1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
6 #include <linux/log2.h>
7 #include <linux/iversion.h>
11 #include "xfs_shared.h"
12 #include "xfs_format.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans_resv.h"
16 #include "xfs_mount.h"
17 #include "xfs_defer.h"
18 #include "xfs_inode.h"
19 #include "xfs_da_format.h"
20 #include "xfs_da_btree.h"
22 #include "xfs_attr_sf.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_trans.h"
26 #include "xfs_buf_item.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_ialloc.h"
30 #include "xfs_bmap_util.h"
31 #include "xfs_errortag.h"
32 #include "xfs_error.h"
33 #include "xfs_quota.h"
34 #include "xfs_filestream.h"
35 #include "xfs_cksum.h"
36 #include "xfs_trace.h"
37 #include "xfs_icache.h"
38 #include "xfs_symlink.h"
39 #include "xfs_trans_priv.h"
41 #include "xfs_bmap_btree.h"
42 #include "xfs_reflink.h"
43 #include "xfs_dir2_priv.h"
45 kmem_zone_t *xfs_inode_zone;
48 * Used in xfs_itruncate_extents(). This is the maximum number of extents
49 * freed from a file in a single transaction.
51 #define XFS_ITRUNC_MAX_EXTENTS 2
53 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
54 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
55 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
58 * helper function to extract extent size hint from inode
64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
65 return ip->i_d.di_extsize;
66 if (XFS_IS_REALTIME_INODE(ip))
67 return ip->i_mount->m_sb.sb_rextsize;
72 * Helper function to extract CoW extent size hint from inode.
73 * Between the extent size hint and the CoW extent size hint, we
74 * return the greater of the two. If the value is zero (automatic),
75 * use the default size.
78 xfs_get_cowextsz_hint(
84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
85 a = ip->i_d.di_cowextsize;
86 b = xfs_get_extsz_hint(ip);
90 return XFS_DEFAULT_COWEXTSZ_HINT;
95 * These two are wrapper routines around the xfs_ilock() routine used to
96 * centralize some grungy code. They are used in places that wish to lock the
97 * inode solely for reading the extents. The reason these places can't just
98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99 * bringing in of the extents from disk for a file in b-tree format. If the
100 * inode is in b-tree format, then we need to lock the inode exclusively until
101 * the extents are read in. Locking it exclusively all the time would limit
102 * our parallelism unnecessarily, though. What we do instead is check to see
103 * if the extents have been read in yet, and only lock the inode exclusively
106 * The functions return a value which should be given to the corresponding
107 * xfs_iunlock() call.
110 xfs_ilock_data_map_shared(
111 struct xfs_inode *ip)
113 uint lock_mode = XFS_ILOCK_SHARED;
115 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
117 lock_mode = XFS_ILOCK_EXCL;
118 xfs_ilock(ip, lock_mode);
123 xfs_ilock_attr_map_shared(
124 struct xfs_inode *ip)
126 uint lock_mode = XFS_ILOCK_SHARED;
128 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 lock_mode = XFS_ILOCK_EXCL;
131 xfs_ilock(ip, lock_mode);
136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
138 * various combinations of the locks to be obtained.
140 * The 3 locks should always be ordered so that the IO lock is obtained first,
141 * the mmap lock second and the ilock last in order to prevent deadlock.
143 * Basic locking order:
145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
147 * mmap_sem locking order:
149 * i_rwsem -> page lock -> mmap_sem
150 * mmap_sem -> i_mmap_lock -> page_lock
152 * The difference in mmap_sem locking order mean that we cannot hold the
153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
155 * in get_user_pages() to map the user pages into the kernel address space for
156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
157 * page faults already hold the mmap_sem.
159 * Hence to serialise fully against both syscall and mmap based IO, we need to
160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
161 * taken in places where we need to invalidate the page cache in a race
162 * free manner (e.g. truncate, hole punch and other extent manipulation
170 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
173 * You can't set both SHARED and EXCL for the same lock,
174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
185 if (lock_flags & XFS_IOLOCK_EXCL) {
186 down_write_nested(&VFS_I(ip)->i_rwsem,
187 XFS_IOLOCK_DEP(lock_flags));
188 } else if (lock_flags & XFS_IOLOCK_SHARED) {
189 down_read_nested(&VFS_I(ip)->i_rwsem,
190 XFS_IOLOCK_DEP(lock_flags));
193 if (lock_flags & XFS_MMAPLOCK_EXCL)
194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
198 if (lock_flags & XFS_ILOCK_EXCL)
199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 else if (lock_flags & XFS_ILOCK_SHARED)
201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
205 * This is just like xfs_ilock(), except that the caller
206 * is guaranteed not to sleep. It returns 1 if it gets
207 * the requested locks and 0 otherwise. If the IO lock is
208 * obtained but the inode lock cannot be, then the IO lock
209 * is dropped before returning.
211 * ip -- the inode being locked
212 * lock_flags -- this parameter indicates the inode's locks to be
213 * to be locked. See the comment for xfs_ilock() for a list
221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
224 * You can't set both SHARED and EXCL for the same lock,
225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
236 if (lock_flags & XFS_IOLOCK_EXCL) {
237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
239 } else if (lock_flags & XFS_IOLOCK_SHARED) {
240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
244 if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 if (!mrtryupdate(&ip->i_mmaplock))
246 goto out_undo_iolock;
247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 if (!mrtryaccess(&ip->i_mmaplock))
249 goto out_undo_iolock;
252 if (lock_flags & XFS_ILOCK_EXCL) {
253 if (!mrtryupdate(&ip->i_lock))
254 goto out_undo_mmaplock;
255 } else if (lock_flags & XFS_ILOCK_SHARED) {
256 if (!mrtryaccess(&ip->i_lock))
257 goto out_undo_mmaplock;
262 if (lock_flags & XFS_MMAPLOCK_EXCL)
263 mrunlock_excl(&ip->i_mmaplock);
264 else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 mrunlock_shared(&ip->i_mmaplock);
267 if (lock_flags & XFS_IOLOCK_EXCL)
268 up_write(&VFS_I(ip)->i_rwsem);
269 else if (lock_flags & XFS_IOLOCK_SHARED)
270 up_read(&VFS_I(ip)->i_rwsem);
276 * xfs_iunlock() is used to drop the inode locks acquired with
277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279 * that we know which locks to drop.
281 * ip -- the inode being unlocked
282 * lock_flags -- this parameter indicates the inode's locks to be
283 * to be unlocked. See the comment for xfs_ilock() for a list
284 * of valid values for this parameter.
293 * You can't set both SHARED and EXCL for the same lock,
294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
304 ASSERT(lock_flags != 0);
306 if (lock_flags & XFS_IOLOCK_EXCL)
307 up_write(&VFS_I(ip)->i_rwsem);
308 else if (lock_flags & XFS_IOLOCK_SHARED)
309 up_read(&VFS_I(ip)->i_rwsem);
311 if (lock_flags & XFS_MMAPLOCK_EXCL)
312 mrunlock_excl(&ip->i_mmaplock);
313 else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 mrunlock_shared(&ip->i_mmaplock);
316 if (lock_flags & XFS_ILOCK_EXCL)
317 mrunlock_excl(&ip->i_lock);
318 else if (lock_flags & XFS_ILOCK_SHARED)
319 mrunlock_shared(&ip->i_lock);
321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
325 * give up write locks. the i/o lock cannot be held nested
326 * if it is being demoted.
333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
337 if (lock_flags & XFS_ILOCK_EXCL)
338 mrdemote(&ip->i_lock);
339 if (lock_flags & XFS_MMAPLOCK_EXCL)
340 mrdemote(&ip->i_mmaplock);
341 if (lock_flags & XFS_IOLOCK_EXCL)
342 downgrade_write(&VFS_I(ip)->i_rwsem);
344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
347 #if defined(DEBUG) || defined(XFS_WARN)
353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 if (!(lock_flags & XFS_ILOCK_SHARED))
355 return !!ip->i_lock.mr_writer;
356 return rwsem_is_locked(&ip->i_lock.mr_lock);
359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 return !!ip->i_mmaplock.mr_writer;
362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 if (!(lock_flags & XFS_IOLOCK_SHARED))
367 return !debug_locks ||
368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381 * errors and warnings.
383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
385 xfs_lockdep_subclass_ok(
388 return subclass < MAX_LOCKDEP_SUBCLASSES;
391 #define xfs_lockdep_subclass_ok(subclass) (true)
395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
396 * value. This can be called for any type of inode lock combination, including
397 * parent locking. Care must be taken to ensure we don't overrun the subclass
398 * storage fields in the class mask we build.
401 xfs_lock_inumorder(int lock_mode, int subclass)
405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
407 ASSERT(xfs_lockdep_subclass_ok(subclass));
409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
411 class += subclass << XFS_IOLOCK_SHIFT;
414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 class += subclass << XFS_MMAPLOCK_SHIFT;
419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 class += subclass << XFS_ILOCK_SHIFT;
424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
428 * The following routine will lock n inodes in exclusive mode. We assume the
429 * caller calls us with the inodes in i_ino order.
431 * We need to detect deadlock where an inode that we lock is in the AIL and we
432 * start waiting for another inode that is locked by a thread in a long running
433 * transaction (such as truncate). This can result in deadlock since the long
434 * running trans might need to wait for the inode we just locked in order to
435 * push the tail and free space in the log.
437 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439 * lock more than one at a time, lockdep will report false positives saying we
440 * have violated locking orders.
448 int attempts = 0, i, j, try_lock;
452 * Currently supports between 2 and 5 inodes with exclusive locking. We
453 * support an arbitrary depth of locking here, but absolute limits on
454 * inodes depend on the the type of locking and the limits placed by
455 * lockdep annotations in xfs_lock_inumorder. These are all checked by
458 ASSERT(ips && inodes >= 2 && inodes <= 5);
459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
468 if (lock_mode & XFS_IOLOCK_EXCL) {
469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
476 for (; i < inodes; i++) {
479 if (i && (ips[i] == ips[i - 1])) /* Already locked */
483 * If try_lock is not set yet, make sure all locked inodes are
484 * not in the AIL. If any are, set try_lock to be used later.
487 for (j = (i - 1); j >= 0 && !try_lock; j--) {
488 lp = (xfs_log_item_t *)ips[j]->i_itemp;
489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
495 * If any of the previous locks we have locked is in the AIL,
496 * we must TRY to get the second and subsequent locks. If
497 * we can't get any, we must release all we have
501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
505 /* try_lock means we have an inode locked that is in the AIL. */
507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
511 * Unlock all previous guys and try again. xfs_iunlock will try
512 * to push the tail if the inode is in the AIL.
515 for (j = i - 1; j >= 0; j--) {
517 * Check to see if we've already unlocked this one. Not
518 * the first one going back, and the inode ptr is the
521 if (j != (i - 1) && ips[j] == ips[j + 1])
524 xfs_iunlock(ips[j], lock_mode);
527 if ((attempts % 5) == 0) {
528 delay(1); /* Don't just spin the CPU */
537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
538 * the mmaplock or the ilock, but not more than one type at a time. If we lock
539 * more than one at a time, lockdep will report false positives saying we have
540 * violated locking orders. The iolock must be double-locked separately since
541 * we use i_rwsem for that. We now support taking one lock EXCL and the other
546 struct xfs_inode *ip0,
548 struct xfs_inode *ip1,
551 struct xfs_inode *temp;
556 ASSERT(hweight32(ip0_mode) == 1);
557 ASSERT(hweight32(ip1_mode) == 1);
558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
569 ASSERT(ip0->i_ino != ip1->i_ino);
571 if (ip0->i_ino > ip1->i_ino) {
575 mode_temp = ip0_mode;
577 ip1_mode = mode_temp;
581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
584 * If the first lock we have locked is in the AIL, we must TRY to get
585 * the second lock. If we can't get it, we must release the first one
588 lp = (xfs_log_item_t *)ip0->i_itemp;
589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 xfs_iunlock(ip0, ip0_mode);
592 if ((++attempts % 5) == 0)
593 delay(1); /* Don't just spin the CPU */
597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
603 struct xfs_inode *ip)
605 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
606 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
609 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
610 if (xfs_isiflocked(ip))
612 } while (!xfs_iflock_nowait(ip));
614 finish_wait(wq, &wait.wq_entry);
625 if (di_flags & XFS_DIFLAG_ANY) {
626 if (di_flags & XFS_DIFLAG_REALTIME)
627 flags |= FS_XFLAG_REALTIME;
628 if (di_flags & XFS_DIFLAG_PREALLOC)
629 flags |= FS_XFLAG_PREALLOC;
630 if (di_flags & XFS_DIFLAG_IMMUTABLE)
631 flags |= FS_XFLAG_IMMUTABLE;
632 if (di_flags & XFS_DIFLAG_APPEND)
633 flags |= FS_XFLAG_APPEND;
634 if (di_flags & XFS_DIFLAG_SYNC)
635 flags |= FS_XFLAG_SYNC;
636 if (di_flags & XFS_DIFLAG_NOATIME)
637 flags |= FS_XFLAG_NOATIME;
638 if (di_flags & XFS_DIFLAG_NODUMP)
639 flags |= FS_XFLAG_NODUMP;
640 if (di_flags & XFS_DIFLAG_RTINHERIT)
641 flags |= FS_XFLAG_RTINHERIT;
642 if (di_flags & XFS_DIFLAG_PROJINHERIT)
643 flags |= FS_XFLAG_PROJINHERIT;
644 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
645 flags |= FS_XFLAG_NOSYMLINKS;
646 if (di_flags & XFS_DIFLAG_EXTSIZE)
647 flags |= FS_XFLAG_EXTSIZE;
648 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
649 flags |= FS_XFLAG_EXTSZINHERIT;
650 if (di_flags & XFS_DIFLAG_NODEFRAG)
651 flags |= FS_XFLAG_NODEFRAG;
652 if (di_flags & XFS_DIFLAG_FILESTREAM)
653 flags |= FS_XFLAG_FILESTREAM;
656 if (di_flags2 & XFS_DIFLAG2_ANY) {
657 if (di_flags2 & XFS_DIFLAG2_DAX)
658 flags |= FS_XFLAG_DAX;
659 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
660 flags |= FS_XFLAG_COWEXTSIZE;
664 flags |= FS_XFLAG_HASATTR;
671 struct xfs_inode *ip)
673 struct xfs_icdinode *dic = &ip->i_d;
675 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
687 struct xfs_name *name,
689 struct xfs_name *ci_name)
694 trace_xfs_lookup(dp, name);
696 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
699 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
703 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
711 kmem_free(ci_name->name);
718 * Allocate an inode on disk and return a copy of its in-core version.
719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
720 * appropriately within the inode. The uid and gid for the inode are
721 * set according to the contents of the given cred structure.
723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
724 * has a free inode available, call xfs_iget() to obtain the in-core
725 * version of the allocated inode. Finally, fill in the inode and
726 * log its initial contents. In this case, ialloc_context would be
729 * If xfs_dialloc() does not have an available inode, it will replenish
730 * its supply by doing an allocation. Since we can only do one
731 * allocation within a transaction without deadlocks, we must commit
732 * the current transaction before returning the inode itself.
733 * In this case, therefore, we will set ialloc_context and return.
734 * The caller should then commit the current transaction, start a new
735 * transaction, and call xfs_ialloc() again to actually get the inode.
737 * To ensure that some other process does not grab the inode that
738 * was allocated during the first call to xfs_ialloc(), this routine
739 * also returns the [locked] bp pointing to the head of the freelist
740 * as ialloc_context. The caller should hold this buffer across
741 * the commit and pass it back into this routine on the second call.
743 * If we are allocating quota inodes, we do not have a parent inode
744 * to attach to or associate with (i.e. pip == NULL) because they
745 * are not linked into the directory structure - they are attached
746 * directly to the superblock - and so have no parent.
756 xfs_buf_t **ialloc_context,
759 struct xfs_mount *mp = tp->t_mountp;
764 struct timespec64 tv;
768 * Call the space management code to pick
769 * the on-disk inode to be allocated.
771 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
772 ialloc_context, &ino);
775 if (*ialloc_context || ino == NULLFSINO) {
779 ASSERT(*ialloc_context == NULL);
782 * Protect against obviously corrupt allocation btree records. Later
783 * xfs_iget checks will catch re-allocation of other active in-memory
784 * and on-disk inodes. If we don't catch reallocating the parent inode
785 * here we will deadlock in xfs_iget() so we have to do these checks
788 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
789 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
790 return -EFSCORRUPTED;
794 * Get the in-core inode with the lock held exclusively.
795 * This is because we're setting fields here we need
796 * to prevent others from looking at until we're done.
798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
799 XFS_ILOCK_EXCL, &ip);
806 * We always convert v1 inodes to v2 now - we only support filesystems
807 * with >= v2 inode capability, so there is no reason for ever leaving
808 * an inode in v1 format.
810 if (ip->i_d.di_version == 1)
811 ip->i_d.di_version = 2;
813 inode->i_mode = mode;
814 set_nlink(inode, nlink);
815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
817 inode->i_rdev = rdev;
818 xfs_set_projid(ip, prid);
820 if (pip && XFS_INHERIT_GID(pip)) {
821 ip->i_d.di_gid = pip->i_d.di_gid;
822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
823 inode->i_mode |= S_ISGID;
827 * If the group ID of the new file does not match the effective group
828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 * (and only if the irix_sgid_inherit compatibility variable is set).
831 if ((irix_sgid_inherit) &&
832 (inode->i_mode & S_ISGID) &&
833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
834 inode->i_mode &= ~S_ISGID;
837 ip->i_d.di_nextents = 0;
838 ASSERT(ip->i_d.di_nblocks == 0);
840 tv = current_time(inode);
845 ip->i_d.di_extsize = 0;
846 ip->i_d.di_dmevmask = 0;
847 ip->i_d.di_dmstate = 0;
848 ip->i_d.di_flags = 0;
850 if (ip->i_d.di_version == 3) {
851 inode_set_iversion(inode, 1);
852 ip->i_d.di_flags2 = 0;
853 ip->i_d.di_cowextsize = 0;
854 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
855 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
859 flags = XFS_ILOG_CORE;
860 switch (mode & S_IFMT) {
865 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
866 ip->i_df.if_flags = 0;
867 flags |= XFS_ILOG_DEV;
871 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
875 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
876 di_flags |= XFS_DIFLAG_RTINHERIT;
877 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
878 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
879 ip->i_d.di_extsize = pip->i_d.di_extsize;
881 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
882 di_flags |= XFS_DIFLAG_PROJINHERIT;
883 } else if (S_ISREG(mode)) {
884 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
885 di_flags |= XFS_DIFLAG_REALTIME;
886 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
887 di_flags |= XFS_DIFLAG_EXTSIZE;
888 ip->i_d.di_extsize = pip->i_d.di_extsize;
891 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
893 di_flags |= XFS_DIFLAG_NOATIME;
894 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
896 di_flags |= XFS_DIFLAG_NODUMP;
897 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
899 di_flags |= XFS_DIFLAG_SYNC;
900 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
901 xfs_inherit_nosymlinks)
902 di_flags |= XFS_DIFLAG_NOSYMLINKS;
903 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
904 xfs_inherit_nodefrag)
905 di_flags |= XFS_DIFLAG_NODEFRAG;
906 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
907 di_flags |= XFS_DIFLAG_FILESTREAM;
909 ip->i_d.di_flags |= di_flags;
912 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
913 pip->i_d.di_version == 3 &&
914 ip->i_d.di_version == 3) {
915 uint64_t di_flags2 = 0;
917 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
918 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
919 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
922 di_flags2 |= XFS_DIFLAG2_DAX;
924 ip->i_d.di_flags2 |= di_flags2;
928 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
929 ip->i_df.if_flags = XFS_IFEXTENTS;
930 ip->i_df.if_bytes = 0;
931 ip->i_df.if_u1.if_root = NULL;
937 * Attribute fork settings for new inode.
939 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
940 ip->i_d.di_anextents = 0;
943 * Log the new values stuffed into the inode.
945 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
946 xfs_trans_log_inode(tp, ip, flags);
948 /* now that we have an i_mode we can setup the inode structure */
956 * Allocates a new inode from disk and return a pointer to the
957 * incore copy. This routine will internally commit the current
958 * transaction and allocate a new one if the Space Manager needed
959 * to do an allocation to replenish the inode free-list.
961 * This routine is designed to be called from xfs_create and
967 xfs_trans_t **tpp, /* input: current transaction;
968 output: may be a new transaction. */
969 xfs_inode_t *dp, /* directory within whose allocate
974 prid_t prid, /* project id */
975 xfs_inode_t **ipp) /* pointer to inode; it will be
980 xfs_buf_t *ialloc_context = NULL;
986 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
989 * xfs_ialloc will return a pointer to an incore inode if
990 * the Space Manager has an available inode on the free
991 * list. Otherwise, it will do an allocation and replenish
992 * the freelist. Since we can only do one allocation per
993 * transaction without deadlocks, we will need to commit the
994 * current transaction and start a new one. We will then
995 * need to call xfs_ialloc again to get the inode.
997 * If xfs_ialloc did an allocation to replenish the freelist,
998 * it returns the bp containing the head of the freelist as
999 * ialloc_context. We will hold a lock on it across the
1000 * transaction commit so that no other process can steal
1001 * the inode(s) that we've just allocated.
1003 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1007 * Return an error if we were unable to allocate a new inode.
1008 * This should only happen if we run out of space on disk or
1009 * encounter a disk error.
1015 if (!ialloc_context && !ip) {
1021 * If the AGI buffer is non-NULL, then we were unable to get an
1022 * inode in one operation. We need to commit the current
1023 * transaction and call xfs_ialloc() again. It is guaranteed
1024 * to succeed the second time.
1026 if (ialloc_context) {
1028 * Normally, xfs_trans_commit releases all the locks.
1029 * We call bhold to hang on to the ialloc_context across
1030 * the commit. Holding this buffer prevents any other
1031 * processes from doing any allocations in this
1034 xfs_trans_bhold(tp, ialloc_context);
1037 * We want the quota changes to be associated with the next
1038 * transaction, NOT this one. So, detach the dqinfo from this
1039 * and attach it to the next transaction.
1044 dqinfo = (void *)tp->t_dqinfo;
1045 tp->t_dqinfo = NULL;
1046 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1050 code = xfs_trans_roll(&tp);
1053 * Re-attach the quota info that we detached from prev trx.
1056 tp->t_dqinfo = dqinfo;
1057 tp->t_flags |= tflags;
1061 xfs_buf_relse(ialloc_context);
1066 xfs_trans_bjoin(tp, ialloc_context);
1069 * Call ialloc again. Since we've locked out all
1070 * other allocations in this allocation group,
1071 * this call should always succeed.
1073 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1074 &ialloc_context, &ip);
1077 * If we get an error at this point, return to the caller
1078 * so that the current transaction can be aborted.
1085 ASSERT(!ialloc_context && ip);
1096 * Decrement the link count on an inode & log the change. If this causes the
1097 * link count to go to zero, move the inode to AGI unlinked list so that it can
1098 * be freed when the last active reference goes away via xfs_inactive().
1100 static int /* error */
1105 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1107 drop_nlink(VFS_I(ip));
1108 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1110 if (VFS_I(ip)->i_nlink)
1113 return xfs_iunlink(tp, ip);
1117 * Increment the link count on an inode & log the change.
1124 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1126 ASSERT(ip->i_d.di_version > 1);
1127 inc_nlink(VFS_I(ip));
1128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1134 struct xfs_name *name,
1139 int is_dir = S_ISDIR(mode);
1140 struct xfs_mount *mp = dp->i_mount;
1141 struct xfs_inode *ip = NULL;
1142 struct xfs_trans *tp = NULL;
1144 bool unlock_dp_on_error = false;
1146 struct xfs_dquot *udqp = NULL;
1147 struct xfs_dquot *gdqp = NULL;
1148 struct xfs_dquot *pdqp = NULL;
1149 struct xfs_trans_res *tres;
1152 trace_xfs_create(dp, name);
1154 if (XFS_FORCED_SHUTDOWN(mp))
1157 prid = xfs_get_initial_prid(dp);
1160 * Make sure that we have allocated dquot(s) on disk.
1162 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1163 xfs_kgid_to_gid(current_fsgid()), prid,
1164 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1165 &udqp, &gdqp, &pdqp);
1170 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1171 tres = &M_RES(mp)->tr_mkdir;
1173 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1174 tres = &M_RES(mp)->tr_create;
1178 * Initially assume that the file does not exist and
1179 * reserve the resources for that case. If that is not
1180 * the case we'll drop the one we have and get a more
1181 * appropriate transaction later.
1183 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1184 if (error == -ENOSPC) {
1185 /* flush outstanding delalloc blocks and retry */
1186 xfs_flush_inodes(mp);
1187 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1190 goto out_release_inode;
1192 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1193 unlock_dp_on_error = true;
1196 * Reserve disk quota and the inode.
1198 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1199 pdqp, resblks, 1, 0);
1201 goto out_trans_cancel;
1204 * A newly created regular or special file just has one directory
1205 * entry pointing to them, but a directory also the "." entry
1206 * pointing to itself.
1208 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1210 goto out_trans_cancel;
1213 * Now we join the directory inode to the transaction. We do not do it
1214 * earlier because xfs_dir_ialloc might commit the previous transaction
1215 * (and release all the locks). An error from here on will result in
1216 * the transaction cancel unlocking dp so don't do it explicitly in the
1219 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1220 unlock_dp_on_error = false;
1222 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1224 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1226 ASSERT(error != -ENOSPC);
1227 goto out_trans_cancel;
1229 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1230 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1233 error = xfs_dir_init(tp, ip, dp);
1235 goto out_trans_cancel;
1237 xfs_bumplink(tp, dp);
1241 * If this is a synchronous mount, make sure that the
1242 * create transaction goes to disk before returning to
1245 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1246 xfs_trans_set_sync(tp);
1249 * Attach the dquot(s) to the inodes and modify them incore.
1250 * These ids of the inode couldn't have changed since the new
1251 * inode has been locked ever since it was created.
1253 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1255 error = xfs_trans_commit(tp);
1257 goto out_release_inode;
1259 xfs_qm_dqrele(udqp);
1260 xfs_qm_dqrele(gdqp);
1261 xfs_qm_dqrele(pdqp);
1267 xfs_trans_cancel(tp);
1270 * Wait until after the current transaction is aborted to finish the
1271 * setup of the inode and release the inode. This prevents recursive
1272 * transactions and deadlocks from xfs_inactive.
1275 xfs_finish_inode_setup(ip);
1279 xfs_qm_dqrele(udqp);
1280 xfs_qm_dqrele(gdqp);
1281 xfs_qm_dqrele(pdqp);
1283 if (unlock_dp_on_error)
1284 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1290 struct xfs_inode *dp,
1292 struct xfs_inode **ipp)
1294 struct xfs_mount *mp = dp->i_mount;
1295 struct xfs_inode *ip = NULL;
1296 struct xfs_trans *tp = NULL;
1299 struct xfs_dquot *udqp = NULL;
1300 struct xfs_dquot *gdqp = NULL;
1301 struct xfs_dquot *pdqp = NULL;
1302 struct xfs_trans_res *tres;
1305 if (XFS_FORCED_SHUTDOWN(mp))
1308 prid = xfs_get_initial_prid(dp);
1311 * Make sure that we have allocated dquot(s) on disk.
1313 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1314 xfs_kgid_to_gid(current_fsgid()), prid,
1315 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1316 &udqp, &gdqp, &pdqp);
1320 resblks = XFS_IALLOC_SPACE_RES(mp);
1321 tres = &M_RES(mp)->tr_create_tmpfile;
1323 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1325 goto out_release_inode;
1327 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1328 pdqp, resblks, 1, 0);
1330 goto out_trans_cancel;
1332 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1334 goto out_trans_cancel;
1336 if (mp->m_flags & XFS_MOUNT_WSYNC)
1337 xfs_trans_set_sync(tp);
1340 * Attach the dquot(s) to the inodes and modify them incore.
1341 * These ids of the inode couldn't have changed since the new
1342 * inode has been locked ever since it was created.
1344 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1346 error = xfs_iunlink(tp, ip);
1348 goto out_trans_cancel;
1350 error = xfs_trans_commit(tp);
1352 goto out_release_inode;
1354 xfs_qm_dqrele(udqp);
1355 xfs_qm_dqrele(gdqp);
1356 xfs_qm_dqrele(pdqp);
1362 xfs_trans_cancel(tp);
1365 * Wait until after the current transaction is aborted to finish the
1366 * setup of the inode and release the inode. This prevents recursive
1367 * transactions and deadlocks from xfs_inactive.
1370 xfs_finish_inode_setup(ip);
1374 xfs_qm_dqrele(udqp);
1375 xfs_qm_dqrele(gdqp);
1376 xfs_qm_dqrele(pdqp);
1385 struct xfs_name *target_name)
1387 xfs_mount_t *mp = tdp->i_mount;
1392 trace_xfs_link(tdp, target_name);
1394 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1396 if (XFS_FORCED_SHUTDOWN(mp))
1399 error = xfs_qm_dqattach(sip);
1403 error = xfs_qm_dqattach(tdp);
1407 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1408 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1409 if (error == -ENOSPC) {
1411 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1416 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1418 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1419 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1422 * If we are using project inheritance, we only allow hard link
1423 * creation in our tree when the project IDs are the same; else
1424 * the tree quota mechanism could be circumvented.
1426 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1427 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1433 error = xfs_dir_canenter(tp, tdp, target_name);
1439 * Handle initial link state of O_TMPFILE inode
1441 if (VFS_I(sip)->i_nlink == 0) {
1442 error = xfs_iunlink_remove(tp, sip);
1447 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1451 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1452 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1454 xfs_bumplink(tp, sip);
1457 * If this is a synchronous mount, make sure that the
1458 * link transaction goes to disk before returning to
1461 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1462 xfs_trans_set_sync(tp);
1464 return xfs_trans_commit(tp);
1467 xfs_trans_cancel(tp);
1472 /* Clear the reflink flag and the cowblocks tag if possible. */
1474 xfs_itruncate_clear_reflink_flags(
1475 struct xfs_inode *ip)
1477 struct xfs_ifork *dfork;
1478 struct xfs_ifork *cfork;
1480 if (!xfs_is_reflink_inode(ip))
1482 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1483 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1484 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1485 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1486 if (cfork->if_bytes == 0)
1487 xfs_inode_clear_cowblocks_tag(ip);
1491 * Free up the underlying blocks past new_size. The new size must be smaller
1492 * than the current size. This routine can be used both for the attribute and
1493 * data fork, and does not modify the inode size, which is left to the caller.
1495 * The transaction passed to this routine must have made a permanent log
1496 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1497 * given transaction and start new ones, so make sure everything involved in
1498 * the transaction is tidy before calling here. Some transaction will be
1499 * returned to the caller to be committed. The incoming transaction must
1500 * already include the inode, and both inode locks must be held exclusively.
1501 * The inode must also be "held" within the transaction. On return the inode
1502 * will be "held" within the returned transaction. This routine does NOT
1503 * require any disk space to be reserved for it within the transaction.
1505 * If we get an error, we must return with the inode locked and linked into the
1506 * current transaction. This keeps things simple for the higher level code,
1507 * because it always knows that the inode is locked and held in the transaction
1508 * that returns to it whether errors occur or not. We don't mark the inode
1509 * dirty on error so that transactions can be easily aborted if possible.
1512 xfs_itruncate_extents_flags(
1513 struct xfs_trans **tpp,
1514 struct xfs_inode *ip,
1516 xfs_fsize_t new_size,
1519 struct xfs_mount *mp = ip->i_mount;
1520 struct xfs_trans *tp = *tpp;
1521 xfs_fileoff_t first_unmap_block;
1522 xfs_fileoff_t last_block;
1523 xfs_filblks_t unmap_len;
1527 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1528 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1529 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1530 ASSERT(new_size <= XFS_ISIZE(ip));
1531 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1532 ASSERT(ip->i_itemp != NULL);
1533 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1534 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1536 trace_xfs_itruncate_extents_start(ip, new_size);
1538 flags |= xfs_bmapi_aflag(whichfork);
1541 * Since it is possible for space to become allocated beyond
1542 * the end of the file (in a crash where the space is allocated
1543 * but the inode size is not yet updated), simply remove any
1544 * blocks which show up between the new EOF and the maximum
1545 * possible file size. If the first block to be removed is
1546 * beyond the maximum file size (ie it is the same as last_block),
1547 * then there is nothing to do.
1549 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1550 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1551 if (first_unmap_block == last_block)
1554 ASSERT(first_unmap_block < last_block);
1555 unmap_len = last_block - first_unmap_block + 1;
1557 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1558 error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1559 XFS_ITRUNC_MAX_EXTENTS, &done);
1564 * Duplicate the transaction that has the permanent
1565 * reservation and commit the old transaction.
1567 error = xfs_defer_finish(&tp);
1571 error = xfs_trans_roll_inode(&tp, ip);
1576 if (whichfork == XFS_DATA_FORK) {
1577 /* Remove all pending CoW reservations. */
1578 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1579 first_unmap_block, last_block, true);
1583 xfs_itruncate_clear_reflink_flags(ip);
1587 * Always re-log the inode so that our permanent transaction can keep
1588 * on rolling it forward in the log.
1590 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1592 trace_xfs_itruncate_extents_end(ip, new_size);
1603 xfs_mount_t *mp = ip->i_mount;
1606 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1609 /* If this is a read-only mount, don't do this (would generate I/O) */
1610 if (mp->m_flags & XFS_MOUNT_RDONLY)
1613 if (!XFS_FORCED_SHUTDOWN(mp)) {
1617 * If we previously truncated this file and removed old data
1618 * in the process, we want to initiate "early" writeout on
1619 * the last close. This is an attempt to combat the notorious
1620 * NULL files problem which is particularly noticeable from a
1621 * truncate down, buffered (re-)write (delalloc), followed by
1622 * a crash. What we are effectively doing here is
1623 * significantly reducing the time window where we'd otherwise
1624 * be exposed to that problem.
1626 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1628 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1629 if (ip->i_delayed_blks > 0) {
1630 error = filemap_flush(VFS_I(ip)->i_mapping);
1637 if (VFS_I(ip)->i_nlink == 0)
1640 if (xfs_can_free_eofblocks(ip, false)) {
1643 * Check if the inode is being opened, written and closed
1644 * frequently and we have delayed allocation blocks outstanding
1645 * (e.g. streaming writes from the NFS server), truncating the
1646 * blocks past EOF will cause fragmentation to occur.
1648 * In this case don't do the truncation, but we have to be
1649 * careful how we detect this case. Blocks beyond EOF show up as
1650 * i_delayed_blks even when the inode is clean, so we need to
1651 * truncate them away first before checking for a dirty release.
1652 * Hence on the first dirty close we will still remove the
1653 * speculative allocation, but after that we will leave it in
1656 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1659 * If we can't get the iolock just skip truncating the blocks
1660 * past EOF because we could deadlock with the mmap_sem
1661 * otherwise. We'll get another chance to drop them once the
1662 * last reference to the inode is dropped, so we'll never leak
1663 * blocks permanently.
1665 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1666 error = xfs_free_eofblocks(ip);
1667 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1672 /* delalloc blocks after truncation means it really is dirty */
1673 if (ip->i_delayed_blks)
1674 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1680 * xfs_inactive_truncate
1682 * Called to perform a truncate when an inode becomes unlinked.
1685 xfs_inactive_truncate(
1686 struct xfs_inode *ip)
1688 struct xfs_mount *mp = ip->i_mount;
1689 struct xfs_trans *tp;
1692 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1694 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1697 xfs_ilock(ip, XFS_ILOCK_EXCL);
1698 xfs_trans_ijoin(tp, ip, 0);
1701 * Log the inode size first to prevent stale data exposure in the event
1702 * of a system crash before the truncate completes. See the related
1703 * comment in xfs_vn_setattr_size() for details.
1705 ip->i_d.di_size = 0;
1706 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1708 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1710 goto error_trans_cancel;
1712 ASSERT(ip->i_d.di_nextents == 0);
1714 error = xfs_trans_commit(tp);
1718 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1722 xfs_trans_cancel(tp);
1724 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1729 * xfs_inactive_ifree()
1731 * Perform the inode free when an inode is unlinked.
1735 struct xfs_inode *ip)
1737 struct xfs_mount *mp = ip->i_mount;
1738 struct xfs_trans *tp;
1742 * We try to use a per-AG reservation for any block needed by the finobt
1743 * tree, but as the finobt feature predates the per-AG reservation
1744 * support a degraded file system might not have enough space for the
1745 * reservation at mount time. In that case try to dip into the reserved
1748 * Send a warning if the reservation does happen to fail, as the inode
1749 * now remains allocated and sits on the unlinked list until the fs is
1752 if (unlikely(mp->m_finobt_nores)) {
1753 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1754 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1757 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1760 if (error == -ENOSPC) {
1761 xfs_warn_ratelimited(mp,
1762 "Failed to remove inode(s) from unlinked list. "
1763 "Please free space, unmount and run xfs_repair.");
1765 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1770 xfs_ilock(ip, XFS_ILOCK_EXCL);
1771 xfs_trans_ijoin(tp, ip, 0);
1773 error = xfs_ifree(tp, ip);
1776 * If we fail to free the inode, shut down. The cancel
1777 * might do that, we need to make sure. Otherwise the
1778 * inode might be lost for a long time or forever.
1780 if (!XFS_FORCED_SHUTDOWN(mp)) {
1781 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1783 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1785 xfs_trans_cancel(tp);
1786 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1791 * Credit the quota account(s). The inode is gone.
1793 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1796 * Just ignore errors at this point. There is nothing we can do except
1797 * to try to keep going. Make sure it's not a silent error.
1799 error = xfs_trans_commit(tp);
1801 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1804 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1811 * This is called when the vnode reference count for the vnode
1812 * goes to zero. If the file has been unlinked, then it must
1813 * now be truncated. Also, we clear all of the read-ahead state
1814 * kept for the inode here since the file is now closed.
1820 struct xfs_mount *mp;
1825 * If the inode is already free, then there can be nothing
1828 if (VFS_I(ip)->i_mode == 0) {
1829 ASSERT(ip->i_df.if_broot_bytes == 0);
1834 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1836 /* If this is a read-only mount, don't do this (would generate I/O) */
1837 if (mp->m_flags & XFS_MOUNT_RDONLY)
1840 /* Try to clean out the cow blocks if there are any. */
1841 if (xfs_inode_has_cow_data(ip))
1842 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1844 if (VFS_I(ip)->i_nlink != 0) {
1846 * force is true because we are evicting an inode from the
1847 * cache. Post-eof blocks must be freed, lest we end up with
1848 * broken free space accounting.
1850 * Note: don't bother with iolock here since lockdep complains
1851 * about acquiring it in reclaim context. We have the only
1852 * reference to the inode at this point anyways.
1854 if (xfs_can_free_eofblocks(ip, true))
1855 xfs_free_eofblocks(ip);
1860 if (S_ISREG(VFS_I(ip)->i_mode) &&
1861 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1862 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1865 error = xfs_qm_dqattach(ip);
1869 if (S_ISLNK(VFS_I(ip)->i_mode))
1870 error = xfs_inactive_symlink(ip);
1872 error = xfs_inactive_truncate(ip);
1877 * If there are attributes associated with the file then blow them away
1878 * now. The code calls a routine that recursively deconstructs the
1879 * attribute fork. If also blows away the in-core attribute fork.
1881 if (XFS_IFORK_Q(ip)) {
1882 error = xfs_attr_inactive(ip);
1888 ASSERT(ip->i_d.di_anextents == 0);
1889 ASSERT(ip->i_d.di_forkoff == 0);
1894 error = xfs_inactive_ifree(ip);
1899 * Release the dquots held by inode, if any.
1901 xfs_qm_dqdetach(ip);
1905 * In-Core Unlinked List Lookups
1906 * =============================
1908 * Every inode is supposed to be reachable from some other piece of metadata
1909 * with the exception of the root directory. Inodes with a connection to a
1910 * file descriptor but not linked from anywhere in the on-disk directory tree
1911 * are collectively known as unlinked inodes, though the filesystem itself
1912 * maintains links to these inodes so that on-disk metadata are consistent.
1914 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1915 * header contains a number of buckets that point to an inode, and each inode
1916 * record has a pointer to the next inode in the hash chain. This
1917 * singly-linked list causes scaling problems in the iunlink remove function
1918 * because we must walk that list to find the inode that points to the inode
1919 * being removed from the unlinked hash bucket list.
1921 * What if we modelled the unlinked list as a collection of records capturing
1922 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
1923 * have a fast way to look up unlinked list predecessors, which avoids the
1924 * slow list walk. That's exactly what we do here (in-core) with a per-AG
1927 * Because this is a backref cache, we ignore operational failures since the
1928 * iunlink code can fall back to the slow bucket walk. The only errors that
1929 * should bubble out are for obviously incorrect situations.
1931 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1932 * access or have otherwise provided for concurrency control.
1935 /* Capture a "X.next_unlinked = Y" relationship. */
1936 struct xfs_iunlink {
1937 struct rhash_head iu_rhash_head;
1938 xfs_agino_t iu_agino; /* X */
1939 xfs_agino_t iu_next_unlinked; /* Y */
1942 /* Unlinked list predecessor lookup hashtable construction */
1944 xfs_iunlink_obj_cmpfn(
1945 struct rhashtable_compare_arg *arg,
1948 const xfs_agino_t *key = arg->key;
1949 const struct xfs_iunlink *iu = obj;
1951 if (iu->iu_next_unlinked != *key)
1956 static const struct rhashtable_params xfs_iunlink_hash_params = {
1957 .min_size = XFS_AGI_UNLINKED_BUCKETS,
1958 .key_len = sizeof(xfs_agino_t),
1959 .key_offset = offsetof(struct xfs_iunlink,
1961 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
1962 .automatic_shrinking = true,
1963 .obj_cmpfn = xfs_iunlink_obj_cmpfn,
1967 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
1968 * relation is found.
1971 xfs_iunlink_lookup_backref(
1972 struct xfs_perag *pag,
1975 struct xfs_iunlink *iu;
1977 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1978 xfs_iunlink_hash_params);
1979 return iu ? iu->iu_agino : NULLAGINO;
1983 * Take ownership of an iunlink cache entry and insert it into the hash table.
1984 * If successful, the entry will be owned by the cache; if not, it is freed.
1985 * Either way, the caller does not own @iu after this call.
1988 xfs_iunlink_insert_backref(
1989 struct xfs_perag *pag,
1990 struct xfs_iunlink *iu)
1994 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1995 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1997 * Fail loudly if there already was an entry because that's a sign of
1998 * corruption of in-memory data. Also fail loudly if we see an error
1999 * code we didn't anticipate from the rhashtable code. Currently we
2000 * only anticipate ENOMEM.
2003 WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
2007 * Absorb any runtime errors that aren't a result of corruption because
2008 * this is a cache and we can always fall back to bucket list scanning.
2010 if (error != 0 && error != -EEXIST)
2015 /* Remember that @prev_agino.next_unlinked = @this_agino. */
2017 xfs_iunlink_add_backref(
2018 struct xfs_perag *pag,
2019 xfs_agino_t prev_agino,
2020 xfs_agino_t this_agino)
2022 struct xfs_iunlink *iu;
2024 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2027 iu = kmem_zalloc(sizeof(*iu), KM_SLEEP | KM_NOFS);
2028 iu->iu_agino = prev_agino;
2029 iu->iu_next_unlinked = this_agino;
2031 return xfs_iunlink_insert_backref(pag, iu);
2035 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2036 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
2037 * wasn't any such entry then we don't bother.
2040 xfs_iunlink_change_backref(
2041 struct xfs_perag *pag,
2043 xfs_agino_t next_unlinked)
2045 struct xfs_iunlink *iu;
2048 /* Look up the old entry; if there wasn't one then exit. */
2049 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2050 xfs_iunlink_hash_params);
2055 * Remove the entry. This shouldn't ever return an error, but if we
2056 * couldn't remove the old entry we don't want to add it again to the
2057 * hash table, and if the entry disappeared on us then someone's
2058 * violated the locking rules and we need to fail loudly. Either way
2059 * we cannot remove the inode because internal state is or would have
2062 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2063 &iu->iu_rhash_head, xfs_iunlink_hash_params);
2067 /* If there is no new next entry just free our item and return. */
2068 if (next_unlinked == NULLAGINO) {
2073 /* Update the entry and re-add it to the hash table. */
2074 iu->iu_next_unlinked = next_unlinked;
2075 return xfs_iunlink_insert_backref(pag, iu);
2078 /* Set up the in-core predecessor structures. */
2081 struct xfs_perag *pag)
2083 return rhashtable_init(&pag->pagi_unlinked_hash,
2084 &xfs_iunlink_hash_params);
2087 /* Free the in-core predecessor structures. */
2089 xfs_iunlink_free_item(
2093 struct xfs_iunlink *iu = ptr;
2094 bool *freed_anything = arg;
2096 *freed_anything = true;
2101 xfs_iunlink_destroy(
2102 struct xfs_perag *pag)
2104 bool freed_anything = false;
2106 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2107 xfs_iunlink_free_item, &freed_anything);
2109 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2113 * Point the AGI unlinked bucket at an inode and log the results. The caller
2114 * is responsible for validating the old value.
2117 xfs_iunlink_update_bucket(
2118 struct xfs_trans *tp,
2119 xfs_agnumber_t agno,
2120 struct xfs_buf *agibp,
2121 unsigned int bucket_index,
2122 xfs_agino_t new_agino)
2124 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
2125 xfs_agino_t old_value;
2128 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2130 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2131 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2132 old_value, new_agino);
2135 * We should never find the head of the list already set to the value
2136 * passed in because either we're adding or removing ourselves from the
2139 if (old_value == new_agino)
2140 return -EFSCORRUPTED;
2142 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2143 offset = offsetof(struct xfs_agi, agi_unlinked) +
2144 (sizeof(xfs_agino_t) * bucket_index);
2145 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2149 /* Set an on-disk inode's next_unlinked pointer. */
2151 xfs_iunlink_update_dinode(
2152 struct xfs_trans *tp,
2153 xfs_agnumber_t agno,
2155 struct xfs_buf *ibp,
2156 struct xfs_dinode *dip,
2157 struct xfs_imap *imap,
2158 xfs_agino_t next_agino)
2160 struct xfs_mount *mp = tp->t_mountp;
2163 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2165 trace_xfs_iunlink_update_dinode(mp, agno, agino,
2166 be32_to_cpu(dip->di_next_unlinked), next_agino);
2168 dip->di_next_unlinked = cpu_to_be32(next_agino);
2169 offset = imap->im_boffset +
2170 offsetof(struct xfs_dinode, di_next_unlinked);
2172 /* need to recalc the inode CRC if appropriate */
2173 xfs_dinode_calc_crc(mp, dip);
2174 xfs_trans_inode_buf(tp, ibp);
2175 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2176 xfs_inobp_check(mp, ibp);
2179 /* Set an in-core inode's unlinked pointer and return the old value. */
2181 xfs_iunlink_update_inode(
2182 struct xfs_trans *tp,
2183 struct xfs_inode *ip,
2184 xfs_agnumber_t agno,
2185 xfs_agino_t next_agino,
2186 xfs_agino_t *old_next_agino)
2188 struct xfs_mount *mp = tp->t_mountp;
2189 struct xfs_dinode *dip;
2190 struct xfs_buf *ibp;
2191 xfs_agino_t old_value;
2194 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2196 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0);
2200 /* Make sure the old pointer isn't garbage. */
2201 old_value = be32_to_cpu(dip->di_next_unlinked);
2202 if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2203 error = -EFSCORRUPTED;
2208 * Since we're updating a linked list, we should never find that the
2209 * current pointer is the same as the new value, unless we're
2210 * terminating the list.
2212 *old_next_agino = old_value;
2213 if (old_value == next_agino) {
2214 if (next_agino != NULLAGINO)
2215 error = -EFSCORRUPTED;
2219 /* Ok, update the new pointer. */
2220 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2221 ibp, dip, &ip->i_imap, next_agino);
2224 xfs_trans_brelse(tp, ibp);
2229 * This is called when the inode's link count has gone to 0 or we are creating
2230 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
2232 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2233 * list when the inode is freed.
2237 struct xfs_trans *tp,
2238 struct xfs_inode *ip)
2240 struct xfs_mount *mp = tp->t_mountp;
2241 struct xfs_agi *agi;
2242 struct xfs_buf *agibp;
2243 xfs_agino_t next_agino;
2244 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2245 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2246 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2249 ASSERT(VFS_I(ip)->i_nlink == 0);
2250 ASSERT(VFS_I(ip)->i_mode != 0);
2251 trace_xfs_iunlink(ip);
2253 /* Get the agi buffer first. It ensures lock ordering on the list. */
2254 error = xfs_read_agi(mp, tp, agno, &agibp);
2257 agi = XFS_BUF_TO_AGI(agibp);
2260 * Get the index into the agi hash table for the list this inode will
2261 * go on. Make sure the pointer isn't garbage and that this inode
2262 * isn't already on the list.
2264 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2265 if (next_agino == agino ||
2266 !xfs_verify_agino_or_null(mp, agno, next_agino))
2267 return -EFSCORRUPTED;
2269 if (next_agino != NULLAGINO) {
2270 struct xfs_perag *pag;
2271 xfs_agino_t old_agino;
2274 * There is already another inode in the bucket, so point this
2275 * inode to the current head of the list.
2277 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2281 ASSERT(old_agino == NULLAGINO);
2284 * agino has been unlinked, add a backref from the next inode
2287 pag = xfs_perag_get(mp, agno);
2288 error = xfs_iunlink_add_backref(pag, agino, next_agino);
2294 /* Point the head of the list to point to this inode. */
2295 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2298 /* Return the imap, dinode pointer, and buffer for an inode. */
2300 xfs_iunlink_map_ino(
2301 struct xfs_trans *tp,
2302 xfs_agnumber_t agno,
2304 struct xfs_imap *imap,
2305 struct xfs_dinode **dipp,
2306 struct xfs_buf **bpp)
2308 struct xfs_mount *mp = tp->t_mountp;
2312 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2314 xfs_warn(mp, "%s: xfs_imap returned error %d.",
2319 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0);
2321 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2330 * Walk the unlinked chain from @head_agino until we find the inode that
2331 * points to @target_agino. Return the inode number, map, dinode pointer,
2332 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2334 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2335 * @agino, @imap, @dipp, and @bpp are all output parameters.
2337 * Do not call this function if @target_agino is the head of the list.
2340 xfs_iunlink_map_prev(
2341 struct xfs_trans *tp,
2342 xfs_agnumber_t agno,
2343 xfs_agino_t head_agino,
2344 xfs_agino_t target_agino,
2346 struct xfs_imap *imap,
2347 struct xfs_dinode **dipp,
2348 struct xfs_buf **bpp,
2349 struct xfs_perag *pag)
2351 struct xfs_mount *mp = tp->t_mountp;
2352 xfs_agino_t next_agino;
2355 ASSERT(head_agino != target_agino);
2358 /* See if our backref cache can find it faster. */
2359 *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2360 if (*agino != NULLAGINO) {
2361 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2365 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2369 * If we get here the cache contents were corrupt, so drop the
2370 * buffer and fall back to walking the bucket list.
2372 xfs_trans_brelse(tp, *bpp);
2377 trace_xfs_iunlink_map_prev_fallback(mp, agno);
2379 /* Otherwise, walk the entire bucket until we find it. */
2380 next_agino = head_agino;
2381 while (next_agino != target_agino) {
2382 xfs_agino_t unlinked_agino;
2385 xfs_trans_brelse(tp, *bpp);
2387 *agino = next_agino;
2388 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2393 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2395 * Make sure this pointer is valid and isn't an obvious
2398 if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2399 next_agino == unlinked_agino) {
2400 XFS_CORRUPTION_ERROR(__func__,
2401 XFS_ERRLEVEL_LOW, mp,
2402 *dipp, sizeof(**dipp));
2403 error = -EFSCORRUPTED;
2406 next_agino = unlinked_agino;
2413 * Pull the on-disk inode from the AGI unlinked list.
2417 struct xfs_trans *tp,
2418 struct xfs_inode *ip)
2420 struct xfs_mount *mp = tp->t_mountp;
2421 struct xfs_agi *agi;
2422 struct xfs_buf *agibp;
2423 struct xfs_buf *last_ibp;
2424 struct xfs_dinode *last_dip = NULL;
2425 struct xfs_perag *pag = NULL;
2426 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2427 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2428 xfs_agino_t next_agino;
2429 xfs_agino_t head_agino;
2430 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2433 trace_xfs_iunlink_remove(ip);
2435 /* Get the agi buffer first. It ensures lock ordering on the list. */
2436 error = xfs_read_agi(mp, tp, agno, &agibp);
2439 agi = XFS_BUF_TO_AGI(agibp);
2442 * Get the index into the agi hash table for the list this inode will
2443 * go on. Make sure the head pointer isn't garbage.
2445 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2446 if (!xfs_verify_agino(mp, agno, head_agino)) {
2447 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2449 return -EFSCORRUPTED;
2453 * Set our inode's next_unlinked pointer to NULL and then return
2454 * the old pointer value so that we can update whatever was previous
2455 * to us in the list to point to whatever was next in the list.
2457 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2462 * If there was a backref pointing from the next inode back to this
2463 * one, remove it because we've removed this inode from the list.
2465 * Later, if this inode was in the middle of the list we'll update
2466 * this inode's backref to point from the next inode.
2468 if (next_agino != NULLAGINO) {
2469 pag = xfs_perag_get(mp, agno);
2470 error = xfs_iunlink_change_backref(pag, next_agino,
2476 if (head_agino == agino) {
2477 /* Point the head of the list to the next unlinked inode. */
2478 error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2483 struct xfs_imap imap;
2484 xfs_agino_t prev_agino;
2487 pag = xfs_perag_get(mp, agno);
2489 /* We need to search the list for the inode being freed. */
2490 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2491 &prev_agino, &imap, &last_dip, &last_ibp,
2496 /* Point the previous inode on the list to the next inode. */
2497 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2498 last_dip, &imap, next_agino);
2501 * Now we deal with the backref for this inode. If this inode
2502 * pointed at a real inode, change the backref that pointed to
2503 * us to point to our old next. If this inode was the end of
2504 * the list, delete the backref that pointed to us. Note that
2505 * change_backref takes care of deleting the backref if
2506 * next_agino is NULLAGINO.
2508 error = xfs_iunlink_change_backref(pag, agino, next_agino);
2520 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2521 * inodes that are in memory - they all must be marked stale and attached to
2522 * the cluster buffer.
2526 xfs_inode_t *free_ip,
2528 struct xfs_icluster *xic)
2530 xfs_mount_t *mp = free_ip->i_mount;
2537 xfs_inode_log_item_t *iip;
2538 struct xfs_log_item *lip;
2539 struct xfs_perag *pag;
2542 inum = xic->first_ino;
2543 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2544 nbufs = mp->m_ialloc_blks / mp->m_blocks_per_cluster;
2546 for (j = 0; j < nbufs; j++, inum += mp->m_inodes_per_cluster) {
2548 * The allocation bitmap tells us which inodes of the chunk were
2549 * physically allocated. Skip the cluster if an inode falls into
2552 ioffset = inum - xic->first_ino;
2553 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2554 ASSERT(ioffset % mp->m_inodes_per_cluster == 0);
2558 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2559 XFS_INO_TO_AGBNO(mp, inum));
2562 * We obtain and lock the backing buffer first in the process
2563 * here, as we have to ensure that any dirty inode that we
2564 * can't get the flush lock on is attached to the buffer.
2565 * If we scan the in-memory inodes first, then buffer IO can
2566 * complete before we get a lock on it, and hence we may fail
2567 * to mark all the active inodes on the buffer stale.
2569 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2570 mp->m_bsize * mp->m_blocks_per_cluster,
2577 * This buffer may not have been correctly initialised as we
2578 * didn't read it from disk. That's not important because we are
2579 * only using to mark the buffer as stale in the log, and to
2580 * attach stale cached inodes on it. That means it will never be
2581 * dispatched for IO. If it is, we want to know about it, and we
2582 * want it to fail. We can acheive this by adding a write
2583 * verifier to the buffer.
2585 bp->b_ops = &xfs_inode_buf_ops;
2588 * Walk the inodes already attached to the buffer and mark them
2589 * stale. These will all have the flush locks held, so an
2590 * in-memory inode walk can't lock them. By marking them all
2591 * stale first, we will not attempt to lock them in the loop
2592 * below as the XFS_ISTALE flag will be set.
2594 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2595 if (lip->li_type == XFS_LI_INODE) {
2596 iip = (xfs_inode_log_item_t *)lip;
2597 ASSERT(iip->ili_logged == 1);
2598 lip->li_cb = xfs_istale_done;
2599 xfs_trans_ail_copy_lsn(mp->m_ail,
2600 &iip->ili_flush_lsn,
2601 &iip->ili_item.li_lsn);
2602 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2608 * For each inode in memory attempt to add it to the inode
2609 * buffer and set it up for being staled on buffer IO
2610 * completion. This is safe as we've locked out tail pushing
2611 * and flushing by locking the buffer.
2613 * We have already marked every inode that was part of a
2614 * transaction stale above, which means there is no point in
2615 * even trying to lock them.
2617 for (i = 0; i < mp->m_inodes_per_cluster; i++) {
2620 ip = radix_tree_lookup(&pag->pag_ici_root,
2621 XFS_INO_TO_AGINO(mp, (inum + i)));
2623 /* Inode not in memory, nothing to do */
2630 * because this is an RCU protected lookup, we could
2631 * find a recently freed or even reallocated inode
2632 * during the lookup. We need to check under the
2633 * i_flags_lock for a valid inode here. Skip it if it
2634 * is not valid, the wrong inode or stale.
2636 spin_lock(&ip->i_flags_lock);
2637 if (ip->i_ino != inum + i ||
2638 __xfs_iflags_test(ip, XFS_ISTALE)) {
2639 spin_unlock(&ip->i_flags_lock);
2643 spin_unlock(&ip->i_flags_lock);
2646 * Don't try to lock/unlock the current inode, but we
2647 * _cannot_ skip the other inodes that we did not find
2648 * in the list attached to the buffer and are not
2649 * already marked stale. If we can't lock it, back off
2652 if (ip != free_ip) {
2653 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2660 * Check the inode number again in case we're
2661 * racing with freeing in xfs_reclaim_inode().
2662 * See the comments in that function for more
2663 * information as to why the initial check is
2666 if (ip->i_ino != inum + i) {
2667 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2675 xfs_iflags_set(ip, XFS_ISTALE);
2678 * we don't need to attach clean inodes or those only
2679 * with unlogged changes (which we throw away, anyway).
2682 if (!iip || xfs_inode_clean(ip)) {
2683 ASSERT(ip != free_ip);
2685 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2689 iip->ili_last_fields = iip->ili_fields;
2690 iip->ili_fields = 0;
2691 iip->ili_fsync_fields = 0;
2692 iip->ili_logged = 1;
2693 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2694 &iip->ili_item.li_lsn);
2696 xfs_buf_attach_iodone(bp, xfs_istale_done,
2700 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2703 xfs_trans_stale_inode_buf(tp, bp);
2704 xfs_trans_binval(tp, bp);
2712 * Free any local-format buffers sitting around before we reset to
2716 xfs_ifree_local_data(
2717 struct xfs_inode *ip,
2720 struct xfs_ifork *ifp;
2722 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2725 ifp = XFS_IFORK_PTR(ip, whichfork);
2726 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2730 * This is called to return an inode to the inode free list.
2731 * The inode should already be truncated to 0 length and have
2732 * no pages associated with it. This routine also assumes that
2733 * the inode is already a part of the transaction.
2735 * The on-disk copy of the inode will have been added to the list
2736 * of unlinked inodes in the AGI. We need to remove the inode from
2737 * that list atomically with respect to freeing it here.
2741 struct xfs_trans *tp,
2742 struct xfs_inode *ip)
2745 struct xfs_icluster xic = { 0 };
2747 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2748 ASSERT(VFS_I(ip)->i_nlink == 0);
2749 ASSERT(ip->i_d.di_nextents == 0);
2750 ASSERT(ip->i_d.di_anextents == 0);
2751 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2752 ASSERT(ip->i_d.di_nblocks == 0);
2755 * Pull the on-disk inode from the AGI unlinked list.
2757 error = xfs_iunlink_remove(tp, ip);
2761 error = xfs_difree(tp, ip->i_ino, &xic);
2765 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2766 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2768 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2769 ip->i_d.di_flags = 0;
2770 ip->i_d.di_flags2 = 0;
2771 ip->i_d.di_dmevmask = 0;
2772 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2773 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2774 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2776 /* Don't attempt to replay owner changes for a deleted inode */
2777 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2780 * Bump the generation count so no one will be confused
2781 * by reincarnations of this inode.
2783 VFS_I(ip)->i_generation++;
2784 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2787 error = xfs_ifree_cluster(ip, tp, &xic);
2793 * This is called to unpin an inode. The caller must have the inode locked
2794 * in at least shared mode so that the buffer cannot be subsequently pinned
2795 * once someone is waiting for it to be unpinned.
2799 struct xfs_inode *ip)
2801 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2803 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2805 /* Give the log a push to start the unpinning I/O */
2806 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2812 struct xfs_inode *ip)
2814 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2815 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2820 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2821 if (xfs_ipincount(ip))
2823 } while (xfs_ipincount(ip));
2824 finish_wait(wq, &wait.wq_entry);
2829 struct xfs_inode *ip)
2831 if (xfs_ipincount(ip))
2832 __xfs_iunpin_wait(ip);
2836 * Removing an inode from the namespace involves removing the directory entry
2837 * and dropping the link count on the inode. Removing the directory entry can
2838 * result in locking an AGF (directory blocks were freed) and removing a link
2839 * count can result in placing the inode on an unlinked list which results in
2842 * The big problem here is that we have an ordering constraint on AGF and AGI
2843 * locking - inode allocation locks the AGI, then can allocate a new extent for
2844 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2845 * removes the inode from the unlinked list, requiring that we lock the AGI
2846 * first, and then freeing the inode can result in an inode chunk being freed
2847 * and hence freeing disk space requiring that we lock an AGF.
2849 * Hence the ordering that is imposed by other parts of the code is AGI before
2850 * AGF. This means we cannot remove the directory entry before we drop the inode
2851 * reference count and put it on the unlinked list as this results in a lock
2852 * order of AGF then AGI, and this can deadlock against inode allocation and
2853 * freeing. Therefore we must drop the link counts before we remove the
2856 * This is still safe from a transactional point of view - it is not until we
2857 * get to xfs_defer_finish() that we have the possibility of multiple
2858 * transactions in this operation. Hence as long as we remove the directory
2859 * entry and drop the link count in the first transaction of the remove
2860 * operation, there are no transactional constraints on the ordering here.
2865 struct xfs_name *name,
2868 xfs_mount_t *mp = dp->i_mount;
2869 xfs_trans_t *tp = NULL;
2870 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2874 trace_xfs_remove(dp, name);
2876 if (XFS_FORCED_SHUTDOWN(mp))
2879 error = xfs_qm_dqattach(dp);
2883 error = xfs_qm_dqattach(ip);
2888 * We try to get the real space reservation first,
2889 * allowing for directory btree deletion(s) implying
2890 * possible bmap insert(s). If we can't get the space
2891 * reservation then we use 0 instead, and avoid the bmap
2892 * btree insert(s) in the directory code by, if the bmap
2893 * insert tries to happen, instead trimming the LAST
2894 * block from the directory.
2896 resblks = XFS_REMOVE_SPACE_RES(mp);
2897 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2898 if (error == -ENOSPC) {
2900 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2904 ASSERT(error != -ENOSPC);
2908 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2910 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2911 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2914 * If we're removing a directory perform some additional validation.
2917 ASSERT(VFS_I(ip)->i_nlink >= 2);
2918 if (VFS_I(ip)->i_nlink != 2) {
2920 goto out_trans_cancel;
2922 if (!xfs_dir_isempty(ip)) {
2924 goto out_trans_cancel;
2927 /* Drop the link from ip's "..". */
2928 error = xfs_droplink(tp, dp);
2930 goto out_trans_cancel;
2932 /* Drop the "." link from ip to self. */
2933 error = xfs_droplink(tp, ip);
2935 goto out_trans_cancel;
2938 * When removing a non-directory we need to log the parent
2939 * inode here. For a directory this is done implicitly
2940 * by the xfs_droplink call for the ".." entry.
2942 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2944 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2946 /* Drop the link from dp to ip. */
2947 error = xfs_droplink(tp, ip);
2949 goto out_trans_cancel;
2951 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2953 ASSERT(error != -ENOENT);
2954 goto out_trans_cancel;
2958 * If this is a synchronous mount, make sure that the
2959 * remove transaction goes to disk before returning to
2962 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2963 xfs_trans_set_sync(tp);
2965 error = xfs_trans_commit(tp);
2969 if (is_dir && xfs_inode_is_filestream(ip))
2970 xfs_filestream_deassociate(ip);
2975 xfs_trans_cancel(tp);
2981 * Enter all inodes for a rename transaction into a sorted array.
2983 #define __XFS_SORT_INODES 5
2985 xfs_sort_for_rename(
2986 struct xfs_inode *dp1, /* in: old (source) directory inode */
2987 struct xfs_inode *dp2, /* in: new (target) directory inode */
2988 struct xfs_inode *ip1, /* in: inode of old entry */
2989 struct xfs_inode *ip2, /* in: inode of new entry */
2990 struct xfs_inode *wip, /* in: whiteout inode */
2991 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2992 int *num_inodes) /* in/out: inodes in array */
2996 ASSERT(*num_inodes == __XFS_SORT_INODES);
2997 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
3000 * i_tab contains a list of pointers to inodes. We initialize
3001 * the table here & we'll sort it. We will then use it to
3002 * order the acquisition of the inode locks.
3004 * Note that the table may contain duplicates. e.g., dp1 == dp2.
3017 * Sort the elements via bubble sort. (Remember, there are at
3018 * most 5 elements to sort, so this is adequate.)
3020 for (i = 0; i < *num_inodes; i++) {
3021 for (j = 1; j < *num_inodes; j++) {
3022 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
3023 struct xfs_inode *temp = i_tab[j];
3024 i_tab[j] = i_tab[j-1];
3033 struct xfs_trans *tp)
3036 * If this is a synchronous mount, make sure that the rename transaction
3037 * goes to disk before returning to the user.
3039 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3040 xfs_trans_set_sync(tp);
3042 return xfs_trans_commit(tp);
3046 * xfs_cross_rename()
3048 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3052 struct xfs_trans *tp,
3053 struct xfs_inode *dp1,
3054 struct xfs_name *name1,
3055 struct xfs_inode *ip1,
3056 struct xfs_inode *dp2,
3057 struct xfs_name *name2,
3058 struct xfs_inode *ip2,
3066 /* Swap inode number for dirent in first parent */
3067 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3069 goto out_trans_abort;
3071 /* Swap inode number for dirent in second parent */
3072 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3074 goto out_trans_abort;
3077 * If we're renaming one or more directories across different parents,
3078 * update the respective ".." entries (and link counts) to match the new
3082 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3084 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3085 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3086 dp1->i_ino, spaceres);
3088 goto out_trans_abort;
3090 /* transfer ip2 ".." reference to dp1 */
3091 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3092 error = xfs_droplink(tp, dp2);
3094 goto out_trans_abort;
3095 xfs_bumplink(tp, dp1);
3099 * Although ip1 isn't changed here, userspace needs
3100 * to be warned about the change, so that applications
3101 * relying on it (like backup ones), will properly
3104 ip1_flags |= XFS_ICHGTIME_CHG;
3105 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3108 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3109 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3110 dp2->i_ino, spaceres);
3112 goto out_trans_abort;
3114 /* transfer ip1 ".." reference to dp2 */
3115 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3116 error = xfs_droplink(tp, dp1);
3118 goto out_trans_abort;
3119 xfs_bumplink(tp, dp2);
3123 * Although ip2 isn't changed here, userspace needs
3124 * to be warned about the change, so that applications
3125 * relying on it (like backup ones), will properly
3128 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3129 ip2_flags |= XFS_ICHGTIME_CHG;
3134 xfs_trans_ichgtime(tp, ip1, ip1_flags);
3135 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3138 xfs_trans_ichgtime(tp, ip2, ip2_flags);
3139 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3142 xfs_trans_ichgtime(tp, dp2, dp2_flags);
3143 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3145 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3146 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3147 return xfs_finish_rename(tp);
3150 xfs_trans_cancel(tp);
3155 * xfs_rename_alloc_whiteout()
3157 * Return a referenced, unlinked, unlocked inode that that can be used as a
3158 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3159 * crash between allocating the inode and linking it into the rename transaction
3160 * recovery will free the inode and we won't leak it.
3163 xfs_rename_alloc_whiteout(
3164 struct xfs_inode *dp,
3165 struct xfs_inode **wip)
3167 struct xfs_inode *tmpfile;
3170 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3175 * Prepare the tmpfile inode as if it were created through the VFS.
3176 * Complete the inode setup and flag it as linkable. nlink is already
3177 * zero, so we can skip the drop_nlink.
3179 xfs_setup_iops(tmpfile);
3180 xfs_finish_inode_setup(tmpfile);
3181 VFS_I(tmpfile)->i_state |= I_LINKABLE;
3192 struct xfs_inode *src_dp,
3193 struct xfs_name *src_name,
3194 struct xfs_inode *src_ip,
3195 struct xfs_inode *target_dp,
3196 struct xfs_name *target_name,
3197 struct xfs_inode *target_ip,
3200 struct xfs_mount *mp = src_dp->i_mount;
3201 struct xfs_trans *tp;
3202 struct xfs_inode *wip = NULL; /* whiteout inode */
3203 struct xfs_inode *inodes[__XFS_SORT_INODES];
3204 int num_inodes = __XFS_SORT_INODES;
3205 bool new_parent = (src_dp != target_dp);
3206 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3210 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3212 if ((flags & RENAME_EXCHANGE) && !target_ip)
3216 * If we are doing a whiteout operation, allocate the whiteout inode
3217 * we will be placing at the target and ensure the type is set
3220 if (flags & RENAME_WHITEOUT) {
3221 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3222 error = xfs_rename_alloc_whiteout(target_dp, &wip);
3226 /* setup target dirent info as whiteout */
3227 src_name->type = XFS_DIR3_FT_CHRDEV;
3230 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3231 inodes, &num_inodes);
3233 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3234 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3235 if (error == -ENOSPC) {
3237 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3241 goto out_release_wip;
3244 * Attach the dquots to the inodes
3246 error = xfs_qm_vop_rename_dqattach(inodes);
3248 goto out_trans_cancel;
3251 * Lock all the participating inodes. Depending upon whether
3252 * the target_name exists in the target directory, and
3253 * whether the target directory is the same as the source
3254 * directory, we can lock from 2 to 4 inodes.
3256 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3259 * Join all the inodes to the transaction. From this point on,
3260 * we can rely on either trans_commit or trans_cancel to unlock
3263 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3265 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3266 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3268 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3270 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3273 * If we are using project inheritance, we only allow renames
3274 * into our tree when the project IDs are the same; else the
3275 * tree quota mechanism would be circumvented.
3277 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3278 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3280 goto out_trans_cancel;
3283 /* RENAME_EXCHANGE is unique from here on. */
3284 if (flags & RENAME_EXCHANGE)
3285 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3286 target_dp, target_name, target_ip,
3290 * Set up the target.
3292 if (target_ip == NULL) {
3294 * If there's no space reservation, check the entry will
3295 * fit before actually inserting it.
3298 error = xfs_dir_canenter(tp, target_dp, target_name);
3300 goto out_trans_cancel;
3303 * If target does not exist and the rename crosses
3304 * directories, adjust the target directory link count
3305 * to account for the ".." reference from the new entry.
3307 error = xfs_dir_createname(tp, target_dp, target_name,
3308 src_ip->i_ino, spaceres);
3310 goto out_trans_cancel;
3312 xfs_trans_ichgtime(tp, target_dp,
3313 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3315 if (new_parent && src_is_directory) {
3316 xfs_bumplink(tp, target_dp);
3318 } else { /* target_ip != NULL */
3320 * If target exists and it's a directory, check that both
3321 * target and source are directories and that target can be
3322 * destroyed, or that neither is a directory.
3324 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3326 * Make sure target dir is empty.
3328 if (!(xfs_dir_isempty(target_ip)) ||
3329 (VFS_I(target_ip)->i_nlink > 2)) {
3331 goto out_trans_cancel;
3336 * Link the source inode under the target name.
3337 * If the source inode is a directory and we are moving
3338 * it across directories, its ".." entry will be
3339 * inconsistent until we replace that down below.
3341 * In case there is already an entry with the same
3342 * name at the destination directory, remove it first.
3344 error = xfs_dir_replace(tp, target_dp, target_name,
3345 src_ip->i_ino, spaceres);
3347 goto out_trans_cancel;
3349 xfs_trans_ichgtime(tp, target_dp,
3350 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3353 * Decrement the link count on the target since the target
3354 * dir no longer points to it.
3356 error = xfs_droplink(tp, target_ip);
3358 goto out_trans_cancel;
3360 if (src_is_directory) {
3362 * Drop the link from the old "." entry.
3364 error = xfs_droplink(tp, target_ip);
3366 goto out_trans_cancel;
3368 } /* target_ip != NULL */
3371 * Remove the source.
3373 if (new_parent && src_is_directory) {
3375 * Rewrite the ".." entry to point to the new
3378 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3379 target_dp->i_ino, spaceres);
3380 ASSERT(error != -EEXIST);
3382 goto out_trans_cancel;
3386 * We always want to hit the ctime on the source inode.
3388 * This isn't strictly required by the standards since the source
3389 * inode isn't really being changed, but old unix file systems did
3390 * it and some incremental backup programs won't work without it.
3392 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3393 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3396 * Adjust the link count on src_dp. This is necessary when
3397 * renaming a directory, either within one parent when
3398 * the target existed, or across two parent directories.
3400 if (src_is_directory && (new_parent || target_ip != NULL)) {
3403 * Decrement link count on src_directory since the
3404 * entry that's moved no longer points to it.
3406 error = xfs_droplink(tp, src_dp);
3408 goto out_trans_cancel;
3412 * For whiteouts, we only need to update the source dirent with the
3413 * inode number of the whiteout inode rather than removing it
3417 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3420 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3423 goto out_trans_cancel;
3426 * For whiteouts, we need to bump the link count on the whiteout inode.
3427 * This means that failures all the way up to this point leave the inode
3428 * on the unlinked list and so cleanup is a simple matter of dropping
3429 * the remaining reference to it. If we fail here after bumping the link
3430 * count, we're shutting down the filesystem so we'll never see the
3431 * intermediate state on disk.
3434 ASSERT(VFS_I(wip)->i_nlink == 0);
3435 xfs_bumplink(tp, wip);
3436 error = xfs_iunlink_remove(tp, wip);
3438 goto out_trans_cancel;
3439 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3442 * Now we have a real link, clear the "I'm a tmpfile" state
3443 * flag from the inode so it doesn't accidentally get misused in
3446 VFS_I(wip)->i_state &= ~I_LINKABLE;
3449 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3450 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3452 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3454 error = xfs_finish_rename(tp);
3460 xfs_trans_cancel(tp);
3469 struct xfs_inode *ip,
3472 struct xfs_mount *mp = ip->i_mount;
3473 struct xfs_perag *pag;
3474 unsigned long first_index, mask;
3475 unsigned long inodes_per_cluster;
3477 struct xfs_inode **cilist;
3478 struct xfs_inode *cip;
3483 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3485 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3486 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3487 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3491 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3492 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3494 /* really need a gang lookup range call here */
3495 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3496 first_index, inodes_per_cluster);
3500 for (i = 0; i < nr_found; i++) {
3506 * because this is an RCU protected lookup, we could find a
3507 * recently freed or even reallocated inode during the lookup.
3508 * We need to check under the i_flags_lock for a valid inode
3509 * here. Skip it if it is not valid or the wrong inode.
3511 spin_lock(&cip->i_flags_lock);
3513 __xfs_iflags_test(cip, XFS_ISTALE)) {
3514 spin_unlock(&cip->i_flags_lock);
3519 * Once we fall off the end of the cluster, no point checking
3520 * any more inodes in the list because they will also all be
3521 * outside the cluster.
3523 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3524 spin_unlock(&cip->i_flags_lock);
3527 spin_unlock(&cip->i_flags_lock);
3530 * Do an un-protected check to see if the inode is dirty and
3531 * is a candidate for flushing. These checks will be repeated
3532 * later after the appropriate locks are acquired.
3534 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3538 * Try to get locks. If any are unavailable or it is pinned,
3539 * then this inode cannot be flushed and is skipped.
3542 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3544 if (!xfs_iflock_nowait(cip)) {
3545 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3548 if (xfs_ipincount(cip)) {
3550 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3556 * Check the inode number again, just to be certain we are not
3557 * racing with freeing in xfs_reclaim_inode(). See the comments
3558 * in that function for more information as to why the initial
3559 * check is not sufficient.
3563 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3568 * arriving here means that this inode can be flushed. First
3569 * re-check that it's dirty before flushing.
3571 if (!xfs_inode_clean(cip)) {
3573 error = xfs_iflush_int(cip, bp);
3575 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3576 goto cluster_corrupt_out;
3582 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3586 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3587 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3598 cluster_corrupt_out:
3600 * Corruption detected in the clustering loop. Invalidate the
3601 * inode buffer and shut down the filesystem.
3606 * We'll always have an inode attached to the buffer for completion
3607 * process by the time we are called from xfs_iflush(). Hence we have
3608 * always need to do IO completion processing to abort the inodes
3609 * attached to the buffer. handle them just like the shutdown case in
3612 ASSERT(bp->b_iodone);
3613 bp->b_flags |= XBF_ASYNC;
3614 bp->b_flags &= ~XBF_DONE;
3616 xfs_buf_ioerror(bp, -EIO);
3619 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3621 /* abort the corrupt inode, as it was not attached to the buffer */
3622 xfs_iflush_abort(cip, false);
3625 return -EFSCORRUPTED;
3629 * Flush dirty inode metadata into the backing buffer.
3631 * The caller must have the inode lock and the inode flush lock held. The
3632 * inode lock will still be held upon return to the caller, and the inode
3633 * flush lock will be released after the inode has reached the disk.
3635 * The caller must write out the buffer returned in *bpp and release it.
3639 struct xfs_inode *ip,
3640 struct xfs_buf **bpp)
3642 struct xfs_mount *mp = ip->i_mount;
3643 struct xfs_buf *bp = NULL;
3644 struct xfs_dinode *dip;
3647 XFS_STATS_INC(mp, xs_iflush_count);
3649 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3650 ASSERT(xfs_isiflocked(ip));
3651 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3652 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3656 xfs_iunpin_wait(ip);
3659 * For stale inodes we cannot rely on the backing buffer remaining
3660 * stale in cache for the remaining life of the stale inode and so
3661 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3662 * inodes below. We have to check this after ensuring the inode is
3663 * unpinned so that it is safe to reclaim the stale inode after the
3666 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3672 * This may have been unpinned because the filesystem is shutting
3673 * down forcibly. If that's the case we must not write this inode
3674 * to disk, because the log record didn't make it to disk.
3676 * We also have to remove the log item from the AIL in this case,
3677 * as we wait for an empty AIL as part of the unmount process.
3679 if (XFS_FORCED_SHUTDOWN(mp)) {
3685 * Get the buffer containing the on-disk inode. We are doing a try-lock
3686 * operation here, so we may get an EAGAIN error. In that case, we
3687 * simply want to return with the inode still dirty.
3689 * If we get any other error, we effectively have a corruption situation
3690 * and we cannot flush the inode, so we treat it the same as failing
3693 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3695 if (error == -EAGAIN) {
3703 * First flush out the inode that xfs_iflush was called with.
3705 error = xfs_iflush_int(ip, bp);
3710 * If the buffer is pinned then push on the log now so we won't
3711 * get stuck waiting in the write for too long.
3713 if (xfs_buf_ispinned(bp))
3714 xfs_log_force(mp, 0);
3717 * inode clustering: try to gather other inodes into this write
3719 * Note: Any error during clustering will result in the filesystem
3720 * being shut down and completion callbacks run on the cluster buffer.
3721 * As we have already flushed and attached this inode to the buffer,
3722 * it has already been aborted and released by xfs_iflush_cluster() and
3723 * so we have no further error handling to do here.
3725 error = xfs_iflush_cluster(ip, bp);
3735 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3737 /* abort the corrupt inode, as it was not attached to the buffer */
3738 xfs_iflush_abort(ip, false);
3743 * If there are inline format data / attr forks attached to this inode,
3744 * make sure they're not corrupt.
3747 xfs_inode_verify_forks(
3748 struct xfs_inode *ip)
3750 struct xfs_ifork *ifp;
3753 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3755 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3756 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3757 ifp->if_u1.if_data, ifp->if_bytes, fa);
3761 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3763 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3764 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3765 ifp ? ifp->if_u1.if_data : NULL,
3766 ifp ? ifp->if_bytes : 0, fa);
3774 struct xfs_inode *ip,
3777 struct xfs_inode_log_item *iip = ip->i_itemp;
3778 struct xfs_dinode *dip;
3779 struct xfs_mount *mp = ip->i_mount;
3781 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3782 ASSERT(xfs_isiflocked(ip));
3783 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3784 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3785 ASSERT(iip != NULL && iip->ili_fields != 0);
3786 ASSERT(ip->i_d.di_version > 1);
3788 /* set *dip = inode's place in the buffer */
3789 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3791 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3792 mp, XFS_ERRTAG_IFLUSH_1)) {
3793 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3794 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3795 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3798 if (S_ISREG(VFS_I(ip)->i_mode)) {
3800 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3801 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3802 mp, XFS_ERRTAG_IFLUSH_3)) {
3803 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3804 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3805 __func__, ip->i_ino, ip);
3808 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3810 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3811 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3812 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3813 mp, XFS_ERRTAG_IFLUSH_4)) {
3814 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3815 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3816 __func__, ip->i_ino, ip);
3820 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3821 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3822 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3823 "%s: detected corrupt incore inode %Lu, "
3824 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3825 __func__, ip->i_ino,
3826 ip->i_d.di_nextents + ip->i_d.di_anextents,
3827 ip->i_d.di_nblocks, ip);
3830 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3831 mp, XFS_ERRTAG_IFLUSH_6)) {
3832 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3833 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3834 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3839 * Inode item log recovery for v2 inodes are dependent on the
3840 * di_flushiter count for correct sequencing. We bump the flush
3841 * iteration count so we can detect flushes which postdate a log record
3842 * during recovery. This is redundant as we now log every change and
3843 * hence this can't happen but we need to still do it to ensure
3844 * backwards compatibility with old kernels that predate logging all
3847 if (ip->i_d.di_version < 3)
3848 ip->i_d.di_flushiter++;
3850 /* Check the inline fork data before we write out. */
3851 if (!xfs_inode_verify_forks(ip))
3855 * Copy the dirty parts of the inode into the on-disk inode. We always
3856 * copy out the core of the inode, because if the inode is dirty at all
3859 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3861 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3862 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3863 ip->i_d.di_flushiter = 0;
3865 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3866 if (XFS_IFORK_Q(ip))
3867 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3868 xfs_inobp_check(mp, bp);
3871 * We've recorded everything logged in the inode, so we'd like to clear
3872 * the ili_fields bits so we don't log and flush things unnecessarily.
3873 * However, we can't stop logging all this information until the data
3874 * we've copied into the disk buffer is written to disk. If we did we
3875 * might overwrite the copy of the inode in the log with all the data
3876 * after re-logging only part of it, and in the face of a crash we
3877 * wouldn't have all the data we need to recover.
3879 * What we do is move the bits to the ili_last_fields field. When
3880 * logging the inode, these bits are moved back to the ili_fields field.
3881 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3882 * know that the information those bits represent is permanently on
3883 * disk. As long as the flush completes before the inode is logged
3884 * again, then both ili_fields and ili_last_fields will be cleared.
3886 * We can play with the ili_fields bits here, because the inode lock
3887 * must be held exclusively in order to set bits there and the flush
3888 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3889 * done routine can tell whether or not to look in the AIL. Also, store
3890 * the current LSN of the inode so that we can tell whether the item has
3891 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3892 * need the AIL lock, because it is a 64 bit value that cannot be read
3895 iip->ili_last_fields = iip->ili_fields;
3896 iip->ili_fields = 0;
3897 iip->ili_fsync_fields = 0;
3898 iip->ili_logged = 1;
3900 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3901 &iip->ili_item.li_lsn);
3904 * Attach the function xfs_iflush_done to the inode's
3905 * buffer. This will remove the inode from the AIL
3906 * and unlock the inode's flush lock when the inode is
3907 * completely written to disk.
3909 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3911 /* generate the checksum. */
3912 xfs_dinode_calc_crc(mp, dip);
3914 ASSERT(!list_empty(&bp->b_li_list));
3915 ASSERT(bp->b_iodone != NULL);
3919 return -EFSCORRUPTED;
3922 /* Release an inode. */
3925 struct xfs_inode *ip)
3927 trace_xfs_irele(ip, _RET_IP_);