds all information
350  *       needed to perform the cipher operation
351  *
352  * Decrypt ciphertext data using the aead_request handle. That data structure
353  * and how it is filled with data is discussed with the aead_request_*
354  * functions.
355  *
356  * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
357  *                authentication data / tag. That authentication data / tag
358  *                must have the size defined by the crypto_aead_setauthsize
359  *                invocation.
360  *
361  *
362  * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
363  *         cipher operation performs the authentication of the data during the
364  *         decryption operation. Therefore, the function returns this error if
365  *         the authentication of the ciphertext was unsuccessful (i.e. the
366  *         integrity of the ciphertext or the associated data was violated);
367  *         < 0 if an error occurred.
368  */
369 int crypto_aead_decrypt(struct aead_request *req);
370
371 /**
372  * DOC: Asynchronous AEAD Request Handle
373  *
374  * The aead_request data structure contains all pointers to data required for
375  * the AEAD cipher operation. This includes the cipher handle (which can be
376  * used by multiple aead_request instances), pointer to plaintext and
377  * ciphertext, asynchronous callback function, etc. It acts as a handle to the
378  * aead_request_* API calls in a similar way as AEAD handle to the
379  * crypto_aead_* API calls.
380  */
381
382 /**
383  * crypto_aead_reqsize() - obtain size of the request data structure
384  * @tfm: cipher handle
385  *
386  * Return: number of bytes
387  */
388 static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
389 {
390         return tfm->reqsize;
391 }
392
393 /**
394  * aead_request_set_tfm() - update cipher handle reference in request
395  * @req: request handle to be modified
396  * @tfm: cipher handle that shall be added to the request handle
397  *
398  * Allow the caller to replace the existing aead handle in the request
399  * data structure with a different one.
400  */
401 static inline void aead_request_set_tfm(struct aead_request *req,
402                                         struct crypto_aead *tfm)
403 {
404         req->base.tfm = crypto_aead_tfm(tfm);
405 }
406
407 /**
408  * aead_request_alloc() - allocate request data structure
409  * @tfm: cipher handle to be registered with the request
410  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
411  *
412  * Allocate the request data structure that must be used with the AEAD
413  * encrypt and decrypt API calls. During the allocation, the provided aead
414  * handle is registered in the request data structure.
415  *
416  * Return: allocated request handle in case of success, or NULL if out of memory
417  */
418 static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
419                                                       gfp_t gfp)
420 {
421         struct aead_request *req;
422
423         req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
424
425         if (likely(req))
426                 aead_request_set_tfm(req, tfm);
427
428         return req;
429 }
430
431 /**
432  * aead_request_free() - zeroize and free request data structure
433  * @req: request data structure cipher handle to be freed
434  */
435 static inline void aead_request_free(struct aead_request *req)
436 {
437         kfree_sensitive(req);
438 }
439
440 /**
441  * aead_request_set_callback() - set asynchronous callback function
442  * @req: request handle
443  * @flags: specify zero or an ORing of the flags
444  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
445  *         increase the wait queue beyond the initial maximum size;
446  *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
447  * @compl: callback function pointer to be registered with the request handle
448  * @data: The data pointer refers to memory that is not used by the kernel
449  *        crypto API, but provided to the callback function for it to use. Here,
450  *        the caller can provide a reference to memory the callback function can
451  *        operate on. As the callback function is invoked asynchronously to the
452  *        related functionality, it may need to access data structures of the
453  *        related functionality which can be referenced using this pointer. The
454  *        callback function can access the memory via the "data" field in the
455  *        crypto_async_request data structure provided to the callback function.
456  *
457  * Setting the callback function that is triggered once the cipher operation
458  * completes
459  *
460  * The callback function is registered with the aead_request handle and
461  * must comply with the following template::
462  *
463  *      void callback_function(struct crypto_async_request *req, int error)
464  */
465 static inline void aead_request_set_callback(struct aead_request *req,
466                                              u32 flags,
467                                              crypto_completion_t compl,
468                                              void *data)
469 {
470         req->base.complete = compl;
471         req->base.data = data;
472         req->base.flags = flags;
473 }
474
475 /**
476  * aead_request_set_crypt - set data buffers
477  * @req: request handle
478  * @src: source scatter / gather list
479  * @dst: destination scatter / gather list
480  * @cryptlen: number of bytes to process from @src
481  * @iv: IV for the cipher operation which must comply with the IV size defined
482  *      by crypto_aead_ivsize()
483  *
484  * Setting the source data and destination data scatter / gather lists which
485  * hold the associated data concatenated with the plaintext or ciphertext. See
486  * below for the authentication tag.
487  *
488  * For encryption, the source is treated as the plaintext and the
489  * destination is the ciphertext. For a decryption operation, the use is
490  * reversed - the source is the ciphertext and the destination is the plaintext.
491  *
492  * The memory structure for cipher operation has the following structure:
493  *
494  * - AEAD encryption input:  assoc data || plaintext
495  * - AEAD encryption output: assoc data || ciphertext || auth tag
496  * - AEAD decryption input:  assoc data || ciphertext || auth tag
497  * - AEAD decryption output: assoc data || plaintext
498  *
499  * Albeit the kernel requires the presence of the AAD buffer, however,
500  * the kernel does not fill the AAD buffer in the output case. If the
501  * caller wants to have that data buffer filled, the caller must either
502  * use an in-place cipher operation (i.e. same memory location for
503  * input/output memory location).
504  */
505 static inline void aead_request_set_crypt(struct aead_request *req,
506                                           struct scatterlist *src,
507                                           struct scatterlist *dst,
508                                           unsigned int cryptlen, u8 *iv)
509 {
510         req->src = src;
511         req->dst = dst;
512         req->cryptlen = cryptlen;
513         req->iv = iv;
514 }
515
516 /**
517  * aead_request_set_ad - set associated data information
518  * @req: request handle
519  * @assoclen: number of bytes in associated data
520  *
521  * Setting the AD information.  This function sets the length of
522  * the associated data.
523  */
524 static inline void aead_request_set_ad(struct aead_request *req,
525                                        unsigned int assoclen)
526 {
527         req->assoclen = assoclen;
528 }
529
530 #endif  /* _CRYPTO_AEAD_H */