1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap_btree.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_space.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iomap.h"
25 #include "xfs_trace.h"
26 #include "xfs_quota.h"
27 #include "xfs_dquot_item.h"
28 #include "xfs_dquot.h"
29 #include "xfs_reflink.h"
32 #define XFS_ALLOC_ALIGN(mp, off) \
33 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
36 xfs_alert_fsblock_zero(
38 xfs_bmbt_irec_t *imap)
40 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
41 "Access to block zero in inode %llu "
42 "start_block: %llx start_off: %llx "
43 "blkcnt: %llx extent-state: %x",
44 (unsigned long long)ip->i_ino,
45 (unsigned long long)imap->br_startblock,
46 (unsigned long long)imap->br_startoff,
47 (unsigned long long)imap->br_blockcount,
56 struct xfs_bmbt_irec *imap,
59 struct xfs_mount *mp = ip->i_mount;
60 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
62 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock)))
63 return xfs_alert_fsblock_zero(ip, imap);
65 if (imap->br_startblock == HOLESTARTBLOCK) {
66 iomap->addr = IOMAP_NULL_ADDR;
67 iomap->type = IOMAP_HOLE;
68 } else if (imap->br_startblock == DELAYSTARTBLOCK ||
69 isnullstartblock(imap->br_startblock)) {
70 iomap->addr = IOMAP_NULL_ADDR;
71 iomap->type = IOMAP_DELALLOC;
73 iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock));
74 if (imap->br_state == XFS_EXT_UNWRITTEN)
75 iomap->type = IOMAP_UNWRITTEN;
77 iomap->type = IOMAP_MAPPED;
79 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
80 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
81 iomap->bdev = target->bt_bdev;
82 iomap->dax_dev = target->bt_daxdev;
85 if (xfs_ipincount(ip) &&
86 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
87 iomap->flags |= IOMAP_F_DIRTY;
95 xfs_fileoff_t offset_fsb,
96 xfs_fileoff_t end_fsb)
98 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
100 iomap->addr = IOMAP_NULL_ADDR;
101 iomap->type = IOMAP_HOLE;
102 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
103 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
104 iomap->bdev = target->bt_bdev;
105 iomap->dax_dev = target->bt_daxdev;
108 static inline xfs_fileoff_t
110 struct xfs_mount *mp,
114 ASSERT(offset <= mp->m_super->s_maxbytes);
115 return min(XFS_B_TO_FSB(mp, offset + count),
116 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
121 struct xfs_inode *ip)
123 struct xfs_mount *mp = ip->i_mount;
124 xfs_extlen_t align = 0;
126 if (!XFS_IS_REALTIME_INODE(ip)) {
128 * Round up the allocation request to a stripe unit
129 * (m_dalign) boundary if the file size is >= stripe unit
130 * size, and we are allocating past the allocation eof.
132 * If mounted with the "-o swalloc" option the alignment is
133 * increased from the strip unit size to the stripe width.
135 if (mp->m_swidth && (mp->m_flags & XFS_MOUNT_SWALLOC))
136 align = mp->m_swidth;
137 else if (mp->m_dalign)
138 align = mp->m_dalign;
140 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
148 * Check if last_fsb is outside the last extent, and if so grow it to the next
149 * stripe unit boundary.
152 xfs_iomap_eof_align_last_fsb(
153 struct xfs_inode *ip,
154 xfs_fileoff_t end_fsb)
156 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
157 xfs_extlen_t extsz = xfs_get_extsz_hint(ip);
158 xfs_extlen_t align = xfs_eof_alignment(ip);
159 struct xfs_bmbt_irec irec;
160 struct xfs_iext_cursor icur;
162 ASSERT(!xfs_need_iread_extents(ifp));
165 * Always round up the allocation request to the extent hint boundary.
169 align = roundup_64(align, extsz);
175 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align);
177 xfs_iext_last(ifp, &icur);
178 if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
179 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
180 return aligned_end_fsb;
187 xfs_iomap_write_direct(
188 struct xfs_inode *ip,
189 xfs_fileoff_t offset_fsb,
190 xfs_fileoff_t count_fsb,
191 struct xfs_bmbt_irec *imap)
193 struct xfs_mount *mp = ip->i_mount;
194 struct xfs_trans *tp;
195 xfs_filblks_t resaligned;
197 unsigned int dblocks, rblocks;
200 int bmapi_flags = XFS_BMAPI_PREALLOC;
201 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
203 ASSERT(count_fsb > 0);
205 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
206 xfs_get_extsz_hint(ip));
207 if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
208 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
209 rblocks = resaligned;
211 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
215 error = xfs_qm_dqattach(ip);
220 * For DAX, we do not allocate unwritten extents, but instead we zero
221 * the block before we commit the transaction. Ideally we'd like to do
222 * this outside the transaction context, but if we commit and then crash
223 * we may not have zeroed the blocks and this will be exposed on
224 * recovery of the allocation. Hence we must zero before commit.
226 * Further, if we are mapping unwritten extents here, we need to zero
227 * and convert them to written so that we don't need an unwritten extent
228 * callback for DAX. This also means that we need to be able to dip into
229 * the reserve block pool for bmbt block allocation if there is no space
230 * left but we need to do unwritten extent conversion.
232 if (IS_DAX(VFS_I(ip))) {
233 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
234 if (imap->br_state == XFS_EXT_UNWRITTEN) {
236 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
237 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
241 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
242 rblocks, force, &tp);
246 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, nr_exts);
248 goto out_trans_cancel;
251 * From this point onwards we overwrite the imap pointer that the
255 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
258 goto out_trans_cancel;
261 * Complete the transaction
263 error = xfs_trans_commit(tp);
268 * Copy any maps to caller's array and return any error.
275 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock)))
276 error = xfs_alert_fsblock_zero(ip, imap);
279 xfs_iunlock(ip, XFS_ILOCK_EXCL);
283 xfs_trans_cancel(tp);
288 xfs_quota_need_throttle(
289 struct xfs_inode *ip,
291 xfs_fsblock_t alloc_blocks)
293 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
295 if (!dq || !xfs_this_quota_on(ip->i_mount, type))
298 /* no hi watermark, no throttle */
299 if (!dq->q_prealloc_hi_wmark)
302 /* under the lo watermark, no throttle */
303 if (dq->q_blk.reserved + alloc_blocks < dq->q_prealloc_lo_wmark)
310 xfs_quota_calc_throttle(
311 struct xfs_inode *ip,
313 xfs_fsblock_t *qblocks,
317 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
321 /* no dq, or over hi wmark, squash the prealloc completely */
322 if (!dq || dq->q_blk.reserved >= dq->q_prealloc_hi_wmark) {
328 freesp = dq->q_prealloc_hi_wmark - dq->q_blk.reserved;
329 if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) {
331 if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT])
333 if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT])
337 if (freesp < *qfreesp)
340 /* only overwrite the throttle values if we are more aggressive */
341 if ((freesp >> shift) < (*qblocks >> *qshift)) {
348 * If we don't have a user specified preallocation size, dynamically increase
349 * the preallocation size as the size of the file grows. Cap the maximum size
350 * at a single extent or less if the filesystem is near full. The closer the
351 * filesystem is to being full, the smaller the maximum preallocation.
354 xfs_iomap_prealloc_size(
355 struct xfs_inode *ip,
359 struct xfs_iext_cursor *icur)
361 struct xfs_iext_cursor ncur = *icur;
362 struct xfs_bmbt_irec prev, got;
363 struct xfs_mount *mp = ip->i_mount;
364 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
365 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
367 xfs_fsblock_t qblocks;
368 xfs_fsblock_t alloc_blocks = 0;
374 * As an exception we don't do any preallocation at all if the file is
375 * smaller than the minimum preallocation and we are using the default
376 * dynamic preallocation scheme, as it is likely this is the only write
377 * to the file that is going to be done.
379 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
383 * Use the minimum preallocation size for small files or if we are
384 * writing right after a hole.
386 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
387 !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
388 prev.br_startoff + prev.br_blockcount < offset_fsb)
389 return mp->m_allocsize_blocks;
392 * Take the size of the preceding data extents as the basis for the
393 * preallocation size. Note that we don't care if the previous extents
394 * are written or not.
396 plen = prev.br_blockcount;
397 while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
398 if (plen > MAXEXTLEN / 2 ||
399 isnullstartblock(got.br_startblock) ||
400 got.br_startoff + got.br_blockcount != prev.br_startoff ||
401 got.br_startblock + got.br_blockcount != prev.br_startblock)
403 plen += got.br_blockcount;
408 * If the size of the extents is greater than half the maximum extent
409 * length, then use the current offset as the basis. This ensures that
410 * for large files the preallocation size always extends to MAXEXTLEN
411 * rather than falling short due to things like stripe unit/width
412 * alignment of real extents.
414 alloc_blocks = plen * 2;
415 if (alloc_blocks > MAXEXTLEN)
416 alloc_blocks = XFS_B_TO_FSB(mp, offset);
417 qblocks = alloc_blocks;
420 * MAXEXTLEN is not a power of two value but we round the prealloc down
421 * to the nearest power of two value after throttling. To prevent the
422 * round down from unconditionally reducing the maximum supported
423 * prealloc size, we round up first, apply appropriate throttling,
424 * round down and cap the value to MAXEXTLEN.
426 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(MAXEXTLEN),
429 freesp = percpu_counter_read_positive(&mp->m_fdblocks);
430 if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) {
432 if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT])
434 if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT])
436 if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT])
438 if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT])
443 * Check each quota to cap the prealloc size, provide a shift value to
444 * throttle with and adjust amount of available space.
446 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
447 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
449 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
450 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
452 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
453 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
457 * The final prealloc size is set to the minimum of free space available
458 * in each of the quotas and the overall filesystem.
460 * The shift throttle value is set to the maximum value as determined by
461 * the global low free space values and per-quota low free space values.
463 alloc_blocks = min(alloc_blocks, qblocks);
464 shift = max(shift, qshift);
467 alloc_blocks >>= shift;
469 * rounddown_pow_of_two() returns an undefined result if we pass in
473 alloc_blocks = rounddown_pow_of_two(alloc_blocks);
474 if (alloc_blocks > MAXEXTLEN)
475 alloc_blocks = MAXEXTLEN;
478 * If we are still trying to allocate more space than is
479 * available, squash the prealloc hard. This can happen if we
480 * have a large file on a small filesystem and the above
481 * lowspace thresholds are smaller than MAXEXTLEN.
483 while (alloc_blocks && alloc_blocks >= freesp)
485 if (alloc_blocks < mp->m_allocsize_blocks)
486 alloc_blocks = mp->m_allocsize_blocks;
487 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
488 mp->m_allocsize_blocks);
493 xfs_iomap_write_unwritten(
499 xfs_mount_t *mp = ip->i_mount;
500 xfs_fileoff_t offset_fsb;
501 xfs_filblks_t count_fsb;
502 xfs_filblks_t numblks_fsb;
505 xfs_bmbt_irec_t imap;
506 struct inode *inode = VFS_I(ip);
511 trace_xfs_unwritten_convert(ip, offset, count);
513 offset_fsb = XFS_B_TO_FSBT(mp, offset);
514 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
515 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
518 * Reserve enough blocks in this transaction for two complete extent
519 * btree splits. We may be converting the middle part of an unwritten
520 * extent and in this case we will insert two new extents in the btree
521 * each of which could cause a full split.
523 * This reservation amount will be used in the first call to
524 * xfs_bmbt_split() to select an AG with enough space to satisfy the
525 * rest of the operation.
527 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
529 /* Attach dquots so that bmbt splits are accounted correctly. */
530 error = xfs_qm_dqattach(ip);
536 * Set up a transaction to convert the range of extents
537 * from unwritten to real. Do allocations in a loop until
538 * we have covered the range passed in.
540 * Note that we can't risk to recursing back into the filesystem
541 * here as we might be asked to write out the same inode that we
542 * complete here and might deadlock on the iolock.
544 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
549 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
550 XFS_IEXT_WRITE_UNWRITTEN_CNT);
552 goto error_on_bmapi_transaction;
555 * Modify the unwritten extent state of the buffer.
558 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
559 XFS_BMAPI_CONVERT, resblks, &imap,
562 goto error_on_bmapi_transaction;
565 * Log the updated inode size as we go. We have to be careful
566 * to only log it up to the actual write offset if it is
567 * halfway into a block.
569 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
570 if (i_size > offset + count)
571 i_size = offset + count;
572 if (update_isize && i_size > i_size_read(inode))
573 i_size_write(inode, i_size);
574 i_size = xfs_new_eof(ip, i_size);
576 ip->i_disk_size = i_size;
577 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
580 error = xfs_trans_commit(tp);
581 xfs_iunlock(ip, XFS_ILOCK_EXCL);
585 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock)))
586 return xfs_alert_fsblock_zero(ip, &imap);
588 if ((numblks_fsb = imap.br_blockcount) == 0) {
590 * The numblks_fsb value should always get
591 * smaller, otherwise the loop is stuck.
593 ASSERT(imap.br_blockcount);
596 offset_fsb += numblks_fsb;
597 count_fsb -= numblks_fsb;
598 } while (count_fsb > 0);
602 error_on_bmapi_transaction:
603 xfs_trans_cancel(tp);
604 xfs_iunlock(ip, XFS_ILOCK_EXCL);
612 struct xfs_bmbt_irec *imap,
615 /* don't allocate blocks when just zeroing */
616 if (flags & IOMAP_ZERO)
619 imap->br_startblock == HOLESTARTBLOCK ||
620 imap->br_startblock == DELAYSTARTBLOCK)
622 /* we convert unwritten extents before copying the data for DAX */
623 if (IS_DAX(inode) && imap->br_state == XFS_EXT_UNWRITTEN)
630 struct xfs_inode *ip,
632 struct xfs_bmbt_irec *imap,
635 if (!xfs_is_cow_inode(ip))
638 /* when zeroing we don't have to COW holes or unwritten extents */
639 if (flags & IOMAP_ZERO) {
641 imap->br_startblock == HOLESTARTBLOCK ||
642 imap->br_state == XFS_EXT_UNWRITTEN)
651 struct xfs_inode *ip,
655 unsigned mode = XFS_ILOCK_SHARED;
656 bool is_write = flags & (IOMAP_WRITE | IOMAP_ZERO);
659 * COW writes may allocate delalloc space or convert unwritten COW
660 * extents, so we need to make sure to take the lock exclusively here.
662 if (xfs_is_cow_inode(ip) && is_write)
663 mode = XFS_ILOCK_EXCL;
666 * Extents not yet cached requires exclusive access, don't block. This
667 * is an opencoded xfs_ilock_data_map_shared() call but with
668 * non-blocking behaviour.
670 if (xfs_need_iread_extents(&ip->i_df)) {
671 if (flags & IOMAP_NOWAIT)
673 mode = XFS_ILOCK_EXCL;
677 if (flags & IOMAP_NOWAIT) {
678 if (!xfs_ilock_nowait(ip, mode))
685 * The reflink iflag could have changed since the earlier unlocked
686 * check, so if we got ILOCK_SHARED for a write and but we're now a
687 * reflink inode we have to switch to ILOCK_EXCL and relock.
689 if (mode == XFS_ILOCK_SHARED && is_write && xfs_is_cow_inode(ip)) {
690 xfs_iunlock(ip, mode);
691 mode = XFS_ILOCK_EXCL;
700 * Check that the imap we are going to return to the caller spans the entire
701 * range that the caller requested for the IO.
705 struct xfs_bmbt_irec *imap,
706 xfs_fileoff_t offset_fsb,
707 xfs_fileoff_t end_fsb)
709 if (imap->br_startoff > offset_fsb)
711 if (imap->br_startoff + imap->br_blockcount < end_fsb)
717 xfs_direct_write_iomap_begin(
723 struct iomap *srcmap)
725 struct xfs_inode *ip = XFS_I(inode);
726 struct xfs_mount *mp = ip->i_mount;
727 struct xfs_bmbt_irec imap, cmap;
728 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
729 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
730 int nimaps = 1, error = 0;
735 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
737 if (XFS_FORCED_SHUTDOWN(mp))
741 * Writes that span EOF might trigger an IO size update on completion,
742 * so consider them to be dirty for the purposes of O_DSYNC even if
743 * there is no other metadata changes pending or have been made here.
745 if (offset + length > i_size_read(inode))
746 iomap_flags |= IOMAP_F_DIRTY;
748 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
752 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
757 if (imap_needs_cow(ip, flags, &imap, nimaps)) {
759 if (flags & IOMAP_NOWAIT)
762 /* may drop and re-acquire the ilock */
763 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
764 &lockmode, flags & IOMAP_DIRECT);
769 end_fsb = imap.br_startoff + imap.br_blockcount;
770 length = XFS_FSB_TO_B(mp, end_fsb) - offset;
773 if (imap_needs_alloc(inode, flags, &imap, nimaps))
774 goto allocate_blocks;
777 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
778 * a single map so that we avoid partial IO failures due to the rest of
779 * the I/O range not covered by this map triggering an EAGAIN condition
780 * when it is subsequently mapped and aborting the I/O.
782 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
784 if (!imap_spans_range(&imap, offset_fsb, end_fsb))
789 * For overwrite only I/O, we cannot convert unwritten extents without
790 * requiring sub-block zeroing. This can only be done under an
791 * exclusive IOLOCK, hence return -EAGAIN if this is not a written
792 * extent to tell the caller to try again.
794 if (flags & IOMAP_OVERWRITE_ONLY) {
796 if (imap.br_state != XFS_EXT_NORM &&
797 ((offset | length) & mp->m_blockmask))
801 xfs_iunlock(ip, lockmode);
802 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
803 return xfs_bmbt_to_iomap(ip, iomap, &imap, iomap_flags);
807 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
811 * We cap the maximum length we map to a sane size to keep the chunks
812 * of work done where somewhat symmetric with the work writeback does.
813 * This is a completely arbitrary number pulled out of thin air as a
814 * best guess for initial testing.
816 * Note that the values needs to be less than 32-bits wide until the
817 * lower level functions are updated.
819 length = min_t(loff_t, length, 1024 * PAGE_SIZE);
820 end_fsb = xfs_iomap_end_fsb(mp, offset, length);
822 if (offset + length > XFS_ISIZE(ip))
823 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
824 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
825 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
826 xfs_iunlock(ip, lockmode);
828 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
833 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
834 return xfs_bmbt_to_iomap(ip, iomap, &imap, iomap_flags | IOMAP_F_NEW);
837 xfs_iunlock(ip, lockmode);
838 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
839 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
840 if (imap.br_startblock != HOLESTARTBLOCK) {
841 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, 0);
845 return xfs_bmbt_to_iomap(ip, iomap, &cmap, IOMAP_F_SHARED);
849 xfs_iunlock(ip, lockmode);
853 const struct iomap_ops xfs_direct_write_iomap_ops = {
854 .iomap_begin = xfs_direct_write_iomap_begin,
858 xfs_buffered_write_iomap_begin(
864 struct iomap *srcmap)
866 struct xfs_inode *ip = XFS_I(inode);
867 struct xfs_mount *mp = ip->i_mount;
868 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
869 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count);
870 struct xfs_bmbt_irec imap, cmap;
871 struct xfs_iext_cursor icur, ccur;
872 xfs_fsblock_t prealloc_blocks = 0;
873 bool eof = false, cow_eof = false, shared = false;
874 int allocfork = XFS_DATA_FORK;
877 if (XFS_FORCED_SHUTDOWN(mp))
880 /* we can't use delayed allocations when using extent size hints */
881 if (xfs_get_extsz_hint(ip))
882 return xfs_direct_write_iomap_begin(inode, offset, count,
883 flags, iomap, srcmap);
885 ASSERT(!XFS_IS_REALTIME_INODE(ip));
887 xfs_ilock(ip, XFS_ILOCK_EXCL);
889 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
890 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
891 error = -EFSCORRUPTED;
895 XFS_STATS_INC(mp, xs_blk_mapw);
897 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
902 * Search the data fork first to look up our source mapping. We
903 * always need the data fork map, as we have to return it to the
904 * iomap code so that the higher level write code can read data in to
905 * perform read-modify-write cycles for unaligned writes.
907 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
909 imap.br_startoff = end_fsb; /* fake hole until the end */
911 /* We never need to allocate blocks for zeroing a hole. */
912 if ((flags & IOMAP_ZERO) && imap.br_startoff > offset_fsb) {
913 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
918 * Search the COW fork extent list even if we did not find a data fork
919 * extent. This serves two purposes: first this implements the
920 * speculative preallocation using cowextsize, so that we also unshare
921 * block adjacent to shared blocks instead of just the shared blocks
922 * themselves. Second the lookup in the extent list is generally faster
923 * than going out to the shared extent tree.
925 if (xfs_is_cow_inode(ip)) {
927 ASSERT(!xfs_is_reflink_inode(ip));
928 xfs_ifork_init_cow(ip);
930 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
932 if (!cow_eof && cmap.br_startoff <= offset_fsb) {
933 trace_xfs_reflink_cow_found(ip, &cmap);
938 if (imap.br_startoff <= offset_fsb) {
940 * For reflink files we may need a delalloc reservation when
941 * overwriting shared extents. This includes zeroing of
942 * existing extents that contain data.
944 if (!xfs_is_cow_inode(ip) ||
945 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
946 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
951 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
953 /* Trim the mapping to the nearest shared extent boundary. */
954 error = xfs_bmap_trim_cow(ip, &imap, &shared);
958 /* Not shared? Just report the (potentially capped) extent. */
960 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
966 * Fork all the shared blocks from our write offset until the
969 allocfork = XFS_COW_FORK;
970 end_fsb = imap.br_startoff + imap.br_blockcount;
973 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
974 * pages to keep the chunks of work done where somewhat
975 * symmetric with the work writeback does. This is a completely
976 * arbitrary number pulled out of thin air.
978 * Note that the values needs to be less than 32-bits wide until
979 * the lower level functions are updated.
981 count = min_t(loff_t, count, 1024 * PAGE_SIZE);
982 end_fsb = xfs_iomap_end_fsb(mp, offset, count);
984 if (xfs_is_always_cow_inode(ip))
985 allocfork = XFS_COW_FORK;
988 error = xfs_qm_dqattach_locked(ip, false);
992 if (eof && offset + count > XFS_ISIZE(ip)) {
994 * Determine the initial size of the preallocation.
995 * We clean up any extra preallocation when the file is closed.
997 if (mp->m_flags & XFS_MOUNT_ALLOCSIZE)
998 prealloc_blocks = mp->m_allocsize_blocks;
1000 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1001 offset, count, &icur);
1002 if (prealloc_blocks) {
1004 xfs_off_t end_offset;
1005 xfs_fileoff_t p_end_fsb;
1007 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
1008 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
1011 align = xfs_eof_alignment(ip);
1013 p_end_fsb = roundup_64(p_end_fsb, align);
1015 p_end_fsb = min(p_end_fsb,
1016 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1017 ASSERT(p_end_fsb > offset_fsb);
1018 prealloc_blocks = p_end_fsb - end_fsb;
1023 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1024 end_fsb - offset_fsb, prealloc_blocks,
1025 allocfork == XFS_DATA_FORK ? &imap : &cmap,
1026 allocfork == XFS_DATA_FORK ? &icur : &ccur,
1027 allocfork == XFS_DATA_FORK ? eof : cow_eof);
1033 /* retry without any preallocation */
1034 trace_xfs_delalloc_enospc(ip, offset, count);
1035 if (prealloc_blocks) {
1036 prealloc_blocks = 0;
1044 if (allocfork == XFS_COW_FORK) {
1045 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
1050 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
1051 * them out if the write happens to fail.
1053 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1054 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
1055 return xfs_bmbt_to_iomap(ip, iomap, &imap, IOMAP_F_NEW);
1058 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1059 return xfs_bmbt_to_iomap(ip, iomap, &imap, 0);
1062 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1063 if (imap.br_startoff <= offset_fsb) {
1064 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, 0);
1068 xfs_trim_extent(&cmap, offset_fsb,
1069 imap.br_startoff - offset_fsb);
1071 return xfs_bmbt_to_iomap(ip, iomap, &cmap, IOMAP_F_SHARED);
1074 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1079 xfs_buffered_write_iomap_end(
1080 struct inode *inode,
1085 struct iomap *iomap)
1087 struct xfs_inode *ip = XFS_I(inode);
1088 struct xfs_mount *mp = ip->i_mount;
1089 xfs_fileoff_t start_fsb;
1090 xfs_fileoff_t end_fsb;
1093 if (iomap->type != IOMAP_DELALLOC)
1097 * Behave as if the write failed if drop writes is enabled. Set the NEW
1098 * flag to force delalloc cleanup.
1100 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_DROP_WRITES)) {
1101 iomap->flags |= IOMAP_F_NEW;
1106 * start_fsb refers to the first unused block after a short write. If
1107 * nothing was written, round offset down to point at the first block in
1110 if (unlikely(!written))
1111 start_fsb = XFS_B_TO_FSBT(mp, offset);
1113 start_fsb = XFS_B_TO_FSB(mp, offset + written);
1114 end_fsb = XFS_B_TO_FSB(mp, offset + length);
1117 * Trim delalloc blocks if they were allocated by this write and we
1118 * didn't manage to write the whole range.
1120 * We don't need to care about racing delalloc as we hold i_mutex
1121 * across the reserve/allocate/unreserve calls. If there are delalloc
1122 * blocks in the range, they are ours.
1124 if ((iomap->flags & IOMAP_F_NEW) && start_fsb < end_fsb) {
1125 truncate_pagecache_range(VFS_I(ip), XFS_FSB_TO_B(mp, start_fsb),
1126 XFS_FSB_TO_B(mp, end_fsb) - 1);
1128 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1129 end_fsb - start_fsb);
1130 if (error && !XFS_FORCED_SHUTDOWN(mp)) {
1131 xfs_alert(mp, "%s: unable to clean up ino %lld",
1132 __func__, ip->i_ino);
1140 const struct iomap_ops xfs_buffered_write_iomap_ops = {
1141 .iomap_begin = xfs_buffered_write_iomap_begin,
1142 .iomap_end = xfs_buffered_write_iomap_end,
1146 xfs_read_iomap_begin(
1147 struct inode *inode,
1151 struct iomap *iomap,
1152 struct iomap *srcmap)
1154 struct xfs_inode *ip = XFS_I(inode);
1155 struct xfs_mount *mp = ip->i_mount;
1156 struct xfs_bmbt_irec imap;
1157 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1158 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
1159 int nimaps = 1, error = 0;
1160 bool shared = false;
1163 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
1165 if (XFS_FORCED_SHUTDOWN(mp))
1168 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1171 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1173 if (!error && (flags & IOMAP_REPORT))
1174 error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
1175 xfs_iunlock(ip, lockmode);
1179 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
1180 return xfs_bmbt_to_iomap(ip, iomap, &imap, shared ? IOMAP_F_SHARED : 0);
1183 const struct iomap_ops xfs_read_iomap_ops = {
1184 .iomap_begin = xfs_read_iomap_begin,
1188 xfs_seek_iomap_begin(
1189 struct inode *inode,
1193 struct iomap *iomap,
1194 struct iomap *srcmap)
1196 struct xfs_inode *ip = XFS_I(inode);
1197 struct xfs_mount *mp = ip->i_mount;
1198 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1199 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1200 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
1201 struct xfs_iext_cursor icur;
1202 struct xfs_bmbt_irec imap, cmap;
1206 if (XFS_FORCED_SHUTDOWN(mp))
1209 lockmode = xfs_ilock_data_map_shared(ip);
1210 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1214 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
1216 * If we found a data extent we are done.
1218 if (imap.br_startoff <= offset_fsb)
1220 data_fsb = imap.br_startoff;
1223 * Fake a hole until the end of the file.
1225 data_fsb = xfs_iomap_end_fsb(mp, offset, length);
1229 * If a COW fork extent covers the hole, report it - capped to the next
1232 if (xfs_inode_has_cow_data(ip) &&
1233 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1234 cow_fsb = cmap.br_startoff;
1235 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
1236 if (data_fsb < cow_fsb + cmap.br_blockcount)
1237 end_fsb = min(end_fsb, data_fsb);
1238 xfs_trim_extent(&cmap, offset_fsb, end_fsb);
1239 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, IOMAP_F_SHARED);
1241 * This is a COW extent, so we must probe the page cache
1242 * because there could be dirty page cache being backed
1245 iomap->type = IOMAP_UNWRITTEN;
1250 * Else report a hole, capped to the next found data or COW extent.
1252 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
1253 imap.br_blockcount = cow_fsb - offset_fsb;
1255 imap.br_blockcount = data_fsb - offset_fsb;
1256 imap.br_startoff = offset_fsb;
1257 imap.br_startblock = HOLESTARTBLOCK;
1258 imap.br_state = XFS_EXT_NORM;
1260 xfs_trim_extent(&imap, offset_fsb, end_fsb);
1261 error = xfs_bmbt_to_iomap(ip, iomap, &imap, 0);
1263 xfs_iunlock(ip, lockmode);
1267 const struct iomap_ops xfs_seek_iomap_ops = {
1268 .iomap_begin = xfs_seek_iomap_begin,
1272 xfs_xattr_iomap_begin(
1273 struct inode *inode,
1277 struct iomap *iomap,
1278 struct iomap *srcmap)
1280 struct xfs_inode *ip = XFS_I(inode);
1281 struct xfs_mount *mp = ip->i_mount;
1282 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1283 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1284 struct xfs_bmbt_irec imap;
1285 int nimaps = 1, error = 0;
1288 if (XFS_FORCED_SHUTDOWN(mp))
1291 lockmode = xfs_ilock_attr_map_shared(ip);
1293 /* if there are no attribute fork or extents, return ENOENT */
1294 if (!XFS_IFORK_Q(ip) || !ip->i_afp->if_nextents) {
1299 ASSERT(ip->i_afp->if_format != XFS_DINODE_FMT_LOCAL);
1300 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1301 &nimaps, XFS_BMAPI_ATTRFORK);
1303 xfs_iunlock(ip, lockmode);
1308 return xfs_bmbt_to_iomap(ip, iomap, &imap, 0);
1311 const struct iomap_ops xfs_xattr_iomap_ops = {
1312 .iomap_begin = xfs_xattr_iomap_begin,