Merge tag 'perf-core-for-mingo-5.1-20190321' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / fs / xfs / libxfs / xfs_iext_tree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017 Christoph Hellwig.
4  */
5
6 #include <linux/cache.h>
7 #include <linux/kernel.h>
8 #include <linux/slab.h>
9 #include "xfs.h"
10 #include "xfs_format.h"
11 #include "xfs_bit.h"
12 #include "xfs_log_format.h"
13 #include "xfs_inode.h"
14 #include "xfs_inode_fork.h"
15 #include "xfs_trans_resv.h"
16 #include "xfs_mount.h"
17 #include "xfs_bmap.h"
18 #include "xfs_trace.h"
19
20 /*
21  * In-core extent record layout:
22  *
23  * +-------+----------------------------+
24  * | 00:53 | all 54 bits of startoff    |
25  * | 54:63 | low 10 bits of startblock  |
26  * +-------+----------------------------+
27  * | 00:20 | all 21 bits of length      |
28  * |    21 | unwritten extent bit       |
29  * | 22:63 | high 42 bits of startblock |
30  * +-------+----------------------------+
31  */
32 #define XFS_IEXT_STARTOFF_MASK          xfs_mask64lo(BMBT_STARTOFF_BITLEN)
33 #define XFS_IEXT_LENGTH_MASK            xfs_mask64lo(BMBT_BLOCKCOUNT_BITLEN)
34 #define XFS_IEXT_STARTBLOCK_MASK        xfs_mask64lo(BMBT_STARTBLOCK_BITLEN)
35
36 struct xfs_iext_rec {
37         uint64_t                        lo;
38         uint64_t                        hi;
39 };
40
41 /*
42  * Given that the length can't be a zero, only an empty hi value indicates an
43  * unused record.
44  */
45 static bool xfs_iext_rec_is_empty(struct xfs_iext_rec *rec)
46 {
47         return rec->hi == 0;
48 }
49
50 static inline void xfs_iext_rec_clear(struct xfs_iext_rec *rec)
51 {
52         rec->lo = 0;
53         rec->hi = 0;
54 }
55
56 static void
57 xfs_iext_set(
58         struct xfs_iext_rec     *rec,
59         struct xfs_bmbt_irec    *irec)
60 {
61         ASSERT((irec->br_startoff & ~XFS_IEXT_STARTOFF_MASK) == 0);
62         ASSERT((irec->br_blockcount & ~XFS_IEXT_LENGTH_MASK) == 0);
63         ASSERT((irec->br_startblock & ~XFS_IEXT_STARTBLOCK_MASK) == 0);
64
65         rec->lo = irec->br_startoff & XFS_IEXT_STARTOFF_MASK;
66         rec->hi = irec->br_blockcount & XFS_IEXT_LENGTH_MASK;
67
68         rec->lo |= (irec->br_startblock << 54);
69         rec->hi |= ((irec->br_startblock & ~xfs_mask64lo(10)) << (22 - 10));
70
71         if (irec->br_state == XFS_EXT_UNWRITTEN)
72                 rec->hi |= (1 << 21);
73 }
74
75 static void
76 xfs_iext_get(
77         struct xfs_bmbt_irec    *irec,
78         struct xfs_iext_rec     *rec)
79 {
80         irec->br_startoff = rec->lo & XFS_IEXT_STARTOFF_MASK;
81         irec->br_blockcount = rec->hi & XFS_IEXT_LENGTH_MASK;
82
83         irec->br_startblock = rec->lo >> 54;
84         irec->br_startblock |= (rec->hi & xfs_mask64hi(42)) >> (22 - 10);
85
86         if (rec->hi & (1 << 21))
87                 irec->br_state = XFS_EXT_UNWRITTEN;
88         else
89                 irec->br_state = XFS_EXT_NORM;
90 }
91
92 enum {
93         NODE_SIZE       = 256,
94         KEYS_PER_NODE   = NODE_SIZE / (sizeof(uint64_t) + sizeof(void *)),
95         RECS_PER_LEAF   = (NODE_SIZE - (2 * sizeof(struct xfs_iext_leaf *))) /
96                                 sizeof(struct xfs_iext_rec),
97 };
98
99 /*
100  * In-core extent btree block layout:
101  *
102  * There are two types of blocks in the btree: leaf and inner (non-leaf) blocks.
103  *
104  * The leaf blocks are made up by %KEYS_PER_NODE extent records, which each
105  * contain the startoffset, blockcount, startblock and unwritten extent flag.
106  * See above for the exact format, followed by pointers to the previous and next
107  * leaf blocks (if there are any).
108  *
109  * The inner (non-leaf) blocks first contain KEYS_PER_NODE lookup keys, followed
110  * by an equal number of pointers to the btree blocks at the next lower level.
111  *
112  *              +-------+-------+-------+-------+-------+----------+----------+
113  * Leaf:        | rec 1 | rec 2 | rec 3 | rec 4 | rec N | prev-ptr | next-ptr |
114  *              +-------+-------+-------+-------+-------+----------+----------+
115  *
116  *              +-------+-------+-------+-------+-------+-------+------+-------+
117  * Inner:       | key 1 | key 2 | key 3 | key N | ptr 1 | ptr 2 | ptr3 | ptr N |
118  *              +-------+-------+-------+-------+-------+-------+------+-------+
119  */
120 struct xfs_iext_node {
121         uint64_t                keys[KEYS_PER_NODE];
122 #define XFS_IEXT_KEY_INVALID    (1ULL << 63)
123         void                    *ptrs[KEYS_PER_NODE];
124 };
125
126 struct xfs_iext_leaf {
127         struct xfs_iext_rec     recs[RECS_PER_LEAF];
128         struct xfs_iext_leaf    *prev;
129         struct xfs_iext_leaf    *next;
130 };
131
132 inline xfs_extnum_t xfs_iext_count(struct xfs_ifork *ifp)
133 {
134         return ifp->if_bytes / sizeof(struct xfs_iext_rec);
135 }
136
137 static inline int xfs_iext_max_recs(struct xfs_ifork *ifp)
138 {
139         if (ifp->if_height == 1)
140                 return xfs_iext_count(ifp);
141         return RECS_PER_LEAF;
142 }
143
144 static inline struct xfs_iext_rec *cur_rec(struct xfs_iext_cursor *cur)
145 {
146         return &cur->leaf->recs[cur->pos];
147 }
148
149 static inline bool xfs_iext_valid(struct xfs_ifork *ifp,
150                 struct xfs_iext_cursor *cur)
151 {
152         if (!cur->leaf)
153                 return false;
154         if (cur->pos < 0 || cur->pos >= xfs_iext_max_recs(ifp))
155                 return false;
156         if (xfs_iext_rec_is_empty(cur_rec(cur)))
157                 return false;
158         return true;
159 }
160
161 static void *
162 xfs_iext_find_first_leaf(
163         struct xfs_ifork        *ifp)
164 {
165         struct xfs_iext_node    *node = ifp->if_u1.if_root;
166         int                     height;
167
168         if (!ifp->if_height)
169                 return NULL;
170
171         for (height = ifp->if_height; height > 1; height--) {
172                 node = node->ptrs[0];
173                 ASSERT(node);
174         }
175
176         return node;
177 }
178
179 static void *
180 xfs_iext_find_last_leaf(
181         struct xfs_ifork        *ifp)
182 {
183         struct xfs_iext_node    *node = ifp->if_u1.if_root;
184         int                     height, i;
185
186         if (!ifp->if_height)
187                 return NULL;
188
189         for (height = ifp->if_height; height > 1; height--) {
190                 for (i = 1; i < KEYS_PER_NODE; i++)
191                         if (!node->ptrs[i])
192                                 break;
193                 node = node->ptrs[i - 1];
194                 ASSERT(node);
195         }
196
197         return node;
198 }
199
200 void
201 xfs_iext_first(
202         struct xfs_ifork        *ifp,
203         struct xfs_iext_cursor  *cur)
204 {
205         cur->pos = 0;
206         cur->leaf = xfs_iext_find_first_leaf(ifp);
207 }
208
209 void
210 xfs_iext_last(
211         struct xfs_ifork        *ifp,
212         struct xfs_iext_cursor  *cur)
213 {
214         int                     i;
215
216         cur->leaf = xfs_iext_find_last_leaf(ifp);
217         if (!cur->leaf) {
218                 cur->pos = 0;
219                 return;
220         }
221
222         for (i = 1; i < xfs_iext_max_recs(ifp); i++) {
223                 if (xfs_iext_rec_is_empty(&cur->leaf->recs[i]))
224                         break;
225         }
226         cur->pos = i - 1;
227 }
228
229 void
230 xfs_iext_next(
231         struct xfs_ifork        *ifp,
232         struct xfs_iext_cursor  *cur)
233 {
234         if (!cur->leaf) {
235                 ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
236                 xfs_iext_first(ifp, cur);
237                 return;
238         }
239
240         ASSERT(cur->pos >= 0);
241         ASSERT(cur->pos < xfs_iext_max_recs(ifp));
242
243         cur->pos++;
244         if (ifp->if_height > 1 && !xfs_iext_valid(ifp, cur) &&
245             cur->leaf->next) {
246                 cur->leaf = cur->leaf->next;
247                 cur->pos = 0;
248         }
249 }
250
251 void
252 xfs_iext_prev(
253         struct xfs_ifork        *ifp,
254         struct xfs_iext_cursor  *cur)
255 {
256         if (!cur->leaf) {
257                 ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
258                 xfs_iext_last(ifp, cur);
259                 return;
260         }
261
262         ASSERT(cur->pos >= 0);
263         ASSERT(cur->pos <= RECS_PER_LEAF);
264
265 recurse:
266         do {
267                 cur->pos--;
268                 if (xfs_iext_valid(ifp, cur))
269                         return;
270         } while (cur->pos > 0);
271
272         if (ifp->if_height > 1 && cur->leaf->prev) {
273                 cur->leaf = cur->leaf->prev;
274                 cur->pos = RECS_PER_LEAF;
275                 goto recurse;
276         }
277 }
278
279 static inline int
280 xfs_iext_key_cmp(
281         struct xfs_iext_node    *node,
282         int                     n,
283         xfs_fileoff_t           offset)
284 {
285         if (node->keys[n] > offset)
286                 return 1;
287         if (node->keys[n] < offset)
288                 return -1;
289         return 0;
290 }
291
292 static inline int
293 xfs_iext_rec_cmp(
294         struct xfs_iext_rec     *rec,
295         xfs_fileoff_t           offset)
296 {
297         uint64_t                rec_offset = rec->lo & XFS_IEXT_STARTOFF_MASK;
298         uint32_t                rec_len = rec->hi & XFS_IEXT_LENGTH_MASK;
299
300         if (rec_offset > offset)
301                 return 1;
302         if (rec_offset + rec_len <= offset)
303                 return -1;
304         return 0;
305 }
306
307 static void *
308 xfs_iext_find_level(
309         struct xfs_ifork        *ifp,
310         xfs_fileoff_t           offset,
311         int                     level)
312 {
313         struct xfs_iext_node    *node = ifp->if_u1.if_root;
314         int                     height, i;
315
316         if (!ifp->if_height)
317                 return NULL;
318
319         for (height = ifp->if_height; height > level; height--) {
320                 for (i = 1; i < KEYS_PER_NODE; i++)
321                         if (xfs_iext_key_cmp(node, i, offset) > 0)
322                                 break;
323
324                 node = node->ptrs[i - 1];
325                 if (!node)
326                         break;
327         }
328
329         return node;
330 }
331
332 static int
333 xfs_iext_node_pos(
334         struct xfs_iext_node    *node,
335         xfs_fileoff_t           offset)
336 {
337         int                     i;
338
339         for (i = 1; i < KEYS_PER_NODE; i++) {
340                 if (xfs_iext_key_cmp(node, i, offset) > 0)
341                         break;
342         }
343
344         return i - 1;
345 }
346
347 static int
348 xfs_iext_node_insert_pos(
349         struct xfs_iext_node    *node,
350         xfs_fileoff_t           offset)
351 {
352         int                     i;
353
354         for (i = 0; i < KEYS_PER_NODE; i++) {
355                 if (xfs_iext_key_cmp(node, i, offset) > 0)
356                         return i;
357         }
358
359         return KEYS_PER_NODE;
360 }
361
362 static int
363 xfs_iext_node_nr_entries(
364         struct xfs_iext_node    *node,
365         int                     start)
366 {
367         int                     i;
368
369         for (i = start; i < KEYS_PER_NODE; i++) {
370                 if (node->keys[i] == XFS_IEXT_KEY_INVALID)
371                         break;
372         }
373
374         return i;
375 }
376
377 static int
378 xfs_iext_leaf_nr_entries(
379         struct xfs_ifork        *ifp,
380         struct xfs_iext_leaf    *leaf,
381         int                     start)
382 {
383         int                     i;
384
385         for (i = start; i < xfs_iext_max_recs(ifp); i++) {
386                 if (xfs_iext_rec_is_empty(&leaf->recs[i]))
387                         break;
388         }
389
390         return i;
391 }
392
393 static inline uint64_t
394 xfs_iext_leaf_key(
395         struct xfs_iext_leaf    *leaf,
396         int                     n)
397 {
398         return leaf->recs[n].lo & XFS_IEXT_STARTOFF_MASK;
399 }
400
401 static void
402 xfs_iext_grow(
403         struct xfs_ifork        *ifp)
404 {
405         struct xfs_iext_node    *node = kmem_zalloc(NODE_SIZE, KM_NOFS);
406         int                     i;
407
408         if (ifp->if_height == 1) {
409                 struct xfs_iext_leaf *prev = ifp->if_u1.if_root;
410
411                 node->keys[0] = xfs_iext_leaf_key(prev, 0);
412                 node->ptrs[0] = prev;
413         } else  {
414                 struct xfs_iext_node *prev = ifp->if_u1.if_root;
415
416                 ASSERT(ifp->if_height > 1);
417
418                 node->keys[0] = prev->keys[0];
419                 node->ptrs[0] = prev;
420         }
421
422         for (i = 1; i < KEYS_PER_NODE; i++)
423                 node->keys[i] = XFS_IEXT_KEY_INVALID;
424
425         ifp->if_u1.if_root = node;
426         ifp->if_height++;
427 }
428
429 static void
430 xfs_iext_update_node(
431         struct xfs_ifork        *ifp,
432         xfs_fileoff_t           old_offset,
433         xfs_fileoff_t           new_offset,
434         int                     level,
435         void                    *ptr)
436 {
437         struct xfs_iext_node    *node = ifp->if_u1.if_root;
438         int                     height, i;
439
440         for (height = ifp->if_height; height > level; height--) {
441                 for (i = 0; i < KEYS_PER_NODE; i++) {
442                         if (i > 0 && xfs_iext_key_cmp(node, i, old_offset) > 0)
443                                 break;
444                         if (node->keys[i] == old_offset)
445                                 node->keys[i] = new_offset;
446                 }
447                 node = node->ptrs[i - 1];
448                 ASSERT(node);
449         }
450
451         ASSERT(node == ptr);
452 }
453
454 static struct xfs_iext_node *
455 xfs_iext_split_node(
456         struct xfs_iext_node    **nodep,
457         int                     *pos,
458         int                     *nr_entries)
459 {
460         struct xfs_iext_node    *node = *nodep;
461         struct xfs_iext_node    *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
462         const int               nr_move = KEYS_PER_NODE / 2;
463         int                     nr_keep = nr_move + (KEYS_PER_NODE & 1);
464         int                     i = 0;
465
466         /* for sequential append operations just spill over into the new node */
467         if (*pos == KEYS_PER_NODE) {
468                 *nodep = new;
469                 *pos = 0;
470                 *nr_entries = 0;
471                 goto done;
472         }
473
474
475         for (i = 0; i < nr_move; i++) {
476                 new->keys[i] = node->keys[nr_keep + i];
477                 new->ptrs[i] = node->ptrs[nr_keep + i];
478
479                 node->keys[nr_keep + i] = XFS_IEXT_KEY_INVALID;
480                 node->ptrs[nr_keep + i] = NULL;
481         }
482
483         if (*pos >= nr_keep) {
484                 *nodep = new;
485                 *pos -= nr_keep;
486                 *nr_entries = nr_move;
487         } else {
488                 *nr_entries = nr_keep;
489         }
490 done:
491         for (; i < KEYS_PER_NODE; i++)
492                 new->keys[i] = XFS_IEXT_KEY_INVALID;
493         return new;
494 }
495
496 static void
497 xfs_iext_insert_node(
498         struct xfs_ifork        *ifp,
499         uint64_t                offset,
500         void                    *ptr,
501         int                     level)
502 {
503         struct xfs_iext_node    *node, *new;
504         int                     i, pos, nr_entries;
505
506 again:
507         if (ifp->if_height < level)
508                 xfs_iext_grow(ifp);
509
510         new = NULL;
511         node = xfs_iext_find_level(ifp, offset, level);
512         pos = xfs_iext_node_insert_pos(node, offset);
513         nr_entries = xfs_iext_node_nr_entries(node, pos);
514
515         ASSERT(pos >= nr_entries || xfs_iext_key_cmp(node, pos, offset) != 0);
516         ASSERT(nr_entries <= KEYS_PER_NODE);
517
518         if (nr_entries == KEYS_PER_NODE)
519                 new = xfs_iext_split_node(&node, &pos, &nr_entries);
520
521         /*
522          * Update the pointers in higher levels if the first entry changes
523          * in an existing node.
524          */
525         if (node != new && pos == 0 && nr_entries > 0)
526                 xfs_iext_update_node(ifp, node->keys[0], offset, level, node);
527
528         for (i = nr_entries; i > pos; i--) {
529                 node->keys[i] = node->keys[i - 1];
530                 node->ptrs[i] = node->ptrs[i - 1];
531         }
532         node->keys[pos] = offset;
533         node->ptrs[pos] = ptr;
534
535         if (new) {
536                 offset = new->keys[0];
537                 ptr = new;
538                 level++;
539                 goto again;
540         }
541 }
542
543 static struct xfs_iext_leaf *
544 xfs_iext_split_leaf(
545         struct xfs_iext_cursor  *cur,
546         int                     *nr_entries)
547 {
548         struct xfs_iext_leaf    *leaf = cur->leaf;
549         struct xfs_iext_leaf    *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
550         const int               nr_move = RECS_PER_LEAF / 2;
551         int                     nr_keep = nr_move + (RECS_PER_LEAF & 1);
552         int                     i;
553
554         /* for sequential append operations just spill over into the new node */
555         if (cur->pos == RECS_PER_LEAF) {
556                 cur->leaf = new;
557                 cur->pos = 0;
558                 *nr_entries = 0;
559                 goto done;
560         }
561
562         for (i = 0; i < nr_move; i++) {
563                 new->recs[i] = leaf->recs[nr_keep + i];
564                 xfs_iext_rec_clear(&leaf->recs[nr_keep + i]);
565         }
566
567         if (cur->pos >= nr_keep) {
568                 cur->leaf = new;
569                 cur->pos -= nr_keep;
570                 *nr_entries = nr_move;
571         } else {
572                 *nr_entries = nr_keep;
573         }
574 done:
575         if (leaf->next)
576                 leaf->next->prev = new;
577         new->next = leaf->next;
578         new->prev = leaf;
579         leaf->next = new;
580         return new;
581 }
582
583 static void
584 xfs_iext_alloc_root(
585         struct xfs_ifork        *ifp,
586         struct xfs_iext_cursor  *cur)
587 {
588         ASSERT(ifp->if_bytes == 0);
589
590         ifp->if_u1.if_root = kmem_zalloc(sizeof(struct xfs_iext_rec), KM_NOFS);
591         ifp->if_height = 1;
592
593         /* now that we have a node step into it */
594         cur->leaf = ifp->if_u1.if_root;
595         cur->pos = 0;
596 }
597
598 static void
599 xfs_iext_realloc_root(
600         struct xfs_ifork        *ifp,
601         struct xfs_iext_cursor  *cur)
602 {
603         size_t new_size = ifp->if_bytes + sizeof(struct xfs_iext_rec);
604         void *new;
605
606         /* account for the prev/next pointers */
607         if (new_size / sizeof(struct xfs_iext_rec) == RECS_PER_LEAF)
608                 new_size = NODE_SIZE;
609
610         new = kmem_realloc(ifp->if_u1.if_root, new_size, KM_NOFS);
611         memset(new + ifp->if_bytes, 0, new_size - ifp->if_bytes);
612         ifp->if_u1.if_root = new;
613         cur->leaf = new;
614 }
615
616 /*
617  * Increment the sequence counter on extent tree changes. If we are on a COW
618  * fork, this allows the writeback code to skip looking for a COW extent if the
619  * COW fork hasn't changed. We use WRITE_ONCE here to ensure the update to the
620  * sequence counter is seen before the modifications to the extent tree itself
621  * take effect.
622  */
623 static inline void xfs_iext_inc_seq(struct xfs_ifork *ifp, int state)
624 {
625         WRITE_ONCE(ifp->if_seq, READ_ONCE(ifp->if_seq) + 1);
626 }
627
628 void
629 xfs_iext_insert(
630         struct xfs_inode        *ip,
631         struct xfs_iext_cursor  *cur,
632         struct xfs_bmbt_irec    *irec,
633         int                     state)
634 {
635         struct xfs_ifork        *ifp = xfs_iext_state_to_fork(ip, state);
636         xfs_fileoff_t           offset = irec->br_startoff;
637         struct xfs_iext_leaf    *new = NULL;
638         int                     nr_entries, i;
639
640         xfs_iext_inc_seq(ifp, state);
641
642         if (ifp->if_height == 0)
643                 xfs_iext_alloc_root(ifp, cur);
644         else if (ifp->if_height == 1)
645                 xfs_iext_realloc_root(ifp, cur);
646
647         nr_entries = xfs_iext_leaf_nr_entries(ifp, cur->leaf, cur->pos);
648         ASSERT(nr_entries <= RECS_PER_LEAF);
649         ASSERT(cur->pos >= nr_entries ||
650                xfs_iext_rec_cmp(cur_rec(cur), irec->br_startoff) != 0);
651
652         if (nr_entries == RECS_PER_LEAF)
653                 new = xfs_iext_split_leaf(cur, &nr_entries);
654
655         /*
656          * Update the pointers in higher levels if the first entry changes
657          * in an existing node.
658          */
659         if (cur->leaf != new && cur->pos == 0 && nr_entries > 0) {
660                 xfs_iext_update_node(ifp, xfs_iext_leaf_key(cur->leaf, 0),
661                                 offset, 1, cur->leaf);
662         }
663
664         for (i = nr_entries; i > cur->pos; i--)
665                 cur->leaf->recs[i] = cur->leaf->recs[i - 1];
666         xfs_iext_set(cur_rec(cur), irec);
667         ifp->if_bytes += sizeof(struct xfs_iext_rec);
668
669         trace_xfs_iext_insert(ip, cur, state, _RET_IP_);
670
671         if (new)
672                 xfs_iext_insert_node(ifp, xfs_iext_leaf_key(new, 0), new, 2);
673 }
674
675 static struct xfs_iext_node *
676 xfs_iext_rebalance_node(
677         struct xfs_iext_node    *parent,
678         int                     *pos,
679         struct xfs_iext_node    *node,
680         int                     nr_entries)
681 {
682         /*
683          * If the neighbouring nodes are completely full, or have different
684          * parents, we might never be able to merge our node, and will only
685          * delete it once the number of entries hits zero.
686          */
687         if (nr_entries == 0)
688                 return node;
689
690         if (*pos > 0) {
691                 struct xfs_iext_node *prev = parent->ptrs[*pos - 1];
692                 int nr_prev = xfs_iext_node_nr_entries(prev, 0), i;
693
694                 if (nr_prev + nr_entries <= KEYS_PER_NODE) {
695                         for (i = 0; i < nr_entries; i++) {
696                                 prev->keys[nr_prev + i] = node->keys[i];
697                                 prev->ptrs[nr_prev + i] = node->ptrs[i];
698                         }
699                         return node;
700                 }
701         }
702
703         if (*pos + 1 < xfs_iext_node_nr_entries(parent, *pos)) {
704                 struct xfs_iext_node *next = parent->ptrs[*pos + 1];
705                 int nr_next = xfs_iext_node_nr_entries(next, 0), i;
706
707                 if (nr_entries + nr_next <= KEYS_PER_NODE) {
708                         /*
709                          * Merge the next node into this node so that we don't
710                          * have to do an additional update of the keys in the
711                          * higher levels.
712                          */
713                         for (i = 0; i < nr_next; i++) {
714                                 node->keys[nr_entries + i] = next->keys[i];
715                                 node->ptrs[nr_entries + i] = next->ptrs[i];
716                         }
717
718                         ++*pos;
719                         return next;
720                 }
721         }
722
723         return NULL;
724 }
725
726 static void
727 xfs_iext_remove_node(
728         struct xfs_ifork        *ifp,
729         xfs_fileoff_t           offset,
730         void                    *victim)
731 {
732         struct xfs_iext_node    *node, *parent;
733         int                     level = 2, pos, nr_entries, i;
734
735         ASSERT(level <= ifp->if_height);
736         node = xfs_iext_find_level(ifp, offset, level);
737         pos = xfs_iext_node_pos(node, offset);
738 again:
739         ASSERT(node->ptrs[pos]);
740         ASSERT(node->ptrs[pos] == victim);
741         kmem_free(victim);
742
743         nr_entries = xfs_iext_node_nr_entries(node, pos) - 1;
744         offset = node->keys[0];
745         for (i = pos; i < nr_entries; i++) {
746                 node->keys[i] = node->keys[i + 1];
747                 node->ptrs[i] = node->ptrs[i + 1];
748         }
749         node->keys[nr_entries] = XFS_IEXT_KEY_INVALID;
750         node->ptrs[nr_entries] = NULL;
751
752         if (pos == 0 && nr_entries > 0) {
753                 xfs_iext_update_node(ifp, offset, node->keys[0], level, node);
754                 offset = node->keys[0];
755         }
756
757         if (nr_entries >= KEYS_PER_NODE / 2)
758                 return;
759
760         if (level < ifp->if_height) {
761                 /*
762                  * If we aren't at the root yet try to find a neighbour node to
763                  * merge with (or delete the node if it is empty), and then
764                  * recurse up to the next level.
765                  */
766                 level++;
767                 parent = xfs_iext_find_level(ifp, offset, level);
768                 pos = xfs_iext_node_pos(parent, offset);
769
770                 ASSERT(pos != KEYS_PER_NODE);
771                 ASSERT(parent->ptrs[pos] == node);
772
773                 node = xfs_iext_rebalance_node(parent, &pos, node, nr_entries);
774                 if (node) {
775                         victim = node;
776                         node = parent;
777                         goto again;
778                 }
779         } else if (nr_entries == 1) {
780                 /*
781                  * If we are at the root and only one entry is left we can just
782                  * free this node and update the root pointer.
783                  */
784                 ASSERT(node == ifp->if_u1.if_root);
785                 ifp->if_u1.if_root = node->ptrs[0];
786                 ifp->if_height--;
787                 kmem_free(node);
788         }
789 }
790
791 static void
792 xfs_iext_rebalance_leaf(
793         struct xfs_ifork        *ifp,
794         struct xfs_iext_cursor  *cur,
795         struct xfs_iext_leaf    *leaf,
796         xfs_fileoff_t           offset,
797         int                     nr_entries)
798 {
799         /*
800          * If the neighbouring nodes are completely full we might never be able
801          * to merge our node, and will only delete it once the number of
802          * entries hits zero.
803          */
804         if (nr_entries == 0)
805                 goto remove_node;
806
807         if (leaf->prev) {
808                 int nr_prev = xfs_iext_leaf_nr_entries(ifp, leaf->prev, 0), i;
809
810                 if (nr_prev + nr_entries <= RECS_PER_LEAF) {
811                         for (i = 0; i < nr_entries; i++)
812                                 leaf->prev->recs[nr_prev + i] = leaf->recs[i];
813
814                         if (cur->leaf == leaf) {
815                                 cur->leaf = leaf->prev;
816                                 cur->pos += nr_prev;
817                         }
818                         goto remove_node;
819                 }
820         }
821
822         if (leaf->next) {
823                 int nr_next = xfs_iext_leaf_nr_entries(ifp, leaf->next, 0), i;
824
825                 if (nr_entries + nr_next <= RECS_PER_LEAF) {
826                         /*
827                          * Merge the next node into this node so that we don't
828                          * have to do an additional update of the keys in the
829                          * higher levels.
830                          */
831                         for (i = 0; i < nr_next; i++) {
832                                 leaf->recs[nr_entries + i] =
833                                         leaf->next->recs[i];
834                         }
835
836                         if (cur->leaf == leaf->next) {
837                                 cur->leaf = leaf;
838                                 cur->pos += nr_entries;
839                         }
840
841                         offset = xfs_iext_leaf_key(leaf->next, 0);
842                         leaf = leaf->next;
843                         goto remove_node;
844                 }
845         }
846
847         return;
848 remove_node:
849         if (leaf->prev)
850                 leaf->prev->next = leaf->next;
851         if (leaf->next)
852                 leaf->next->prev = leaf->prev;
853         xfs_iext_remove_node(ifp, offset, leaf);
854 }
855
856 static void
857 xfs_iext_free_last_leaf(
858         struct xfs_ifork        *ifp)
859 {
860         ifp->if_height--;
861         kmem_free(ifp->if_u1.if_root);
862         ifp->if_u1.if_root = NULL;
863 }
864
865 void
866 xfs_iext_remove(
867         struct xfs_inode        *ip,
868         struct xfs_iext_cursor  *cur,
869         int                     state)
870 {
871         struct xfs_ifork        *ifp = xfs_iext_state_to_fork(ip, state);
872         struct xfs_iext_leaf    *leaf = cur->leaf;
873         xfs_fileoff_t           offset = xfs_iext_leaf_key(leaf, 0);
874         int                     i, nr_entries;
875
876         trace_xfs_iext_remove(ip, cur, state, _RET_IP_);
877
878         ASSERT(ifp->if_height > 0);
879         ASSERT(ifp->if_u1.if_root != NULL);
880         ASSERT(xfs_iext_valid(ifp, cur));
881
882         xfs_iext_inc_seq(ifp, state);
883
884         nr_entries = xfs_iext_leaf_nr_entries(ifp, leaf, cur->pos) - 1;
885         for (i = cur->pos; i < nr_entries; i++)
886                 leaf->recs[i] = leaf->recs[i + 1];
887         xfs_iext_rec_clear(&leaf->recs[nr_entries]);
888         ifp->if_bytes -= sizeof(struct xfs_iext_rec);
889
890         if (cur->pos == 0 && nr_entries > 0) {
891                 xfs_iext_update_node(ifp, offset, xfs_iext_leaf_key(leaf, 0), 1,
892                                 leaf);
893                 offset = xfs_iext_leaf_key(leaf, 0);
894         } else if (cur->pos == nr_entries) {
895                 if (ifp->if_height > 1 && leaf->next)
896                         cur->leaf = leaf->next;
897                 else
898                         cur->leaf = NULL;
899                 cur->pos = 0;
900         }
901
902         if (nr_entries >= RECS_PER_LEAF / 2)
903                 return;
904
905         if (ifp->if_height > 1)
906                 xfs_iext_rebalance_leaf(ifp, cur, leaf, offset, nr_entries);
907         else if (nr_entries == 0)
908                 xfs_iext_free_last_leaf(ifp);
909 }
910
911 /*
912  * Lookup the extent covering bno.
913  *
914  * If there is an extent covering bno return the extent index, and store the
915  * expanded extent structure in *gotp, and the extent cursor in *cur.
916  * If there is no extent covering bno, but there is an extent after it (e.g.
917  * it lies in a hole) return that extent in *gotp and its cursor in *cur
918  * instead.
919  * If bno is beyond the last extent return false, and return an invalid
920  * cursor value.
921  */
922 bool
923 xfs_iext_lookup_extent(
924         struct xfs_inode        *ip,
925         struct xfs_ifork        *ifp,
926         xfs_fileoff_t           offset,
927         struct xfs_iext_cursor  *cur,
928         struct xfs_bmbt_irec    *gotp)
929 {
930         XFS_STATS_INC(ip->i_mount, xs_look_exlist);
931
932         cur->leaf = xfs_iext_find_level(ifp, offset, 1);
933         if (!cur->leaf) {
934                 cur->pos = 0;
935                 return false;
936         }
937
938         for (cur->pos = 0; cur->pos < xfs_iext_max_recs(ifp); cur->pos++) {
939                 struct xfs_iext_rec *rec = cur_rec(cur);
940
941                 if (xfs_iext_rec_is_empty(rec))
942                         break;
943                 if (xfs_iext_rec_cmp(rec, offset) >= 0)
944                         goto found;
945         }
946
947         /* Try looking in the next node for an entry > offset */
948         if (ifp->if_height == 1 || !cur->leaf->next)
949                 return false;
950         cur->leaf = cur->leaf->next;
951         cur->pos = 0;
952         if (!xfs_iext_valid(ifp, cur))
953                 return false;
954 found:
955         xfs_iext_get(gotp, cur_rec(cur));
956         return true;
957 }
958
959 /*
960  * Returns the last extent before end, and if this extent doesn't cover
961  * end, update end to the end of the extent.
962  */
963 bool
964 xfs_iext_lookup_extent_before(
965         struct xfs_inode        *ip,
966         struct xfs_ifork        *ifp,
967         xfs_fileoff_t           *end,
968         struct xfs_iext_cursor  *cur,
969         struct xfs_bmbt_irec    *gotp)
970 {
971         /* could be optimized to not even look up the next on a match.. */
972         if (xfs_iext_lookup_extent(ip, ifp, *end - 1, cur, gotp) &&
973             gotp->br_startoff <= *end - 1)
974                 return true;
975         if (!xfs_iext_prev_extent(ifp, cur, gotp))
976                 return false;
977         *end = gotp->br_startoff + gotp->br_blockcount;
978         return true;
979 }
980
981 void
982 xfs_iext_update_extent(
983         struct xfs_inode        *ip,
984         int                     state,
985         struct xfs_iext_cursor  *cur,
986         struct xfs_bmbt_irec    *new)
987 {
988         struct xfs_ifork        *ifp = xfs_iext_state_to_fork(ip, state);
989
990         xfs_iext_inc_seq(ifp, state);
991
992         if (cur->pos == 0) {
993                 struct xfs_bmbt_irec    old;
994
995                 xfs_iext_get(&old, cur_rec(cur));
996                 if (new->br_startoff != old.br_startoff) {
997                         xfs_iext_update_node(ifp, old.br_startoff,
998                                         new->br_startoff, 1, cur->leaf);
999                 }
1000         }
1001
1002         trace_xfs_bmap_pre_update(ip, cur, state, _RET_IP_);
1003         xfs_iext_set(cur_rec(cur), new);
1004         trace_xfs_bmap_post_update(ip, cur, state, _RET_IP_);
1005 }
1006
1007 /*
1008  * Return true if the cursor points at an extent and return the extent structure
1009  * in gotp.  Else return false.
1010  */
1011 bool
1012 xfs_iext_get_extent(
1013         struct xfs_ifork        *ifp,
1014         struct xfs_iext_cursor  *cur,
1015         struct xfs_bmbt_irec    *gotp)
1016 {
1017         if (!xfs_iext_valid(ifp, cur))
1018                 return false;
1019         xfs_iext_get(gotp, cur_rec(cur));
1020         return true;
1021 }
1022
1023 /*
1024  * This is a recursive function, because of that we need to be extremely
1025  * careful with stack usage.
1026  */
1027 static void
1028 xfs_iext_destroy_node(
1029         struct xfs_iext_node    *node,
1030         int                     level)
1031 {
1032         int                     i;
1033
1034         if (level > 1) {
1035                 for (i = 0; i < KEYS_PER_NODE; i++) {
1036                         if (node->keys[i] == XFS_IEXT_KEY_INVALID)
1037                                 break;
1038                         xfs_iext_destroy_node(node->ptrs[i], level - 1);
1039                 }
1040         }
1041
1042         kmem_free(node);
1043 }
1044
1045 void
1046 xfs_iext_destroy(
1047         struct xfs_ifork        *ifp)
1048 {
1049         xfs_iext_destroy_node(ifp->if_u1.if_root, ifp->if_height);
1050
1051         ifp->if_bytes = 0;
1052         ifp->if_height = 0;
1053         ifp->if_u1.if_root = NULL;
1054 }