xfs: push the AIL in xlog_grant_head_wake
[linux-2.6-microblaze.git] / fs / xfs / xfs_log.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23
24 kmem_zone_t     *xfs_log_ticket_zone;
25
26 /* Local miscellaneous function prototypes */
27 STATIC int
28 xlog_commit_record(
29         struct xlog             *log,
30         struct xlog_ticket      *ticket,
31         struct xlog_in_core     **iclog,
32         xfs_lsn_t               *commitlsnp);
33
34 STATIC struct xlog *
35 xlog_alloc_log(
36         struct xfs_mount        *mp,
37         struct xfs_buftarg      *log_target,
38         xfs_daddr_t             blk_offset,
39         int                     num_bblks);
40 STATIC int
41 xlog_space_left(
42         struct xlog             *log,
43         atomic64_t              *head);
44 STATIC void
45 xlog_dealloc_log(
46         struct xlog             *log);
47
48 /* local state machine functions */
49 STATIC void xlog_state_done_syncing(
50         struct xlog_in_core     *iclog,
51         bool                    aborted);
52 STATIC int
53 xlog_state_get_iclog_space(
54         struct xlog             *log,
55         int                     len,
56         struct xlog_in_core     **iclog,
57         struct xlog_ticket      *ticket,
58         int                     *continued_write,
59         int                     *logoffsetp);
60 STATIC int
61 xlog_state_release_iclog(
62         struct xlog             *log,
63         struct xlog_in_core     *iclog);
64 STATIC void
65 xlog_state_switch_iclogs(
66         struct xlog             *log,
67         struct xlog_in_core     *iclog,
68         int                     eventual_size);
69 STATIC void
70 xlog_state_want_sync(
71         struct xlog             *log,
72         struct xlog_in_core     *iclog);
73
74 STATIC void
75 xlog_grant_push_ail(
76         struct xlog             *log,
77         int                     need_bytes);
78 STATIC void
79 xlog_regrant_reserve_log_space(
80         struct xlog             *log,
81         struct xlog_ticket      *ticket);
82 STATIC void
83 xlog_ungrant_log_space(
84         struct xlog             *log,
85         struct xlog_ticket      *ticket);
86
87 #if defined(DEBUG)
88 STATIC void
89 xlog_verify_dest_ptr(
90         struct xlog             *log,
91         void                    *ptr);
92 STATIC void
93 xlog_verify_grant_tail(
94         struct xlog *log);
95 STATIC void
96 xlog_verify_iclog(
97         struct xlog             *log,
98         struct xlog_in_core     *iclog,
99         int                     count);
100 STATIC void
101 xlog_verify_tail_lsn(
102         struct xlog             *log,
103         struct xlog_in_core     *iclog,
104         xfs_lsn_t               tail_lsn);
105 #else
106 #define xlog_verify_dest_ptr(a,b)
107 #define xlog_verify_grant_tail(a)
108 #define xlog_verify_iclog(a,b,c)
109 #define xlog_verify_tail_lsn(a,b,c)
110 #endif
111
112 STATIC int
113 xlog_iclogs_empty(
114         struct xlog             *log);
115
116 static void
117 xlog_grant_sub_space(
118         struct xlog             *log,
119         atomic64_t              *head,
120         int                     bytes)
121 {
122         int64_t head_val = atomic64_read(head);
123         int64_t new, old;
124
125         do {
126                 int     cycle, space;
127
128                 xlog_crack_grant_head_val(head_val, &cycle, &space);
129
130                 space -= bytes;
131                 if (space < 0) {
132                         space += log->l_logsize;
133                         cycle--;
134                 }
135
136                 old = head_val;
137                 new = xlog_assign_grant_head_val(cycle, space);
138                 head_val = atomic64_cmpxchg(head, old, new);
139         } while (head_val != old);
140 }
141
142 static void
143 xlog_grant_add_space(
144         struct xlog             *log,
145         atomic64_t              *head,
146         int                     bytes)
147 {
148         int64_t head_val = atomic64_read(head);
149         int64_t new, old;
150
151         do {
152                 int             tmp;
153                 int             cycle, space;
154
155                 xlog_crack_grant_head_val(head_val, &cycle, &space);
156
157                 tmp = log->l_logsize - space;
158                 if (tmp > bytes)
159                         space += bytes;
160                 else {
161                         space = bytes - tmp;
162                         cycle++;
163                 }
164
165                 old = head_val;
166                 new = xlog_assign_grant_head_val(cycle, space);
167                 head_val = atomic64_cmpxchg(head, old, new);
168         } while (head_val != old);
169 }
170
171 STATIC void
172 xlog_grant_head_init(
173         struct xlog_grant_head  *head)
174 {
175         xlog_assign_grant_head(&head->grant, 1, 0);
176         INIT_LIST_HEAD(&head->waiters);
177         spin_lock_init(&head->lock);
178 }
179
180 STATIC void
181 xlog_grant_head_wake_all(
182         struct xlog_grant_head  *head)
183 {
184         struct xlog_ticket      *tic;
185
186         spin_lock(&head->lock);
187         list_for_each_entry(tic, &head->waiters, t_queue)
188                 wake_up_process(tic->t_task);
189         spin_unlock(&head->lock);
190 }
191
192 static inline int
193 xlog_ticket_reservation(
194         struct xlog             *log,
195         struct xlog_grant_head  *head,
196         struct xlog_ticket      *tic)
197 {
198         if (head == &log->l_write_head) {
199                 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
200                 return tic->t_unit_res;
201         } else {
202                 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
203                         return tic->t_unit_res * tic->t_cnt;
204                 else
205                         return tic->t_unit_res;
206         }
207 }
208
209 STATIC bool
210 xlog_grant_head_wake(
211         struct xlog             *log,
212         struct xlog_grant_head  *head,
213         int                     *free_bytes)
214 {
215         struct xlog_ticket      *tic;
216         int                     need_bytes;
217         bool                    woken_task = false;
218
219         list_for_each_entry(tic, &head->waiters, t_queue) {
220
221                 /*
222                  * There is a chance that the size of the CIL checkpoints in
223                  * progress at the last AIL push target calculation resulted in
224                  * limiting the target to the log head (l_last_sync_lsn) at the
225                  * time. This may not reflect where the log head is now as the
226                  * CIL checkpoints may have completed.
227                  *
228                  * Hence when we are woken here, it may be that the head of the
229                  * log that has moved rather than the tail. As the tail didn't
230                  * move, there still won't be space available for the
231                  * reservation we require.  However, if the AIL has already
232                  * pushed to the target defined by the old log head location, we
233                  * will hang here waiting for something else to update the AIL
234                  * push target.
235                  *
236                  * Therefore, if there isn't space to wake the first waiter on
237                  * the grant head, we need to push the AIL again to ensure the
238                  * target reflects both the current log tail and log head
239                  * position before we wait for the tail to move again.
240                  */
241
242                 need_bytes = xlog_ticket_reservation(log, head, tic);
243                 if (*free_bytes < need_bytes) {
244                         if (!woken_task)
245                                 xlog_grant_push_ail(log, need_bytes);
246                         return false;
247                 }
248
249                 *free_bytes -= need_bytes;
250                 trace_xfs_log_grant_wake_up(log, tic);
251                 wake_up_process(tic->t_task);
252                 woken_task = true;
253         }
254
255         return true;
256 }
257
258 STATIC int
259 xlog_grant_head_wait(
260         struct xlog             *log,
261         struct xlog_grant_head  *head,
262         struct xlog_ticket      *tic,
263         int                     need_bytes) __releases(&head->lock)
264                                             __acquires(&head->lock)
265 {
266         list_add_tail(&tic->t_queue, &head->waiters);
267
268         do {
269                 if (XLOG_FORCED_SHUTDOWN(log))
270                         goto shutdown;
271                 xlog_grant_push_ail(log, need_bytes);
272
273                 __set_current_state(TASK_UNINTERRUPTIBLE);
274                 spin_unlock(&head->lock);
275
276                 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
277
278                 trace_xfs_log_grant_sleep(log, tic);
279                 schedule();
280                 trace_xfs_log_grant_wake(log, tic);
281
282                 spin_lock(&head->lock);
283                 if (XLOG_FORCED_SHUTDOWN(log))
284                         goto shutdown;
285         } while (xlog_space_left(log, &head->grant) < need_bytes);
286
287         list_del_init(&tic->t_queue);
288         return 0;
289 shutdown:
290         list_del_init(&tic->t_queue);
291         return -EIO;
292 }
293
294 /*
295  * Atomically get the log space required for a log ticket.
296  *
297  * Once a ticket gets put onto head->waiters, it will only return after the
298  * needed reservation is satisfied.
299  *
300  * This function is structured so that it has a lock free fast path. This is
301  * necessary because every new transaction reservation will come through this
302  * path. Hence any lock will be globally hot if we take it unconditionally on
303  * every pass.
304  *
305  * As tickets are only ever moved on and off head->waiters under head->lock, we
306  * only need to take that lock if we are going to add the ticket to the queue
307  * and sleep. We can avoid taking the lock if the ticket was never added to
308  * head->waiters because the t_queue list head will be empty and we hold the
309  * only reference to it so it can safely be checked unlocked.
310  */
311 STATIC int
312 xlog_grant_head_check(
313         struct xlog             *log,
314         struct xlog_grant_head  *head,
315         struct xlog_ticket      *tic,
316         int                     *need_bytes)
317 {
318         int                     free_bytes;
319         int                     error = 0;
320
321         ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
322
323         /*
324          * If there are other waiters on the queue then give them a chance at
325          * logspace before us.  Wake up the first waiters, if we do not wake
326          * up all the waiters then go to sleep waiting for more free space,
327          * otherwise try to get some space for this transaction.
328          */
329         *need_bytes = xlog_ticket_reservation(log, head, tic);
330         free_bytes = xlog_space_left(log, &head->grant);
331         if (!list_empty_careful(&head->waiters)) {
332                 spin_lock(&head->lock);
333                 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
334                     free_bytes < *need_bytes) {
335                         error = xlog_grant_head_wait(log, head, tic,
336                                                      *need_bytes);
337                 }
338                 spin_unlock(&head->lock);
339         } else if (free_bytes < *need_bytes) {
340                 spin_lock(&head->lock);
341                 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
342                 spin_unlock(&head->lock);
343         }
344
345         return error;
346 }
347
348 static void
349 xlog_tic_reset_res(xlog_ticket_t *tic)
350 {
351         tic->t_res_num = 0;
352         tic->t_res_arr_sum = 0;
353         tic->t_res_num_ophdrs = 0;
354 }
355
356 static void
357 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
358 {
359         if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
360                 /* add to overflow and start again */
361                 tic->t_res_o_flow += tic->t_res_arr_sum;
362                 tic->t_res_num = 0;
363                 tic->t_res_arr_sum = 0;
364         }
365
366         tic->t_res_arr[tic->t_res_num].r_len = len;
367         tic->t_res_arr[tic->t_res_num].r_type = type;
368         tic->t_res_arr_sum += len;
369         tic->t_res_num++;
370 }
371
372 /*
373  * Replenish the byte reservation required by moving the grant write head.
374  */
375 int
376 xfs_log_regrant(
377         struct xfs_mount        *mp,
378         struct xlog_ticket      *tic)
379 {
380         struct xlog             *log = mp->m_log;
381         int                     need_bytes;
382         int                     error = 0;
383
384         if (XLOG_FORCED_SHUTDOWN(log))
385                 return -EIO;
386
387         XFS_STATS_INC(mp, xs_try_logspace);
388
389         /*
390          * This is a new transaction on the ticket, so we need to change the
391          * transaction ID so that the next transaction has a different TID in
392          * the log. Just add one to the existing tid so that we can see chains
393          * of rolling transactions in the log easily.
394          */
395         tic->t_tid++;
396
397         xlog_grant_push_ail(log, tic->t_unit_res);
398
399         tic->t_curr_res = tic->t_unit_res;
400         xlog_tic_reset_res(tic);
401
402         if (tic->t_cnt > 0)
403                 return 0;
404
405         trace_xfs_log_regrant(log, tic);
406
407         error = xlog_grant_head_check(log, &log->l_write_head, tic,
408                                       &need_bytes);
409         if (error)
410                 goto out_error;
411
412         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
413         trace_xfs_log_regrant_exit(log, tic);
414         xlog_verify_grant_tail(log);
415         return 0;
416
417 out_error:
418         /*
419          * If we are failing, make sure the ticket doesn't have any current
420          * reservations.  We don't want to add this back when the ticket/
421          * transaction gets cancelled.
422          */
423         tic->t_curr_res = 0;
424         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
425         return error;
426 }
427
428 /*
429  * Reserve log space and return a ticket corresponding to the reservation.
430  *
431  * Each reservation is going to reserve extra space for a log record header.
432  * When writes happen to the on-disk log, we don't subtract the length of the
433  * log record header from any reservation.  By wasting space in each
434  * reservation, we prevent over allocation problems.
435  */
436 int
437 xfs_log_reserve(
438         struct xfs_mount        *mp,
439         int                     unit_bytes,
440         int                     cnt,
441         struct xlog_ticket      **ticp,
442         uint8_t                 client,
443         bool                    permanent)
444 {
445         struct xlog             *log = mp->m_log;
446         struct xlog_ticket      *tic;
447         int                     need_bytes;
448         int                     error = 0;
449
450         ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
451
452         if (XLOG_FORCED_SHUTDOWN(log))
453                 return -EIO;
454
455         XFS_STATS_INC(mp, xs_try_logspace);
456
457         ASSERT(*ticp == NULL);
458         tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 0);
459         *ticp = tic;
460
461         xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
462                                             : tic->t_unit_res);
463
464         trace_xfs_log_reserve(log, tic);
465
466         error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467                                       &need_bytes);
468         if (error)
469                 goto out_error;
470
471         xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473         trace_xfs_log_reserve_exit(log, tic);
474         xlog_verify_grant_tail(log);
475         return 0;
476
477 out_error:
478         /*
479          * If we are failing, make sure the ticket doesn't have any current
480          * reservations.  We don't want to add this back when the ticket/
481          * transaction gets cancelled.
482          */
483         tic->t_curr_res = 0;
484         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
485         return error;
486 }
487
488
489 /*
490  * NOTES:
491  *
492  *      1. currblock field gets updated at startup and after in-core logs
493  *              marked as with WANT_SYNC.
494  */
495
496 /*
497  * This routine is called when a user of a log manager ticket is done with
498  * the reservation.  If the ticket was ever used, then a commit record for
499  * the associated transaction is written out as a log operation header with
500  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
501  * a given ticket.  If the ticket was one with a permanent reservation, then
502  * a few operations are done differently.  Permanent reservation tickets by
503  * default don't release the reservation.  They just commit the current
504  * transaction with the belief that the reservation is still needed.  A flag
505  * must be passed in before permanent reservations are actually released.
506  * When these type of tickets are not released, they need to be set into
507  * the inited state again.  By doing this, a start record will be written
508  * out when the next write occurs.
509  */
510 xfs_lsn_t
511 xfs_log_done(
512         struct xfs_mount        *mp,
513         struct xlog_ticket      *ticket,
514         struct xlog_in_core     **iclog,
515         bool                    regrant)
516 {
517         struct xlog             *log = mp->m_log;
518         xfs_lsn_t               lsn = 0;
519
520         if (XLOG_FORCED_SHUTDOWN(log) ||
521             /*
522              * If nothing was ever written, don't write out commit record.
523              * If we get an error, just continue and give back the log ticket.
524              */
525             (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
526              (xlog_commit_record(log, ticket, iclog, &lsn)))) {
527                 lsn = (xfs_lsn_t) -1;
528                 regrant = false;
529         }
530
531
532         if (!regrant) {
533                 trace_xfs_log_done_nonperm(log, ticket);
534
535                 /*
536                  * Release ticket if not permanent reservation or a specific
537                  * request has been made to release a permanent reservation.
538                  */
539                 xlog_ungrant_log_space(log, ticket);
540         } else {
541                 trace_xfs_log_done_perm(log, ticket);
542
543                 xlog_regrant_reserve_log_space(log, ticket);
544                 /* If this ticket was a permanent reservation and we aren't
545                  * trying to release it, reset the inited flags; so next time
546                  * we write, a start record will be written out.
547                  */
548                 ticket->t_flags |= XLOG_TIC_INITED;
549         }
550
551         xfs_log_ticket_put(ticket);
552         return lsn;
553 }
554
555 int
556 xfs_log_release_iclog(
557         struct xfs_mount        *mp,
558         struct xlog_in_core     *iclog)
559 {
560         if (xlog_state_release_iclog(mp->m_log, iclog)) {
561                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
562                 return -EIO;
563         }
564
565         return 0;
566 }
567
568 /*
569  * Mount a log filesystem
570  *
571  * mp           - ubiquitous xfs mount point structure
572  * log_target   - buftarg of on-disk log device
573  * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
574  * num_bblocks  - Number of BBSIZE blocks in on-disk log
575  *
576  * Return error or zero.
577  */
578 int
579 xfs_log_mount(
580         xfs_mount_t     *mp,
581         xfs_buftarg_t   *log_target,
582         xfs_daddr_t     blk_offset,
583         int             num_bblks)
584 {
585         bool            fatal = xfs_sb_version_hascrc(&mp->m_sb);
586         int             error = 0;
587         int             min_logfsbs;
588
589         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
590                 xfs_notice(mp, "Mounting V%d Filesystem",
591                            XFS_SB_VERSION_NUM(&mp->m_sb));
592         } else {
593                 xfs_notice(mp,
594 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
595                            XFS_SB_VERSION_NUM(&mp->m_sb));
596                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
597         }
598
599         mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
600         if (IS_ERR(mp->m_log)) {
601                 error = PTR_ERR(mp->m_log);
602                 goto out;
603         }
604
605         /*
606          * Validate the given log space and drop a critical message via syslog
607          * if the log size is too small that would lead to some unexpected
608          * situations in transaction log space reservation stage.
609          *
610          * Note: we can't just reject the mount if the validation fails.  This
611          * would mean that people would have to downgrade their kernel just to
612          * remedy the situation as there is no way to grow the log (short of
613          * black magic surgery with xfs_db).
614          *
615          * We can, however, reject mounts for CRC format filesystems, as the
616          * mkfs binary being used to make the filesystem should never create a
617          * filesystem with a log that is too small.
618          */
619         min_logfsbs = xfs_log_calc_minimum_size(mp);
620
621         if (mp->m_sb.sb_logblocks < min_logfsbs) {
622                 xfs_warn(mp,
623                 "Log size %d blocks too small, minimum size is %d blocks",
624                          mp->m_sb.sb_logblocks, min_logfsbs);
625                 error = -EINVAL;
626         } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
627                 xfs_warn(mp,
628                 "Log size %d blocks too large, maximum size is %lld blocks",
629                          mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
630                 error = -EINVAL;
631         } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
632                 xfs_warn(mp,
633                 "log size %lld bytes too large, maximum size is %lld bytes",
634                          XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
635                          XFS_MAX_LOG_BYTES);
636                 error = -EINVAL;
637         } else if (mp->m_sb.sb_logsunit > 1 &&
638                    mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
639                 xfs_warn(mp,
640                 "log stripe unit %u bytes must be a multiple of block size",
641                          mp->m_sb.sb_logsunit);
642                 error = -EINVAL;
643                 fatal = true;
644         }
645         if (error) {
646                 /*
647                  * Log check errors are always fatal on v5; or whenever bad
648                  * metadata leads to a crash.
649                  */
650                 if (fatal) {
651                         xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
652                         ASSERT(0);
653                         goto out_free_log;
654                 }
655                 xfs_crit(mp, "Log size out of supported range.");
656                 xfs_crit(mp,
657 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
658         }
659
660         /*
661          * Initialize the AIL now we have a log.
662          */
663         error = xfs_trans_ail_init(mp);
664         if (error) {
665                 xfs_warn(mp, "AIL initialisation failed: error %d", error);
666                 goto out_free_log;
667         }
668         mp->m_log->l_ailp = mp->m_ail;
669
670         /*
671          * skip log recovery on a norecovery mount.  pretend it all
672          * just worked.
673          */
674         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
675                 int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
676
677                 if (readonly)
678                         mp->m_flags &= ~XFS_MOUNT_RDONLY;
679
680                 error = xlog_recover(mp->m_log);
681
682                 if (readonly)
683                         mp->m_flags |= XFS_MOUNT_RDONLY;
684                 if (error) {
685                         xfs_warn(mp, "log mount/recovery failed: error %d",
686                                 error);
687                         xlog_recover_cancel(mp->m_log);
688                         goto out_destroy_ail;
689                 }
690         }
691
692         error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
693                                "log");
694         if (error)
695                 goto out_destroy_ail;
696
697         /* Normal transactions can now occur */
698         mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
699
700         /*
701          * Now the log has been fully initialised and we know were our
702          * space grant counters are, we can initialise the permanent ticket
703          * needed for delayed logging to work.
704          */
705         xlog_cil_init_post_recovery(mp->m_log);
706
707         return 0;
708
709 out_destroy_ail:
710         xfs_trans_ail_destroy(mp);
711 out_free_log:
712         xlog_dealloc_log(mp->m_log);
713 out:
714         return error;
715 }
716
717 /*
718  * Finish the recovery of the file system.  This is separate from the
719  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
720  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
721  * here.
722  *
723  * If we finish recovery successfully, start the background log work. If we are
724  * not doing recovery, then we have a RO filesystem and we don't need to start
725  * it.
726  */
727 int
728 xfs_log_mount_finish(
729         struct xfs_mount        *mp)
730 {
731         int     error = 0;
732         bool    readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
733         bool    recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
734
735         if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
736                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
737                 return 0;
738         } else if (readonly) {
739                 /* Allow unlinked processing to proceed */
740                 mp->m_flags &= ~XFS_MOUNT_RDONLY;
741         }
742
743         /*
744          * During the second phase of log recovery, we need iget and
745          * iput to behave like they do for an active filesystem.
746          * xfs_fs_drop_inode needs to be able to prevent the deletion
747          * of inodes before we're done replaying log items on those
748          * inodes.  Turn it off immediately after recovery finishes
749          * so that we don't leak the quota inodes if subsequent mount
750          * activities fail.
751          *
752          * We let all inodes involved in redo item processing end up on
753          * the LRU instead of being evicted immediately so that if we do
754          * something to an unlinked inode, the irele won't cause
755          * premature truncation and freeing of the inode, which results
756          * in log recovery failure.  We have to evict the unreferenced
757          * lru inodes after clearing SB_ACTIVE because we don't
758          * otherwise clean up the lru if there's a subsequent failure in
759          * xfs_mountfs, which leads to us leaking the inodes if nothing
760          * else (e.g. quotacheck) references the inodes before the
761          * mount failure occurs.
762          */
763         mp->m_super->s_flags |= SB_ACTIVE;
764         error = xlog_recover_finish(mp->m_log);
765         if (!error)
766                 xfs_log_work_queue(mp);
767         mp->m_super->s_flags &= ~SB_ACTIVE;
768         evict_inodes(mp->m_super);
769
770         /*
771          * Drain the buffer LRU after log recovery. This is required for v4
772          * filesystems to avoid leaving around buffers with NULL verifier ops,
773          * but we do it unconditionally to make sure we're always in a clean
774          * cache state after mount.
775          *
776          * Don't push in the error case because the AIL may have pending intents
777          * that aren't removed until recovery is cancelled.
778          */
779         if (!error && recovered) {
780                 xfs_log_force(mp, XFS_LOG_SYNC);
781                 xfs_ail_push_all_sync(mp->m_ail);
782         }
783         xfs_wait_buftarg(mp->m_ddev_targp);
784
785         if (readonly)
786                 mp->m_flags |= XFS_MOUNT_RDONLY;
787
788         return error;
789 }
790
791 /*
792  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
793  * the log.
794  */
795 void
796 xfs_log_mount_cancel(
797         struct xfs_mount        *mp)
798 {
799         xlog_recover_cancel(mp->m_log);
800         xfs_log_unmount(mp);
801 }
802
803 /*
804  * Final log writes as part of unmount.
805  *
806  * Mark the filesystem clean as unmount happens.  Note that during relocation
807  * this routine needs to be executed as part of source-bag while the
808  * deallocation must not be done until source-end.
809  */
810
811 /* Actually write the unmount record to disk. */
812 static void
813 xfs_log_write_unmount_record(
814         struct xfs_mount        *mp)
815 {
816         /* the data section must be 32 bit size aligned */
817         struct xfs_unmount_log_format magic = {
818                 .magic = XLOG_UNMOUNT_TYPE,
819         };
820         struct xfs_log_iovec reg = {
821                 .i_addr = &magic,
822                 .i_len = sizeof(magic),
823                 .i_type = XLOG_REG_TYPE_UNMOUNT,
824         };
825         struct xfs_log_vec vec = {
826                 .lv_niovecs = 1,
827                 .lv_iovecp = &reg,
828         };
829         struct xlog             *log = mp->m_log;
830         struct xlog_in_core     *iclog;
831         struct xlog_ticket      *tic = NULL;
832         xfs_lsn_t               lsn;
833         uint                    flags = XLOG_UNMOUNT_TRANS;
834         int                     error;
835
836         error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
837         if (error)
838                 goto out_err;
839
840         /*
841          * If we think the summary counters are bad, clear the unmount header
842          * flag in the unmount record so that the summary counters will be
843          * recalculated during log recovery at next mount.  Refer to
844          * xlog_check_unmount_rec for more details.
845          */
846         if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
847                         XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
848                 xfs_alert(mp, "%s: will fix summary counters at next mount",
849                                 __func__);
850                 flags &= ~XLOG_UNMOUNT_TRANS;
851         }
852
853         /* remove inited flag, and account for space used */
854         tic->t_flags = 0;
855         tic->t_curr_res -= sizeof(magic);
856         error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
857         /*
858          * At this point, we're umounting anyway, so there's no point in
859          * transitioning log state to IOERROR. Just continue...
860          */
861 out_err:
862         if (error)
863                 xfs_alert(mp, "%s: unmount record failed", __func__);
864
865         spin_lock(&log->l_icloglock);
866         iclog = log->l_iclog;
867         atomic_inc(&iclog->ic_refcnt);
868         xlog_state_want_sync(log, iclog);
869         spin_unlock(&log->l_icloglock);
870         error = xlog_state_release_iclog(log, iclog);
871
872         spin_lock(&log->l_icloglock);
873         switch (iclog->ic_state) {
874         default:
875                 if (!XLOG_FORCED_SHUTDOWN(log)) {
876                         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
877                         break;
878                 }
879                 /* fall through */
880         case XLOG_STATE_ACTIVE:
881         case XLOG_STATE_DIRTY:
882                 spin_unlock(&log->l_icloglock);
883                 break;
884         }
885
886         if (tic) {
887                 trace_xfs_log_umount_write(log, tic);
888                 xlog_ungrant_log_space(log, tic);
889                 xfs_log_ticket_put(tic);
890         }
891 }
892
893 /*
894  * Unmount record used to have a string "Unmount filesystem--" in the
895  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
896  * We just write the magic number now since that particular field isn't
897  * currently architecture converted and "Unmount" is a bit foo.
898  * As far as I know, there weren't any dependencies on the old behaviour.
899  */
900
901 static int
902 xfs_log_unmount_write(xfs_mount_t *mp)
903 {
904         struct xlog      *log = mp->m_log;
905         xlog_in_core_t   *iclog;
906 #ifdef DEBUG
907         xlog_in_core_t   *first_iclog;
908 #endif
909         int              error;
910
911         /*
912          * Don't write out unmount record on norecovery mounts or ro devices.
913          * Or, if we are doing a forced umount (typically because of IO errors).
914          */
915         if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
916             xfs_readonly_buftarg(log->l_targ)) {
917                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
918                 return 0;
919         }
920
921         error = xfs_log_force(mp, XFS_LOG_SYNC);
922         ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
923
924 #ifdef DEBUG
925         first_iclog = iclog = log->l_iclog;
926         do {
927                 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
928                         ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
929                         ASSERT(iclog->ic_offset == 0);
930                 }
931                 iclog = iclog->ic_next;
932         } while (iclog != first_iclog);
933 #endif
934         if (! (XLOG_FORCED_SHUTDOWN(log))) {
935                 xfs_log_write_unmount_record(mp);
936         } else {
937                 /*
938                  * We're already in forced_shutdown mode, couldn't
939                  * even attempt to write out the unmount transaction.
940                  *
941                  * Go through the motions of sync'ing and releasing
942                  * the iclog, even though no I/O will actually happen,
943                  * we need to wait for other log I/Os that may already
944                  * be in progress.  Do this as a separate section of
945                  * code so we'll know if we ever get stuck here that
946                  * we're in this odd situation of trying to unmount
947                  * a file system that went into forced_shutdown as
948                  * the result of an unmount..
949                  */
950                 spin_lock(&log->l_icloglock);
951                 iclog = log->l_iclog;
952                 atomic_inc(&iclog->ic_refcnt);
953
954                 xlog_state_want_sync(log, iclog);
955                 spin_unlock(&log->l_icloglock);
956                 error =  xlog_state_release_iclog(log, iclog);
957
958                 spin_lock(&log->l_icloglock);
959
960                 if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
961                         || iclog->ic_state == XLOG_STATE_DIRTY
962                         || iclog->ic_state == XLOG_STATE_IOERROR) ) {
963
964                                 xlog_wait(&iclog->ic_force_wait,
965                                                         &log->l_icloglock);
966                 } else {
967                         spin_unlock(&log->l_icloglock);
968                 }
969         }
970
971         return error;
972 }       /* xfs_log_unmount_write */
973
974 /*
975  * Empty the log for unmount/freeze.
976  *
977  * To do this, we first need to shut down the background log work so it is not
978  * trying to cover the log as we clean up. We then need to unpin all objects in
979  * the log so we can then flush them out. Once they have completed their IO and
980  * run the callbacks removing themselves from the AIL, we can write the unmount
981  * record.
982  */
983 void
984 xfs_log_quiesce(
985         struct xfs_mount        *mp)
986 {
987         cancel_delayed_work_sync(&mp->m_log->l_work);
988         xfs_log_force(mp, XFS_LOG_SYNC);
989
990         /*
991          * The superblock buffer is uncached and while xfs_ail_push_all_sync()
992          * will push it, xfs_wait_buftarg() will not wait for it. Further,
993          * xfs_buf_iowait() cannot be used because it was pushed with the
994          * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
995          * the IO to complete.
996          */
997         xfs_ail_push_all_sync(mp->m_ail);
998         xfs_wait_buftarg(mp->m_ddev_targp);
999         xfs_buf_lock(mp->m_sb_bp);
1000         xfs_buf_unlock(mp->m_sb_bp);
1001
1002         xfs_log_unmount_write(mp);
1003 }
1004
1005 /*
1006  * Shut down and release the AIL and Log.
1007  *
1008  * During unmount, we need to ensure we flush all the dirty metadata objects
1009  * from the AIL so that the log is empty before we write the unmount record to
1010  * the log. Once this is done, we can tear down the AIL and the log.
1011  */
1012 void
1013 xfs_log_unmount(
1014         struct xfs_mount        *mp)
1015 {
1016         xfs_log_quiesce(mp);
1017
1018         xfs_trans_ail_destroy(mp);
1019
1020         xfs_sysfs_del(&mp->m_log->l_kobj);
1021
1022         xlog_dealloc_log(mp->m_log);
1023 }
1024
1025 void
1026 xfs_log_item_init(
1027         struct xfs_mount        *mp,
1028         struct xfs_log_item     *item,
1029         int                     type,
1030         const struct xfs_item_ops *ops)
1031 {
1032         item->li_mountp = mp;
1033         item->li_ailp = mp->m_ail;
1034         item->li_type = type;
1035         item->li_ops = ops;
1036         item->li_lv = NULL;
1037
1038         INIT_LIST_HEAD(&item->li_ail);
1039         INIT_LIST_HEAD(&item->li_cil);
1040         INIT_LIST_HEAD(&item->li_bio_list);
1041         INIT_LIST_HEAD(&item->li_trans);
1042 }
1043
1044 /*
1045  * Wake up processes waiting for log space after we have moved the log tail.
1046  */
1047 void
1048 xfs_log_space_wake(
1049         struct xfs_mount        *mp)
1050 {
1051         struct xlog             *log = mp->m_log;
1052         int                     free_bytes;
1053
1054         if (XLOG_FORCED_SHUTDOWN(log))
1055                 return;
1056
1057         if (!list_empty_careful(&log->l_write_head.waiters)) {
1058                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1059
1060                 spin_lock(&log->l_write_head.lock);
1061                 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1062                 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1063                 spin_unlock(&log->l_write_head.lock);
1064         }
1065
1066         if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1067                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1068
1069                 spin_lock(&log->l_reserve_head.lock);
1070                 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1071                 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1072                 spin_unlock(&log->l_reserve_head.lock);
1073         }
1074 }
1075
1076 /*
1077  * Determine if we have a transaction that has gone to disk that needs to be
1078  * covered. To begin the transition to the idle state firstly the log needs to
1079  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1080  * we start attempting to cover the log.
1081  *
1082  * Only if we are then in a state where covering is needed, the caller is
1083  * informed that dummy transactions are required to move the log into the idle
1084  * state.
1085  *
1086  * If there are any items in the AIl or CIL, then we do not want to attempt to
1087  * cover the log as we may be in a situation where there isn't log space
1088  * available to run a dummy transaction and this can lead to deadlocks when the
1089  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1090  * there's no point in running a dummy transaction at this point because we
1091  * can't start trying to idle the log until both the CIL and AIL are empty.
1092  */
1093 static int
1094 xfs_log_need_covered(xfs_mount_t *mp)
1095 {
1096         struct xlog     *log = mp->m_log;
1097         int             needed = 0;
1098
1099         if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1100                 return 0;
1101
1102         if (!xlog_cil_empty(log))
1103                 return 0;
1104
1105         spin_lock(&log->l_icloglock);
1106         switch (log->l_covered_state) {
1107         case XLOG_STATE_COVER_DONE:
1108         case XLOG_STATE_COVER_DONE2:
1109         case XLOG_STATE_COVER_IDLE:
1110                 break;
1111         case XLOG_STATE_COVER_NEED:
1112         case XLOG_STATE_COVER_NEED2:
1113                 if (xfs_ail_min_lsn(log->l_ailp))
1114                         break;
1115                 if (!xlog_iclogs_empty(log))
1116                         break;
1117
1118                 needed = 1;
1119                 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1120                         log->l_covered_state = XLOG_STATE_COVER_DONE;
1121                 else
1122                         log->l_covered_state = XLOG_STATE_COVER_DONE2;
1123                 break;
1124         default:
1125                 needed = 1;
1126                 break;
1127         }
1128         spin_unlock(&log->l_icloglock);
1129         return needed;
1130 }
1131
1132 /*
1133  * We may be holding the log iclog lock upon entering this routine.
1134  */
1135 xfs_lsn_t
1136 xlog_assign_tail_lsn_locked(
1137         struct xfs_mount        *mp)
1138 {
1139         struct xlog             *log = mp->m_log;
1140         struct xfs_log_item     *lip;
1141         xfs_lsn_t               tail_lsn;
1142
1143         assert_spin_locked(&mp->m_ail->ail_lock);
1144
1145         /*
1146          * To make sure we always have a valid LSN for the log tail we keep
1147          * track of the last LSN which was committed in log->l_last_sync_lsn,
1148          * and use that when the AIL was empty.
1149          */
1150         lip = xfs_ail_min(mp->m_ail);
1151         if (lip)
1152                 tail_lsn = lip->li_lsn;
1153         else
1154                 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1155         trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1156         atomic64_set(&log->l_tail_lsn, tail_lsn);
1157         return tail_lsn;
1158 }
1159
1160 xfs_lsn_t
1161 xlog_assign_tail_lsn(
1162         struct xfs_mount        *mp)
1163 {
1164         xfs_lsn_t               tail_lsn;
1165
1166         spin_lock(&mp->m_ail->ail_lock);
1167         tail_lsn = xlog_assign_tail_lsn_locked(mp);
1168         spin_unlock(&mp->m_ail->ail_lock);
1169
1170         return tail_lsn;
1171 }
1172
1173 /*
1174  * Return the space in the log between the tail and the head.  The head
1175  * is passed in the cycle/bytes formal parms.  In the special case where
1176  * the reserve head has wrapped passed the tail, this calculation is no
1177  * longer valid.  In this case, just return 0 which means there is no space
1178  * in the log.  This works for all places where this function is called
1179  * with the reserve head.  Of course, if the write head were to ever
1180  * wrap the tail, we should blow up.  Rather than catch this case here,
1181  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1182  *
1183  * This code also handles the case where the reservation head is behind
1184  * the tail.  The details of this case are described below, but the end
1185  * result is that we return the size of the log as the amount of space left.
1186  */
1187 STATIC int
1188 xlog_space_left(
1189         struct xlog     *log,
1190         atomic64_t      *head)
1191 {
1192         int             free_bytes;
1193         int             tail_bytes;
1194         int             tail_cycle;
1195         int             head_cycle;
1196         int             head_bytes;
1197
1198         xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1199         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1200         tail_bytes = BBTOB(tail_bytes);
1201         if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1202                 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1203         else if (tail_cycle + 1 < head_cycle)
1204                 return 0;
1205         else if (tail_cycle < head_cycle) {
1206                 ASSERT(tail_cycle == (head_cycle - 1));
1207                 free_bytes = tail_bytes - head_bytes;
1208         } else {
1209                 /*
1210                  * The reservation head is behind the tail.
1211                  * In this case we just want to return the size of the
1212                  * log as the amount of space left.
1213                  */
1214                 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1215                 xfs_alert(log->l_mp,
1216                           "  tail_cycle = %d, tail_bytes = %d",
1217                           tail_cycle, tail_bytes);
1218                 xfs_alert(log->l_mp,
1219                           "  GH   cycle = %d, GH   bytes = %d",
1220                           head_cycle, head_bytes);
1221                 ASSERT(0);
1222                 free_bytes = log->l_logsize;
1223         }
1224         return free_bytes;
1225 }
1226
1227
1228 static void
1229 xlog_ioend_work(
1230         struct work_struct      *work)
1231 {
1232         struct xlog_in_core     *iclog =
1233                 container_of(work, struct xlog_in_core, ic_end_io_work);
1234         struct xlog             *log = iclog->ic_log;
1235         bool                    aborted = false;
1236         int                     error;
1237
1238         error = blk_status_to_errno(iclog->ic_bio.bi_status);
1239 #ifdef DEBUG
1240         /* treat writes with injected CRC errors as failed */
1241         if (iclog->ic_fail_crc)
1242                 error = -EIO;
1243 #endif
1244
1245         /*
1246          * Race to shutdown the filesystem if we see an error.
1247          */
1248         if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1249                 xfs_alert(log->l_mp, "log I/O error %d", error);
1250                 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1251                 /*
1252                  * This flag will be propagated to the trans-committed
1253                  * callback routines to let them know that the log-commit
1254                  * didn't succeed.
1255                  */
1256                 aborted = true;
1257         } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1258                 aborted = true;
1259         }
1260
1261         xlog_state_done_syncing(iclog, aborted);
1262         bio_uninit(&iclog->ic_bio);
1263
1264         /*
1265          * Drop the lock to signal that we are done. Nothing references the
1266          * iclog after this, so an unmount waiting on this lock can now tear it
1267          * down safely. As such, it is unsafe to reference the iclog after the
1268          * unlock as we could race with it being freed.
1269          */
1270         up(&iclog->ic_sema);
1271 }
1272
1273 /*
1274  * Return size of each in-core log record buffer.
1275  *
1276  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1277  *
1278  * If the filesystem blocksize is too large, we may need to choose a
1279  * larger size since the directory code currently logs entire blocks.
1280  */
1281 STATIC void
1282 xlog_get_iclog_buffer_size(
1283         struct xfs_mount        *mp,
1284         struct xlog             *log)
1285 {
1286         if (mp->m_logbufs <= 0)
1287                 mp->m_logbufs = XLOG_MAX_ICLOGS;
1288         if (mp->m_logbsize <= 0)
1289                 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1290
1291         log->l_iclog_bufs = mp->m_logbufs;
1292         log->l_iclog_size = mp->m_logbsize;
1293
1294         /*
1295          * # headers = size / 32k - one header holds cycles from 32k of data.
1296          */
1297         log->l_iclog_heads =
1298                 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1299         log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1300 }
1301
1302 void
1303 xfs_log_work_queue(
1304         struct xfs_mount        *mp)
1305 {
1306         queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1307                                 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1308 }
1309
1310 /*
1311  * Every sync period we need to unpin all items in the AIL and push them to
1312  * disk. If there is nothing dirty, then we might need to cover the log to
1313  * indicate that the filesystem is idle.
1314  */
1315 static void
1316 xfs_log_worker(
1317         struct work_struct      *work)
1318 {
1319         struct xlog             *log = container_of(to_delayed_work(work),
1320                                                 struct xlog, l_work);
1321         struct xfs_mount        *mp = log->l_mp;
1322
1323         /* dgc: errors ignored - not fatal and nowhere to report them */
1324         if (xfs_log_need_covered(mp)) {
1325                 /*
1326                  * Dump a transaction into the log that contains no real change.
1327                  * This is needed to stamp the current tail LSN into the log
1328                  * during the covering operation.
1329                  *
1330                  * We cannot use an inode here for this - that will push dirty
1331                  * state back up into the VFS and then periodic inode flushing
1332                  * will prevent log covering from making progress. Hence we
1333                  * synchronously log the superblock instead to ensure the
1334                  * superblock is immediately unpinned and can be written back.
1335                  */
1336                 xfs_sync_sb(mp, true);
1337         } else
1338                 xfs_log_force(mp, 0);
1339
1340         /* start pushing all the metadata that is currently dirty */
1341         xfs_ail_push_all(mp->m_ail);
1342
1343         /* queue us up again */
1344         xfs_log_work_queue(mp);
1345 }
1346
1347 /*
1348  * This routine initializes some of the log structure for a given mount point.
1349  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1350  * some other stuff may be filled in too.
1351  */
1352 STATIC struct xlog *
1353 xlog_alloc_log(
1354         struct xfs_mount        *mp,
1355         struct xfs_buftarg      *log_target,
1356         xfs_daddr_t             blk_offset,
1357         int                     num_bblks)
1358 {
1359         struct xlog             *log;
1360         xlog_rec_header_t       *head;
1361         xlog_in_core_t          **iclogp;
1362         xlog_in_core_t          *iclog, *prev_iclog=NULL;
1363         int                     i;
1364         int                     error = -ENOMEM;
1365         uint                    log2_size = 0;
1366
1367         log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1368         if (!log) {
1369                 xfs_warn(mp, "Log allocation failed: No memory!");
1370                 goto out;
1371         }
1372
1373         log->l_mp          = mp;
1374         log->l_targ        = log_target;
1375         log->l_logsize     = BBTOB(num_bblks);
1376         log->l_logBBstart  = blk_offset;
1377         log->l_logBBsize   = num_bblks;
1378         log->l_covered_state = XLOG_STATE_COVER_IDLE;
1379         log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1380         INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1381
1382         log->l_prev_block  = -1;
1383         /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1384         xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1385         xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1386         log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1387
1388         xlog_grant_head_init(&log->l_reserve_head);
1389         xlog_grant_head_init(&log->l_write_head);
1390
1391         error = -EFSCORRUPTED;
1392         if (xfs_sb_version_hassector(&mp->m_sb)) {
1393                 log2_size = mp->m_sb.sb_logsectlog;
1394                 if (log2_size < BBSHIFT) {
1395                         xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1396                                 log2_size, BBSHIFT);
1397                         goto out_free_log;
1398                 }
1399
1400                 log2_size -= BBSHIFT;
1401                 if (log2_size > mp->m_sectbb_log) {
1402                         xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1403                                 log2_size, mp->m_sectbb_log);
1404                         goto out_free_log;
1405                 }
1406
1407                 /* for larger sector sizes, must have v2 or external log */
1408                 if (log2_size && log->l_logBBstart > 0 &&
1409                             !xfs_sb_version_haslogv2(&mp->m_sb)) {
1410                         xfs_warn(mp,
1411                 "log sector size (0x%x) invalid for configuration.",
1412                                 log2_size);
1413                         goto out_free_log;
1414                 }
1415         }
1416         log->l_sectBBsize = 1 << log2_size;
1417
1418         xlog_get_iclog_buffer_size(mp, log);
1419
1420         spin_lock_init(&log->l_icloglock);
1421         init_waitqueue_head(&log->l_flush_wait);
1422
1423         iclogp = &log->l_iclog;
1424         /*
1425          * The amount of memory to allocate for the iclog structure is
1426          * rather funky due to the way the structure is defined.  It is
1427          * done this way so that we can use different sizes for machines
1428          * with different amounts of memory.  See the definition of
1429          * xlog_in_core_t in xfs_log_priv.h for details.
1430          */
1431         ASSERT(log->l_iclog_size >= 4096);
1432         for (i = 0; i < log->l_iclog_bufs; i++) {
1433                 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1434                 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1435                                 sizeof(struct bio_vec);
1436
1437                 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1438                 if (!iclog)
1439                         goto out_free_iclog;
1440
1441                 *iclogp = iclog;
1442                 iclog->ic_prev = prev_iclog;
1443                 prev_iclog = iclog;
1444
1445                 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1446                                                 KM_MAYFAIL);
1447                 if (!iclog->ic_data)
1448                         goto out_free_iclog;
1449 #ifdef DEBUG
1450                 log->l_iclog_bak[i] = &iclog->ic_header;
1451 #endif
1452                 head = &iclog->ic_header;
1453                 memset(head, 0, sizeof(xlog_rec_header_t));
1454                 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1455                 head->h_version = cpu_to_be32(
1456                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1457                 head->h_size = cpu_to_be32(log->l_iclog_size);
1458                 /* new fields */
1459                 head->h_fmt = cpu_to_be32(XLOG_FMT);
1460                 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1461
1462                 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1463                 iclog->ic_state = XLOG_STATE_ACTIVE;
1464                 iclog->ic_log = log;
1465                 atomic_set(&iclog->ic_refcnt, 0);
1466                 spin_lock_init(&iclog->ic_callback_lock);
1467                 INIT_LIST_HEAD(&iclog->ic_callbacks);
1468                 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1469
1470                 init_waitqueue_head(&iclog->ic_force_wait);
1471                 init_waitqueue_head(&iclog->ic_write_wait);
1472                 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1473                 sema_init(&iclog->ic_sema, 1);
1474
1475                 iclogp = &iclog->ic_next;
1476         }
1477         *iclogp = log->l_iclog;                 /* complete ring */
1478         log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1479
1480         log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1481                         WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1482                         mp->m_fsname);
1483         if (!log->l_ioend_workqueue)
1484                 goto out_free_iclog;
1485
1486         error = xlog_cil_init(log);
1487         if (error)
1488                 goto out_destroy_workqueue;
1489         return log;
1490
1491 out_destroy_workqueue:
1492         destroy_workqueue(log->l_ioend_workqueue);
1493 out_free_iclog:
1494         for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1495                 prev_iclog = iclog->ic_next;
1496                 kmem_free(iclog->ic_data);
1497                 kmem_free(iclog);
1498         }
1499 out_free_log:
1500         kmem_free(log);
1501 out:
1502         return ERR_PTR(error);
1503 }       /* xlog_alloc_log */
1504
1505
1506 /*
1507  * Write out the commit record of a transaction associated with the given
1508  * ticket.  Return the lsn of the commit record.
1509  */
1510 STATIC int
1511 xlog_commit_record(
1512         struct xlog             *log,
1513         struct xlog_ticket      *ticket,
1514         struct xlog_in_core     **iclog,
1515         xfs_lsn_t               *commitlsnp)
1516 {
1517         struct xfs_mount *mp = log->l_mp;
1518         int     error;
1519         struct xfs_log_iovec reg = {
1520                 .i_addr = NULL,
1521                 .i_len = 0,
1522                 .i_type = XLOG_REG_TYPE_COMMIT,
1523         };
1524         struct xfs_log_vec vec = {
1525                 .lv_niovecs = 1,
1526                 .lv_iovecp = &reg,
1527         };
1528
1529         ASSERT_ALWAYS(iclog);
1530         error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1531                                         XLOG_COMMIT_TRANS);
1532         if (error)
1533                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1534         return error;
1535 }
1536
1537 /*
1538  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1539  * log space.  This code pushes on the lsn which would supposedly free up
1540  * the 25% which we want to leave free.  We may need to adopt a policy which
1541  * pushes on an lsn which is further along in the log once we reach the high
1542  * water mark.  In this manner, we would be creating a low water mark.
1543  */
1544 STATIC void
1545 xlog_grant_push_ail(
1546         struct xlog     *log,
1547         int             need_bytes)
1548 {
1549         xfs_lsn_t       threshold_lsn = 0;
1550         xfs_lsn_t       last_sync_lsn;
1551         int             free_blocks;
1552         int             free_bytes;
1553         int             threshold_block;
1554         int             threshold_cycle;
1555         int             free_threshold;
1556
1557         ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1558
1559         free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1560         free_blocks = BTOBBT(free_bytes);
1561
1562         /*
1563          * Set the threshold for the minimum number of free blocks in the
1564          * log to the maximum of what the caller needs, one quarter of the
1565          * log, and 256 blocks.
1566          */
1567         free_threshold = BTOBB(need_bytes);
1568         free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1569         free_threshold = max(free_threshold, 256);
1570         if (free_blocks >= free_threshold)
1571                 return;
1572
1573         xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1574                                                 &threshold_block);
1575         threshold_block += free_threshold;
1576         if (threshold_block >= log->l_logBBsize) {
1577                 threshold_block -= log->l_logBBsize;
1578                 threshold_cycle += 1;
1579         }
1580         threshold_lsn = xlog_assign_lsn(threshold_cycle,
1581                                         threshold_block);
1582         /*
1583          * Don't pass in an lsn greater than the lsn of the last
1584          * log record known to be on disk. Use a snapshot of the last sync lsn
1585          * so that it doesn't change between the compare and the set.
1586          */
1587         last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1588         if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1589                 threshold_lsn = last_sync_lsn;
1590
1591         /*
1592          * Get the transaction layer to kick the dirty buffers out to
1593          * disk asynchronously. No point in trying to do this if
1594          * the filesystem is shutting down.
1595          */
1596         if (!XLOG_FORCED_SHUTDOWN(log))
1597                 xfs_ail_push(log->l_ailp, threshold_lsn);
1598 }
1599
1600 /*
1601  * Stamp cycle number in every block
1602  */
1603 STATIC void
1604 xlog_pack_data(
1605         struct xlog             *log,
1606         struct xlog_in_core     *iclog,
1607         int                     roundoff)
1608 {
1609         int                     i, j, k;
1610         int                     size = iclog->ic_offset + roundoff;
1611         __be32                  cycle_lsn;
1612         char                    *dp;
1613
1614         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1615
1616         dp = iclog->ic_datap;
1617         for (i = 0; i < BTOBB(size); i++) {
1618                 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1619                         break;
1620                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1621                 *(__be32 *)dp = cycle_lsn;
1622                 dp += BBSIZE;
1623         }
1624
1625         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1626                 xlog_in_core_2_t *xhdr = iclog->ic_data;
1627
1628                 for ( ; i < BTOBB(size); i++) {
1629                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1630                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1631                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1632                         *(__be32 *)dp = cycle_lsn;
1633                         dp += BBSIZE;
1634                 }
1635
1636                 for (i = 1; i < log->l_iclog_heads; i++)
1637                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1638         }
1639 }
1640
1641 /*
1642  * Calculate the checksum for a log buffer.
1643  *
1644  * This is a little more complicated than it should be because the various
1645  * headers and the actual data are non-contiguous.
1646  */
1647 __le32
1648 xlog_cksum(
1649         struct xlog             *log,
1650         struct xlog_rec_header  *rhead,
1651         char                    *dp,
1652         int                     size)
1653 {
1654         uint32_t                crc;
1655
1656         /* first generate the crc for the record header ... */
1657         crc = xfs_start_cksum_update((char *)rhead,
1658                               sizeof(struct xlog_rec_header),
1659                               offsetof(struct xlog_rec_header, h_crc));
1660
1661         /* ... then for additional cycle data for v2 logs ... */
1662         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1663                 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1664                 int             i;
1665                 int             xheads;
1666
1667                 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1668                 if (size % XLOG_HEADER_CYCLE_SIZE)
1669                         xheads++;
1670
1671                 for (i = 1; i < xheads; i++) {
1672                         crc = crc32c(crc, &xhdr[i].hic_xheader,
1673                                      sizeof(struct xlog_rec_ext_header));
1674                 }
1675         }
1676
1677         /* ... and finally for the payload */
1678         crc = crc32c(crc, dp, size);
1679
1680         return xfs_end_cksum(crc);
1681 }
1682
1683 static void
1684 xlog_bio_end_io(
1685         struct bio              *bio)
1686 {
1687         struct xlog_in_core     *iclog = bio->bi_private;
1688
1689         queue_work(iclog->ic_log->l_ioend_workqueue,
1690                    &iclog->ic_end_io_work);
1691 }
1692
1693 static void
1694 xlog_map_iclog_data(
1695         struct bio              *bio,
1696         void                    *data,
1697         size_t                  count)
1698 {
1699         do {
1700                 struct page     *page = kmem_to_page(data);
1701                 unsigned int    off = offset_in_page(data);
1702                 size_t          len = min_t(size_t, count, PAGE_SIZE - off);
1703
1704                 WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len);
1705
1706                 data += len;
1707                 count -= len;
1708         } while (count);
1709 }
1710
1711 STATIC void
1712 xlog_write_iclog(
1713         struct xlog             *log,
1714         struct xlog_in_core     *iclog,
1715         uint64_t                bno,
1716         unsigned int            count,
1717         bool                    need_flush)
1718 {
1719         ASSERT(bno < log->l_logBBsize);
1720
1721         /*
1722          * We lock the iclogbufs here so that we can serialise against I/O
1723          * completion during unmount.  We might be processing a shutdown
1724          * triggered during unmount, and that can occur asynchronously to the
1725          * unmount thread, and hence we need to ensure that completes before
1726          * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1727          * across the log IO to archieve that.
1728          */
1729         down(&iclog->ic_sema);
1730         if (unlikely(iclog->ic_state & XLOG_STATE_IOERROR)) {
1731                 /*
1732                  * It would seem logical to return EIO here, but we rely on
1733                  * the log state machine to propagate I/O errors instead of
1734                  * doing it here.  We kick of the state machine and unlock
1735                  * the buffer manually, the code needs to be kept in sync
1736                  * with the I/O completion path.
1737                  */
1738                 xlog_state_done_syncing(iclog, XFS_LI_ABORTED);
1739                 up(&iclog->ic_sema);
1740                 return;
1741         }
1742
1743         iclog->ic_io_size = count;
1744
1745         bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1746         bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1747         iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1748         iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1749         iclog->ic_bio.bi_private = iclog;
1750         iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1751         if (need_flush)
1752                 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1753
1754         xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, iclog->ic_io_size);
1755         if (is_vmalloc_addr(iclog->ic_data))
1756                 flush_kernel_vmap_range(iclog->ic_data, iclog->ic_io_size);
1757
1758         /*
1759          * If this log buffer would straddle the end of the log we will have
1760          * to split it up into two bios, so that we can continue at the start.
1761          */
1762         if (bno + BTOBB(count) > log->l_logBBsize) {
1763                 struct bio *split;
1764
1765                 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1766                                   GFP_NOIO, &fs_bio_set);
1767                 bio_chain(split, &iclog->ic_bio);
1768                 submit_bio(split);
1769
1770                 /* restart at logical offset zero for the remainder */
1771                 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1772         }
1773
1774         submit_bio(&iclog->ic_bio);
1775 }
1776
1777 /*
1778  * We need to bump cycle number for the part of the iclog that is
1779  * written to the start of the log. Watch out for the header magic
1780  * number case, though.
1781  */
1782 static void
1783 xlog_split_iclog(
1784         struct xlog             *log,
1785         void                    *data,
1786         uint64_t                bno,
1787         unsigned int            count)
1788 {
1789         unsigned int            split_offset = BBTOB(log->l_logBBsize - bno);
1790         unsigned int            i;
1791
1792         for (i = split_offset; i < count; i += BBSIZE) {
1793                 uint32_t cycle = get_unaligned_be32(data + i);
1794
1795                 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1796                         cycle++;
1797                 put_unaligned_be32(cycle, data + i);
1798         }
1799 }
1800
1801 static int
1802 xlog_calc_iclog_size(
1803         struct xlog             *log,
1804         struct xlog_in_core     *iclog,
1805         uint32_t                *roundoff)
1806 {
1807         uint32_t                count_init, count;
1808         bool                    use_lsunit;
1809
1810         use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1811                         log->l_mp->m_sb.sb_logsunit > 1;
1812
1813         /* Add for LR header */
1814         count_init = log->l_iclog_hsize + iclog->ic_offset;
1815
1816         /* Round out the log write size */
1817         if (use_lsunit) {
1818                 /* we have a v2 stripe unit to use */
1819                 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1820         } else {
1821                 count = BBTOB(BTOBB(count_init));
1822         }
1823
1824         ASSERT(count >= count_init);
1825         *roundoff = count - count_init;
1826
1827         if (use_lsunit)
1828                 ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1829         else
1830                 ASSERT(*roundoff < BBTOB(1));
1831         return count;
1832 }
1833
1834 /*
1835  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1836  * fashion.  Previously, we should have moved the current iclog
1837  * ptr in the log to point to the next available iclog.  This allows further
1838  * write to continue while this code syncs out an iclog ready to go.
1839  * Before an in-core log can be written out, the data section must be scanned
1840  * to save away the 1st word of each BBSIZE block into the header.  We replace
1841  * it with the current cycle count.  Each BBSIZE block is tagged with the
1842  * cycle count because there in an implicit assumption that drives will
1843  * guarantee that entire 512 byte blocks get written at once.  In other words,
1844  * we can't have part of a 512 byte block written and part not written.  By
1845  * tagging each block, we will know which blocks are valid when recovering
1846  * after an unclean shutdown.
1847  *
1848  * This routine is single threaded on the iclog.  No other thread can be in
1849  * this routine with the same iclog.  Changing contents of iclog can there-
1850  * fore be done without grabbing the state machine lock.  Updating the global
1851  * log will require grabbing the lock though.
1852  *
1853  * The entire log manager uses a logical block numbering scheme.  Only
1854  * xlog_write_iclog knows about the fact that the log may not start with
1855  * block zero on a given device.
1856  */
1857 STATIC void
1858 xlog_sync(
1859         struct xlog             *log,
1860         struct xlog_in_core     *iclog)
1861 {
1862         unsigned int            count;          /* byte count of bwrite */
1863         unsigned int            roundoff;       /* roundoff to BB or stripe */
1864         uint64_t                bno;
1865         unsigned int            size;
1866         bool                    need_flush = true, split = false;
1867
1868         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1869
1870         count = xlog_calc_iclog_size(log, iclog, &roundoff);
1871
1872         /* move grant heads by roundoff in sync */
1873         xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1874         xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1875
1876         /* put cycle number in every block */
1877         xlog_pack_data(log, iclog, roundoff); 
1878
1879         /* real byte length */
1880         size = iclog->ic_offset;
1881         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1882                 size += roundoff;
1883         iclog->ic_header.h_len = cpu_to_be32(size);
1884
1885         XFS_STATS_INC(log->l_mp, xs_log_writes);
1886         XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1887
1888         bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1889
1890         /* Do we need to split this write into 2 parts? */
1891         if (bno + BTOBB(count) > log->l_logBBsize) {
1892                 xlog_split_iclog(log, &iclog->ic_header, bno, count);
1893                 split = true;
1894         }
1895
1896         /* calculcate the checksum */
1897         iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1898                                             iclog->ic_datap, size);
1899         /*
1900          * Intentionally corrupt the log record CRC based on the error injection
1901          * frequency, if defined. This facilitates testing log recovery in the
1902          * event of torn writes. Hence, set the IOABORT state to abort the log
1903          * write on I/O completion and shutdown the fs. The subsequent mount
1904          * detects the bad CRC and attempts to recover.
1905          */
1906 #ifdef DEBUG
1907         if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1908                 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1909                 iclog->ic_fail_crc = true;
1910                 xfs_warn(log->l_mp,
1911         "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1912                          be64_to_cpu(iclog->ic_header.h_lsn));
1913         }
1914 #endif
1915
1916         /*
1917          * Flush the data device before flushing the log to make sure all meta
1918          * data written back from the AIL actually made it to disk before
1919          * stamping the new log tail LSN into the log buffer.  For an external
1920          * log we need to issue the flush explicitly, and unfortunately
1921          * synchronously here; for an internal log we can simply use the block
1922          * layer state machine for preflushes.
1923          */
1924         if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1925                 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1926                 need_flush = false;
1927         }
1928
1929         xlog_verify_iclog(log, iclog, count);
1930         xlog_write_iclog(log, iclog, bno, count, need_flush);
1931 }
1932
1933 /*
1934  * Deallocate a log structure
1935  */
1936 STATIC void
1937 xlog_dealloc_log(
1938         struct xlog     *log)
1939 {
1940         xlog_in_core_t  *iclog, *next_iclog;
1941         int             i;
1942
1943         xlog_cil_destroy(log);
1944
1945         /*
1946          * Cycle all the iclogbuf locks to make sure all log IO completion
1947          * is done before we tear down these buffers.
1948          */
1949         iclog = log->l_iclog;
1950         for (i = 0; i < log->l_iclog_bufs; i++) {
1951                 down(&iclog->ic_sema);
1952                 up(&iclog->ic_sema);
1953                 iclog = iclog->ic_next;
1954         }
1955
1956         iclog = log->l_iclog;
1957         for (i = 0; i < log->l_iclog_bufs; i++) {
1958                 next_iclog = iclog->ic_next;
1959                 kmem_free(iclog->ic_data);
1960                 kmem_free(iclog);
1961                 iclog = next_iclog;
1962         }
1963
1964         log->l_mp->m_log = NULL;
1965         destroy_workqueue(log->l_ioend_workqueue);
1966         kmem_free(log);
1967 }       /* xlog_dealloc_log */
1968
1969 /*
1970  * Update counters atomically now that memcpy is done.
1971  */
1972 /* ARGSUSED */
1973 static inline void
1974 xlog_state_finish_copy(
1975         struct xlog             *log,
1976         struct xlog_in_core     *iclog,
1977         int                     record_cnt,
1978         int                     copy_bytes)
1979 {
1980         spin_lock(&log->l_icloglock);
1981
1982         be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1983         iclog->ic_offset += copy_bytes;
1984
1985         spin_unlock(&log->l_icloglock);
1986 }       /* xlog_state_finish_copy */
1987
1988
1989
1990
1991 /*
1992  * print out info relating to regions written which consume
1993  * the reservation
1994  */
1995 void
1996 xlog_print_tic_res(
1997         struct xfs_mount        *mp,
1998         struct xlog_ticket      *ticket)
1999 {
2000         uint i;
2001         uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2002
2003         /* match with XLOG_REG_TYPE_* in xfs_log.h */
2004 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2005         static char *res_type_str[] = {
2006             REG_TYPE_STR(BFORMAT, "bformat"),
2007             REG_TYPE_STR(BCHUNK, "bchunk"),
2008             REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2009             REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2010             REG_TYPE_STR(IFORMAT, "iformat"),
2011             REG_TYPE_STR(ICORE, "icore"),
2012             REG_TYPE_STR(IEXT, "iext"),
2013             REG_TYPE_STR(IBROOT, "ibroot"),
2014             REG_TYPE_STR(ILOCAL, "ilocal"),
2015             REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2016             REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2017             REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2018             REG_TYPE_STR(QFORMAT, "qformat"),
2019             REG_TYPE_STR(DQUOT, "dquot"),
2020             REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2021             REG_TYPE_STR(LRHEADER, "LR header"),
2022             REG_TYPE_STR(UNMOUNT, "unmount"),
2023             REG_TYPE_STR(COMMIT, "commit"),
2024             REG_TYPE_STR(TRANSHDR, "trans header"),
2025             REG_TYPE_STR(ICREATE, "inode create"),
2026             REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2027             REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2028             REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2029             REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2030             REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2031             REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2032         };
2033         BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2034 #undef REG_TYPE_STR
2035
2036         xfs_warn(mp, "ticket reservation summary:");
2037         xfs_warn(mp, "  unit res    = %d bytes",
2038                  ticket->t_unit_res);
2039         xfs_warn(mp, "  current res = %d bytes",
2040                  ticket->t_curr_res);
2041         xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2042                  ticket->t_res_arr_sum, ticket->t_res_o_flow);
2043         xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2044                  ticket->t_res_num_ophdrs, ophdr_spc);
2045         xfs_warn(mp, "  ophdr + reg = %u bytes",
2046                  ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2047         xfs_warn(mp, "  num regions = %u",
2048                  ticket->t_res_num);
2049
2050         for (i = 0; i < ticket->t_res_num; i++) {
2051                 uint r_type = ticket->t_res_arr[i].r_type;
2052                 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2053                             ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2054                             "bad-rtype" : res_type_str[r_type]),
2055                             ticket->t_res_arr[i].r_len);
2056         }
2057 }
2058
2059 /*
2060  * Print a summary of the transaction.
2061  */
2062 void
2063 xlog_print_trans(
2064         struct xfs_trans        *tp)
2065 {
2066         struct xfs_mount        *mp = tp->t_mountp;
2067         struct xfs_log_item     *lip;
2068
2069         /* dump core transaction and ticket info */
2070         xfs_warn(mp, "transaction summary:");
2071         xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2072         xfs_warn(mp, "  log count = %d", tp->t_log_count);
2073         xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2074
2075         xlog_print_tic_res(mp, tp->t_ticket);
2076
2077         /* dump each log item */
2078         list_for_each_entry(lip, &tp->t_items, li_trans) {
2079                 struct xfs_log_vec      *lv = lip->li_lv;
2080                 struct xfs_log_iovec    *vec;
2081                 int                     i;
2082
2083                 xfs_warn(mp, "log item: ");
2084                 xfs_warn(mp, "  type    = 0x%x", lip->li_type);
2085                 xfs_warn(mp, "  flags   = 0x%lx", lip->li_flags);
2086                 if (!lv)
2087                         continue;
2088                 xfs_warn(mp, "  niovecs = %d", lv->lv_niovecs);
2089                 xfs_warn(mp, "  size    = %d", lv->lv_size);
2090                 xfs_warn(mp, "  bytes   = %d", lv->lv_bytes);
2091                 xfs_warn(mp, "  buf len = %d", lv->lv_buf_len);
2092
2093                 /* dump each iovec for the log item */
2094                 vec = lv->lv_iovecp;
2095                 for (i = 0; i < lv->lv_niovecs; i++) {
2096                         int dumplen = min(vec->i_len, 32);
2097
2098                         xfs_warn(mp, "  iovec[%d]", i);
2099                         xfs_warn(mp, "    type  = 0x%x", vec->i_type);
2100                         xfs_warn(mp, "    len   = %d", vec->i_len);
2101                         xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2102                         xfs_hex_dump(vec->i_addr, dumplen);
2103
2104                         vec++;
2105                 }
2106         }
2107 }
2108
2109 /*
2110  * Calculate the potential space needed by the log vector.  Each region gets
2111  * its own xlog_op_header_t and may need to be double word aligned.
2112  */
2113 static int
2114 xlog_write_calc_vec_length(
2115         struct xlog_ticket      *ticket,
2116         struct xfs_log_vec      *log_vector)
2117 {
2118         struct xfs_log_vec      *lv;
2119         int                     headers = 0;
2120         int                     len = 0;
2121         int                     i;
2122
2123         /* acct for start rec of xact */
2124         if (ticket->t_flags & XLOG_TIC_INITED)
2125                 headers++;
2126
2127         for (lv = log_vector; lv; lv = lv->lv_next) {
2128                 /* we don't write ordered log vectors */
2129                 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2130                         continue;
2131
2132                 headers += lv->lv_niovecs;
2133
2134                 for (i = 0; i < lv->lv_niovecs; i++) {
2135                         struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2136
2137                         len += vecp->i_len;
2138                         xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2139                 }
2140         }
2141
2142         ticket->t_res_num_ophdrs += headers;
2143         len += headers * sizeof(struct xlog_op_header);
2144
2145         return len;
2146 }
2147
2148 /*
2149  * If first write for transaction, insert start record  We can't be trying to
2150  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2151  */
2152 static int
2153 xlog_write_start_rec(
2154         struct xlog_op_header   *ophdr,
2155         struct xlog_ticket      *ticket)
2156 {
2157         if (!(ticket->t_flags & XLOG_TIC_INITED))
2158                 return 0;
2159
2160         ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2161         ophdr->oh_clientid = ticket->t_clientid;
2162         ophdr->oh_len = 0;
2163         ophdr->oh_flags = XLOG_START_TRANS;
2164         ophdr->oh_res2 = 0;
2165
2166         ticket->t_flags &= ~XLOG_TIC_INITED;
2167
2168         return sizeof(struct xlog_op_header);
2169 }
2170
2171 static xlog_op_header_t *
2172 xlog_write_setup_ophdr(
2173         struct xlog             *log,
2174         struct xlog_op_header   *ophdr,
2175         struct xlog_ticket      *ticket,
2176         uint                    flags)
2177 {
2178         ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2179         ophdr->oh_clientid = ticket->t_clientid;
2180         ophdr->oh_res2 = 0;
2181
2182         /* are we copying a commit or unmount record? */
2183         ophdr->oh_flags = flags;
2184
2185         /*
2186          * We've seen logs corrupted with bad transaction client ids.  This
2187          * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2188          * and shut down the filesystem.
2189          */
2190         switch (ophdr->oh_clientid)  {
2191         case XFS_TRANSACTION:
2192         case XFS_VOLUME:
2193         case XFS_LOG:
2194                 break;
2195         default:
2196                 xfs_warn(log->l_mp,
2197                         "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2198                         ophdr->oh_clientid, ticket);
2199                 return NULL;
2200         }
2201
2202         return ophdr;
2203 }
2204
2205 /*
2206  * Set up the parameters of the region copy into the log. This has
2207  * to handle region write split across multiple log buffers - this
2208  * state is kept external to this function so that this code can
2209  * be written in an obvious, self documenting manner.
2210  */
2211 static int
2212 xlog_write_setup_copy(
2213         struct xlog_ticket      *ticket,
2214         struct xlog_op_header   *ophdr,
2215         int                     space_available,
2216         int                     space_required,
2217         int                     *copy_off,
2218         int                     *copy_len,
2219         int                     *last_was_partial_copy,
2220         int                     *bytes_consumed)
2221 {
2222         int                     still_to_copy;
2223
2224         still_to_copy = space_required - *bytes_consumed;
2225         *copy_off = *bytes_consumed;
2226
2227         if (still_to_copy <= space_available) {
2228                 /* write of region completes here */
2229                 *copy_len = still_to_copy;
2230                 ophdr->oh_len = cpu_to_be32(*copy_len);
2231                 if (*last_was_partial_copy)
2232                         ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2233                 *last_was_partial_copy = 0;
2234                 *bytes_consumed = 0;
2235                 return 0;
2236         }
2237
2238         /* partial write of region, needs extra log op header reservation */
2239         *copy_len = space_available;
2240         ophdr->oh_len = cpu_to_be32(*copy_len);
2241         ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2242         if (*last_was_partial_copy)
2243                 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2244         *bytes_consumed += *copy_len;
2245         (*last_was_partial_copy)++;
2246
2247         /* account for new log op header */
2248         ticket->t_curr_res -= sizeof(struct xlog_op_header);
2249         ticket->t_res_num_ophdrs++;
2250
2251         return sizeof(struct xlog_op_header);
2252 }
2253
2254 static int
2255 xlog_write_copy_finish(
2256         struct xlog             *log,
2257         struct xlog_in_core     *iclog,
2258         uint                    flags,
2259         int                     *record_cnt,
2260         int                     *data_cnt,
2261         int                     *partial_copy,
2262         int                     *partial_copy_len,
2263         int                     log_offset,
2264         struct xlog_in_core     **commit_iclog)
2265 {
2266         if (*partial_copy) {
2267                 /*
2268                  * This iclog has already been marked WANT_SYNC by
2269                  * xlog_state_get_iclog_space.
2270                  */
2271                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2272                 *record_cnt = 0;
2273                 *data_cnt = 0;
2274                 return xlog_state_release_iclog(log, iclog);
2275         }
2276
2277         *partial_copy = 0;
2278         *partial_copy_len = 0;
2279
2280         if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2281                 /* no more space in this iclog - push it. */
2282                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2283                 *record_cnt = 0;
2284                 *data_cnt = 0;
2285
2286                 spin_lock(&log->l_icloglock);
2287                 xlog_state_want_sync(log, iclog);
2288                 spin_unlock(&log->l_icloglock);
2289
2290                 if (!commit_iclog)
2291                         return xlog_state_release_iclog(log, iclog);
2292                 ASSERT(flags & XLOG_COMMIT_TRANS);
2293                 *commit_iclog = iclog;
2294         }
2295
2296         return 0;
2297 }
2298
2299 /*
2300  * Write some region out to in-core log
2301  *
2302  * This will be called when writing externally provided regions or when
2303  * writing out a commit record for a given transaction.
2304  *
2305  * General algorithm:
2306  *      1. Find total length of this write.  This may include adding to the
2307  *              lengths passed in.
2308  *      2. Check whether we violate the tickets reservation.
2309  *      3. While writing to this iclog
2310  *          A. Reserve as much space in this iclog as can get
2311  *          B. If this is first write, save away start lsn
2312  *          C. While writing this region:
2313  *              1. If first write of transaction, write start record
2314  *              2. Write log operation header (header per region)
2315  *              3. Find out if we can fit entire region into this iclog
2316  *              4. Potentially, verify destination memcpy ptr
2317  *              5. Memcpy (partial) region
2318  *              6. If partial copy, release iclog; otherwise, continue
2319  *                      copying more regions into current iclog
2320  *      4. Mark want sync bit (in simulation mode)
2321  *      5. Release iclog for potential flush to on-disk log.
2322  *
2323  * ERRORS:
2324  * 1.   Panic if reservation is overrun.  This should never happen since
2325  *      reservation amounts are generated internal to the filesystem.
2326  * NOTES:
2327  * 1. Tickets are single threaded data structures.
2328  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2329  *      syncing routine.  When a single log_write region needs to span
2330  *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2331  *      on all log operation writes which don't contain the end of the
2332  *      region.  The XLOG_END_TRANS bit is used for the in-core log
2333  *      operation which contains the end of the continued log_write region.
2334  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2335  *      we don't really know exactly how much space will be used.  As a result,
2336  *      we don't update ic_offset until the end when we know exactly how many
2337  *      bytes have been written out.
2338  */
2339 int
2340 xlog_write(
2341         struct xlog             *log,
2342         struct xfs_log_vec      *log_vector,
2343         struct xlog_ticket      *ticket,
2344         xfs_lsn_t               *start_lsn,
2345         struct xlog_in_core     **commit_iclog,
2346         uint                    flags)
2347 {
2348         struct xlog_in_core     *iclog = NULL;
2349         struct xfs_log_iovec    *vecp;
2350         struct xfs_log_vec      *lv;
2351         int                     len;
2352         int                     index;
2353         int                     partial_copy = 0;
2354         int                     partial_copy_len = 0;
2355         int                     contwr = 0;
2356         int                     record_cnt = 0;
2357         int                     data_cnt = 0;
2358         int                     error;
2359
2360         *start_lsn = 0;
2361
2362         len = xlog_write_calc_vec_length(ticket, log_vector);
2363
2364         /*
2365          * Region headers and bytes are already accounted for.
2366          * We only need to take into account start records and
2367          * split regions in this function.
2368          */
2369         if (ticket->t_flags & XLOG_TIC_INITED)
2370                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2371
2372         /*
2373          * Commit record headers need to be accounted for. These
2374          * come in as separate writes so are easy to detect.
2375          */
2376         if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2377                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2378
2379         if (ticket->t_curr_res < 0) {
2380                 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2381                      "ctx ticket reservation ran out. Need to up reservation");
2382                 xlog_print_tic_res(log->l_mp, ticket);
2383                 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2384         }
2385
2386         index = 0;
2387         lv = log_vector;
2388         vecp = lv->lv_iovecp;
2389         while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2390                 void            *ptr;
2391                 int             log_offset;
2392
2393                 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2394                                                    &contwr, &log_offset);
2395                 if (error)
2396                         return error;
2397
2398                 ASSERT(log_offset <= iclog->ic_size - 1);
2399                 ptr = iclog->ic_datap + log_offset;
2400
2401                 /* start_lsn is the first lsn written to. That's all we need. */
2402                 if (!*start_lsn)
2403                         *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2404
2405                 /*
2406                  * This loop writes out as many regions as can fit in the amount
2407                  * of space which was allocated by xlog_state_get_iclog_space().
2408                  */
2409                 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2410                         struct xfs_log_iovec    *reg;
2411                         struct xlog_op_header   *ophdr;
2412                         int                     start_rec_copy;
2413                         int                     copy_len;
2414                         int                     copy_off;
2415                         bool                    ordered = false;
2416
2417                         /* ordered log vectors have no regions to write */
2418                         if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2419                                 ASSERT(lv->lv_niovecs == 0);
2420                                 ordered = true;
2421                                 goto next_lv;
2422                         }
2423
2424                         reg = &vecp[index];
2425                         ASSERT(reg->i_len % sizeof(int32_t) == 0);
2426                         ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2427
2428                         start_rec_copy = xlog_write_start_rec(ptr, ticket);
2429                         if (start_rec_copy) {
2430                                 record_cnt++;
2431                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2432                                                    start_rec_copy);
2433                         }
2434
2435                         ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2436                         if (!ophdr)
2437                                 return -EIO;
2438
2439                         xlog_write_adv_cnt(&ptr, &len, &log_offset,
2440                                            sizeof(struct xlog_op_header));
2441
2442                         len += xlog_write_setup_copy(ticket, ophdr,
2443                                                      iclog->ic_size-log_offset,
2444                                                      reg->i_len,
2445                                                      &copy_off, &copy_len,
2446                                                      &partial_copy,
2447                                                      &partial_copy_len);
2448                         xlog_verify_dest_ptr(log, ptr);
2449
2450                         /*
2451                          * Copy region.
2452                          *
2453                          * Unmount records just log an opheader, so can have
2454                          * empty payloads with no data region to copy. Hence we
2455                          * only copy the payload if the vector says it has data
2456                          * to copy.
2457                          */
2458                         ASSERT(copy_len >= 0);
2459                         if (copy_len > 0) {
2460                                 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2461                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2462                                                    copy_len);
2463                         }
2464                         copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2465                         record_cnt++;
2466                         data_cnt += contwr ? copy_len : 0;
2467
2468                         error = xlog_write_copy_finish(log, iclog, flags,
2469                                                        &record_cnt, &data_cnt,
2470                                                        &partial_copy,
2471                                                        &partial_copy_len,
2472                                                        log_offset,
2473                                                        commit_iclog);
2474                         if (error)
2475                                 return error;
2476
2477                         /*
2478                          * if we had a partial copy, we need to get more iclog
2479                          * space but we don't want to increment the region
2480                          * index because there is still more is this region to
2481                          * write.
2482                          *
2483                          * If we completed writing this region, and we flushed
2484                          * the iclog (indicated by resetting of the record
2485                          * count), then we also need to get more log space. If
2486                          * this was the last record, though, we are done and
2487                          * can just return.
2488                          */
2489                         if (partial_copy)
2490                                 break;
2491
2492                         if (++index == lv->lv_niovecs) {
2493 next_lv:
2494                                 lv = lv->lv_next;
2495                                 index = 0;
2496                                 if (lv)
2497                                         vecp = lv->lv_iovecp;
2498                         }
2499                         if (record_cnt == 0 && !ordered) {
2500                                 if (!lv)
2501                                         return 0;
2502                                 break;
2503                         }
2504                 }
2505         }
2506
2507         ASSERT(len == 0);
2508
2509         xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2510         if (!commit_iclog)
2511                 return xlog_state_release_iclog(log, iclog);
2512
2513         ASSERT(flags & XLOG_COMMIT_TRANS);
2514         *commit_iclog = iclog;
2515         return 0;
2516 }
2517
2518
2519 /*****************************************************************************
2520  *
2521  *              State Machine functions
2522  *
2523  *****************************************************************************
2524  */
2525
2526 /* Clean iclogs starting from the head.  This ordering must be
2527  * maintained, so an iclog doesn't become ACTIVE beyond one that
2528  * is SYNCING.  This is also required to maintain the notion that we use
2529  * a ordered wait queue to hold off would be writers to the log when every
2530  * iclog is trying to sync to disk.
2531  *
2532  * State Change: DIRTY -> ACTIVE
2533  */
2534 STATIC void
2535 xlog_state_clean_log(
2536         struct xlog *log)
2537 {
2538         xlog_in_core_t  *iclog;
2539         int changed = 0;
2540
2541         iclog = log->l_iclog;
2542         do {
2543                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2544                         iclog->ic_state = XLOG_STATE_ACTIVE;
2545                         iclog->ic_offset       = 0;
2546                         ASSERT(list_empty_careful(&iclog->ic_callbacks));
2547                         /*
2548                          * If the number of ops in this iclog indicate it just
2549                          * contains the dummy transaction, we can
2550                          * change state into IDLE (the second time around).
2551                          * Otherwise we should change the state into
2552                          * NEED a dummy.
2553                          * We don't need to cover the dummy.
2554                          */
2555                         if (!changed &&
2556                            (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2557                                         XLOG_COVER_OPS)) {
2558                                 changed = 1;
2559                         } else {
2560                                 /*
2561                                  * We have two dirty iclogs so start over
2562                                  * This could also be num of ops indicates
2563                                  * this is not the dummy going out.
2564                                  */
2565                                 changed = 2;
2566                         }
2567                         iclog->ic_header.h_num_logops = 0;
2568                         memset(iclog->ic_header.h_cycle_data, 0,
2569                               sizeof(iclog->ic_header.h_cycle_data));
2570                         iclog->ic_header.h_lsn = 0;
2571                 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2572                         /* do nothing */;
2573                 else
2574                         break;  /* stop cleaning */
2575                 iclog = iclog->ic_next;
2576         } while (iclog != log->l_iclog);
2577
2578         /* log is locked when we are called */
2579         /*
2580          * Change state for the dummy log recording.
2581          * We usually go to NEED. But we go to NEED2 if the changed indicates
2582          * we are done writing the dummy record.
2583          * If we are done with the second dummy recored (DONE2), then
2584          * we go to IDLE.
2585          */
2586         if (changed) {
2587                 switch (log->l_covered_state) {
2588                 case XLOG_STATE_COVER_IDLE:
2589                 case XLOG_STATE_COVER_NEED:
2590                 case XLOG_STATE_COVER_NEED2:
2591                         log->l_covered_state = XLOG_STATE_COVER_NEED;
2592                         break;
2593
2594                 case XLOG_STATE_COVER_DONE:
2595                         if (changed == 1)
2596                                 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2597                         else
2598                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2599                         break;
2600
2601                 case XLOG_STATE_COVER_DONE2:
2602                         if (changed == 1)
2603                                 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2604                         else
2605                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2606                         break;
2607
2608                 default:
2609                         ASSERT(0);
2610                 }
2611         }
2612 }       /* xlog_state_clean_log */
2613
2614 STATIC xfs_lsn_t
2615 xlog_get_lowest_lsn(
2616         struct xlog             *log)
2617 {
2618         struct xlog_in_core     *iclog = log->l_iclog;
2619         xfs_lsn_t               lowest_lsn = 0, lsn;
2620
2621         do {
2622                 if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2623                         continue;
2624
2625                 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2626                 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2627                         lowest_lsn = lsn;
2628         } while ((iclog = iclog->ic_next) != log->l_iclog);
2629
2630         return lowest_lsn;
2631 }
2632
2633 STATIC void
2634 xlog_state_do_callback(
2635         struct xlog             *log,
2636         bool                    aborted,
2637         struct xlog_in_core     *ciclog)
2638 {
2639         xlog_in_core_t     *iclog;
2640         xlog_in_core_t     *first_iclog;        /* used to know when we've
2641                                                  * processed all iclogs once */
2642         int                flushcnt = 0;
2643         xfs_lsn_t          lowest_lsn;
2644         int                ioerrors;    /* counter: iclogs with errors */
2645         int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2646         int                funcdidcallbacks; /* flag: function did callbacks */
2647         int                repeats;     /* for issuing console warnings if
2648                                          * looping too many times */
2649         int                wake = 0;
2650
2651         spin_lock(&log->l_icloglock);
2652         first_iclog = iclog = log->l_iclog;
2653         ioerrors = 0;
2654         funcdidcallbacks = 0;
2655         repeats = 0;
2656
2657         do {
2658                 /*
2659                  * Scan all iclogs starting with the one pointed to by the
2660                  * log.  Reset this starting point each time the log is
2661                  * unlocked (during callbacks).
2662                  *
2663                  * Keep looping through iclogs until one full pass is made
2664                  * without running any callbacks.
2665                  */
2666                 first_iclog = log->l_iclog;
2667                 iclog = log->l_iclog;
2668                 loopdidcallbacks = 0;
2669                 repeats++;
2670
2671                 do {
2672
2673                         /* skip all iclogs in the ACTIVE & DIRTY states */
2674                         if (iclog->ic_state &
2675                             (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2676                                 iclog = iclog->ic_next;
2677                                 continue;
2678                         }
2679
2680                         /*
2681                          * Between marking a filesystem SHUTDOWN and stopping
2682                          * the log, we do flush all iclogs to disk (if there
2683                          * wasn't a log I/O error). So, we do want things to
2684                          * go smoothly in case of just a SHUTDOWN  w/o a
2685                          * LOG_IO_ERROR.
2686                          */
2687                         if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2688                                 /*
2689                                  * Can only perform callbacks in order.  Since
2690                                  * this iclog is not in the DONE_SYNC/
2691                                  * DO_CALLBACK state, we skip the rest and
2692                                  * just try to clean up.  If we set our iclog
2693                                  * to DO_CALLBACK, we will not process it when
2694                                  * we retry since a previous iclog is in the
2695                                  * CALLBACK and the state cannot change since
2696                                  * we are holding the l_icloglock.
2697                                  */
2698                                 if (!(iclog->ic_state &
2699                                         (XLOG_STATE_DONE_SYNC |
2700                                                  XLOG_STATE_DO_CALLBACK))) {
2701                                         if (ciclog && (ciclog->ic_state ==
2702                                                         XLOG_STATE_DONE_SYNC)) {
2703                                                 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2704                                         }
2705                                         break;
2706                                 }
2707                                 /*
2708                                  * We now have an iclog that is in either the
2709                                  * DO_CALLBACK or DONE_SYNC states. The other
2710                                  * states (WANT_SYNC, SYNCING, or CALLBACK were
2711                                  * caught by the above if and are going to
2712                                  * clean (i.e. we aren't doing their callbacks)
2713                                  * see the above if.
2714                                  */
2715
2716                                 /*
2717                                  * We will do one more check here to see if we
2718                                  * have chased our tail around.
2719                                  */
2720
2721                                 lowest_lsn = xlog_get_lowest_lsn(log);
2722                                 if (lowest_lsn &&
2723                                     XFS_LSN_CMP(lowest_lsn,
2724                                                 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2725                                         iclog = iclog->ic_next;
2726                                         continue; /* Leave this iclog for
2727                                                    * another thread */
2728                                 }
2729
2730                                 iclog->ic_state = XLOG_STATE_CALLBACK;
2731
2732
2733                                 /*
2734                                  * Completion of a iclog IO does not imply that
2735                                  * a transaction has completed, as transactions
2736                                  * can be large enough to span many iclogs. We
2737                                  * cannot change the tail of the log half way
2738                                  * through a transaction as this may be the only
2739                                  * transaction in the log and moving th etail to
2740                                  * point to the middle of it will prevent
2741                                  * recovery from finding the start of the
2742                                  * transaction. Hence we should only update the
2743                                  * last_sync_lsn if this iclog contains
2744                                  * transaction completion callbacks on it.
2745                                  *
2746                                  * We have to do this before we drop the
2747                                  * icloglock to ensure we are the only one that
2748                                  * can update it.
2749                                  */
2750                                 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2751                                         be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2752                                 if (!list_empty_careful(&iclog->ic_callbacks))
2753                                         atomic64_set(&log->l_last_sync_lsn,
2754                                                 be64_to_cpu(iclog->ic_header.h_lsn));
2755
2756                         } else
2757                                 ioerrors++;
2758
2759                         spin_unlock(&log->l_icloglock);
2760
2761                         /*
2762                          * Keep processing entries in the callback list until
2763                          * we come around and it is empty.  We need to
2764                          * atomically see that the list is empty and change the
2765                          * state to DIRTY so that we don't miss any more
2766                          * callbacks being added.
2767                          */
2768                         spin_lock(&iclog->ic_callback_lock);
2769                         while (!list_empty(&iclog->ic_callbacks)) {
2770                                 LIST_HEAD(tmp);
2771
2772                                 list_splice_init(&iclog->ic_callbacks, &tmp);
2773
2774                                 spin_unlock(&iclog->ic_callback_lock);
2775                                 xlog_cil_process_committed(&tmp, aborted);
2776                                 spin_lock(&iclog->ic_callback_lock);
2777                         }
2778
2779                         loopdidcallbacks++;
2780                         funcdidcallbacks++;
2781
2782                         spin_lock(&log->l_icloglock);
2783                         spin_unlock(&iclog->ic_callback_lock);
2784                         if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2785                                 iclog->ic_state = XLOG_STATE_DIRTY;
2786
2787                         /*
2788                          * Transition from DIRTY to ACTIVE if applicable.
2789                          * NOP if STATE_IOERROR.
2790                          */
2791                         xlog_state_clean_log(log);
2792
2793                         /* wake up threads waiting in xfs_log_force() */
2794                         wake_up_all(&iclog->ic_force_wait);
2795
2796                         iclog = iclog->ic_next;
2797                 } while (first_iclog != iclog);
2798
2799                 if (repeats > 5000) {
2800                         flushcnt += repeats;
2801                         repeats = 0;
2802                         xfs_warn(log->l_mp,
2803                                 "%s: possible infinite loop (%d iterations)",
2804                                 __func__, flushcnt);
2805                 }
2806         } while (!ioerrors && loopdidcallbacks);
2807
2808 #ifdef DEBUG
2809         /*
2810          * Make one last gasp attempt to see if iclogs are being left in limbo.
2811          * If the above loop finds an iclog earlier than the current iclog and
2812          * in one of the syncing states, the current iclog is put into
2813          * DO_CALLBACK and the callbacks are deferred to the completion of the
2814          * earlier iclog. Walk the iclogs in order and make sure that no iclog
2815          * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2816          * states.
2817          *
2818          * Note that SYNCING|IOABORT is a valid state so we cannot just check
2819          * for ic_state == SYNCING.
2820          */
2821         if (funcdidcallbacks) {
2822                 first_iclog = iclog = log->l_iclog;
2823                 do {
2824                         ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2825                         /*
2826                          * Terminate the loop if iclogs are found in states
2827                          * which will cause other threads to clean up iclogs.
2828                          *
2829                          * SYNCING - i/o completion will go through logs
2830                          * DONE_SYNC - interrupt thread should be waiting for
2831                          *              l_icloglock
2832                          * IOERROR - give up hope all ye who enter here
2833                          */
2834                         if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2835                             iclog->ic_state & XLOG_STATE_SYNCING ||
2836                             iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2837                             iclog->ic_state == XLOG_STATE_IOERROR )
2838                                 break;
2839                         iclog = iclog->ic_next;
2840                 } while (first_iclog != iclog);
2841         }
2842 #endif
2843
2844         if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2845                 wake = 1;
2846         spin_unlock(&log->l_icloglock);
2847
2848         if (wake)
2849                 wake_up_all(&log->l_flush_wait);
2850 }
2851
2852
2853 /*
2854  * Finish transitioning this iclog to the dirty state.
2855  *
2856  * Make sure that we completely execute this routine only when this is
2857  * the last call to the iclog.  There is a good chance that iclog flushes,
2858  * when we reach the end of the physical log, get turned into 2 separate
2859  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2860  * routine.  By using the reference count bwritecnt, we guarantee that only
2861  * the second completion goes through.
2862  *
2863  * Callbacks could take time, so they are done outside the scope of the
2864  * global state machine log lock.
2865  */
2866 STATIC void
2867 xlog_state_done_syncing(
2868         struct xlog_in_core     *iclog,
2869         bool                    aborted)
2870 {
2871         struct xlog             *log = iclog->ic_log;
2872
2873         spin_lock(&log->l_icloglock);
2874
2875         ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2876                iclog->ic_state == XLOG_STATE_IOERROR);
2877         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2878
2879         /*
2880          * If we got an error, either on the first buffer, or in the case of
2881          * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2882          * and none should ever be attempted to be written to disk
2883          * again.
2884          */
2885         if (iclog->ic_state != XLOG_STATE_IOERROR)
2886                 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2887
2888         /*
2889          * Someone could be sleeping prior to writing out the next
2890          * iclog buffer, we wake them all, one will get to do the
2891          * I/O, the others get to wait for the result.
2892          */
2893         wake_up_all(&iclog->ic_write_wait);
2894         spin_unlock(&log->l_icloglock);
2895         xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2896 }       /* xlog_state_done_syncing */
2897
2898
2899 /*
2900  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2901  * sleep.  We wait on the flush queue on the head iclog as that should be
2902  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2903  * we will wait here and all new writes will sleep until a sync completes.
2904  *
2905  * The in-core logs are used in a circular fashion. They are not used
2906  * out-of-order even when an iclog past the head is free.
2907  *
2908  * return:
2909  *      * log_offset where xlog_write() can start writing into the in-core
2910  *              log's data space.
2911  *      * in-core log pointer to which xlog_write() should write.
2912  *      * boolean indicating this is a continued write to an in-core log.
2913  *              If this is the last write, then the in-core log's offset field
2914  *              needs to be incremented, depending on the amount of data which
2915  *              is copied.
2916  */
2917 STATIC int
2918 xlog_state_get_iclog_space(
2919         struct xlog             *log,
2920         int                     len,
2921         struct xlog_in_core     **iclogp,
2922         struct xlog_ticket      *ticket,
2923         int                     *continued_write,
2924         int                     *logoffsetp)
2925 {
2926         int               log_offset;
2927         xlog_rec_header_t *head;
2928         xlog_in_core_t    *iclog;
2929         int               error;
2930
2931 restart:
2932         spin_lock(&log->l_icloglock);
2933         if (XLOG_FORCED_SHUTDOWN(log)) {
2934                 spin_unlock(&log->l_icloglock);
2935                 return -EIO;
2936         }
2937
2938         iclog = log->l_iclog;
2939         if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2940                 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2941
2942                 /* Wait for log writes to have flushed */
2943                 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2944                 goto restart;
2945         }
2946
2947         head = &iclog->ic_header;
2948
2949         atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2950         log_offset = iclog->ic_offset;
2951
2952         /* On the 1st write to an iclog, figure out lsn.  This works
2953          * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2954          * committing to.  If the offset is set, that's how many blocks
2955          * must be written.
2956          */
2957         if (log_offset == 0) {
2958                 ticket->t_curr_res -= log->l_iclog_hsize;
2959                 xlog_tic_add_region(ticket,
2960                                     log->l_iclog_hsize,
2961                                     XLOG_REG_TYPE_LRHEADER);
2962                 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2963                 head->h_lsn = cpu_to_be64(
2964                         xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2965                 ASSERT(log->l_curr_block >= 0);
2966         }
2967
2968         /* If there is enough room to write everything, then do it.  Otherwise,
2969          * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2970          * bit is on, so this will get flushed out.  Don't update ic_offset
2971          * until you know exactly how many bytes get copied.  Therefore, wait
2972          * until later to update ic_offset.
2973          *
2974          * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2975          * can fit into remaining data section.
2976          */
2977         if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2978                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2979
2980                 /*
2981                  * If I'm the only one writing to this iclog, sync it to disk.
2982                  * We need to do an atomic compare and decrement here to avoid
2983                  * racing with concurrent atomic_dec_and_lock() calls in
2984                  * xlog_state_release_iclog() when there is more than one
2985                  * reference to the iclog.
2986                  */
2987                 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2988                         /* we are the only one */
2989                         spin_unlock(&log->l_icloglock);
2990                         error = xlog_state_release_iclog(log, iclog);
2991                         if (error)
2992                                 return error;
2993                 } else {
2994                         spin_unlock(&log->l_icloglock);
2995                 }
2996                 goto restart;
2997         }
2998
2999         /* Do we have enough room to write the full amount in the remainder
3000          * of this iclog?  Or must we continue a write on the next iclog and
3001          * mark this iclog as completely taken?  In the case where we switch
3002          * iclogs (to mark it taken), this particular iclog will release/sync
3003          * to disk in xlog_write().
3004          */
3005         if (len <= iclog->ic_size - iclog->ic_offset) {
3006                 *continued_write = 0;
3007                 iclog->ic_offset += len;
3008         } else {
3009                 *continued_write = 1;
3010                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3011         }
3012         *iclogp = iclog;
3013
3014         ASSERT(iclog->ic_offset <= iclog->ic_size);
3015         spin_unlock(&log->l_icloglock);
3016
3017         *logoffsetp = log_offset;
3018         return 0;
3019 }       /* xlog_state_get_iclog_space */
3020
3021 /* The first cnt-1 times through here we don't need to
3022  * move the grant write head because the permanent
3023  * reservation has reserved cnt times the unit amount.
3024  * Release part of current permanent unit reservation and
3025  * reset current reservation to be one units worth.  Also
3026  * move grant reservation head forward.
3027  */
3028 STATIC void
3029 xlog_regrant_reserve_log_space(
3030         struct xlog             *log,
3031         struct xlog_ticket      *ticket)
3032 {
3033         trace_xfs_log_regrant_reserve_enter(log, ticket);
3034
3035         if (ticket->t_cnt > 0)
3036                 ticket->t_cnt--;
3037
3038         xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3039                                         ticket->t_curr_res);
3040         xlog_grant_sub_space(log, &log->l_write_head.grant,
3041                                         ticket->t_curr_res);
3042         ticket->t_curr_res = ticket->t_unit_res;
3043         xlog_tic_reset_res(ticket);
3044
3045         trace_xfs_log_regrant_reserve_sub(log, ticket);
3046
3047         /* just return if we still have some of the pre-reserved space */
3048         if (ticket->t_cnt > 0)
3049                 return;
3050
3051         xlog_grant_add_space(log, &log->l_reserve_head.grant,
3052                                         ticket->t_unit_res);
3053
3054         trace_xfs_log_regrant_reserve_exit(log, ticket);
3055
3056         ticket->t_curr_res = ticket->t_unit_res;
3057         xlog_tic_reset_res(ticket);
3058 }       /* xlog_regrant_reserve_log_space */
3059
3060
3061 /*
3062  * Give back the space left from a reservation.
3063  *
3064  * All the information we need to make a correct determination of space left
3065  * is present.  For non-permanent reservations, things are quite easy.  The
3066  * count should have been decremented to zero.  We only need to deal with the
3067  * space remaining in the current reservation part of the ticket.  If the
3068  * ticket contains a permanent reservation, there may be left over space which
3069  * needs to be released.  A count of N means that N-1 refills of the current
3070  * reservation can be done before we need to ask for more space.  The first
3071  * one goes to fill up the first current reservation.  Once we run out of
3072  * space, the count will stay at zero and the only space remaining will be
3073  * in the current reservation field.
3074  */
3075 STATIC void
3076 xlog_ungrant_log_space(
3077         struct xlog             *log,
3078         struct xlog_ticket      *ticket)
3079 {
3080         int     bytes;
3081
3082         if (ticket->t_cnt > 0)
3083                 ticket->t_cnt--;
3084
3085         trace_xfs_log_ungrant_enter(log, ticket);
3086         trace_xfs_log_ungrant_sub(log, ticket);
3087
3088         /*
3089          * If this is a permanent reservation ticket, we may be able to free
3090          * up more space based on the remaining count.
3091          */
3092         bytes = ticket->t_curr_res;
3093         if (ticket->t_cnt > 0) {
3094                 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3095                 bytes += ticket->t_unit_res*ticket->t_cnt;
3096         }
3097
3098         xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3099         xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3100
3101         trace_xfs_log_ungrant_exit(log, ticket);
3102
3103         xfs_log_space_wake(log->l_mp);
3104 }
3105
3106 /*
3107  * Flush iclog to disk if this is the last reference to the given iclog and
3108  * the WANT_SYNC bit is set.
3109  *
3110  * When this function is entered, the iclog is not necessarily in the
3111  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3112  *
3113  *
3114  */
3115 STATIC int
3116 xlog_state_release_iclog(
3117         struct xlog             *log,
3118         struct xlog_in_core     *iclog)
3119 {
3120         int             sync = 0;       /* do we sync? */
3121
3122         if (iclog->ic_state & XLOG_STATE_IOERROR)
3123                 return -EIO;
3124
3125         ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3126         if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3127                 return 0;
3128
3129         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3130                 spin_unlock(&log->l_icloglock);
3131                 return -EIO;
3132         }
3133         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3134                iclog->ic_state == XLOG_STATE_WANT_SYNC);
3135
3136         if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3137                 /* update tail before writing to iclog */
3138                 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3139                 sync++;
3140                 iclog->ic_state = XLOG_STATE_SYNCING;
3141                 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3142                 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3143                 /* cycle incremented when incrementing curr_block */
3144         }
3145         spin_unlock(&log->l_icloglock);
3146
3147         /*
3148          * We let the log lock go, so it's possible that we hit a log I/O
3149          * error or some other SHUTDOWN condition that marks the iclog
3150          * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3151          * this iclog has consistent data, so we ignore IOERROR
3152          * flags after this point.
3153          */
3154         if (sync)
3155                 xlog_sync(log, iclog);
3156         return 0;
3157 }       /* xlog_state_release_iclog */
3158
3159
3160 /*
3161  * This routine will mark the current iclog in the ring as WANT_SYNC
3162  * and move the current iclog pointer to the next iclog in the ring.
3163  * When this routine is called from xlog_state_get_iclog_space(), the
3164  * exact size of the iclog has not yet been determined.  All we know is
3165  * that every data block.  We have run out of space in this log record.
3166  */
3167 STATIC void
3168 xlog_state_switch_iclogs(
3169         struct xlog             *log,
3170         struct xlog_in_core     *iclog,
3171         int                     eventual_size)
3172 {
3173         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3174         if (!eventual_size)
3175                 eventual_size = iclog->ic_offset;
3176         iclog->ic_state = XLOG_STATE_WANT_SYNC;
3177         iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3178         log->l_prev_block = log->l_curr_block;
3179         log->l_prev_cycle = log->l_curr_cycle;
3180
3181         /* roll log?: ic_offset changed later */
3182         log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3183
3184         /* Round up to next log-sunit */
3185         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3186             log->l_mp->m_sb.sb_logsunit > 1) {
3187                 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3188                 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3189         }
3190
3191         if (log->l_curr_block >= log->l_logBBsize) {
3192                 /*
3193                  * Rewind the current block before the cycle is bumped to make
3194                  * sure that the combined LSN never transiently moves forward
3195                  * when the log wraps to the next cycle. This is to support the
3196                  * unlocked sample of these fields from xlog_valid_lsn(). Most
3197                  * other cases should acquire l_icloglock.
3198                  */
3199                 log->l_curr_block -= log->l_logBBsize;
3200                 ASSERT(log->l_curr_block >= 0);
3201                 smp_wmb();
3202                 log->l_curr_cycle++;
3203                 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3204                         log->l_curr_cycle++;
3205         }
3206         ASSERT(iclog == log->l_iclog);
3207         log->l_iclog = iclog->ic_next;
3208 }       /* xlog_state_switch_iclogs */
3209
3210 /*
3211  * Write out all data in the in-core log as of this exact moment in time.
3212  *
3213  * Data may be written to the in-core log during this call.  However,
3214  * we don't guarantee this data will be written out.  A change from past
3215  * implementation means this routine will *not* write out zero length LRs.
3216  *
3217  * Basically, we try and perform an intelligent scan of the in-core logs.
3218  * If we determine there is no flushable data, we just return.  There is no
3219  * flushable data if:
3220  *
3221  *      1. the current iclog is active and has no data; the previous iclog
3222  *              is in the active or dirty state.
3223  *      2. the current iclog is drity, and the previous iclog is in the
3224  *              active or dirty state.
3225  *
3226  * We may sleep if:
3227  *
3228  *      1. the current iclog is not in the active nor dirty state.
3229  *      2. the current iclog dirty, and the previous iclog is not in the
3230  *              active nor dirty state.
3231  *      3. the current iclog is active, and there is another thread writing
3232  *              to this particular iclog.
3233  *      4. a) the current iclog is active and has no other writers
3234  *         b) when we return from flushing out this iclog, it is still
3235  *              not in the active nor dirty state.
3236  */
3237 int
3238 xfs_log_force(
3239         struct xfs_mount        *mp,
3240         uint                    flags)
3241 {
3242         struct xlog             *log = mp->m_log;
3243         struct xlog_in_core     *iclog;
3244         xfs_lsn_t               lsn;
3245
3246         XFS_STATS_INC(mp, xs_log_force);
3247         trace_xfs_log_force(mp, 0, _RET_IP_);
3248
3249         xlog_cil_force(log);
3250
3251         spin_lock(&log->l_icloglock);
3252         iclog = log->l_iclog;
3253         if (iclog->ic_state & XLOG_STATE_IOERROR)
3254                 goto out_error;
3255
3256         if (iclog->ic_state == XLOG_STATE_DIRTY ||
3257             (iclog->ic_state == XLOG_STATE_ACTIVE &&
3258              atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3259                 /*
3260                  * If the head is dirty or (active and empty), then we need to
3261                  * look at the previous iclog.
3262                  *
3263                  * If the previous iclog is active or dirty we are done.  There
3264                  * is nothing to sync out. Otherwise, we attach ourselves to the
3265                  * previous iclog and go to sleep.
3266                  */
3267                 iclog = iclog->ic_prev;
3268                 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3269                     iclog->ic_state == XLOG_STATE_DIRTY)
3270                         goto out_unlock;
3271         } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3272                 if (atomic_read(&iclog->ic_refcnt) == 0) {
3273                         /*
3274                          * We are the only one with access to this iclog.
3275                          *
3276                          * Flush it out now.  There should be a roundoff of zero
3277                          * to show that someone has already taken care of the
3278                          * roundoff from the previous sync.
3279                          */
3280                         atomic_inc(&iclog->ic_refcnt);
3281                         lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3282                         xlog_state_switch_iclogs(log, iclog, 0);
3283                         spin_unlock(&log->l_icloglock);
3284
3285                         if (xlog_state_release_iclog(log, iclog))
3286                                 return -EIO;
3287
3288                         spin_lock(&log->l_icloglock);
3289                         if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3290                             iclog->ic_state == XLOG_STATE_DIRTY)
3291                                 goto out_unlock;
3292                 } else {
3293                         /*
3294                          * Someone else is writing to this iclog.
3295                          *
3296                          * Use its call to flush out the data.  However, the
3297                          * other thread may not force out this LR, so we mark
3298                          * it WANT_SYNC.
3299                          */
3300                         xlog_state_switch_iclogs(log, iclog, 0);
3301                 }
3302         } else {
3303                 /*
3304                  * If the head iclog is not active nor dirty, we just attach
3305                  * ourselves to the head and go to sleep if necessary.
3306                  */
3307                 ;
3308         }
3309
3310         if (!(flags & XFS_LOG_SYNC))
3311                 goto out_unlock;
3312
3313         if (iclog->ic_state & XLOG_STATE_IOERROR)
3314                 goto out_error;
3315         XFS_STATS_INC(mp, xs_log_force_sleep);
3316         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3317         if (iclog->ic_state & XLOG_STATE_IOERROR)
3318                 return -EIO;
3319         return 0;
3320
3321 out_unlock:
3322         spin_unlock(&log->l_icloglock);
3323         return 0;
3324 out_error:
3325         spin_unlock(&log->l_icloglock);
3326         return -EIO;
3327 }
3328
3329 static int
3330 __xfs_log_force_lsn(
3331         struct xfs_mount        *mp,
3332         xfs_lsn_t               lsn,
3333         uint                    flags,
3334         int                     *log_flushed,
3335         bool                    already_slept)
3336 {
3337         struct xlog             *log = mp->m_log;
3338         struct xlog_in_core     *iclog;
3339
3340         spin_lock(&log->l_icloglock);
3341         iclog = log->l_iclog;
3342         if (iclog->ic_state & XLOG_STATE_IOERROR)
3343                 goto out_error;
3344
3345         while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3346                 iclog = iclog->ic_next;
3347                 if (iclog == log->l_iclog)
3348                         goto out_unlock;
3349         }
3350
3351         if (iclog->ic_state == XLOG_STATE_DIRTY)
3352                 goto out_unlock;
3353
3354         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3355                 /*
3356                  * We sleep here if we haven't already slept (e.g. this is the
3357                  * first time we've looked at the correct iclog buf) and the
3358                  * buffer before us is going to be sync'ed.  The reason for this
3359                  * is that if we are doing sync transactions here, by waiting
3360                  * for the previous I/O to complete, we can allow a few more
3361                  * transactions into this iclog before we close it down.
3362                  *
3363                  * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3364                  * refcnt so we can release the log (which drops the ref count).
3365                  * The state switch keeps new transaction commits from using
3366                  * this buffer.  When the current commits finish writing into
3367                  * the buffer, the refcount will drop to zero and the buffer
3368                  * will go out then.
3369                  */
3370                 if (!already_slept &&
3371                     (iclog->ic_prev->ic_state &
3372                      (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3373                         ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3374
3375                         XFS_STATS_INC(mp, xs_log_force_sleep);
3376
3377                         xlog_wait(&iclog->ic_prev->ic_write_wait,
3378                                         &log->l_icloglock);
3379                         return -EAGAIN;
3380                 }
3381                 atomic_inc(&iclog->ic_refcnt);
3382                 xlog_state_switch_iclogs(log, iclog, 0);
3383                 spin_unlock(&log->l_icloglock);
3384                 if (xlog_state_release_iclog(log, iclog))
3385                         return -EIO;
3386                 if (log_flushed)
3387                         *log_flushed = 1;
3388                 spin_lock(&log->l_icloglock);
3389         }
3390
3391         if (!(flags & XFS_LOG_SYNC) ||
3392             (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3393                 goto out_unlock;
3394
3395         if (iclog->ic_state & XLOG_STATE_IOERROR)
3396                 goto out_error;
3397
3398         XFS_STATS_INC(mp, xs_log_force_sleep);
3399         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3400         if (iclog->ic_state & XLOG_STATE_IOERROR)
3401                 return -EIO;
3402         return 0;
3403
3404 out_unlock:
3405         spin_unlock(&log->l_icloglock);
3406         return 0;
3407 out_error:
3408         spin_unlock(&log->l_icloglock);
3409         return -EIO;
3410 }
3411
3412 /*
3413  * Force the in-core log to disk for a specific LSN.
3414  *
3415  * Find in-core log with lsn.
3416  *      If it is in the DIRTY state, just return.
3417  *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3418  *              state and go to sleep or return.
3419  *      If it is in any other state, go to sleep or return.
3420  *
3421  * Synchronous forces are implemented with a wait queue.  All callers trying
3422  * to force a given lsn to disk must wait on the queue attached to the
3423  * specific in-core log.  When given in-core log finally completes its write
3424  * to disk, that thread will wake up all threads waiting on the queue.
3425  */
3426 int
3427 xfs_log_force_lsn(
3428         struct xfs_mount        *mp,
3429         xfs_lsn_t               lsn,
3430         uint                    flags,
3431         int                     *log_flushed)
3432 {
3433         int                     ret;
3434         ASSERT(lsn != 0);
3435
3436         XFS_STATS_INC(mp, xs_log_force);
3437         trace_xfs_log_force(mp, lsn, _RET_IP_);
3438
3439         lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3440         if (lsn == NULLCOMMITLSN)
3441                 return 0;
3442
3443         ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3444         if (ret == -EAGAIN)
3445                 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3446         return ret;
3447 }
3448
3449 /*
3450  * Called when we want to mark the current iclog as being ready to sync to
3451  * disk.
3452  */
3453 STATIC void
3454 xlog_state_want_sync(
3455         struct xlog             *log,
3456         struct xlog_in_core     *iclog)
3457 {
3458         assert_spin_locked(&log->l_icloglock);
3459
3460         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3461                 xlog_state_switch_iclogs(log, iclog, 0);
3462         } else {
3463                 ASSERT(iclog->ic_state &
3464                         (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3465         }
3466 }
3467
3468
3469 /*****************************************************************************
3470  *
3471  *              TICKET functions
3472  *
3473  *****************************************************************************
3474  */
3475
3476 /*
3477  * Free a used ticket when its refcount falls to zero.
3478  */
3479 void
3480 xfs_log_ticket_put(
3481         xlog_ticket_t   *ticket)
3482 {
3483         ASSERT(atomic_read(&ticket->t_ref) > 0);
3484         if (atomic_dec_and_test(&ticket->t_ref))
3485                 kmem_zone_free(xfs_log_ticket_zone, ticket);
3486 }
3487
3488 xlog_ticket_t *
3489 xfs_log_ticket_get(
3490         xlog_ticket_t   *ticket)
3491 {
3492         ASSERT(atomic_read(&ticket->t_ref) > 0);
3493         atomic_inc(&ticket->t_ref);
3494         return ticket;
3495 }
3496
3497 /*
3498  * Figure out the total log space unit (in bytes) that would be
3499  * required for a log ticket.
3500  */
3501 int
3502 xfs_log_calc_unit_res(
3503         struct xfs_mount        *mp,
3504         int                     unit_bytes)
3505 {
3506         struct xlog             *log = mp->m_log;
3507         int                     iclog_space;
3508         uint                    num_headers;
3509
3510         /*
3511          * Permanent reservations have up to 'cnt'-1 active log operations
3512          * in the log.  A unit in this case is the amount of space for one
3513          * of these log operations.  Normal reservations have a cnt of 1
3514          * and their unit amount is the total amount of space required.
3515          *
3516          * The following lines of code account for non-transaction data
3517          * which occupy space in the on-disk log.
3518          *
3519          * Normal form of a transaction is:
3520          * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3521          * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3522          *
3523          * We need to account for all the leadup data and trailer data
3524          * around the transaction data.
3525          * And then we need to account for the worst case in terms of using
3526          * more space.
3527          * The worst case will happen if:
3528          * - the placement of the transaction happens to be such that the
3529          *   roundoff is at its maximum
3530          * - the transaction data is synced before the commit record is synced
3531          *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3532          *   Therefore the commit record is in its own Log Record.
3533          *   This can happen as the commit record is called with its
3534          *   own region to xlog_write().
3535          *   This then means that in the worst case, roundoff can happen for
3536          *   the commit-rec as well.
3537          *   The commit-rec is smaller than padding in this scenario and so it is
3538          *   not added separately.
3539          */
3540
3541         /* for trans header */
3542         unit_bytes += sizeof(xlog_op_header_t);
3543         unit_bytes += sizeof(xfs_trans_header_t);
3544
3545         /* for start-rec */
3546         unit_bytes += sizeof(xlog_op_header_t);
3547
3548         /*
3549          * for LR headers - the space for data in an iclog is the size minus
3550          * the space used for the headers. If we use the iclog size, then we
3551          * undercalculate the number of headers required.
3552          *
3553          * Furthermore - the addition of op headers for split-recs might
3554          * increase the space required enough to require more log and op
3555          * headers, so take that into account too.
3556          *
3557          * IMPORTANT: This reservation makes the assumption that if this
3558          * transaction is the first in an iclog and hence has the LR headers
3559          * accounted to it, then the remaining space in the iclog is
3560          * exclusively for this transaction.  i.e. if the transaction is larger
3561          * than the iclog, it will be the only thing in that iclog.
3562          * Fundamentally, this means we must pass the entire log vector to
3563          * xlog_write to guarantee this.
3564          */
3565         iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3566         num_headers = howmany(unit_bytes, iclog_space);
3567
3568         /* for split-recs - ophdrs added when data split over LRs */
3569         unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3570
3571         /* add extra header reservations if we overrun */
3572         while (!num_headers ||
3573                howmany(unit_bytes, iclog_space) > num_headers) {
3574                 unit_bytes += sizeof(xlog_op_header_t);
3575                 num_headers++;
3576         }
3577         unit_bytes += log->l_iclog_hsize * num_headers;
3578
3579         /* for commit-rec LR header - note: padding will subsume the ophdr */
3580         unit_bytes += log->l_iclog_hsize;
3581
3582         /* for roundoff padding for transaction data and one for commit record */
3583         if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3584                 /* log su roundoff */
3585                 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3586         } else {
3587                 /* BB roundoff */
3588                 unit_bytes += 2 * BBSIZE;
3589         }
3590
3591         return unit_bytes;
3592 }
3593
3594 /*
3595  * Allocate and initialise a new log ticket.
3596  */
3597 struct xlog_ticket *
3598 xlog_ticket_alloc(
3599         struct xlog             *log,
3600         int                     unit_bytes,
3601         int                     cnt,
3602         char                    client,
3603         bool                    permanent,
3604         xfs_km_flags_t          alloc_flags)
3605 {
3606         struct xlog_ticket      *tic;
3607         int                     unit_res;
3608
3609         tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3610         if (!tic)
3611                 return NULL;
3612
3613         unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3614
3615         atomic_set(&tic->t_ref, 1);
3616         tic->t_task             = current;
3617         INIT_LIST_HEAD(&tic->t_queue);
3618         tic->t_unit_res         = unit_res;
3619         tic->t_curr_res         = unit_res;
3620         tic->t_cnt              = cnt;
3621         tic->t_ocnt             = cnt;
3622         tic->t_tid              = prandom_u32();
3623         tic->t_clientid         = client;
3624         tic->t_flags            = XLOG_TIC_INITED;
3625         if (permanent)
3626                 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3627
3628         xlog_tic_reset_res(tic);
3629
3630         return tic;
3631 }
3632
3633
3634 /******************************************************************************
3635  *
3636  *              Log debug routines
3637  *
3638  ******************************************************************************
3639  */
3640 #if defined(DEBUG)
3641 /*
3642  * Make sure that the destination ptr is within the valid data region of
3643  * one of the iclogs.  This uses backup pointers stored in a different
3644  * part of the log in case we trash the log structure.
3645  */
3646 STATIC void
3647 xlog_verify_dest_ptr(
3648         struct xlog     *log,
3649         void            *ptr)
3650 {
3651         int i;
3652         int good_ptr = 0;
3653
3654         for (i = 0; i < log->l_iclog_bufs; i++) {
3655                 if (ptr >= log->l_iclog_bak[i] &&
3656                     ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3657                         good_ptr++;
3658         }
3659
3660         if (!good_ptr)
3661                 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3662 }
3663
3664 /*
3665  * Check to make sure the grant write head didn't just over lap the tail.  If
3666  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3667  * the cycles differ by exactly one and check the byte count.
3668  *
3669  * This check is run unlocked, so can give false positives. Rather than assert
3670  * on failures, use a warn-once flag and a panic tag to allow the admin to
3671  * determine if they want to panic the machine when such an error occurs. For
3672  * debug kernels this will have the same effect as using an assert but, unlinke
3673  * an assert, it can be turned off at runtime.
3674  */
3675 STATIC void
3676 xlog_verify_grant_tail(
3677         struct xlog     *log)
3678 {
3679         int             tail_cycle, tail_blocks;
3680         int             cycle, space;
3681
3682         xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3683         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3684         if (tail_cycle != cycle) {
3685                 if (cycle - 1 != tail_cycle &&
3686                     !(log->l_flags & XLOG_TAIL_WARN)) {
3687                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3688                                 "%s: cycle - 1 != tail_cycle", __func__);
3689                         log->l_flags |= XLOG_TAIL_WARN;
3690                 }
3691
3692                 if (space > BBTOB(tail_blocks) &&
3693                     !(log->l_flags & XLOG_TAIL_WARN)) {
3694                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3695                                 "%s: space > BBTOB(tail_blocks)", __func__);
3696                         log->l_flags |= XLOG_TAIL_WARN;
3697                 }
3698         }
3699 }
3700
3701 /* check if it will fit */
3702 STATIC void
3703 xlog_verify_tail_lsn(
3704         struct xlog             *log,
3705         struct xlog_in_core     *iclog,
3706         xfs_lsn_t               tail_lsn)
3707 {
3708     int blocks;
3709
3710     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3711         blocks =
3712             log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3713         if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3714                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3715     } else {
3716         ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3717
3718         if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3719                 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3720
3721         blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3722         if (blocks < BTOBB(iclog->ic_offset) + 1)
3723                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3724     }
3725 }       /* xlog_verify_tail_lsn */
3726
3727 /*
3728  * Perform a number of checks on the iclog before writing to disk.
3729  *
3730  * 1. Make sure the iclogs are still circular
3731  * 2. Make sure we have a good magic number
3732  * 3. Make sure we don't have magic numbers in the data
3733  * 4. Check fields of each log operation header for:
3734  *      A. Valid client identifier
3735  *      B. tid ptr value falls in valid ptr space (user space code)
3736  *      C. Length in log record header is correct according to the
3737  *              individual operation headers within record.
3738  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3739  *      log, check the preceding blocks of the physical log to make sure all
3740  *      the cycle numbers agree with the current cycle number.
3741  */
3742 STATIC void
3743 xlog_verify_iclog(
3744         struct xlog             *log,
3745         struct xlog_in_core     *iclog,
3746         int                     count)
3747 {
3748         xlog_op_header_t        *ophead;
3749         xlog_in_core_t          *icptr;
3750         xlog_in_core_2_t        *xhdr;
3751         void                    *base_ptr, *ptr, *p;
3752         ptrdiff_t               field_offset;
3753         uint8_t                 clientid;
3754         int                     len, i, j, k, op_len;
3755         int                     idx;
3756
3757         /* check validity of iclog pointers */
3758         spin_lock(&log->l_icloglock);
3759         icptr = log->l_iclog;
3760         for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3761                 ASSERT(icptr);
3762
3763         if (icptr != log->l_iclog)
3764                 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3765         spin_unlock(&log->l_icloglock);
3766
3767         /* check log magic numbers */
3768         if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3769                 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3770
3771         base_ptr = ptr = &iclog->ic_header;
3772         p = &iclog->ic_header;
3773         for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3774                 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3775                         xfs_emerg(log->l_mp, "%s: unexpected magic num",
3776                                 __func__);
3777         }
3778
3779         /* check fields */
3780         len = be32_to_cpu(iclog->ic_header.h_num_logops);
3781         base_ptr = ptr = iclog->ic_datap;
3782         ophead = ptr;
3783         xhdr = iclog->ic_data;
3784         for (i = 0; i < len; i++) {
3785                 ophead = ptr;
3786
3787                 /* clientid is only 1 byte */
3788                 p = &ophead->oh_clientid;
3789                 field_offset = p - base_ptr;
3790                 if (field_offset & 0x1ff) {
3791                         clientid = ophead->oh_clientid;
3792                 } else {
3793                         idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3794                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3795                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3796                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3797                                 clientid = xlog_get_client_id(
3798                                         xhdr[j].hic_xheader.xh_cycle_data[k]);
3799                         } else {
3800                                 clientid = xlog_get_client_id(
3801                                         iclog->ic_header.h_cycle_data[idx]);
3802                         }
3803                 }
3804                 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3805                         xfs_warn(log->l_mp,
3806                                 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3807                                 __func__, clientid, ophead,
3808                                 (unsigned long)field_offset);
3809
3810                 /* check length */
3811                 p = &ophead->oh_len;
3812                 field_offset = p - base_ptr;
3813                 if (field_offset & 0x1ff) {
3814                         op_len = be32_to_cpu(ophead->oh_len);
3815                 } else {
3816                         idx = BTOBBT((uintptr_t)&ophead->oh_len -
3817                                     (uintptr_t)iclog->ic_datap);
3818                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3819                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3820                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3821                                 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3822                         } else {
3823                                 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3824                         }
3825                 }
3826                 ptr += sizeof(xlog_op_header_t) + op_len;
3827         }
3828 }       /* xlog_verify_iclog */
3829 #endif
3830
3831 /*
3832  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3833  */
3834 STATIC int
3835 xlog_state_ioerror(
3836         struct xlog     *log)
3837 {
3838         xlog_in_core_t  *iclog, *ic;
3839
3840         iclog = log->l_iclog;
3841         if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3842                 /*
3843                  * Mark all the incore logs IOERROR.
3844                  * From now on, no log flushes will result.
3845                  */
3846                 ic = iclog;
3847                 do {
3848                         ic->ic_state = XLOG_STATE_IOERROR;
3849                         ic = ic->ic_next;
3850                 } while (ic != iclog);
3851                 return 0;
3852         }
3853         /*
3854          * Return non-zero, if state transition has already happened.
3855          */
3856         return 1;
3857 }
3858
3859 /*
3860  * This is called from xfs_force_shutdown, when we're forcibly
3861  * shutting down the filesystem, typically because of an IO error.
3862  * Our main objectives here are to make sure that:
3863  *      a. if !logerror, flush the logs to disk. Anything modified
3864  *         after this is ignored.
3865  *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3866  *         parties to find out, 'atomically'.
3867  *      c. those who're sleeping on log reservations, pinned objects and
3868  *          other resources get woken up, and be told the bad news.
3869  *      d. nothing new gets queued up after (b) and (c) are done.
3870  *
3871  * Note: for the !logerror case we need to flush the regions held in memory out
3872  * to disk first. This needs to be done before the log is marked as shutdown,
3873  * otherwise the iclog writes will fail.
3874  */
3875 int
3876 xfs_log_force_umount(
3877         struct xfs_mount        *mp,
3878         int                     logerror)
3879 {
3880         struct xlog     *log;
3881         int             retval;
3882
3883         log = mp->m_log;
3884
3885         /*
3886          * If this happens during log recovery, don't worry about
3887          * locking; the log isn't open for business yet.
3888          */
3889         if (!log ||
3890             log->l_flags & XLOG_ACTIVE_RECOVERY) {
3891                 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3892                 if (mp->m_sb_bp)
3893                         mp->m_sb_bp->b_flags |= XBF_DONE;
3894                 return 0;
3895         }
3896
3897         /*
3898          * Somebody could've already done the hard work for us.
3899          * No need to get locks for this.
3900          */
3901         if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3902                 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3903                 return 1;
3904         }
3905
3906         /*
3907          * Flush all the completed transactions to disk before marking the log
3908          * being shut down. We need to do it in this order to ensure that
3909          * completed operations are safely on disk before we shut down, and that
3910          * we don't have to issue any buffer IO after the shutdown flags are set
3911          * to guarantee this.
3912          */
3913         if (!logerror)
3914                 xfs_log_force(mp, XFS_LOG_SYNC);
3915
3916         /*
3917          * mark the filesystem and the as in a shutdown state and wake
3918          * everybody up to tell them the bad news.
3919          */
3920         spin_lock(&log->l_icloglock);
3921         mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3922         if (mp->m_sb_bp)
3923                 mp->m_sb_bp->b_flags |= XBF_DONE;
3924
3925         /*
3926          * Mark the log and the iclogs with IO error flags to prevent any
3927          * further log IO from being issued or completed.
3928          */
3929         log->l_flags |= XLOG_IO_ERROR;
3930         retval = xlog_state_ioerror(log);
3931         spin_unlock(&log->l_icloglock);
3932
3933         /*
3934          * We don't want anybody waiting for log reservations after this. That
3935          * means we have to wake up everybody queued up on reserveq as well as
3936          * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3937          * we don't enqueue anything once the SHUTDOWN flag is set, and this
3938          * action is protected by the grant locks.
3939          */
3940         xlog_grant_head_wake_all(&log->l_reserve_head);
3941         xlog_grant_head_wake_all(&log->l_write_head);
3942
3943         /*
3944          * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3945          * as if the log writes were completed. The abort handling in the log
3946          * item committed callback functions will do this again under lock to
3947          * avoid races.
3948          */
3949         wake_up_all(&log->l_cilp->xc_commit_wait);
3950         xlog_state_do_callback(log, true, NULL);
3951
3952 #ifdef XFSERRORDEBUG
3953         {
3954                 xlog_in_core_t  *iclog;
3955
3956                 spin_lock(&log->l_icloglock);
3957                 iclog = log->l_iclog;
3958                 do {
3959                         ASSERT(iclog->ic_callback == 0);
3960                         iclog = iclog->ic_next;
3961                 } while (iclog != log->l_iclog);
3962                 spin_unlock(&log->l_icloglock);
3963         }
3964 #endif
3965         /* return non-zero if log IOERROR transition had already happened */
3966         return retval;
3967 }
3968
3969 STATIC int
3970 xlog_iclogs_empty(
3971         struct xlog     *log)
3972 {
3973         xlog_in_core_t  *iclog;
3974
3975         iclog = log->l_iclog;
3976         do {
3977                 /* endianness does not matter here, zero is zero in
3978                  * any language.
3979                  */
3980                 if (iclog->ic_header.h_num_logops)
3981                         return 0;
3982                 iclog = iclog->ic_next;
3983         } while (iclog != log->l_iclog);
3984         return 1;
3985 }
3986
3987 /*
3988  * Verify that an LSN stamped into a piece of metadata is valid. This is
3989  * intended for use in read verifiers on v5 superblocks.
3990  */
3991 bool
3992 xfs_log_check_lsn(
3993         struct xfs_mount        *mp,
3994         xfs_lsn_t               lsn)
3995 {
3996         struct xlog             *log = mp->m_log;
3997         bool                    valid;
3998
3999         /*
4000          * norecovery mode skips mount-time log processing and unconditionally
4001          * resets the in-core LSN. We can't validate in this mode, but
4002          * modifications are not allowed anyways so just return true.
4003          */
4004         if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4005                 return true;
4006
4007         /*
4008          * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4009          * handled by recovery and thus safe to ignore here.
4010          */
4011         if (lsn == NULLCOMMITLSN)
4012                 return true;
4013
4014         valid = xlog_valid_lsn(mp->m_log, lsn);
4015
4016         /* warn the user about what's gone wrong before verifier failure */
4017         if (!valid) {
4018                 spin_lock(&log->l_icloglock);
4019                 xfs_warn(mp,
4020 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4021 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4022                          CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4023                          log->l_curr_cycle, log->l_curr_block);
4024                 spin_unlock(&log->l_icloglock);
4025         }
4026
4027         return valid;
4028 }
4029
4030 bool
4031 xfs_log_in_recovery(
4032         struct xfs_mount        *mp)
4033 {
4034         struct xlog             *log = mp->m_log;
4035
4036         return log->l_flags & XLOG_ACTIVE_RECOVERY;
4037 }