1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
27 #include <linux/iversion.h>
29 /* Radix tree tags for incore inode tree. */
31 /* inode is to be reclaimed */
32 #define XFS_ICI_RECLAIM_TAG 0
33 /* Inode has speculative preallocations (posteof or cow) to clean. */
34 #define XFS_ICI_BLOCKGC_TAG 1
37 * The goal for walking incore inodes. These can correspond with incore inode
38 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace.
40 enum xfs_icwalk_goal {
41 /* Goals that are not related to tags; these must be < 0. */
42 XFS_ICWALK_DQRELE = -1,
44 /* Goals directly associated with tagged inodes. */
45 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG,
46 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG,
49 #define XFS_ICWALK_NULL_TAG (-1U)
51 /* Compute the inode radix tree tag for this goal. */
52 static inline unsigned int
53 xfs_icwalk_tag(enum xfs_icwalk_goal goal)
55 return goal < 0 ? XFS_ICWALK_NULL_TAG : goal;
58 static int xfs_icwalk(struct xfs_mount *mp,
59 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
60 static int xfs_icwalk_ag(struct xfs_perag *pag,
61 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
64 * Private inode cache walk flags for struct xfs_icwalk. Must not
65 * coincide with XFS_ICWALK_FLAGS_VALID.
67 #define XFS_ICWALK_FLAG_DROP_UDQUOT (1U << 31)
68 #define XFS_ICWALK_FLAG_DROP_GDQUOT (1U << 30)
69 #define XFS_ICWALK_FLAG_DROP_PDQUOT (1U << 29)
71 /* Stop scanning after icw_scan_limit inodes. */
72 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28)
74 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27)
75 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */
77 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_DROP_UDQUOT | \
78 XFS_ICWALK_FLAG_DROP_GDQUOT | \
79 XFS_ICWALK_FLAG_DROP_PDQUOT | \
80 XFS_ICWALK_FLAG_SCAN_LIMIT | \
81 XFS_ICWALK_FLAG_RECLAIM_SICK | \
82 XFS_ICWALK_FLAG_UNION)
85 * Allocate and initialise an xfs_inode.
95 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
96 * and return NULL here on ENOMEM.
98 ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL);
100 if (inode_init_always(mp->m_super, VFS_I(ip))) {
101 kmem_cache_free(xfs_inode_zone, ip);
105 /* VFS doesn't initialise i_mode! */
106 VFS_I(ip)->i_mode = 0;
108 XFS_STATS_INC(mp, vn_active);
109 ASSERT(atomic_read(&ip->i_pincount) == 0);
110 ASSERT(ip->i_ino == 0);
112 /* initialise the xfs inode */
115 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
118 memset(&ip->i_df, 0, sizeof(ip->i_df));
120 ip->i_delayed_blks = 0;
121 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
126 INIT_WORK(&ip->i_ioend_work, xfs_end_io);
127 INIT_LIST_HEAD(&ip->i_ioend_list);
128 spin_lock_init(&ip->i_ioend_lock);
134 xfs_inode_free_callback(
135 struct rcu_head *head)
137 struct inode *inode = container_of(head, struct inode, i_rcu);
138 struct xfs_inode *ip = XFS_I(inode);
140 switch (VFS_I(ip)->i_mode & S_IFMT) {
144 xfs_idestroy_fork(&ip->i_df);
149 xfs_idestroy_fork(ip->i_afp);
150 kmem_cache_free(xfs_ifork_zone, ip->i_afp);
153 xfs_idestroy_fork(ip->i_cowfp);
154 kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
157 ASSERT(!test_bit(XFS_LI_IN_AIL,
158 &ip->i_itemp->ili_item.li_flags));
159 xfs_inode_item_destroy(ip);
163 kmem_cache_free(xfs_inode_zone, ip);
168 struct xfs_inode *ip)
170 /* asserts to verify all state is correct here */
171 ASSERT(atomic_read(&ip->i_pincount) == 0);
172 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
173 XFS_STATS_DEC(ip->i_mount, vn_active);
175 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
180 struct xfs_inode *ip)
182 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
185 * Because we use RCU freeing we need to ensure the inode always
186 * appears to be reclaimed with an invalid inode number when in the
187 * free state. The ip->i_flags_lock provides the barrier against lookup
190 spin_lock(&ip->i_flags_lock);
191 ip->i_flags = XFS_IRECLAIM;
193 spin_unlock(&ip->i_flags_lock);
195 __xfs_inode_free(ip);
199 * Queue background inode reclaim work if there are reclaimable inodes and there
200 * isn't reclaim work already scheduled or in progress.
203 xfs_reclaim_work_queue(
204 struct xfs_mount *mp)
208 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
209 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
210 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
216 * Background scanning to trim preallocated space. This is queued based on the
217 * 'speculative_prealloc_lifetime' tunable (5m by default).
221 struct xfs_perag *pag)
224 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
225 queue_delayed_work(pag->pag_mount->m_gc_workqueue,
226 &pag->pag_blockgc_work,
227 msecs_to_jiffies(xfs_blockgc_secs * 1000));
231 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
233 xfs_perag_set_inode_tag(
234 struct xfs_perag *pag,
238 struct xfs_mount *mp = pag->pag_mount;
241 lockdep_assert_held(&pag->pag_ici_lock);
243 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
244 radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
246 if (tag == XFS_ICI_RECLAIM_TAG)
247 pag->pag_ici_reclaimable++;
252 /* propagate the tag up into the perag radix tree */
253 spin_lock(&mp->m_perag_lock);
254 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
255 spin_unlock(&mp->m_perag_lock);
257 /* start background work */
259 case XFS_ICI_RECLAIM_TAG:
260 xfs_reclaim_work_queue(mp);
262 case XFS_ICI_BLOCKGC_TAG:
263 xfs_blockgc_queue(pag);
267 trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
270 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
272 xfs_perag_clear_inode_tag(
273 struct xfs_perag *pag,
277 struct xfs_mount *mp = pag->pag_mount;
279 lockdep_assert_held(&pag->pag_ici_lock);
282 * Reclaim can signal (with a null agino) that it cleared its own tag
283 * by removing the inode from the radix tree.
285 if (agino != NULLAGINO)
286 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
288 ASSERT(tag == XFS_ICI_RECLAIM_TAG);
290 if (tag == XFS_ICI_RECLAIM_TAG)
291 pag->pag_ici_reclaimable--;
293 if (radix_tree_tagged(&pag->pag_ici_root, tag))
296 /* clear the tag from the perag radix tree */
297 spin_lock(&mp->m_perag_lock);
298 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
299 spin_unlock(&mp->m_perag_lock);
301 trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
305 * We set the inode flag atomically with the radix tree tag.
306 * Once we get tag lookups on the radix tree, this inode flag
310 xfs_inode_mark_reclaimable(
311 struct xfs_inode *ip)
313 struct xfs_mount *mp = ip->i_mount;
314 struct xfs_perag *pag;
316 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
317 spin_lock(&pag->pag_ici_lock);
318 spin_lock(&ip->i_flags_lock);
320 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
321 XFS_ICI_RECLAIM_TAG);
322 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
324 spin_unlock(&ip->i_flags_lock);
325 spin_unlock(&pag->pag_ici_lock);
331 struct xfs_inode *ip)
333 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
334 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
337 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
338 if (!xfs_iflags_test(ip, XFS_INEW))
342 finish_wait(wq, &wait.wq_entry);
346 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
347 * part of the structure. This is made more complex by the fact we store
348 * information about the on-disk values in the VFS inode and so we can't just
349 * overwrite the values unconditionally. Hence we save the parameters we
350 * need to retain across reinitialisation, and rewrite them into the VFS inode
351 * after reinitialisation even if it fails.
355 struct xfs_mount *mp,
359 uint32_t nlink = inode->i_nlink;
360 uint32_t generation = inode->i_generation;
361 uint64_t version = inode_peek_iversion(inode);
362 umode_t mode = inode->i_mode;
363 dev_t dev = inode->i_rdev;
364 kuid_t uid = inode->i_uid;
365 kgid_t gid = inode->i_gid;
367 error = inode_init_always(mp->m_super, inode);
369 set_nlink(inode, nlink);
370 inode->i_generation = generation;
371 inode_set_iversion_queried(inode, version);
372 inode->i_mode = mode;
380 * Carefully nudge an inode whose VFS state has been torn down back into a
381 * usable state. Drops the i_flags_lock and the rcu read lock.
385 struct xfs_perag *pag,
386 struct xfs_inode *ip) __releases(&ip->i_flags_lock)
388 struct xfs_mount *mp = ip->i_mount;
389 struct inode *inode = VFS_I(ip);
392 trace_xfs_iget_recycle(ip);
395 * We need to make it look like the inode is being reclaimed to prevent
396 * the actual reclaim workers from stomping over us while we recycle
397 * the inode. We can't clear the radix tree tag yet as it requires
398 * pag_ici_lock to be held exclusive.
400 ip->i_flags |= XFS_IRECLAIM;
402 spin_unlock(&ip->i_flags_lock);
405 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
406 error = xfs_reinit_inode(mp, inode);
411 * Re-initializing the inode failed, and we are in deep
412 * trouble. Try to re-add it to the reclaim list.
415 spin_lock(&ip->i_flags_lock);
416 wake = !!__xfs_iflags_test(ip, XFS_INEW);
417 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
419 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
420 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
421 spin_unlock(&ip->i_flags_lock);
424 trace_xfs_iget_recycle_fail(ip);
428 spin_lock(&pag->pag_ici_lock);
429 spin_lock(&ip->i_flags_lock);
432 * Clear the per-lifetime state in the inode as we are now effectively
433 * a new inode and need to return to the initial state before reuse
436 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
437 ip->i_flags |= XFS_INEW;
438 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
439 XFS_ICI_RECLAIM_TAG);
440 inode->i_state = I_NEW;
441 spin_unlock(&ip->i_flags_lock);
442 spin_unlock(&pag->pag_ici_lock);
448 * If we are allocating a new inode, then check what was returned is
449 * actually a free, empty inode. If we are not allocating an inode,
450 * then check we didn't find a free inode.
453 * 0 if the inode free state matches the lookup context
454 * -ENOENT if the inode is free and we are not allocating
455 * -EFSCORRUPTED if there is any state mismatch at all
458 xfs_iget_check_free_state(
459 struct xfs_inode *ip,
462 if (flags & XFS_IGET_CREATE) {
463 /* should be a free inode */
464 if (VFS_I(ip)->i_mode != 0) {
465 xfs_warn(ip->i_mount,
466 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
467 ip->i_ino, VFS_I(ip)->i_mode);
468 return -EFSCORRUPTED;
471 if (ip->i_nblocks != 0) {
472 xfs_warn(ip->i_mount,
473 "Corruption detected! Free inode 0x%llx has blocks allocated!",
475 return -EFSCORRUPTED;
480 /* should be an allocated inode */
481 if (VFS_I(ip)->i_mode == 0)
488 * Check the validity of the inode we just found it the cache
492 struct xfs_perag *pag,
493 struct xfs_inode *ip,
496 int lock_flags) __releases(RCU)
498 struct inode *inode = VFS_I(ip);
499 struct xfs_mount *mp = ip->i_mount;
503 * check for re-use of an inode within an RCU grace period due to the
504 * radix tree nodes not being updated yet. We monitor for this by
505 * setting the inode number to zero before freeing the inode structure.
506 * If the inode has been reallocated and set up, then the inode number
507 * will not match, so check for that, too.
509 spin_lock(&ip->i_flags_lock);
510 if (ip->i_ino != ino)
514 * If we are racing with another cache hit that is currently
515 * instantiating this inode or currently recycling it out of
516 * reclaimable state, wait for the initialisation to complete
519 * XXX(hch): eventually we should do something equivalent to
520 * wait_on_inode to wait for these flags to be cleared
521 * instead of polling for it.
523 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM))
527 * Check the inode free state is valid. This also detects lookup
528 * racing with unlinks.
530 error = xfs_iget_check_free_state(ip, flags);
534 /* Skip inodes that have no vfs state. */
535 if ((flags & XFS_IGET_INCORE) &&
536 (ip->i_flags & XFS_IRECLAIMABLE))
539 /* The inode fits the selection criteria; process it. */
540 if (ip->i_flags & XFS_IRECLAIMABLE) {
541 /* Drops i_flags_lock and RCU read lock. */
542 error = xfs_iget_recycle(pag, ip);
546 /* If the VFS inode is being torn down, pause and try again. */
550 /* We've got a live one. */
551 spin_unlock(&ip->i_flags_lock);
553 trace_xfs_iget_hit(ip);
557 xfs_ilock(ip, lock_flags);
559 if (!(flags & XFS_IGET_INCORE))
560 xfs_iflags_clear(ip, XFS_ISTALE);
561 XFS_STATS_INC(mp, xs_ig_found);
566 trace_xfs_iget_skip(ip);
567 XFS_STATS_INC(mp, xs_ig_frecycle);
570 spin_unlock(&ip->i_flags_lock);
577 struct xfs_mount *mp,
578 struct xfs_perag *pag,
581 struct xfs_inode **ipp,
585 struct xfs_inode *ip;
587 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
590 ip = xfs_inode_alloc(mp, ino);
594 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
599 * For version 5 superblocks, if we are initialising a new inode and we
600 * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can
601 * simply build the new inode core with a random generation number.
603 * For version 4 (and older) superblocks, log recovery is dependent on
604 * the i_flushiter field being initialised from the current on-disk
605 * value and hence we must also read the inode off disk even when
606 * initializing new inodes.
608 if (xfs_sb_version_has_v3inode(&mp->m_sb) &&
609 (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) {
610 VFS_I(ip)->i_generation = prandom_u32();
614 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
618 error = xfs_inode_from_disk(ip,
619 xfs_buf_offset(bp, ip->i_imap.im_boffset));
621 xfs_buf_set_ref(bp, XFS_INO_REF);
622 xfs_trans_brelse(tp, bp);
628 trace_xfs_iget_miss(ip);
631 * Check the inode free state is valid. This also detects lookup
632 * racing with unlinks.
634 error = xfs_iget_check_free_state(ip, flags);
639 * Preload the radix tree so we can insert safely under the
640 * write spinlock. Note that we cannot sleep inside the preload
641 * region. Since we can be called from transaction context, don't
642 * recurse into the file system.
644 if (radix_tree_preload(GFP_NOFS)) {
650 * Because the inode hasn't been added to the radix-tree yet it can't
651 * be found by another thread, so we can do the non-sleeping lock here.
654 if (!xfs_ilock_nowait(ip, lock_flags))
659 * These values must be set before inserting the inode into the radix
660 * tree as the moment it is inserted a concurrent lookup (allowed by the
661 * RCU locking mechanism) can find it and that lookup must see that this
662 * is an inode currently under construction (i.e. that XFS_INEW is set).
663 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
664 * memory barrier that ensures this detection works correctly at lookup
668 if (flags & XFS_IGET_DONTCACHE)
669 d_mark_dontcache(VFS_I(ip));
673 xfs_iflags_set(ip, iflags);
675 /* insert the new inode */
676 spin_lock(&pag->pag_ici_lock);
677 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
678 if (unlikely(error)) {
679 WARN_ON(error != -EEXIST);
680 XFS_STATS_INC(mp, xs_ig_dup);
682 goto out_preload_end;
684 spin_unlock(&pag->pag_ici_lock);
685 radix_tree_preload_end();
691 spin_unlock(&pag->pag_ici_lock);
692 radix_tree_preload_end();
694 xfs_iunlock(ip, lock_flags);
696 __destroy_inode(VFS_I(ip));
702 * Look up an inode by number in the given file system. The inode is looked up
703 * in the cache held in each AG. If the inode is found in the cache, initialise
704 * the vfs inode if necessary.
706 * If it is not in core, read it in from the file system's device, add it to the
707 * cache and initialise the vfs inode.
709 * The inode is locked according to the value of the lock_flags parameter.
710 * Inode lookup is only done during metadata operations and not as part of the
711 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
715 struct xfs_mount *mp,
716 struct xfs_trans *tp,
720 struct xfs_inode **ipp)
722 struct xfs_inode *ip;
723 struct xfs_perag *pag;
727 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
729 /* reject inode numbers outside existing AGs */
730 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
733 XFS_STATS_INC(mp, xs_ig_attempts);
735 /* get the perag structure and ensure that it's inode capable */
736 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
737 agino = XFS_INO_TO_AGINO(mp, ino);
742 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
745 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
747 goto out_error_or_again;
750 if (flags & XFS_IGET_INCORE) {
752 goto out_error_or_again;
754 XFS_STATS_INC(mp, xs_ig_missed);
756 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
759 goto out_error_or_again;
766 * If we have a real type for an on-disk inode, we can setup the inode
767 * now. If it's a new inode being created, xfs_ialloc will handle it.
769 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
770 xfs_setup_existing_inode(ip);
774 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
783 * "Is this a cached inode that's also allocated?"
785 * Look up an inode by number in the given file system. If the inode is
786 * in cache and isn't in purgatory, return 1 if the inode is allocated
787 * and 0 if it is not. For all other cases (not in cache, being torn
788 * down, etc.), return a negative error code.
790 * The caller has to prevent inode allocation and freeing activity,
791 * presumably by locking the AGI buffer. This is to ensure that an
792 * inode cannot transition from allocated to freed until the caller is
793 * ready to allow that. If the inode is in an intermediate state (new,
794 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
795 * inode is not in the cache, -ENOENT will be returned. The caller must
796 * deal with these scenarios appropriately.
798 * This is a specialized use case for the online scrubber; if you're
799 * reading this, you probably want xfs_iget.
802 xfs_icache_inode_is_allocated(
803 struct xfs_mount *mp,
804 struct xfs_trans *tp,
808 struct xfs_inode *ip;
811 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
815 *inuse = !!(VFS_I(ip)->i_mode);
820 #ifdef CONFIG_XFS_QUOTA
821 /* Decide if we want to grab this inode to drop its dquots. */
824 struct xfs_inode *ip)
828 ASSERT(rcu_read_lock_held());
830 /* Check for stale RCU freed inode */
831 spin_lock(&ip->i_flags_lock);
836 * Skip inodes that are anywhere in the reclaim machinery because we
837 * drop dquots before tagging an inode for reclamation.
839 if (ip->i_flags & (XFS_IRECLAIM | XFS_IRECLAIMABLE))
843 * The inode looks alive; try to grab a VFS reference so that it won't
844 * get destroyed. If we got the reference, return true to say that
845 * we grabbed the inode.
847 * If we can't get the reference, then we know the inode had its VFS
848 * state torn down and hasn't yet entered the reclaim machinery. Since
849 * we also know that dquots are detached from an inode before it enters
850 * reclaim, we can skip the inode.
852 ret = igrab(VFS_I(ip)) != NULL;
855 spin_unlock(&ip->i_flags_lock);
859 /* Drop this inode's dquots. */
862 struct xfs_inode *ip,
863 struct xfs_icwalk *icw)
865 if (xfs_iflags_test(ip, XFS_INEW))
868 xfs_ilock(ip, XFS_ILOCK_EXCL);
869 if (icw->icw_flags & XFS_ICWALK_FLAG_DROP_UDQUOT) {
870 xfs_qm_dqrele(ip->i_udquot);
873 if (icw->icw_flags & XFS_ICWALK_FLAG_DROP_GDQUOT) {
874 xfs_qm_dqrele(ip->i_gdquot);
877 if (icw->icw_flags & XFS_ICWALK_FLAG_DROP_PDQUOT) {
878 xfs_qm_dqrele(ip->i_pdquot);
881 xfs_iunlock(ip, XFS_ILOCK_EXCL);
886 * Detach all dquots from incore inodes if we can. The caller must already
887 * have dropped the relevant XFS_[UGP]QUOTA_ACTIVE flags so that dquots will
888 * not get reattached.
891 xfs_dqrele_all_inodes(
892 struct xfs_mount *mp,
895 struct xfs_icwalk icw = { .icw_flags = 0 };
897 if (qflags & XFS_UQUOTA_ACCT)
898 icw.icw_flags |= XFS_ICWALK_FLAG_DROP_UDQUOT;
899 if (qflags & XFS_GQUOTA_ACCT)
900 icw.icw_flags |= XFS_ICWALK_FLAG_DROP_GDQUOT;
901 if (qflags & XFS_PQUOTA_ACCT)
902 icw.icw_flags |= XFS_ICWALK_FLAG_DROP_PDQUOT;
904 return xfs_icwalk(mp, XFS_ICWALK_DQRELE, &icw);
907 # define xfs_dqrele_igrab(ip) (false)
908 # define xfs_dqrele_inode(ip, priv) ((void)0)
909 #endif /* CONFIG_XFS_QUOTA */
912 * Grab the inode for reclaim exclusively.
914 * We have found this inode via a lookup under RCU, so the inode may have
915 * already been freed, or it may be in the process of being recycled by
916 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
917 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
918 * will not be set. Hence we need to check for both these flag conditions to
919 * avoid inodes that are no longer reclaim candidates.
921 * Note: checking for other state flags here, under the i_flags_lock or not, is
922 * racy and should be avoided. Those races should be resolved only after we have
923 * ensured that we are able to reclaim this inode and the world can see that we
924 * are going to reclaim it.
926 * Return true if we grabbed it, false otherwise.
930 struct xfs_inode *ip,
931 struct xfs_icwalk *icw)
933 ASSERT(rcu_read_lock_held());
935 spin_lock(&ip->i_flags_lock);
936 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
937 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
938 /* not a reclaim candidate. */
939 spin_unlock(&ip->i_flags_lock);
943 /* Don't reclaim a sick inode unless the caller asked for it. */
945 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
946 spin_unlock(&ip->i_flags_lock);
950 __xfs_iflags_set(ip, XFS_IRECLAIM);
951 spin_unlock(&ip->i_flags_lock);
956 * Inode reclaim is non-blocking, so the default action if progress cannot be
957 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
958 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
959 * blocking anymore and hence we can wait for the inode to be able to reclaim
962 * We do no IO here - if callers require inodes to be cleaned they must push the
963 * AIL first to trigger writeback of dirty inodes. This enables writeback to be
964 * done in the background in a non-blocking manner, and enables memory reclaim
965 * to make progress without blocking.
969 struct xfs_inode *ip,
970 struct xfs_perag *pag)
972 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
974 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
976 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
979 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
981 xfs_iflush_abort(ip);
984 if (xfs_ipincount(ip))
985 goto out_clear_flush;
986 if (!xfs_inode_clean(ip))
987 goto out_clear_flush;
989 xfs_iflags_clear(ip, XFS_IFLUSHING);
993 * Because we use RCU freeing we need to ensure the inode always appears
994 * to be reclaimed with an invalid inode number when in the free state.
995 * We do this as early as possible under the ILOCK so that
996 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
997 * detect races with us here. By doing this, we guarantee that once
998 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
999 * it will see either a valid inode that will serialise correctly, or it
1000 * will see an invalid inode that it can skip.
1002 spin_lock(&ip->i_flags_lock);
1003 ip->i_flags = XFS_IRECLAIM;
1007 spin_unlock(&ip->i_flags_lock);
1009 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1011 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1013 * Remove the inode from the per-AG radix tree.
1015 * Because radix_tree_delete won't complain even if the item was never
1016 * added to the tree assert that it's been there before to catch
1017 * problems with the inode life time early on.
1019 spin_lock(&pag->pag_ici_lock);
1020 if (!radix_tree_delete(&pag->pag_ici_root,
1021 XFS_INO_TO_AGINO(ip->i_mount, ino)))
1023 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
1024 spin_unlock(&pag->pag_ici_lock);
1027 * Here we do an (almost) spurious inode lock in order to coordinate
1028 * with inode cache radix tree lookups. This is because the lookup
1029 * can reference the inodes in the cache without taking references.
1031 * We make that OK here by ensuring that we wait until the inode is
1032 * unlocked after the lookup before we go ahead and free it.
1034 xfs_ilock(ip, XFS_ILOCK_EXCL);
1035 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
1036 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1037 ASSERT(xfs_inode_clean(ip));
1039 __xfs_inode_free(ip);
1043 xfs_iflags_clear(ip, XFS_IFLUSHING);
1045 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1047 xfs_iflags_clear(ip, XFS_IRECLAIM);
1050 /* Reclaim sick inodes if we're unmounting or the fs went down. */
1052 xfs_want_reclaim_sick(
1053 struct xfs_mount *mp)
1055 return (mp->m_flags & XFS_MOUNT_UNMOUNTING) ||
1056 (mp->m_flags & XFS_MOUNT_NORECOVERY) ||
1057 XFS_FORCED_SHUTDOWN(mp);
1062 struct xfs_mount *mp)
1064 struct xfs_icwalk icw = {
1068 if (xfs_want_reclaim_sick(mp))
1069 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1071 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
1072 xfs_ail_push_all_sync(mp->m_ail);
1073 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1078 * The shrinker infrastructure determines how many inodes we should scan for
1079 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1080 * push the AIL here. We also want to proactively free up memory if we can to
1081 * minimise the amount of work memory reclaim has to do so we kick the
1082 * background reclaim if it isn't already scheduled.
1085 xfs_reclaim_inodes_nr(
1086 struct xfs_mount *mp,
1087 unsigned long nr_to_scan)
1089 struct xfs_icwalk icw = {
1090 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT,
1091 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan),
1094 if (xfs_want_reclaim_sick(mp))
1095 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1097 /* kick background reclaimer and push the AIL */
1098 xfs_reclaim_work_queue(mp);
1099 xfs_ail_push_all(mp->m_ail);
1101 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1106 * Return the number of reclaimable inodes in the filesystem for
1107 * the shrinker to determine how much to reclaim.
1110 xfs_reclaim_inodes_count(
1111 struct xfs_mount *mp)
1113 struct xfs_perag *pag;
1114 xfs_agnumber_t ag = 0;
1115 long reclaimable = 0;
1117 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1118 ag = pag->pag_agno + 1;
1119 reclaimable += pag->pag_ici_reclaimable;
1126 xfs_icwalk_match_id(
1127 struct xfs_inode *ip,
1128 struct xfs_icwalk *icw)
1130 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1131 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1134 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1135 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1138 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1139 ip->i_projid != icw->icw_prid)
1146 * A union-based inode filtering algorithm. Process the inode if any of the
1147 * criteria match. This is for global/internal scans only.
1150 xfs_icwalk_match_id_union(
1151 struct xfs_inode *ip,
1152 struct xfs_icwalk *icw)
1154 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1155 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1158 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1159 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1162 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1163 ip->i_projid == icw->icw_prid)
1170 * Is this inode @ip eligible for eof/cow block reclamation, given some
1171 * filtering parameters @icw? The inode is eligible if @icw is null or
1172 * if the predicate functions match.
1176 struct xfs_inode *ip,
1177 struct xfs_icwalk *icw)
1184 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1185 match = xfs_icwalk_match_id_union(ip, icw);
1187 match = xfs_icwalk_match_id(ip, icw);
1191 /* skip the inode if the file size is too small */
1192 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1193 XFS_ISIZE(ip) < icw->icw_min_file_size)
1200 * This is a fast pass over the inode cache to try to get reclaim moving on as
1201 * many inodes as possible in a short period of time. It kicks itself every few
1202 * seconds, as well as being kicked by the inode cache shrinker when memory
1207 struct work_struct *work)
1209 struct xfs_mount *mp = container_of(to_delayed_work(work),
1210 struct xfs_mount, m_reclaim_work);
1212 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1213 xfs_reclaim_work_queue(mp);
1217 xfs_inode_free_eofblocks(
1218 struct xfs_inode *ip,
1219 struct xfs_icwalk *icw,
1220 unsigned int *lockflags)
1224 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1226 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1230 * If the mapping is dirty the operation can block and wait for some
1231 * time. Unless we are waiting, skip it.
1233 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1236 if (!xfs_icwalk_match(ip, icw))
1240 * If the caller is waiting, return -EAGAIN to keep the background
1241 * scanner moving and revisit the inode in a subsequent pass.
1243 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1248 *lockflags |= XFS_IOLOCK_EXCL;
1250 if (xfs_can_free_eofblocks(ip, false))
1251 return xfs_free_eofblocks(ip);
1253 /* inode could be preallocated or append-only */
1254 trace_xfs_inode_free_eofblocks_invalid(ip);
1255 xfs_inode_clear_eofblocks_tag(ip);
1260 xfs_blockgc_set_iflag(
1261 struct xfs_inode *ip,
1262 unsigned long iflag)
1264 struct xfs_mount *mp = ip->i_mount;
1265 struct xfs_perag *pag;
1267 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1270 * Don't bother locking the AG and looking up in the radix trees
1271 * if we already know that we have the tag set.
1273 if (ip->i_flags & iflag)
1275 spin_lock(&ip->i_flags_lock);
1276 ip->i_flags |= iflag;
1277 spin_unlock(&ip->i_flags_lock);
1279 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1280 spin_lock(&pag->pag_ici_lock);
1282 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1283 XFS_ICI_BLOCKGC_TAG);
1285 spin_unlock(&pag->pag_ici_lock);
1290 xfs_inode_set_eofblocks_tag(
1293 trace_xfs_inode_set_eofblocks_tag(ip);
1294 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1298 xfs_blockgc_clear_iflag(
1299 struct xfs_inode *ip,
1300 unsigned long iflag)
1302 struct xfs_mount *mp = ip->i_mount;
1303 struct xfs_perag *pag;
1306 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1308 spin_lock(&ip->i_flags_lock);
1309 ip->i_flags &= ~iflag;
1310 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1311 spin_unlock(&ip->i_flags_lock);
1316 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1317 spin_lock(&pag->pag_ici_lock);
1319 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1320 XFS_ICI_BLOCKGC_TAG);
1322 spin_unlock(&pag->pag_ici_lock);
1327 xfs_inode_clear_eofblocks_tag(
1330 trace_xfs_inode_clear_eofblocks_tag(ip);
1331 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1335 * Set ourselves up to free CoW blocks from this file. If it's already clean
1336 * then we can bail out quickly, but otherwise we must back off if the file
1337 * is undergoing some kind of write.
1340 xfs_prep_free_cowblocks(
1341 struct xfs_inode *ip)
1344 * Just clear the tag if we have an empty cow fork or none at all. It's
1345 * possible the inode was fully unshared since it was originally tagged.
1347 if (!xfs_inode_has_cow_data(ip)) {
1348 trace_xfs_inode_free_cowblocks_invalid(ip);
1349 xfs_inode_clear_cowblocks_tag(ip);
1354 * If the mapping is dirty or under writeback we cannot touch the
1355 * CoW fork. Leave it alone if we're in the midst of a directio.
1357 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1358 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1359 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1360 atomic_read(&VFS_I(ip)->i_dio_count))
1367 * Automatic CoW Reservation Freeing
1369 * These functions automatically garbage collect leftover CoW reservations
1370 * that were made on behalf of a cowextsize hint when we start to run out
1371 * of quota or when the reservations sit around for too long. If the file
1372 * has dirty pages or is undergoing writeback, its CoW reservations will
1375 * The actual garbage collection piggybacks off the same code that runs
1376 * the speculative EOF preallocation garbage collector.
1379 xfs_inode_free_cowblocks(
1380 struct xfs_inode *ip,
1381 struct xfs_icwalk *icw,
1382 unsigned int *lockflags)
1387 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1389 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1392 if (!xfs_prep_free_cowblocks(ip))
1395 if (!xfs_icwalk_match(ip, icw))
1399 * If the caller is waiting, return -EAGAIN to keep the background
1400 * scanner moving and revisit the inode in a subsequent pass.
1402 if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1403 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1408 *lockflags |= XFS_IOLOCK_EXCL;
1410 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1415 *lockflags |= XFS_MMAPLOCK_EXCL;
1418 * Check again, nobody else should be able to dirty blocks or change
1419 * the reflink iflag now that we have the first two locks held.
1421 if (xfs_prep_free_cowblocks(ip))
1422 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1427 xfs_inode_set_cowblocks_tag(
1430 trace_xfs_inode_set_cowblocks_tag(ip);
1431 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1435 xfs_inode_clear_cowblocks_tag(
1438 trace_xfs_inode_clear_cowblocks_tag(ip);
1439 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1442 /* Disable post-EOF and CoW block auto-reclamation. */
1445 struct xfs_mount *mp)
1447 struct xfs_perag *pag;
1448 xfs_agnumber_t agno;
1450 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1451 cancel_delayed_work_sync(&pag->pag_blockgc_work);
1454 /* Enable post-EOF and CoW block auto-reclamation. */
1457 struct xfs_mount *mp)
1459 struct xfs_perag *pag;
1460 xfs_agnumber_t agno;
1462 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1463 xfs_blockgc_queue(pag);
1466 /* Don't try to run block gc on an inode that's in any of these states. */
1467 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \
1468 XFS_IRECLAIMABLE | \
1471 * Decide if the given @ip is eligible for garbage collection of speculative
1472 * preallocations, and grab it if so. Returns true if it's ready to go or
1473 * false if we should just ignore it.
1477 struct xfs_inode *ip)
1479 struct inode *inode = VFS_I(ip);
1481 ASSERT(rcu_read_lock_held());
1483 /* Check for stale RCU freed inode */
1484 spin_lock(&ip->i_flags_lock);
1486 goto out_unlock_noent;
1488 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1489 goto out_unlock_noent;
1490 spin_unlock(&ip->i_flags_lock);
1492 /* nothing to sync during shutdown */
1493 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
1496 /* If we can't grab the inode, it must on it's way to reclaim. */
1500 /* inode is valid */
1504 spin_unlock(&ip->i_flags_lock);
1508 /* Scan one incore inode for block preallocations that we can remove. */
1510 xfs_blockgc_scan_inode(
1511 struct xfs_inode *ip,
1512 struct xfs_icwalk *icw)
1514 unsigned int lockflags = 0;
1517 error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1521 error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1524 xfs_iunlock(ip, lockflags);
1529 /* Background worker that trims preallocated space. */
1532 struct work_struct *work)
1534 struct xfs_perag *pag = container_of(to_delayed_work(work),
1535 struct xfs_perag, pag_blockgc_work);
1536 struct xfs_mount *mp = pag->pag_mount;
1539 if (!sb_start_write_trylock(mp->m_super))
1541 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1543 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1544 pag->pag_agno, error);
1545 sb_end_write(mp->m_super);
1546 xfs_blockgc_queue(pag);
1550 * Try to free space in the filesystem by purging eofblocks and cowblocks.
1553 xfs_blockgc_free_space(
1554 struct xfs_mount *mp,
1555 struct xfs_icwalk *icw)
1557 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1559 return xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1563 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
1564 * quota caused an allocation failure, so we make a best effort by including
1565 * each quota under low free space conditions (less than 1% free space) in the
1568 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan
1569 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1573 xfs_blockgc_free_dquots(
1574 struct xfs_mount *mp,
1575 struct xfs_dquot *udqp,
1576 struct xfs_dquot *gdqp,
1577 struct xfs_dquot *pdqp,
1578 unsigned int iwalk_flags)
1580 struct xfs_icwalk icw = {0};
1581 bool do_work = false;
1583 if (!udqp && !gdqp && !pdqp)
1587 * Run a scan to free blocks using the union filter to cover all
1588 * applicable quotas in a single scan.
1590 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1592 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1593 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1594 icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1598 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1599 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1600 icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1604 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1605 icw.icw_prid = pdqp->q_id;
1606 icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1613 return xfs_blockgc_free_space(mp, &icw);
1616 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1618 xfs_blockgc_free_quota(
1619 struct xfs_inode *ip,
1620 unsigned int iwalk_flags)
1622 return xfs_blockgc_free_dquots(ip->i_mount,
1623 xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1624 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1625 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1628 /* XFS Inode Cache Walking Code */
1631 * The inode lookup is done in batches to keep the amount of lock traffic and
1632 * radix tree lookups to a minimum. The batch size is a trade off between
1633 * lookup reduction and stack usage. This is in the reclaim path, so we can't
1636 #define XFS_LOOKUP_BATCH 32
1640 * Decide if we want to grab this inode in anticipation of doing work towards
1645 enum xfs_icwalk_goal goal,
1646 struct xfs_inode *ip,
1647 struct xfs_icwalk *icw)
1650 case XFS_ICWALK_DQRELE:
1651 return xfs_dqrele_igrab(ip);
1652 case XFS_ICWALK_BLOCKGC:
1653 return xfs_blockgc_igrab(ip);
1654 case XFS_ICWALK_RECLAIM:
1655 return xfs_reclaim_igrab(ip, icw);
1662 * Process an inode. Each processing function must handle any state changes
1663 * made by the icwalk igrab function. Return -EAGAIN to skip an inode.
1666 xfs_icwalk_process_inode(
1667 enum xfs_icwalk_goal goal,
1668 struct xfs_inode *ip,
1669 struct xfs_perag *pag,
1670 struct xfs_icwalk *icw)
1675 case XFS_ICWALK_DQRELE:
1676 xfs_dqrele_inode(ip, icw);
1678 case XFS_ICWALK_BLOCKGC:
1679 error = xfs_blockgc_scan_inode(ip, icw);
1681 case XFS_ICWALK_RECLAIM:
1682 xfs_reclaim_inode(ip, pag);
1689 * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1690 * process them in some manner.
1694 struct xfs_perag *pag,
1695 enum xfs_icwalk_goal goal,
1696 struct xfs_icwalk *icw)
1698 struct xfs_mount *mp = pag->pag_mount;
1699 uint32_t first_index;
1708 if (goal == XFS_ICWALK_RECLAIM)
1709 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1714 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1715 unsigned int tag = xfs_icwalk_tag(goal);
1721 if (tag == XFS_ICWALK_NULL_TAG)
1722 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
1723 (void **)batch, first_index,
1726 nr_found = radix_tree_gang_lookup_tag(
1728 (void **) batch, first_index,
1729 XFS_LOOKUP_BATCH, tag);
1738 * Grab the inodes before we drop the lock. if we found
1739 * nothing, nr == 0 and the loop will be skipped.
1741 for (i = 0; i < nr_found; i++) {
1742 struct xfs_inode *ip = batch[i];
1744 if (done || !xfs_icwalk_igrab(goal, ip, icw))
1748 * Update the index for the next lookup. Catch
1749 * overflows into the next AG range which can occur if
1750 * we have inodes in the last block of the AG and we
1751 * are currently pointing to the last inode.
1753 * Because we may see inodes that are from the wrong AG
1754 * due to RCU freeing and reallocation, only update the
1755 * index if it lies in this AG. It was a race that lead
1756 * us to see this inode, so another lookup from the
1757 * same index will not find it again.
1759 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1761 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1762 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1766 /* unlock now we've grabbed the inodes. */
1769 for (i = 0; i < nr_found; i++) {
1772 error = xfs_icwalk_process_inode(goal, batch[i], pag,
1774 if (error == -EAGAIN) {
1778 if (error && last_error != -EFSCORRUPTED)
1782 /* bail out if the filesystem is corrupted. */
1783 if (error == -EFSCORRUPTED)
1788 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1789 icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1790 if (icw->icw_scan_limit <= 0)
1793 } while (nr_found && !done);
1795 if (goal == XFS_ICWALK_RECLAIM) {
1798 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1808 /* Fetch the next (possibly tagged) per-AG structure. */
1809 static inline struct xfs_perag *
1810 xfs_icwalk_get_perag(
1811 struct xfs_mount *mp,
1812 xfs_agnumber_t agno,
1813 enum xfs_icwalk_goal goal)
1815 unsigned int tag = xfs_icwalk_tag(goal);
1817 if (tag == XFS_ICWALK_NULL_TAG)
1818 return xfs_perag_get(mp, agno);
1819 return xfs_perag_get_tag(mp, agno, tag);
1822 /* Walk all incore inodes to achieve a given goal. */
1825 struct xfs_mount *mp,
1826 enum xfs_icwalk_goal goal,
1827 struct xfs_icwalk *icw)
1829 struct xfs_perag *pag;
1832 xfs_agnumber_t agno = 0;
1834 while ((pag = xfs_icwalk_get_perag(mp, agno, goal))) {
1835 agno = pag->pag_agno + 1;
1836 error = xfs_icwalk_ag(pag, goal, icw);
1840 if (error == -EFSCORRUPTED)
1845 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);