perf arm spe: Fix uninitialized record error variable
[linux-2.6-microblaze.git] / fs / xfs / xfs_buf.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/stddef.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/pagemap.h>
11 #include <linux/init.h>
12 #include <linux/vmalloc.h>
13 #include <linux/bio.h>
14 #include <linux/sysctl.h>
15 #include <linux/proc_fs.h>
16 #include <linux/workqueue.h>
17 #include <linux/percpu.h>
18 #include <linux/blkdev.h>
19 #include <linux/hash.h>
20 #include <linux/kthread.h>
21 #include <linux/migrate.h>
22 #include <linux/backing-dev.h>
23 #include <linux/freezer.h>
24
25 #include "xfs_format.h"
26 #include "xfs_log_format.h"
27 #include "xfs_trans_resv.h"
28 #include "xfs_sb.h"
29 #include "xfs_mount.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 #include "xfs_errortag.h"
33 #include "xfs_error.h"
34
35 static kmem_zone_t *xfs_buf_zone;
36
37 #ifdef XFS_BUF_LOCK_TRACKING
38 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
39 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
40 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
41 #else
42 # define XB_SET_OWNER(bp)       do { } while (0)
43 # define XB_CLEAR_OWNER(bp)     do { } while (0)
44 # define XB_GET_OWNER(bp)       do { } while (0)
45 #endif
46
47 #define xb_to_gfp(flags) \
48         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
49
50
51 static inline int
52 xfs_buf_is_vmapped(
53         struct xfs_buf  *bp)
54 {
55         /*
56          * Return true if the buffer is vmapped.
57          *
58          * b_addr is null if the buffer is not mapped, but the code is clever
59          * enough to know it doesn't have to map a single page, so the check has
60          * to be both for b_addr and bp->b_page_count > 1.
61          */
62         return bp->b_addr && bp->b_page_count > 1;
63 }
64
65 static inline int
66 xfs_buf_vmap_len(
67         struct xfs_buf  *bp)
68 {
69         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
70 }
71
72 /*
73  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
74  * this buffer. The count is incremented once per buffer (per hold cycle)
75  * because the corresponding decrement is deferred to buffer release. Buffers
76  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
77  * tracking adds unnecessary overhead. This is used for sychronization purposes
78  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
79  * in-flight buffers.
80  *
81  * Buffers that are never released (e.g., superblock, iclog buffers) must set
82  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
83  * never reaches zero and unmount hangs indefinitely.
84  */
85 static inline void
86 xfs_buf_ioacct_inc(
87         struct xfs_buf  *bp)
88 {
89         if (bp->b_flags & XBF_NO_IOACCT)
90                 return;
91
92         ASSERT(bp->b_flags & XBF_ASYNC);
93         spin_lock(&bp->b_lock);
94         if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
95                 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
96                 percpu_counter_inc(&bp->b_target->bt_io_count);
97         }
98         spin_unlock(&bp->b_lock);
99 }
100
101 /*
102  * Clear the in-flight state on a buffer about to be released to the LRU or
103  * freed and unaccount from the buftarg.
104  */
105 static inline void
106 __xfs_buf_ioacct_dec(
107         struct xfs_buf  *bp)
108 {
109         lockdep_assert_held(&bp->b_lock);
110
111         if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
112                 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
113                 percpu_counter_dec(&bp->b_target->bt_io_count);
114         }
115 }
116
117 static inline void
118 xfs_buf_ioacct_dec(
119         struct xfs_buf  *bp)
120 {
121         spin_lock(&bp->b_lock);
122         __xfs_buf_ioacct_dec(bp);
123         spin_unlock(&bp->b_lock);
124 }
125
126 /*
127  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
128  * b_lru_ref count so that the buffer is freed immediately when the buffer
129  * reference count falls to zero. If the buffer is already on the LRU, we need
130  * to remove the reference that LRU holds on the buffer.
131  *
132  * This prevents build-up of stale buffers on the LRU.
133  */
134 void
135 xfs_buf_stale(
136         struct xfs_buf  *bp)
137 {
138         ASSERT(xfs_buf_islocked(bp));
139
140         bp->b_flags |= XBF_STALE;
141
142         /*
143          * Clear the delwri status so that a delwri queue walker will not
144          * flush this buffer to disk now that it is stale. The delwri queue has
145          * a reference to the buffer, so this is safe to do.
146          */
147         bp->b_flags &= ~_XBF_DELWRI_Q;
148
149         /*
150          * Once the buffer is marked stale and unlocked, a subsequent lookup
151          * could reset b_flags. There is no guarantee that the buffer is
152          * unaccounted (released to LRU) before that occurs. Drop in-flight
153          * status now to preserve accounting consistency.
154          */
155         spin_lock(&bp->b_lock);
156         __xfs_buf_ioacct_dec(bp);
157
158         atomic_set(&bp->b_lru_ref, 0);
159         if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
160             (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
161                 atomic_dec(&bp->b_hold);
162
163         ASSERT(atomic_read(&bp->b_hold) >= 1);
164         spin_unlock(&bp->b_lock);
165 }
166
167 static int
168 xfs_buf_get_maps(
169         struct xfs_buf          *bp,
170         int                     map_count)
171 {
172         ASSERT(bp->b_maps == NULL);
173         bp->b_map_count = map_count;
174
175         if (map_count == 1) {
176                 bp->b_maps = &bp->__b_map;
177                 return 0;
178         }
179
180         bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
181                                 KM_NOFS);
182         if (!bp->b_maps)
183                 return -ENOMEM;
184         return 0;
185 }
186
187 /*
188  *      Frees b_pages if it was allocated.
189  */
190 static void
191 xfs_buf_free_maps(
192         struct xfs_buf  *bp)
193 {
194         if (bp->b_maps != &bp->__b_map) {
195                 kmem_free(bp->b_maps);
196                 bp->b_maps = NULL;
197         }
198 }
199
200 struct xfs_buf *
201 _xfs_buf_alloc(
202         struct xfs_buftarg      *target,
203         struct xfs_buf_map      *map,
204         int                     nmaps,
205         xfs_buf_flags_t         flags)
206 {
207         struct xfs_buf          *bp;
208         int                     error;
209         int                     i;
210
211         bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
212         if (unlikely(!bp))
213                 return NULL;
214
215         /*
216          * We don't want certain flags to appear in b_flags unless they are
217          * specifically set by later operations on the buffer.
218          */
219         flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
220
221         atomic_set(&bp->b_hold, 1);
222         atomic_set(&bp->b_lru_ref, 1);
223         init_completion(&bp->b_iowait);
224         INIT_LIST_HEAD(&bp->b_lru);
225         INIT_LIST_HEAD(&bp->b_list);
226         INIT_LIST_HEAD(&bp->b_li_list);
227         sema_init(&bp->b_sema, 0); /* held, no waiters */
228         spin_lock_init(&bp->b_lock);
229         XB_SET_OWNER(bp);
230         bp->b_target = target;
231         bp->b_flags = flags;
232
233         /*
234          * Set length and io_length to the same value initially.
235          * I/O routines should use io_length, which will be the same in
236          * most cases but may be reset (e.g. XFS recovery).
237          */
238         error = xfs_buf_get_maps(bp, nmaps);
239         if (error)  {
240                 kmem_zone_free(xfs_buf_zone, bp);
241                 return NULL;
242         }
243
244         bp->b_bn = map[0].bm_bn;
245         bp->b_length = 0;
246         for (i = 0; i < nmaps; i++) {
247                 bp->b_maps[i].bm_bn = map[i].bm_bn;
248                 bp->b_maps[i].bm_len = map[i].bm_len;
249                 bp->b_length += map[i].bm_len;
250         }
251         bp->b_io_length = bp->b_length;
252
253         atomic_set(&bp->b_pin_count, 0);
254         init_waitqueue_head(&bp->b_waiters);
255
256         XFS_STATS_INC(target->bt_mount, xb_create);
257         trace_xfs_buf_init(bp, _RET_IP_);
258
259         return bp;
260 }
261
262 /*
263  *      Allocate a page array capable of holding a specified number
264  *      of pages, and point the page buf at it.
265  */
266 STATIC int
267 _xfs_buf_get_pages(
268         xfs_buf_t               *bp,
269         int                     page_count)
270 {
271         /* Make sure that we have a page list */
272         if (bp->b_pages == NULL) {
273                 bp->b_page_count = page_count;
274                 if (page_count <= XB_PAGES) {
275                         bp->b_pages = bp->b_page_array;
276                 } else {
277                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
278                                                  page_count, KM_NOFS);
279                         if (bp->b_pages == NULL)
280                                 return -ENOMEM;
281                 }
282                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
283         }
284         return 0;
285 }
286
287 /*
288  *      Frees b_pages if it was allocated.
289  */
290 STATIC void
291 _xfs_buf_free_pages(
292         xfs_buf_t       *bp)
293 {
294         if (bp->b_pages != bp->b_page_array) {
295                 kmem_free(bp->b_pages);
296                 bp->b_pages = NULL;
297         }
298 }
299
300 /*
301  *      Releases the specified buffer.
302  *
303  *      The modification state of any associated pages is left unchanged.
304  *      The buffer must not be on any hash - use xfs_buf_rele instead for
305  *      hashed and refcounted buffers
306  */
307 void
308 xfs_buf_free(
309         xfs_buf_t               *bp)
310 {
311         trace_xfs_buf_free(bp, _RET_IP_);
312
313         ASSERT(list_empty(&bp->b_lru));
314
315         if (bp->b_flags & _XBF_PAGES) {
316                 uint            i;
317
318                 if (xfs_buf_is_vmapped(bp))
319                         vm_unmap_ram(bp->b_addr - bp->b_offset,
320                                         bp->b_page_count);
321
322                 for (i = 0; i < bp->b_page_count; i++) {
323                         struct page     *page = bp->b_pages[i];
324
325                         __free_page(page);
326                 }
327         } else if (bp->b_flags & _XBF_KMEM)
328                 kmem_free(bp->b_addr);
329         _xfs_buf_free_pages(bp);
330         xfs_buf_free_maps(bp);
331         kmem_zone_free(xfs_buf_zone, bp);
332 }
333
334 /*
335  * Allocates all the pages for buffer in question and builds it's page list.
336  */
337 STATIC int
338 xfs_buf_allocate_memory(
339         xfs_buf_t               *bp,
340         uint                    flags)
341 {
342         size_t                  size;
343         size_t                  nbytes, offset;
344         gfp_t                   gfp_mask = xb_to_gfp(flags);
345         unsigned short          page_count, i;
346         xfs_off_t               start, end;
347         int                     error;
348
349         /*
350          * for buffers that are contained within a single page, just allocate
351          * the memory from the heap - there's no need for the complexity of
352          * page arrays to keep allocation down to order 0.
353          */
354         size = BBTOB(bp->b_length);
355         if (size < PAGE_SIZE) {
356                 bp->b_addr = kmem_alloc(size, KM_NOFS);
357                 if (!bp->b_addr) {
358                         /* low memory - use alloc_page loop instead */
359                         goto use_alloc_page;
360                 }
361
362                 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
363                     ((unsigned long)bp->b_addr & PAGE_MASK)) {
364                         /* b_addr spans two pages - use alloc_page instead */
365                         kmem_free(bp->b_addr);
366                         bp->b_addr = NULL;
367                         goto use_alloc_page;
368                 }
369                 bp->b_offset = offset_in_page(bp->b_addr);
370                 bp->b_pages = bp->b_page_array;
371                 bp->b_pages[0] = virt_to_page(bp->b_addr);
372                 bp->b_page_count = 1;
373                 bp->b_flags |= _XBF_KMEM;
374                 return 0;
375         }
376
377 use_alloc_page:
378         start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
379         end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
380                                                                 >> PAGE_SHIFT;
381         page_count = end - start;
382         error = _xfs_buf_get_pages(bp, page_count);
383         if (unlikely(error))
384                 return error;
385
386         offset = bp->b_offset;
387         bp->b_flags |= _XBF_PAGES;
388
389         for (i = 0; i < bp->b_page_count; i++) {
390                 struct page     *page;
391                 uint            retries = 0;
392 retry:
393                 page = alloc_page(gfp_mask);
394                 if (unlikely(page == NULL)) {
395                         if (flags & XBF_READ_AHEAD) {
396                                 bp->b_page_count = i;
397                                 error = -ENOMEM;
398                                 goto out_free_pages;
399                         }
400
401                         /*
402                          * This could deadlock.
403                          *
404                          * But until all the XFS lowlevel code is revamped to
405                          * handle buffer allocation failures we can't do much.
406                          */
407                         if (!(++retries % 100))
408                                 xfs_err(NULL,
409                 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
410                                         current->comm, current->pid,
411                                         __func__, gfp_mask);
412
413                         XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
414                         congestion_wait(BLK_RW_ASYNC, HZ/50);
415                         goto retry;
416                 }
417
418                 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
419
420                 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
421                 size -= nbytes;
422                 bp->b_pages[i] = page;
423                 offset = 0;
424         }
425         return 0;
426
427 out_free_pages:
428         for (i = 0; i < bp->b_page_count; i++)
429                 __free_page(bp->b_pages[i]);
430         bp->b_flags &= ~_XBF_PAGES;
431         return error;
432 }
433
434 /*
435  *      Map buffer into kernel address-space if necessary.
436  */
437 STATIC int
438 _xfs_buf_map_pages(
439         xfs_buf_t               *bp,
440         uint                    flags)
441 {
442         ASSERT(bp->b_flags & _XBF_PAGES);
443         if (bp->b_page_count == 1) {
444                 /* A single page buffer is always mappable */
445                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
446         } else if (flags & XBF_UNMAPPED) {
447                 bp->b_addr = NULL;
448         } else {
449                 int retried = 0;
450                 unsigned nofs_flag;
451
452                 /*
453                  * vm_map_ram() will allocate auxillary structures (e.g.
454                  * pagetables) with GFP_KERNEL, yet we are likely to be under
455                  * GFP_NOFS context here. Hence we need to tell memory reclaim
456                  * that we are in such a context via PF_MEMALLOC_NOFS to prevent
457                  * memory reclaim re-entering the filesystem here and
458                  * potentially deadlocking.
459                  */
460                 nofs_flag = memalloc_nofs_save();
461                 do {
462                         bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
463                                                 -1, PAGE_KERNEL);
464                         if (bp->b_addr)
465                                 break;
466                         vm_unmap_aliases();
467                 } while (retried++ <= 1);
468                 memalloc_nofs_restore(nofs_flag);
469
470                 if (!bp->b_addr)
471                         return -ENOMEM;
472                 bp->b_addr += bp->b_offset;
473         }
474
475         return 0;
476 }
477
478 /*
479  *      Finding and Reading Buffers
480  */
481 static int
482 _xfs_buf_obj_cmp(
483         struct rhashtable_compare_arg   *arg,
484         const void                      *obj)
485 {
486         const struct xfs_buf_map        *map = arg->key;
487         const struct xfs_buf            *bp = obj;
488
489         /*
490          * The key hashing in the lookup path depends on the key being the
491          * first element of the compare_arg, make sure to assert this.
492          */
493         BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
494
495         if (bp->b_bn != map->bm_bn)
496                 return 1;
497
498         if (unlikely(bp->b_length != map->bm_len)) {
499                 /*
500                  * found a block number match. If the range doesn't
501                  * match, the only way this is allowed is if the buffer
502                  * in the cache is stale and the transaction that made
503                  * it stale has not yet committed. i.e. we are
504                  * reallocating a busy extent. Skip this buffer and
505                  * continue searching for an exact match.
506                  */
507                 ASSERT(bp->b_flags & XBF_STALE);
508                 return 1;
509         }
510         return 0;
511 }
512
513 static const struct rhashtable_params xfs_buf_hash_params = {
514         .min_size               = 32,   /* empty AGs have minimal footprint */
515         .nelem_hint             = 16,
516         .key_len                = sizeof(xfs_daddr_t),
517         .key_offset             = offsetof(struct xfs_buf, b_bn),
518         .head_offset            = offsetof(struct xfs_buf, b_rhash_head),
519         .automatic_shrinking    = true,
520         .obj_cmpfn              = _xfs_buf_obj_cmp,
521 };
522
523 int
524 xfs_buf_hash_init(
525         struct xfs_perag        *pag)
526 {
527         spin_lock_init(&pag->pag_buf_lock);
528         return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
529 }
530
531 void
532 xfs_buf_hash_destroy(
533         struct xfs_perag        *pag)
534 {
535         rhashtable_destroy(&pag->pag_buf_hash);
536 }
537
538 /*
539  * Look up a buffer in the buffer cache and return it referenced and locked
540  * in @found_bp.
541  *
542  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
543  * cache.
544  *
545  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
546  * -EAGAIN if we fail to lock it.
547  *
548  * Return values are:
549  *      -EFSCORRUPTED if have been supplied with an invalid address
550  *      -EAGAIN on trylock failure
551  *      -ENOENT if we fail to find a match and @new_bp was NULL
552  *      0, with @found_bp:
553  *              - @new_bp if we inserted it into the cache
554  *              - the buffer we found and locked.
555  */
556 static int
557 xfs_buf_find(
558         struct xfs_buftarg      *btp,
559         struct xfs_buf_map      *map,
560         int                     nmaps,
561         xfs_buf_flags_t         flags,
562         struct xfs_buf          *new_bp,
563         struct xfs_buf          **found_bp)
564 {
565         struct xfs_perag        *pag;
566         xfs_buf_t               *bp;
567         struct xfs_buf_map      cmap = { .bm_bn = map[0].bm_bn };
568         xfs_daddr_t             eofs;
569         int                     i;
570
571         *found_bp = NULL;
572
573         for (i = 0; i < nmaps; i++)
574                 cmap.bm_len += map[i].bm_len;
575
576         /* Check for IOs smaller than the sector size / not sector aligned */
577         ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
578         ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
579
580         /*
581          * Corrupted block numbers can get through to here, unfortunately, so we
582          * have to check that the buffer falls within the filesystem bounds.
583          */
584         eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
585         if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
586                 xfs_alert(btp->bt_mount,
587                           "%s: daddr 0x%llx out of range, EOFS 0x%llx",
588                           __func__, cmap.bm_bn, eofs);
589                 WARN_ON(1);
590                 return -EFSCORRUPTED;
591         }
592
593         pag = xfs_perag_get(btp->bt_mount,
594                             xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
595
596         spin_lock(&pag->pag_buf_lock);
597         bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
598                                     xfs_buf_hash_params);
599         if (bp) {
600                 atomic_inc(&bp->b_hold);
601                 goto found;
602         }
603
604         /* No match found */
605         if (!new_bp) {
606                 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
607                 spin_unlock(&pag->pag_buf_lock);
608                 xfs_perag_put(pag);
609                 return -ENOENT;
610         }
611
612         /* the buffer keeps the perag reference until it is freed */
613         new_bp->b_pag = pag;
614         rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
615                                xfs_buf_hash_params);
616         spin_unlock(&pag->pag_buf_lock);
617         *found_bp = new_bp;
618         return 0;
619
620 found:
621         spin_unlock(&pag->pag_buf_lock);
622         xfs_perag_put(pag);
623
624         if (!xfs_buf_trylock(bp)) {
625                 if (flags & XBF_TRYLOCK) {
626                         xfs_buf_rele(bp);
627                         XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
628                         return -EAGAIN;
629                 }
630                 xfs_buf_lock(bp);
631                 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
632         }
633
634         /*
635          * if the buffer is stale, clear all the external state associated with
636          * it. We need to keep flags such as how we allocated the buffer memory
637          * intact here.
638          */
639         if (bp->b_flags & XBF_STALE) {
640                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
641                 ASSERT(bp->b_iodone == NULL);
642                 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
643                 bp->b_ops = NULL;
644         }
645
646         trace_xfs_buf_find(bp, flags, _RET_IP_);
647         XFS_STATS_INC(btp->bt_mount, xb_get_locked);
648         *found_bp = bp;
649         return 0;
650 }
651
652 struct xfs_buf *
653 xfs_buf_incore(
654         struct xfs_buftarg      *target,
655         xfs_daddr_t             blkno,
656         size_t                  numblks,
657         xfs_buf_flags_t         flags)
658 {
659         struct xfs_buf          *bp;
660         int                     error;
661         DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
662
663         error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
664         if (error)
665                 return NULL;
666         return bp;
667 }
668
669 /*
670  * Assembles a buffer covering the specified range. The code is optimised for
671  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
672  * more hits than misses.
673  */
674 struct xfs_buf *
675 xfs_buf_get_map(
676         struct xfs_buftarg      *target,
677         struct xfs_buf_map      *map,
678         int                     nmaps,
679         xfs_buf_flags_t         flags)
680 {
681         struct xfs_buf          *bp;
682         struct xfs_buf          *new_bp;
683         int                     error = 0;
684
685         error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
686
687         switch (error) {
688         case 0:
689                 /* cache hit */
690                 goto found;
691         case -EAGAIN:
692                 /* cache hit, trylock failure, caller handles failure */
693                 ASSERT(flags & XBF_TRYLOCK);
694                 return NULL;
695         case -ENOENT:
696                 /* cache miss, go for insert */
697                 break;
698         case -EFSCORRUPTED:
699         default:
700                 /*
701                  * None of the higher layers understand failure types
702                  * yet, so return NULL to signal a fatal lookup error.
703                  */
704                 return NULL;
705         }
706
707         new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
708         if (unlikely(!new_bp))
709                 return NULL;
710
711         error = xfs_buf_allocate_memory(new_bp, flags);
712         if (error) {
713                 xfs_buf_free(new_bp);
714                 return NULL;
715         }
716
717         error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
718         if (error) {
719                 xfs_buf_free(new_bp);
720                 return NULL;
721         }
722
723         if (bp != new_bp)
724                 xfs_buf_free(new_bp);
725
726 found:
727         if (!bp->b_addr) {
728                 error = _xfs_buf_map_pages(bp, flags);
729                 if (unlikely(error)) {
730                         xfs_warn(target->bt_mount,
731                                 "%s: failed to map pagesn", __func__);
732                         xfs_buf_relse(bp);
733                         return NULL;
734                 }
735         }
736
737         /*
738          * Clear b_error if this is a lookup from a caller that doesn't expect
739          * valid data to be found in the buffer.
740          */
741         if (!(flags & XBF_READ))
742                 xfs_buf_ioerror(bp, 0);
743
744         XFS_STATS_INC(target->bt_mount, xb_get);
745         trace_xfs_buf_get(bp, flags, _RET_IP_);
746         return bp;
747 }
748
749 STATIC int
750 _xfs_buf_read(
751         xfs_buf_t               *bp,
752         xfs_buf_flags_t         flags)
753 {
754         ASSERT(!(flags & XBF_WRITE));
755         ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
756
757         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
758         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
759
760         if (flags & XBF_ASYNC) {
761                 xfs_buf_submit(bp);
762                 return 0;
763         }
764         return xfs_buf_submit_wait(bp);
765 }
766
767 xfs_buf_t *
768 xfs_buf_read_map(
769         struct xfs_buftarg      *target,
770         struct xfs_buf_map      *map,
771         int                     nmaps,
772         xfs_buf_flags_t         flags,
773         const struct xfs_buf_ops *ops)
774 {
775         struct xfs_buf          *bp;
776
777         flags |= XBF_READ;
778
779         bp = xfs_buf_get_map(target, map, nmaps, flags);
780         if (bp) {
781                 trace_xfs_buf_read(bp, flags, _RET_IP_);
782
783                 if (!(bp->b_flags & XBF_DONE)) {
784                         XFS_STATS_INC(target->bt_mount, xb_get_read);
785                         bp->b_ops = ops;
786                         _xfs_buf_read(bp, flags);
787                 } else if (flags & XBF_ASYNC) {
788                         /*
789                          * Read ahead call which is already satisfied,
790                          * drop the buffer
791                          */
792                         xfs_buf_relse(bp);
793                         return NULL;
794                 } else {
795                         /* We do not want read in the flags */
796                         bp->b_flags &= ~XBF_READ;
797                 }
798         }
799
800         return bp;
801 }
802
803 /*
804  *      If we are not low on memory then do the readahead in a deadlock
805  *      safe manner.
806  */
807 void
808 xfs_buf_readahead_map(
809         struct xfs_buftarg      *target,
810         struct xfs_buf_map      *map,
811         int                     nmaps,
812         const struct xfs_buf_ops *ops)
813 {
814         if (bdi_read_congested(target->bt_bdev->bd_bdi))
815                 return;
816
817         xfs_buf_read_map(target, map, nmaps,
818                      XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
819 }
820
821 /*
822  * Read an uncached buffer from disk. Allocates and returns a locked
823  * buffer containing the disk contents or nothing.
824  */
825 int
826 xfs_buf_read_uncached(
827         struct xfs_buftarg      *target,
828         xfs_daddr_t             daddr,
829         size_t                  numblks,
830         int                     flags,
831         struct xfs_buf          **bpp,
832         const struct xfs_buf_ops *ops)
833 {
834         struct xfs_buf          *bp;
835
836         *bpp = NULL;
837
838         bp = xfs_buf_get_uncached(target, numblks, flags);
839         if (!bp)
840                 return -ENOMEM;
841
842         /* set up the buffer for a read IO */
843         ASSERT(bp->b_map_count == 1);
844         bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
845         bp->b_maps[0].bm_bn = daddr;
846         bp->b_flags |= XBF_READ;
847         bp->b_ops = ops;
848
849         xfs_buf_submit_wait(bp);
850         if (bp->b_error) {
851                 int     error = bp->b_error;
852                 xfs_buf_relse(bp);
853                 return error;
854         }
855
856         *bpp = bp;
857         return 0;
858 }
859
860 /*
861  * Return a buffer allocated as an empty buffer and associated to external
862  * memory via xfs_buf_associate_memory() back to it's empty state.
863  */
864 void
865 xfs_buf_set_empty(
866         struct xfs_buf          *bp,
867         size_t                  numblks)
868 {
869         if (bp->b_pages)
870                 _xfs_buf_free_pages(bp);
871
872         bp->b_pages = NULL;
873         bp->b_page_count = 0;
874         bp->b_addr = NULL;
875         bp->b_length = numblks;
876         bp->b_io_length = numblks;
877
878         ASSERT(bp->b_map_count == 1);
879         bp->b_bn = XFS_BUF_DADDR_NULL;
880         bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
881         bp->b_maps[0].bm_len = bp->b_length;
882 }
883
884 static inline struct page *
885 mem_to_page(
886         void                    *addr)
887 {
888         if ((!is_vmalloc_addr(addr))) {
889                 return virt_to_page(addr);
890         } else {
891                 return vmalloc_to_page(addr);
892         }
893 }
894
895 int
896 xfs_buf_associate_memory(
897         xfs_buf_t               *bp,
898         void                    *mem,
899         size_t                  len)
900 {
901         int                     rval;
902         int                     i = 0;
903         unsigned long           pageaddr;
904         unsigned long           offset;
905         size_t                  buflen;
906         int                     page_count;
907
908         pageaddr = (unsigned long)mem & PAGE_MASK;
909         offset = (unsigned long)mem - pageaddr;
910         buflen = PAGE_ALIGN(len + offset);
911         page_count = buflen >> PAGE_SHIFT;
912
913         /* Free any previous set of page pointers */
914         if (bp->b_pages)
915                 _xfs_buf_free_pages(bp);
916
917         bp->b_pages = NULL;
918         bp->b_addr = mem;
919
920         rval = _xfs_buf_get_pages(bp, page_count);
921         if (rval)
922                 return rval;
923
924         bp->b_offset = offset;
925
926         for (i = 0; i < bp->b_page_count; i++) {
927                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
928                 pageaddr += PAGE_SIZE;
929         }
930
931         bp->b_io_length = BTOBB(len);
932         bp->b_length = BTOBB(buflen);
933
934         return 0;
935 }
936
937 xfs_buf_t *
938 xfs_buf_get_uncached(
939         struct xfs_buftarg      *target,
940         size_t                  numblks,
941         int                     flags)
942 {
943         unsigned long           page_count;
944         int                     error, i;
945         struct xfs_buf          *bp;
946         DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
947
948         /* flags might contain irrelevant bits, pass only what we care about */
949         bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
950         if (unlikely(bp == NULL))
951                 goto fail;
952
953         page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
954         error = _xfs_buf_get_pages(bp, page_count);
955         if (error)
956                 goto fail_free_buf;
957
958         for (i = 0; i < page_count; i++) {
959                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
960                 if (!bp->b_pages[i])
961                         goto fail_free_mem;
962         }
963         bp->b_flags |= _XBF_PAGES;
964
965         error = _xfs_buf_map_pages(bp, 0);
966         if (unlikely(error)) {
967                 xfs_warn(target->bt_mount,
968                         "%s: failed to map pages", __func__);
969                 goto fail_free_mem;
970         }
971
972         trace_xfs_buf_get_uncached(bp, _RET_IP_);
973         return bp;
974
975  fail_free_mem:
976         while (--i >= 0)
977                 __free_page(bp->b_pages[i]);
978         _xfs_buf_free_pages(bp);
979  fail_free_buf:
980         xfs_buf_free_maps(bp);
981         kmem_zone_free(xfs_buf_zone, bp);
982  fail:
983         return NULL;
984 }
985
986 /*
987  *      Increment reference count on buffer, to hold the buffer concurrently
988  *      with another thread which may release (free) the buffer asynchronously.
989  *      Must hold the buffer already to call this function.
990  */
991 void
992 xfs_buf_hold(
993         xfs_buf_t               *bp)
994 {
995         trace_xfs_buf_hold(bp, _RET_IP_);
996         atomic_inc(&bp->b_hold);
997 }
998
999 /*
1000  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1001  * placed on LRU or freed (depending on b_lru_ref).
1002  */
1003 void
1004 xfs_buf_rele(
1005         xfs_buf_t               *bp)
1006 {
1007         struct xfs_perag        *pag = bp->b_pag;
1008         bool                    release;
1009         bool                    freebuf = false;
1010
1011         trace_xfs_buf_rele(bp, _RET_IP_);
1012
1013         if (!pag) {
1014                 ASSERT(list_empty(&bp->b_lru));
1015                 if (atomic_dec_and_test(&bp->b_hold)) {
1016                         xfs_buf_ioacct_dec(bp);
1017                         xfs_buf_free(bp);
1018                 }
1019                 return;
1020         }
1021
1022         ASSERT(atomic_read(&bp->b_hold) > 0);
1023
1024         release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1025         spin_lock(&bp->b_lock);
1026         if (!release) {
1027                 /*
1028                  * Drop the in-flight state if the buffer is already on the LRU
1029                  * and it holds the only reference. This is racy because we
1030                  * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1031                  * ensures the decrement occurs only once per-buf.
1032                  */
1033                 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1034                         __xfs_buf_ioacct_dec(bp);
1035                 goto out_unlock;
1036         }
1037
1038         /* the last reference has been dropped ... */
1039         __xfs_buf_ioacct_dec(bp);
1040         if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1041                 /*
1042                  * If the buffer is added to the LRU take a new reference to the
1043                  * buffer for the LRU and clear the (now stale) dispose list
1044                  * state flag
1045                  */
1046                 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1047                         bp->b_state &= ~XFS_BSTATE_DISPOSE;
1048                         atomic_inc(&bp->b_hold);
1049                 }
1050                 spin_unlock(&pag->pag_buf_lock);
1051         } else {
1052                 /*
1053                  * most of the time buffers will already be removed from the
1054                  * LRU, so optimise that case by checking for the
1055                  * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1056                  * was on was the disposal list
1057                  */
1058                 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1059                         list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1060                 } else {
1061                         ASSERT(list_empty(&bp->b_lru));
1062                 }
1063
1064                 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1065                 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1066                                        xfs_buf_hash_params);
1067                 spin_unlock(&pag->pag_buf_lock);
1068                 xfs_perag_put(pag);
1069                 freebuf = true;
1070         }
1071
1072 out_unlock:
1073         spin_unlock(&bp->b_lock);
1074
1075         if (freebuf)
1076                 xfs_buf_free(bp);
1077 }
1078
1079
1080 /*
1081  *      Lock a buffer object, if it is not already locked.
1082  *
1083  *      If we come across a stale, pinned, locked buffer, we know that we are
1084  *      being asked to lock a buffer that has been reallocated. Because it is
1085  *      pinned, we know that the log has not been pushed to disk and hence it
1086  *      will still be locked.  Rather than continuing to have trylock attempts
1087  *      fail until someone else pushes the log, push it ourselves before
1088  *      returning.  This means that the xfsaild will not get stuck trying
1089  *      to push on stale inode buffers.
1090  */
1091 int
1092 xfs_buf_trylock(
1093         struct xfs_buf          *bp)
1094 {
1095         int                     locked;
1096
1097         locked = down_trylock(&bp->b_sema) == 0;
1098         if (locked) {
1099                 XB_SET_OWNER(bp);
1100                 trace_xfs_buf_trylock(bp, _RET_IP_);
1101         } else {
1102                 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1103         }
1104         return locked;
1105 }
1106
1107 /*
1108  *      Lock a buffer object.
1109  *
1110  *      If we come across a stale, pinned, locked buffer, we know that we
1111  *      are being asked to lock a buffer that has been reallocated. Because
1112  *      it is pinned, we know that the log has not been pushed to disk and
1113  *      hence it will still be locked. Rather than sleeping until someone
1114  *      else pushes the log, push it ourselves before trying to get the lock.
1115  */
1116 void
1117 xfs_buf_lock(
1118         struct xfs_buf          *bp)
1119 {
1120         trace_xfs_buf_lock(bp, _RET_IP_);
1121
1122         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1123                 xfs_log_force(bp->b_target->bt_mount, 0);
1124         down(&bp->b_sema);
1125         XB_SET_OWNER(bp);
1126
1127         trace_xfs_buf_lock_done(bp, _RET_IP_);
1128 }
1129
1130 void
1131 xfs_buf_unlock(
1132         struct xfs_buf          *bp)
1133 {
1134         ASSERT(xfs_buf_islocked(bp));
1135
1136         XB_CLEAR_OWNER(bp);
1137         up(&bp->b_sema);
1138
1139         trace_xfs_buf_unlock(bp, _RET_IP_);
1140 }
1141
1142 STATIC void
1143 xfs_buf_wait_unpin(
1144         xfs_buf_t               *bp)
1145 {
1146         DECLARE_WAITQUEUE       (wait, current);
1147
1148         if (atomic_read(&bp->b_pin_count) == 0)
1149                 return;
1150
1151         add_wait_queue(&bp->b_waiters, &wait);
1152         for (;;) {
1153                 set_current_state(TASK_UNINTERRUPTIBLE);
1154                 if (atomic_read(&bp->b_pin_count) == 0)
1155                         break;
1156                 io_schedule();
1157         }
1158         remove_wait_queue(&bp->b_waiters, &wait);
1159         set_current_state(TASK_RUNNING);
1160 }
1161
1162 /*
1163  *      Buffer Utility Routines
1164  */
1165
1166 void
1167 xfs_buf_ioend(
1168         struct xfs_buf  *bp)
1169 {
1170         bool            read = bp->b_flags & XBF_READ;
1171
1172         trace_xfs_buf_iodone(bp, _RET_IP_);
1173
1174         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1175
1176         /*
1177          * Pull in IO completion errors now. We are guaranteed to be running
1178          * single threaded, so we don't need the lock to read b_io_error.
1179          */
1180         if (!bp->b_error && bp->b_io_error)
1181                 xfs_buf_ioerror(bp, bp->b_io_error);
1182
1183         /* Only validate buffers that were read without errors */
1184         if (read && !bp->b_error && bp->b_ops) {
1185                 ASSERT(!bp->b_iodone);
1186                 bp->b_ops->verify_read(bp);
1187         }
1188
1189         if (!bp->b_error)
1190                 bp->b_flags |= XBF_DONE;
1191
1192         if (bp->b_iodone)
1193                 (*(bp->b_iodone))(bp);
1194         else if (bp->b_flags & XBF_ASYNC)
1195                 xfs_buf_relse(bp);
1196         else
1197                 complete(&bp->b_iowait);
1198 }
1199
1200 static void
1201 xfs_buf_ioend_work(
1202         struct work_struct      *work)
1203 {
1204         struct xfs_buf          *bp =
1205                 container_of(work, xfs_buf_t, b_ioend_work);
1206
1207         xfs_buf_ioend(bp);
1208 }
1209
1210 static void
1211 xfs_buf_ioend_async(
1212         struct xfs_buf  *bp)
1213 {
1214         INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1215         queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1216 }
1217
1218 void
1219 __xfs_buf_ioerror(
1220         xfs_buf_t               *bp,
1221         int                     error,
1222         xfs_failaddr_t          failaddr)
1223 {
1224         ASSERT(error <= 0 && error >= -1000);
1225         bp->b_error = error;
1226         trace_xfs_buf_ioerror(bp, error, failaddr);
1227 }
1228
1229 void
1230 xfs_buf_ioerror_alert(
1231         struct xfs_buf          *bp,
1232         const char              *func)
1233 {
1234         xfs_alert(bp->b_target->bt_mount,
1235 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1236                         func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1237                         -bp->b_error);
1238 }
1239
1240 int
1241 xfs_bwrite(
1242         struct xfs_buf          *bp)
1243 {
1244         int                     error;
1245
1246         ASSERT(xfs_buf_islocked(bp));
1247
1248         bp->b_flags |= XBF_WRITE;
1249         bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1250                          XBF_WRITE_FAIL | XBF_DONE);
1251
1252         error = xfs_buf_submit_wait(bp);
1253         if (error) {
1254                 xfs_force_shutdown(bp->b_target->bt_mount,
1255                                    SHUTDOWN_META_IO_ERROR);
1256         }
1257         return error;
1258 }
1259
1260 static void
1261 xfs_buf_bio_end_io(
1262         struct bio              *bio)
1263 {
1264         struct xfs_buf          *bp = (struct xfs_buf *)bio->bi_private;
1265
1266         /*
1267          * don't overwrite existing errors - otherwise we can lose errors on
1268          * buffers that require multiple bios to complete.
1269          */
1270         if (bio->bi_status) {
1271                 int error = blk_status_to_errno(bio->bi_status);
1272
1273                 cmpxchg(&bp->b_io_error, 0, error);
1274         }
1275
1276         if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1277                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1278
1279         if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1280                 xfs_buf_ioend_async(bp);
1281         bio_put(bio);
1282 }
1283
1284 static void
1285 xfs_buf_ioapply_map(
1286         struct xfs_buf  *bp,
1287         int             map,
1288         int             *buf_offset,
1289         int             *count,
1290         int             op,
1291         int             op_flags)
1292 {
1293         int             page_index;
1294         int             total_nr_pages = bp->b_page_count;
1295         int             nr_pages;
1296         struct bio      *bio;
1297         sector_t        sector =  bp->b_maps[map].bm_bn;
1298         int             size;
1299         int             offset;
1300
1301         /* skip the pages in the buffer before the start offset */
1302         page_index = 0;
1303         offset = *buf_offset;
1304         while (offset >= PAGE_SIZE) {
1305                 page_index++;
1306                 offset -= PAGE_SIZE;
1307         }
1308
1309         /*
1310          * Limit the IO size to the length of the current vector, and update the
1311          * remaining IO count for the next time around.
1312          */
1313         size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1314         *count -= size;
1315         *buf_offset += size;
1316
1317 next_chunk:
1318         atomic_inc(&bp->b_io_remaining);
1319         nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1320
1321         bio = bio_alloc(GFP_NOIO, nr_pages);
1322         bio_set_dev(bio, bp->b_target->bt_bdev);
1323         bio->bi_iter.bi_sector = sector;
1324         bio->bi_end_io = xfs_buf_bio_end_io;
1325         bio->bi_private = bp;
1326         bio_set_op_attrs(bio, op, op_flags);
1327
1328         for (; size && nr_pages; nr_pages--, page_index++) {
1329                 int     rbytes, nbytes = PAGE_SIZE - offset;
1330
1331                 if (nbytes > size)
1332                         nbytes = size;
1333
1334                 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1335                                       offset);
1336                 if (rbytes < nbytes)
1337                         break;
1338
1339                 offset = 0;
1340                 sector += BTOBB(nbytes);
1341                 size -= nbytes;
1342                 total_nr_pages--;
1343         }
1344
1345         if (likely(bio->bi_iter.bi_size)) {
1346                 if (xfs_buf_is_vmapped(bp)) {
1347                         flush_kernel_vmap_range(bp->b_addr,
1348                                                 xfs_buf_vmap_len(bp));
1349                 }
1350                 submit_bio(bio);
1351                 if (size)
1352                         goto next_chunk;
1353         } else {
1354                 /*
1355                  * This is guaranteed not to be the last io reference count
1356                  * because the caller (xfs_buf_submit) holds a count itself.
1357                  */
1358                 atomic_dec(&bp->b_io_remaining);
1359                 xfs_buf_ioerror(bp, -EIO);
1360                 bio_put(bio);
1361         }
1362
1363 }
1364
1365 STATIC void
1366 _xfs_buf_ioapply(
1367         struct xfs_buf  *bp)
1368 {
1369         struct blk_plug plug;
1370         int             op;
1371         int             op_flags = 0;
1372         int             offset;
1373         int             size;
1374         int             i;
1375
1376         /*
1377          * Make sure we capture only current IO errors rather than stale errors
1378          * left over from previous use of the buffer (e.g. failed readahead).
1379          */
1380         bp->b_error = 0;
1381
1382         /*
1383          * Initialize the I/O completion workqueue if we haven't yet or the
1384          * submitter has not opted to specify a custom one.
1385          */
1386         if (!bp->b_ioend_wq)
1387                 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1388
1389         if (bp->b_flags & XBF_WRITE) {
1390                 op = REQ_OP_WRITE;
1391                 if (bp->b_flags & XBF_SYNCIO)
1392                         op_flags = REQ_SYNC;
1393                 if (bp->b_flags & XBF_FUA)
1394                         op_flags |= REQ_FUA;
1395                 if (bp->b_flags & XBF_FLUSH)
1396                         op_flags |= REQ_PREFLUSH;
1397
1398                 /*
1399                  * Run the write verifier callback function if it exists. If
1400                  * this function fails it will mark the buffer with an error and
1401                  * the IO should not be dispatched.
1402                  */
1403                 if (bp->b_ops) {
1404                         bp->b_ops->verify_write(bp);
1405                         if (bp->b_error) {
1406                                 xfs_force_shutdown(bp->b_target->bt_mount,
1407                                                    SHUTDOWN_CORRUPT_INCORE);
1408                                 return;
1409                         }
1410                 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1411                         struct xfs_mount *mp = bp->b_target->bt_mount;
1412
1413                         /*
1414                          * non-crc filesystems don't attach verifiers during
1415                          * log recovery, so don't warn for such filesystems.
1416                          */
1417                         if (xfs_sb_version_hascrc(&mp->m_sb)) {
1418                                 xfs_warn(mp,
1419                                         "%s: no buf ops on daddr 0x%llx len %d",
1420                                         __func__, bp->b_bn, bp->b_length);
1421                                 xfs_hex_dump(bp->b_addr,
1422                                                 XFS_CORRUPTION_DUMP_LEN);
1423                                 dump_stack();
1424                         }
1425                 }
1426         } else if (bp->b_flags & XBF_READ_AHEAD) {
1427                 op = REQ_OP_READ;
1428                 op_flags = REQ_RAHEAD;
1429         } else {
1430                 op = REQ_OP_READ;
1431         }
1432
1433         /* we only use the buffer cache for meta-data */
1434         op_flags |= REQ_META;
1435
1436         /*
1437          * Walk all the vectors issuing IO on them. Set up the initial offset
1438          * into the buffer and the desired IO size before we start -
1439          * _xfs_buf_ioapply_vec() will modify them appropriately for each
1440          * subsequent call.
1441          */
1442         offset = bp->b_offset;
1443         size = BBTOB(bp->b_io_length);
1444         blk_start_plug(&plug);
1445         for (i = 0; i < bp->b_map_count; i++) {
1446                 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1447                 if (bp->b_error)
1448                         break;
1449                 if (size <= 0)
1450                         break;  /* all done */
1451         }
1452         blk_finish_plug(&plug);
1453 }
1454
1455 /*
1456  * Asynchronous IO submission path. This transfers the buffer lock ownership and
1457  * the current reference to the IO. It is not safe to reference the buffer after
1458  * a call to this function unless the caller holds an additional reference
1459  * itself.
1460  */
1461 void
1462 xfs_buf_submit(
1463         struct xfs_buf  *bp)
1464 {
1465         trace_xfs_buf_submit(bp, _RET_IP_);
1466
1467         ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1468         ASSERT(bp->b_flags & XBF_ASYNC);
1469
1470         /* on shutdown we stale and complete the buffer immediately */
1471         if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1472                 xfs_buf_ioerror(bp, -EIO);
1473                 bp->b_flags &= ~XBF_DONE;
1474                 xfs_buf_stale(bp);
1475                 xfs_buf_ioend(bp);
1476                 return;
1477         }
1478
1479         if (bp->b_flags & XBF_WRITE)
1480                 xfs_buf_wait_unpin(bp);
1481
1482         /* clear the internal error state to avoid spurious errors */
1483         bp->b_io_error = 0;
1484
1485         /*
1486          * The caller's reference is released during I/O completion.
1487          * This occurs some time after the last b_io_remaining reference is
1488          * released, so after we drop our Io reference we have to have some
1489          * other reference to ensure the buffer doesn't go away from underneath
1490          * us. Take a direct reference to ensure we have safe access to the
1491          * buffer until we are finished with it.
1492          */
1493         xfs_buf_hold(bp);
1494
1495         /*
1496          * Set the count to 1 initially, this will stop an I/O completion
1497          * callout which happens before we have started all the I/O from calling
1498          * xfs_buf_ioend too early.
1499          */
1500         atomic_set(&bp->b_io_remaining, 1);
1501         xfs_buf_ioacct_inc(bp);
1502         _xfs_buf_ioapply(bp);
1503
1504         /*
1505          * If _xfs_buf_ioapply failed, we can get back here with only the IO
1506          * reference we took above. If we drop it to zero, run completion so
1507          * that we don't return to the caller with completion still pending.
1508          */
1509         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1510                 if (bp->b_error)
1511                         xfs_buf_ioend(bp);
1512                 else
1513                         xfs_buf_ioend_async(bp);
1514         }
1515
1516         xfs_buf_rele(bp);
1517         /* Note: it is not safe to reference bp now we've dropped our ref */
1518 }
1519
1520 /*
1521  * Synchronous buffer IO submission path, read or write.
1522  */
1523 int
1524 xfs_buf_submit_wait(
1525         struct xfs_buf  *bp)
1526 {
1527         int             error;
1528
1529         trace_xfs_buf_submit_wait(bp, _RET_IP_);
1530
1531         ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1532
1533         if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1534                 xfs_buf_ioerror(bp, -EIO);
1535                 xfs_buf_stale(bp);
1536                 bp->b_flags &= ~XBF_DONE;
1537                 return -EIO;
1538         }
1539
1540         if (bp->b_flags & XBF_WRITE)
1541                 xfs_buf_wait_unpin(bp);
1542
1543         /* clear the internal error state to avoid spurious errors */
1544         bp->b_io_error = 0;
1545
1546         /*
1547          * For synchronous IO, the IO does not inherit the submitters reference
1548          * count, nor the buffer lock. Hence we cannot release the reference we
1549          * are about to take until we've waited for all IO completion to occur,
1550          * including any xfs_buf_ioend_async() work that may be pending.
1551          */
1552         xfs_buf_hold(bp);
1553
1554         /*
1555          * Set the count to 1 initially, this will stop an I/O completion
1556          * callout which happens before we have started all the I/O from calling
1557          * xfs_buf_ioend too early.
1558          */
1559         atomic_set(&bp->b_io_remaining, 1);
1560         _xfs_buf_ioapply(bp);
1561
1562         /*
1563          * make sure we run completion synchronously if it raced with us and is
1564          * already complete.
1565          */
1566         if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1567                 xfs_buf_ioend(bp);
1568
1569         /* wait for completion before gathering the error from the buffer */
1570         trace_xfs_buf_iowait(bp, _RET_IP_);
1571         wait_for_completion(&bp->b_iowait);
1572         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1573         error = bp->b_error;
1574
1575         /*
1576          * all done now, we can release the hold that keeps the buffer
1577          * referenced for the entire IO.
1578          */
1579         xfs_buf_rele(bp);
1580         return error;
1581 }
1582
1583 void *
1584 xfs_buf_offset(
1585         struct xfs_buf          *bp,
1586         size_t                  offset)
1587 {
1588         struct page             *page;
1589
1590         if (bp->b_addr)
1591                 return bp->b_addr + offset;
1592
1593         offset += bp->b_offset;
1594         page = bp->b_pages[offset >> PAGE_SHIFT];
1595         return page_address(page) + (offset & (PAGE_SIZE-1));
1596 }
1597
1598 /*
1599  *      Move data into or out of a buffer.
1600  */
1601 void
1602 xfs_buf_iomove(
1603         xfs_buf_t               *bp,    /* buffer to process            */
1604         size_t                  boff,   /* starting buffer offset       */
1605         size_t                  bsize,  /* length to copy               */
1606         void                    *data,  /* data address                 */
1607         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1608 {
1609         size_t                  bend;
1610
1611         bend = boff + bsize;
1612         while (boff < bend) {
1613                 struct page     *page;
1614                 int             page_index, page_offset, csize;
1615
1616                 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1617                 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1618                 page = bp->b_pages[page_index];
1619                 csize = min_t(size_t, PAGE_SIZE - page_offset,
1620                                       BBTOB(bp->b_io_length) - boff);
1621
1622                 ASSERT((csize + page_offset) <= PAGE_SIZE);
1623
1624                 switch (mode) {
1625                 case XBRW_ZERO:
1626                         memset(page_address(page) + page_offset, 0, csize);
1627                         break;
1628                 case XBRW_READ:
1629                         memcpy(data, page_address(page) + page_offset, csize);
1630                         break;
1631                 case XBRW_WRITE:
1632                         memcpy(page_address(page) + page_offset, data, csize);
1633                 }
1634
1635                 boff += csize;
1636                 data += csize;
1637         }
1638 }
1639
1640 /*
1641  *      Handling of buffer targets (buftargs).
1642  */
1643
1644 /*
1645  * Wait for any bufs with callbacks that have been submitted but have not yet
1646  * returned. These buffers will have an elevated hold count, so wait on those
1647  * while freeing all the buffers only held by the LRU.
1648  */
1649 static enum lru_status
1650 xfs_buftarg_wait_rele(
1651         struct list_head        *item,
1652         struct list_lru_one     *lru,
1653         spinlock_t              *lru_lock,
1654         void                    *arg)
1655
1656 {
1657         struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1658         struct list_head        *dispose = arg;
1659
1660         if (atomic_read(&bp->b_hold) > 1) {
1661                 /* need to wait, so skip it this pass */
1662                 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1663                 return LRU_SKIP;
1664         }
1665         if (!spin_trylock(&bp->b_lock))
1666                 return LRU_SKIP;
1667
1668         /*
1669          * clear the LRU reference count so the buffer doesn't get
1670          * ignored in xfs_buf_rele().
1671          */
1672         atomic_set(&bp->b_lru_ref, 0);
1673         bp->b_state |= XFS_BSTATE_DISPOSE;
1674         list_lru_isolate_move(lru, item, dispose);
1675         spin_unlock(&bp->b_lock);
1676         return LRU_REMOVED;
1677 }
1678
1679 void
1680 xfs_wait_buftarg(
1681         struct xfs_buftarg      *btp)
1682 {
1683         LIST_HEAD(dispose);
1684         int loop = 0;
1685
1686         /*
1687          * First wait on the buftarg I/O count for all in-flight buffers to be
1688          * released. This is critical as new buffers do not make the LRU until
1689          * they are released.
1690          *
1691          * Next, flush the buffer workqueue to ensure all completion processing
1692          * has finished. Just waiting on buffer locks is not sufficient for
1693          * async IO as the reference count held over IO is not released until
1694          * after the buffer lock is dropped. Hence we need to ensure here that
1695          * all reference counts have been dropped before we start walking the
1696          * LRU list.
1697          */
1698         while (percpu_counter_sum(&btp->bt_io_count))
1699                 delay(100);
1700         flush_workqueue(btp->bt_mount->m_buf_workqueue);
1701
1702         /* loop until there is nothing left on the lru list. */
1703         while (list_lru_count(&btp->bt_lru)) {
1704                 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1705                               &dispose, LONG_MAX);
1706
1707                 while (!list_empty(&dispose)) {
1708                         struct xfs_buf *bp;
1709                         bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1710                         list_del_init(&bp->b_lru);
1711                         if (bp->b_flags & XBF_WRITE_FAIL) {
1712                                 xfs_alert(btp->bt_mount,
1713 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1714                                         (long long)bp->b_bn);
1715                                 xfs_alert(btp->bt_mount,
1716 "Please run xfs_repair to determine the extent of the problem.");
1717                         }
1718                         xfs_buf_rele(bp);
1719                 }
1720                 if (loop++ != 0)
1721                         delay(100);
1722         }
1723 }
1724
1725 static enum lru_status
1726 xfs_buftarg_isolate(
1727         struct list_head        *item,
1728         struct list_lru_one     *lru,
1729         spinlock_t              *lru_lock,
1730         void                    *arg)
1731 {
1732         struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1733         struct list_head        *dispose = arg;
1734
1735         /*
1736          * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1737          * If we fail to get the lock, just skip it.
1738          */
1739         if (!spin_trylock(&bp->b_lock))
1740                 return LRU_SKIP;
1741         /*
1742          * Decrement the b_lru_ref count unless the value is already
1743          * zero. If the value is already zero, we need to reclaim the
1744          * buffer, otherwise it gets another trip through the LRU.
1745          */
1746         if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1747                 spin_unlock(&bp->b_lock);
1748                 return LRU_ROTATE;
1749         }
1750
1751         bp->b_state |= XFS_BSTATE_DISPOSE;
1752         list_lru_isolate_move(lru, item, dispose);
1753         spin_unlock(&bp->b_lock);
1754         return LRU_REMOVED;
1755 }
1756
1757 static unsigned long
1758 xfs_buftarg_shrink_scan(
1759         struct shrinker         *shrink,
1760         struct shrink_control   *sc)
1761 {
1762         struct xfs_buftarg      *btp = container_of(shrink,
1763                                         struct xfs_buftarg, bt_shrinker);
1764         LIST_HEAD(dispose);
1765         unsigned long           freed;
1766
1767         freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1768                                      xfs_buftarg_isolate, &dispose);
1769
1770         while (!list_empty(&dispose)) {
1771                 struct xfs_buf *bp;
1772                 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1773                 list_del_init(&bp->b_lru);
1774                 xfs_buf_rele(bp);
1775         }
1776
1777         return freed;
1778 }
1779
1780 static unsigned long
1781 xfs_buftarg_shrink_count(
1782         struct shrinker         *shrink,
1783         struct shrink_control   *sc)
1784 {
1785         struct xfs_buftarg      *btp = container_of(shrink,
1786                                         struct xfs_buftarg, bt_shrinker);
1787         return list_lru_shrink_count(&btp->bt_lru, sc);
1788 }
1789
1790 void
1791 xfs_free_buftarg(
1792         struct xfs_buftarg      *btp)
1793 {
1794         unregister_shrinker(&btp->bt_shrinker);
1795         ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1796         percpu_counter_destroy(&btp->bt_io_count);
1797         list_lru_destroy(&btp->bt_lru);
1798
1799         xfs_blkdev_issue_flush(btp);
1800
1801         kmem_free(btp);
1802 }
1803
1804 int
1805 xfs_setsize_buftarg(
1806         xfs_buftarg_t           *btp,
1807         unsigned int            sectorsize)
1808 {
1809         /* Set up metadata sector size info */
1810         btp->bt_meta_sectorsize = sectorsize;
1811         btp->bt_meta_sectormask = sectorsize - 1;
1812
1813         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1814                 xfs_warn(btp->bt_mount,
1815                         "Cannot set_blocksize to %u on device %pg",
1816                         sectorsize, btp->bt_bdev);
1817                 return -EINVAL;
1818         }
1819
1820         /* Set up device logical sector size mask */
1821         btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1822         btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1823
1824         return 0;
1825 }
1826
1827 /*
1828  * When allocating the initial buffer target we have not yet
1829  * read in the superblock, so don't know what sized sectors
1830  * are being used at this early stage.  Play safe.
1831  */
1832 STATIC int
1833 xfs_setsize_buftarg_early(
1834         xfs_buftarg_t           *btp,
1835         struct block_device     *bdev)
1836 {
1837         return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1838 }
1839
1840 xfs_buftarg_t *
1841 xfs_alloc_buftarg(
1842         struct xfs_mount        *mp,
1843         struct block_device     *bdev,
1844         struct dax_device       *dax_dev)
1845 {
1846         xfs_buftarg_t           *btp;
1847
1848         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1849
1850         btp->bt_mount = mp;
1851         btp->bt_dev =  bdev->bd_dev;
1852         btp->bt_bdev = bdev;
1853         btp->bt_daxdev = dax_dev;
1854
1855         if (xfs_setsize_buftarg_early(btp, bdev))
1856                 goto error_free;
1857
1858         if (list_lru_init(&btp->bt_lru))
1859                 goto error_free;
1860
1861         if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1862                 goto error_lru;
1863
1864         btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1865         btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1866         btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1867         btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1868         if (register_shrinker(&btp->bt_shrinker))
1869                 goto error_pcpu;
1870         return btp;
1871
1872 error_pcpu:
1873         percpu_counter_destroy(&btp->bt_io_count);
1874 error_lru:
1875         list_lru_destroy(&btp->bt_lru);
1876 error_free:
1877         kmem_free(btp);
1878         return NULL;
1879 }
1880
1881 /*
1882  * Cancel a delayed write list.
1883  *
1884  * Remove each buffer from the list, clear the delwri queue flag and drop the
1885  * associated buffer reference.
1886  */
1887 void
1888 xfs_buf_delwri_cancel(
1889         struct list_head        *list)
1890 {
1891         struct xfs_buf          *bp;
1892
1893         while (!list_empty(list)) {
1894                 bp = list_first_entry(list, struct xfs_buf, b_list);
1895
1896                 xfs_buf_lock(bp);
1897                 bp->b_flags &= ~_XBF_DELWRI_Q;
1898                 list_del_init(&bp->b_list);
1899                 xfs_buf_relse(bp);
1900         }
1901 }
1902
1903 /*
1904  * Add a buffer to the delayed write list.
1905  *
1906  * This queues a buffer for writeout if it hasn't already been.  Note that
1907  * neither this routine nor the buffer list submission functions perform
1908  * any internal synchronization.  It is expected that the lists are thread-local
1909  * to the callers.
1910  *
1911  * Returns true if we queued up the buffer, or false if it already had
1912  * been on the buffer list.
1913  */
1914 bool
1915 xfs_buf_delwri_queue(
1916         struct xfs_buf          *bp,
1917         struct list_head        *list)
1918 {
1919         ASSERT(xfs_buf_islocked(bp));
1920         ASSERT(!(bp->b_flags & XBF_READ));
1921
1922         /*
1923          * If the buffer is already marked delwri it already is queued up
1924          * by someone else for imediate writeout.  Just ignore it in that
1925          * case.
1926          */
1927         if (bp->b_flags & _XBF_DELWRI_Q) {
1928                 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1929                 return false;
1930         }
1931
1932         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1933
1934         /*
1935          * If a buffer gets written out synchronously or marked stale while it
1936          * is on a delwri list we lazily remove it. To do this, the other party
1937          * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1938          * It remains referenced and on the list.  In a rare corner case it
1939          * might get readded to a delwri list after the synchronous writeout, in
1940          * which case we need just need to re-add the flag here.
1941          */
1942         bp->b_flags |= _XBF_DELWRI_Q;
1943         if (list_empty(&bp->b_list)) {
1944                 atomic_inc(&bp->b_hold);
1945                 list_add_tail(&bp->b_list, list);
1946         }
1947
1948         return true;
1949 }
1950
1951 /*
1952  * Compare function is more complex than it needs to be because
1953  * the return value is only 32 bits and we are doing comparisons
1954  * on 64 bit values
1955  */
1956 static int
1957 xfs_buf_cmp(
1958         void            *priv,
1959         struct list_head *a,
1960         struct list_head *b)
1961 {
1962         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1963         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1964         xfs_daddr_t             diff;
1965
1966         diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1967         if (diff < 0)
1968                 return -1;
1969         if (diff > 0)
1970                 return 1;
1971         return 0;
1972 }
1973
1974 /*
1975  * submit buffers for write.
1976  *
1977  * When we have a large buffer list, we do not want to hold all the buffers
1978  * locked while we block on the request queue waiting for IO dispatch. To avoid
1979  * this problem, we lock and submit buffers in groups of 50, thereby minimising
1980  * the lock hold times for lists which may contain thousands of objects.
1981  *
1982  * To do this, we sort the buffer list before we walk the list to lock and
1983  * submit buffers, and we plug and unplug around each group of buffers we
1984  * submit.
1985  */
1986 static int
1987 xfs_buf_delwri_submit_buffers(
1988         struct list_head        *buffer_list,
1989         struct list_head        *wait_list)
1990 {
1991         struct xfs_buf          *bp, *n;
1992         LIST_HEAD               (submit_list);
1993         int                     pinned = 0;
1994         struct blk_plug         plug;
1995
1996         list_sort(NULL, buffer_list, xfs_buf_cmp);
1997
1998         blk_start_plug(&plug);
1999         list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2000                 if (!wait_list) {
2001                         if (xfs_buf_ispinned(bp)) {
2002                                 pinned++;
2003                                 continue;
2004                         }
2005                         if (!xfs_buf_trylock(bp))
2006                                 continue;
2007                 } else {
2008                         xfs_buf_lock(bp);
2009                 }
2010
2011                 /*
2012                  * Someone else might have written the buffer synchronously or
2013                  * marked it stale in the meantime.  In that case only the
2014                  * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2015                  * reference and remove it from the list here.
2016                  */
2017                 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2018                         list_del_init(&bp->b_list);
2019                         xfs_buf_relse(bp);
2020                         continue;
2021                 }
2022
2023                 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2024
2025                 /*
2026                  * We do all IO submission async. This means if we need
2027                  * to wait for IO completion we need to take an extra
2028                  * reference so the buffer is still valid on the other
2029                  * side. We need to move the buffer onto the io_list
2030                  * at this point so the caller can still access it.
2031                  */
2032                 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
2033                 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
2034                 if (wait_list) {
2035                         xfs_buf_hold(bp);
2036                         list_move_tail(&bp->b_list, wait_list);
2037                 } else
2038                         list_del_init(&bp->b_list);
2039
2040                 xfs_buf_submit(bp);
2041         }
2042         blk_finish_plug(&plug);
2043
2044         return pinned;
2045 }
2046
2047 /*
2048  * Write out a buffer list asynchronously.
2049  *
2050  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2051  * out and not wait for I/O completion on any of the buffers.  This interface
2052  * is only safely useable for callers that can track I/O completion by higher
2053  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2054  * function.
2055  */
2056 int
2057 xfs_buf_delwri_submit_nowait(
2058         struct list_head        *buffer_list)
2059 {
2060         return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2061 }
2062
2063 /*
2064  * Write out a buffer list synchronously.
2065  *
2066  * This will take the @buffer_list, write all buffers out and wait for I/O
2067  * completion on all of the buffers. @buffer_list is consumed by the function,
2068  * so callers must have some other way of tracking buffers if they require such
2069  * functionality.
2070  */
2071 int
2072 xfs_buf_delwri_submit(
2073         struct list_head        *buffer_list)
2074 {
2075         LIST_HEAD               (wait_list);
2076         int                     error = 0, error2;
2077         struct xfs_buf          *bp;
2078
2079         xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2080
2081         /* Wait for IO to complete. */
2082         while (!list_empty(&wait_list)) {
2083                 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2084
2085                 list_del_init(&bp->b_list);
2086
2087                 /* locking the buffer will wait for async IO completion. */
2088                 xfs_buf_lock(bp);
2089                 error2 = bp->b_error;
2090                 xfs_buf_relse(bp);
2091                 if (!error)
2092                         error = error2;
2093         }
2094
2095         return error;
2096 }
2097
2098 /*
2099  * Push a single buffer on a delwri queue.
2100  *
2101  * The purpose of this function is to submit a single buffer of a delwri queue
2102  * and return with the buffer still on the original queue. The waiting delwri
2103  * buffer submission infrastructure guarantees transfer of the delwri queue
2104  * buffer reference to a temporary wait list. We reuse this infrastructure to
2105  * transfer the buffer back to the original queue.
2106  *
2107  * Note the buffer transitions from the queued state, to the submitted and wait
2108  * listed state and back to the queued state during this call. The buffer
2109  * locking and queue management logic between _delwri_pushbuf() and
2110  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2111  * before returning.
2112  */
2113 int
2114 xfs_buf_delwri_pushbuf(
2115         struct xfs_buf          *bp,
2116         struct list_head        *buffer_list)
2117 {
2118         LIST_HEAD               (submit_list);
2119         int                     error;
2120
2121         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2122
2123         trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2124
2125         /*
2126          * Isolate the buffer to a new local list so we can submit it for I/O
2127          * independently from the rest of the original list.
2128          */
2129         xfs_buf_lock(bp);
2130         list_move(&bp->b_list, &submit_list);
2131         xfs_buf_unlock(bp);
2132
2133         /*
2134          * Delwri submission clears the DELWRI_Q buffer flag and returns with
2135          * the buffer on the wait list with an associated reference. Rather than
2136          * bounce the buffer from a local wait list back to the original list
2137          * after I/O completion, reuse the original list as the wait list.
2138          */
2139         xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2140
2141         /*
2142          * The buffer is now under I/O and wait listed as during typical delwri
2143          * submission. Lock the buffer to wait for I/O completion. Rather than
2144          * remove the buffer from the wait list and release the reference, we
2145          * want to return with the buffer queued to the original list. The
2146          * buffer already sits on the original list with a wait list reference,
2147          * however. If we let the queue inherit that wait list reference, all we
2148          * need to do is reset the DELWRI_Q flag.
2149          */
2150         xfs_buf_lock(bp);
2151         error = bp->b_error;
2152         bp->b_flags |= _XBF_DELWRI_Q;
2153         xfs_buf_unlock(bp);
2154
2155         return error;
2156 }
2157
2158 int __init
2159 xfs_buf_init(void)
2160 {
2161         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2162                                                 KM_ZONE_HWALIGN, NULL);
2163         if (!xfs_buf_zone)
2164                 goto out;
2165
2166         return 0;
2167
2168  out:
2169         return -ENOMEM;
2170 }
2171
2172 void
2173 xfs_buf_terminate(void)
2174 {
2175         kmem_zone_destroy(xfs_buf_zone);
2176 }
2177
2178 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2179 {
2180         /*
2181          * Set the lru reference count to 0 based on the error injection tag.
2182          * This allows userspace to disrupt buffer caching for debug/testing
2183          * purposes.
2184          */
2185         if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2186                            XFS_ERRTAG_BUF_LRU_REF))
2187                 lru_ref = 0;
2188
2189         atomic_set(&bp->b_lru_ref, lru_ref);
2190 }