Merge branch 'for-linus-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / xfs / libxfs / xfs_btree.c
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_btree.h"
32 #include "xfs_error.h"
33 #include "xfs_trace.h"
34 #include "xfs_cksum.h"
35 #include "xfs_alloc.h"
36 #include "xfs_log.h"
37
38 /*
39  * Cursor allocation zone.
40  */
41 kmem_zone_t     *xfs_btree_cur_zone;
42
43 /*
44  * Btree magic numbers.
45  */
46 static const __uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
47         { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
48           XFS_FIBT_MAGIC, 0 },
49         { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
50           XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
51           XFS_REFC_CRC_MAGIC }
52 };
53 #define xfs_btree_magic(cur) \
54         xfs_magics[!!((cur)->bc_flags & XFS_BTREE_CRC_BLOCKS)][cur->bc_btnum]
55
56 STATIC int                              /* error (0 or EFSCORRUPTED) */
57 xfs_btree_check_lblock(
58         struct xfs_btree_cur    *cur,   /* btree cursor */
59         struct xfs_btree_block  *block, /* btree long form block pointer */
60         int                     level,  /* level of the btree block */
61         struct xfs_buf          *bp)    /* buffer for block, if any */
62 {
63         int                     lblock_ok = 1; /* block passes checks */
64         struct xfs_mount        *mp;    /* file system mount point */
65
66         mp = cur->bc_mp;
67
68         if (xfs_sb_version_hascrc(&mp->m_sb)) {
69                 lblock_ok = lblock_ok &&
70                         uuid_equal(&block->bb_u.l.bb_uuid,
71                                    &mp->m_sb.sb_meta_uuid) &&
72                         block->bb_u.l.bb_blkno == cpu_to_be64(
73                                 bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
74         }
75
76         lblock_ok = lblock_ok &&
77                 be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
78                 be16_to_cpu(block->bb_level) == level &&
79                 be16_to_cpu(block->bb_numrecs) <=
80                         cur->bc_ops->get_maxrecs(cur, level) &&
81                 block->bb_u.l.bb_leftsib &&
82                 (block->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK) ||
83                  XFS_FSB_SANITY_CHECK(mp,
84                         be64_to_cpu(block->bb_u.l.bb_leftsib))) &&
85                 block->bb_u.l.bb_rightsib &&
86                 (block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK) ||
87                  XFS_FSB_SANITY_CHECK(mp,
88                         be64_to_cpu(block->bb_u.l.bb_rightsib)));
89
90         if (unlikely(XFS_TEST_ERROR(!lblock_ok, mp,
91                         XFS_ERRTAG_BTREE_CHECK_LBLOCK,
92                         XFS_RANDOM_BTREE_CHECK_LBLOCK))) {
93                 if (bp)
94                         trace_xfs_btree_corrupt(bp, _RET_IP_);
95                 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
96                 return -EFSCORRUPTED;
97         }
98         return 0;
99 }
100
101 STATIC int                              /* error (0 or EFSCORRUPTED) */
102 xfs_btree_check_sblock(
103         struct xfs_btree_cur    *cur,   /* btree cursor */
104         struct xfs_btree_block  *block, /* btree short form block pointer */
105         int                     level,  /* level of the btree block */
106         struct xfs_buf          *bp)    /* buffer containing block */
107 {
108         struct xfs_mount        *mp;    /* file system mount point */
109         struct xfs_buf          *agbp;  /* buffer for ag. freespace struct */
110         struct xfs_agf          *agf;   /* ag. freespace structure */
111         xfs_agblock_t           agflen; /* native ag. freespace length */
112         int                     sblock_ok = 1; /* block passes checks */
113
114         mp = cur->bc_mp;
115         agbp = cur->bc_private.a.agbp;
116         agf = XFS_BUF_TO_AGF(agbp);
117         agflen = be32_to_cpu(agf->agf_length);
118
119         if (xfs_sb_version_hascrc(&mp->m_sb)) {
120                 sblock_ok = sblock_ok &&
121                         uuid_equal(&block->bb_u.s.bb_uuid,
122                                    &mp->m_sb.sb_meta_uuid) &&
123                         block->bb_u.s.bb_blkno == cpu_to_be64(
124                                 bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
125         }
126
127         sblock_ok = sblock_ok &&
128                 be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
129                 be16_to_cpu(block->bb_level) == level &&
130                 be16_to_cpu(block->bb_numrecs) <=
131                         cur->bc_ops->get_maxrecs(cur, level) &&
132                 (block->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) ||
133                  be32_to_cpu(block->bb_u.s.bb_leftsib) < agflen) &&
134                 block->bb_u.s.bb_leftsib &&
135                 (block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK) ||
136                  be32_to_cpu(block->bb_u.s.bb_rightsib) < agflen) &&
137                 block->bb_u.s.bb_rightsib;
138
139         if (unlikely(XFS_TEST_ERROR(!sblock_ok, mp,
140                         XFS_ERRTAG_BTREE_CHECK_SBLOCK,
141                         XFS_RANDOM_BTREE_CHECK_SBLOCK))) {
142                 if (bp)
143                         trace_xfs_btree_corrupt(bp, _RET_IP_);
144                 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
145                 return -EFSCORRUPTED;
146         }
147         return 0;
148 }
149
150 /*
151  * Debug routine: check that block header is ok.
152  */
153 int
154 xfs_btree_check_block(
155         struct xfs_btree_cur    *cur,   /* btree cursor */
156         struct xfs_btree_block  *block, /* generic btree block pointer */
157         int                     level,  /* level of the btree block */
158         struct xfs_buf          *bp)    /* buffer containing block, if any */
159 {
160         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
161                 return xfs_btree_check_lblock(cur, block, level, bp);
162         else
163                 return xfs_btree_check_sblock(cur, block, level, bp);
164 }
165
166 /*
167  * Check that (long) pointer is ok.
168  */
169 int                                     /* error (0 or EFSCORRUPTED) */
170 xfs_btree_check_lptr(
171         struct xfs_btree_cur    *cur,   /* btree cursor */
172         xfs_fsblock_t           bno,    /* btree block disk address */
173         int                     level)  /* btree block level */
174 {
175         XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
176                 level > 0 &&
177                 bno != NULLFSBLOCK &&
178                 XFS_FSB_SANITY_CHECK(cur->bc_mp, bno));
179         return 0;
180 }
181
182 #ifdef DEBUG
183 /*
184  * Check that (short) pointer is ok.
185  */
186 STATIC int                              /* error (0 or EFSCORRUPTED) */
187 xfs_btree_check_sptr(
188         struct xfs_btree_cur    *cur,   /* btree cursor */
189         xfs_agblock_t           bno,    /* btree block disk address */
190         int                     level)  /* btree block level */
191 {
192         xfs_agblock_t           agblocks = cur->bc_mp->m_sb.sb_agblocks;
193
194         XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
195                 level > 0 &&
196                 bno != NULLAGBLOCK &&
197                 bno != 0 &&
198                 bno < agblocks);
199         return 0;
200 }
201
202 /*
203  * Check that block ptr is ok.
204  */
205 STATIC int                              /* error (0 or EFSCORRUPTED) */
206 xfs_btree_check_ptr(
207         struct xfs_btree_cur    *cur,   /* btree cursor */
208         union xfs_btree_ptr     *ptr,   /* btree block disk address */
209         int                     index,  /* offset from ptr to check */
210         int                     level)  /* btree block level */
211 {
212         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
213                 return xfs_btree_check_lptr(cur,
214                                 be64_to_cpu((&ptr->l)[index]), level);
215         } else {
216                 return xfs_btree_check_sptr(cur,
217                                 be32_to_cpu((&ptr->s)[index]), level);
218         }
219 }
220 #endif
221
222 /*
223  * Calculate CRC on the whole btree block and stuff it into the
224  * long-form btree header.
225  *
226  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
227  * it into the buffer so recovery knows what the last modification was that made
228  * it to disk.
229  */
230 void
231 xfs_btree_lblock_calc_crc(
232         struct xfs_buf          *bp)
233 {
234         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
235         struct xfs_buf_log_item *bip = bp->b_fspriv;
236
237         if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
238                 return;
239         if (bip)
240                 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
241         xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
242 }
243
244 bool
245 xfs_btree_lblock_verify_crc(
246         struct xfs_buf          *bp)
247 {
248         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
249         struct xfs_mount        *mp = bp->b_target->bt_mount;
250
251         if (xfs_sb_version_hascrc(&mp->m_sb)) {
252                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
253                         return false;
254                 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
255         }
256
257         return true;
258 }
259
260 /*
261  * Calculate CRC on the whole btree block and stuff it into the
262  * short-form btree header.
263  *
264  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
265  * it into the buffer so recovery knows what the last modification was that made
266  * it to disk.
267  */
268 void
269 xfs_btree_sblock_calc_crc(
270         struct xfs_buf          *bp)
271 {
272         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
273         struct xfs_buf_log_item *bip = bp->b_fspriv;
274
275         if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
276                 return;
277         if (bip)
278                 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
279         xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
280 }
281
282 bool
283 xfs_btree_sblock_verify_crc(
284         struct xfs_buf          *bp)
285 {
286         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
287         struct xfs_mount        *mp = bp->b_target->bt_mount;
288
289         if (xfs_sb_version_hascrc(&mp->m_sb)) {
290                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
291                         return false;
292                 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
293         }
294
295         return true;
296 }
297
298 static int
299 xfs_btree_free_block(
300         struct xfs_btree_cur    *cur,
301         struct xfs_buf          *bp)
302 {
303         int                     error;
304
305         error = cur->bc_ops->free_block(cur, bp);
306         if (!error) {
307                 xfs_trans_binval(cur->bc_tp, bp);
308                 XFS_BTREE_STATS_INC(cur, free);
309         }
310         return error;
311 }
312
313 /*
314  * Delete the btree cursor.
315  */
316 void
317 xfs_btree_del_cursor(
318         xfs_btree_cur_t *cur,           /* btree cursor */
319         int             error)          /* del because of error */
320 {
321         int             i;              /* btree level */
322
323         /*
324          * Clear the buffer pointers, and release the buffers.
325          * If we're doing this in the face of an error, we
326          * need to make sure to inspect all of the entries
327          * in the bc_bufs array for buffers to be unlocked.
328          * This is because some of the btree code works from
329          * level n down to 0, and if we get an error along
330          * the way we won't have initialized all the entries
331          * down to 0.
332          */
333         for (i = 0; i < cur->bc_nlevels; i++) {
334                 if (cur->bc_bufs[i])
335                         xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
336                 else if (!error)
337                         break;
338         }
339         /*
340          * Can't free a bmap cursor without having dealt with the
341          * allocated indirect blocks' accounting.
342          */
343         ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
344                cur->bc_private.b.allocated == 0);
345         /*
346          * Free the cursor.
347          */
348         kmem_zone_free(xfs_btree_cur_zone, cur);
349 }
350
351 /*
352  * Duplicate the btree cursor.
353  * Allocate a new one, copy the record, re-get the buffers.
354  */
355 int                                     /* error */
356 xfs_btree_dup_cursor(
357         xfs_btree_cur_t *cur,           /* input cursor */
358         xfs_btree_cur_t **ncur)         /* output cursor */
359 {
360         xfs_buf_t       *bp;            /* btree block's buffer pointer */
361         int             error;          /* error return value */
362         int             i;              /* level number of btree block */
363         xfs_mount_t     *mp;            /* mount structure for filesystem */
364         xfs_btree_cur_t *new;           /* new cursor value */
365         xfs_trans_t     *tp;            /* transaction pointer, can be NULL */
366
367         tp = cur->bc_tp;
368         mp = cur->bc_mp;
369
370         /*
371          * Allocate a new cursor like the old one.
372          */
373         new = cur->bc_ops->dup_cursor(cur);
374
375         /*
376          * Copy the record currently in the cursor.
377          */
378         new->bc_rec = cur->bc_rec;
379
380         /*
381          * For each level current, re-get the buffer and copy the ptr value.
382          */
383         for (i = 0; i < new->bc_nlevels; i++) {
384                 new->bc_ptrs[i] = cur->bc_ptrs[i];
385                 new->bc_ra[i] = cur->bc_ra[i];
386                 bp = cur->bc_bufs[i];
387                 if (bp) {
388                         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
389                                                    XFS_BUF_ADDR(bp), mp->m_bsize,
390                                                    0, &bp,
391                                                    cur->bc_ops->buf_ops);
392                         if (error) {
393                                 xfs_btree_del_cursor(new, error);
394                                 *ncur = NULL;
395                                 return error;
396                         }
397                 }
398                 new->bc_bufs[i] = bp;
399         }
400         *ncur = new;
401         return 0;
402 }
403
404 /*
405  * XFS btree block layout and addressing:
406  *
407  * There are two types of blocks in the btree: leaf and non-leaf blocks.
408  *
409  * The leaf record start with a header then followed by records containing
410  * the values.  A non-leaf block also starts with the same header, and
411  * then first contains lookup keys followed by an equal number of pointers
412  * to the btree blocks at the previous level.
413  *
414  *              +--------+-------+-------+-------+-------+-------+-------+
415  * Leaf:        | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
416  *              +--------+-------+-------+-------+-------+-------+-------+
417  *
418  *              +--------+-------+-------+-------+-------+-------+-------+
419  * Non-Leaf:    | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
420  *              +--------+-------+-------+-------+-------+-------+-------+
421  *
422  * The header is called struct xfs_btree_block for reasons better left unknown
423  * and comes in different versions for short (32bit) and long (64bit) block
424  * pointers.  The record and key structures are defined by the btree instances
425  * and opaque to the btree core.  The block pointers are simple disk endian
426  * integers, available in a short (32bit) and long (64bit) variant.
427  *
428  * The helpers below calculate the offset of a given record, key or pointer
429  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
430  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
431  * inside the btree block is done using indices starting at one, not zero!
432  *
433  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
434  * overlapping intervals.  In such a tree, records are still sorted lowest to
435  * highest and indexed by the smallest key value that refers to the record.
436  * However, nodes are different: each pointer has two associated keys -- one
437  * indexing the lowest key available in the block(s) below (the same behavior
438  * as the key in a regular btree) and another indexing the highest key
439  * available in the block(s) below.  Because records are /not/ sorted by the
440  * highest key, all leaf block updates require us to compute the highest key
441  * that matches any record in the leaf and to recursively update the high keys
442  * in the nodes going further up in the tree, if necessary.  Nodes look like
443  * this:
444  *
445  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
446  * Non-Leaf:    | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
447  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
448  *
449  * To perform an interval query on an overlapped tree, perform the usual
450  * depth-first search and use the low and high keys to decide if we can skip
451  * that particular node.  If a leaf node is reached, return the records that
452  * intersect the interval.  Note that an interval query may return numerous
453  * entries.  For a non-overlapped tree, simply search for the record associated
454  * with the lowest key and iterate forward until a non-matching record is
455  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
456  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
457  * more detail.
458  *
459  * Why do we care about overlapping intervals?  Let's say you have a bunch of
460  * reverse mapping records on a reflink filesystem:
461  *
462  * 1: +- file A startblock B offset C length D -----------+
463  * 2:      +- file E startblock F offset G length H --------------+
464  * 3:      +- file I startblock F offset J length K --+
465  * 4:                                                        +- file L... --+
466  *
467  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
468  * we'd simply increment the length of record 1.  But how do we find the record
469  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
470  * record 3 because the keys are ordered first by startblock.  An interval
471  * query would return records 1 and 2 because they both overlap (B+D-1), and
472  * from that we can pick out record 1 as the appropriate left neighbor.
473  *
474  * In the non-overlapped case you can do a LE lookup and decrement the cursor
475  * because a record's interval must end before the next record.
476  */
477
478 /*
479  * Return size of the btree block header for this btree instance.
480  */
481 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
482 {
483         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
484                 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
485                         return XFS_BTREE_LBLOCK_CRC_LEN;
486                 return XFS_BTREE_LBLOCK_LEN;
487         }
488         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
489                 return XFS_BTREE_SBLOCK_CRC_LEN;
490         return XFS_BTREE_SBLOCK_LEN;
491 }
492
493 /*
494  * Return size of btree block pointers for this btree instance.
495  */
496 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
497 {
498         return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
499                 sizeof(__be64) : sizeof(__be32);
500 }
501
502 /*
503  * Calculate offset of the n-th record in a btree block.
504  */
505 STATIC size_t
506 xfs_btree_rec_offset(
507         struct xfs_btree_cur    *cur,
508         int                     n)
509 {
510         return xfs_btree_block_len(cur) +
511                 (n - 1) * cur->bc_ops->rec_len;
512 }
513
514 /*
515  * Calculate offset of the n-th key in a btree block.
516  */
517 STATIC size_t
518 xfs_btree_key_offset(
519         struct xfs_btree_cur    *cur,
520         int                     n)
521 {
522         return xfs_btree_block_len(cur) +
523                 (n - 1) * cur->bc_ops->key_len;
524 }
525
526 /*
527  * Calculate offset of the n-th high key in a btree block.
528  */
529 STATIC size_t
530 xfs_btree_high_key_offset(
531         struct xfs_btree_cur    *cur,
532         int                     n)
533 {
534         return xfs_btree_block_len(cur) +
535                 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
536 }
537
538 /*
539  * Calculate offset of the n-th block pointer in a btree block.
540  */
541 STATIC size_t
542 xfs_btree_ptr_offset(
543         struct xfs_btree_cur    *cur,
544         int                     n,
545         int                     level)
546 {
547         return xfs_btree_block_len(cur) +
548                 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
549                 (n - 1) * xfs_btree_ptr_len(cur);
550 }
551
552 /*
553  * Return a pointer to the n-th record in the btree block.
554  */
555 STATIC union xfs_btree_rec *
556 xfs_btree_rec_addr(
557         struct xfs_btree_cur    *cur,
558         int                     n,
559         struct xfs_btree_block  *block)
560 {
561         return (union xfs_btree_rec *)
562                 ((char *)block + xfs_btree_rec_offset(cur, n));
563 }
564
565 /*
566  * Return a pointer to the n-th key in the btree block.
567  */
568 STATIC union xfs_btree_key *
569 xfs_btree_key_addr(
570         struct xfs_btree_cur    *cur,
571         int                     n,
572         struct xfs_btree_block  *block)
573 {
574         return (union xfs_btree_key *)
575                 ((char *)block + xfs_btree_key_offset(cur, n));
576 }
577
578 /*
579  * Return a pointer to the n-th high key in the btree block.
580  */
581 STATIC union xfs_btree_key *
582 xfs_btree_high_key_addr(
583         struct xfs_btree_cur    *cur,
584         int                     n,
585         struct xfs_btree_block  *block)
586 {
587         return (union xfs_btree_key *)
588                 ((char *)block + xfs_btree_high_key_offset(cur, n));
589 }
590
591 /*
592  * Return a pointer to the n-th block pointer in the btree block.
593  */
594 STATIC union xfs_btree_ptr *
595 xfs_btree_ptr_addr(
596         struct xfs_btree_cur    *cur,
597         int                     n,
598         struct xfs_btree_block  *block)
599 {
600         int                     level = xfs_btree_get_level(block);
601
602         ASSERT(block->bb_level != 0);
603
604         return (union xfs_btree_ptr *)
605                 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
606 }
607
608 /*
609  * Get the root block which is stored in the inode.
610  *
611  * For now this btree implementation assumes the btree root is always
612  * stored in the if_broot field of an inode fork.
613  */
614 STATIC struct xfs_btree_block *
615 xfs_btree_get_iroot(
616         struct xfs_btree_cur    *cur)
617 {
618         struct xfs_ifork        *ifp;
619
620         ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
621         return (struct xfs_btree_block *)ifp->if_broot;
622 }
623
624 /*
625  * Retrieve the block pointer from the cursor at the given level.
626  * This may be an inode btree root or from a buffer.
627  */
628 STATIC struct xfs_btree_block *         /* generic btree block pointer */
629 xfs_btree_get_block(
630         struct xfs_btree_cur    *cur,   /* btree cursor */
631         int                     level,  /* level in btree */
632         struct xfs_buf          **bpp)  /* buffer containing the block */
633 {
634         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
635             (level == cur->bc_nlevels - 1)) {
636                 *bpp = NULL;
637                 return xfs_btree_get_iroot(cur);
638         }
639
640         *bpp = cur->bc_bufs[level];
641         return XFS_BUF_TO_BLOCK(*bpp);
642 }
643
644 /*
645  * Get a buffer for the block, return it with no data read.
646  * Long-form addressing.
647  */
648 xfs_buf_t *                             /* buffer for fsbno */
649 xfs_btree_get_bufl(
650         xfs_mount_t     *mp,            /* file system mount point */
651         xfs_trans_t     *tp,            /* transaction pointer */
652         xfs_fsblock_t   fsbno,          /* file system block number */
653         uint            lock)           /* lock flags for get_buf */
654 {
655         xfs_daddr_t             d;              /* real disk block address */
656
657         ASSERT(fsbno != NULLFSBLOCK);
658         d = XFS_FSB_TO_DADDR(mp, fsbno);
659         return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
660 }
661
662 /*
663  * Get a buffer for the block, return it with no data read.
664  * Short-form addressing.
665  */
666 xfs_buf_t *                             /* buffer for agno/agbno */
667 xfs_btree_get_bufs(
668         xfs_mount_t     *mp,            /* file system mount point */
669         xfs_trans_t     *tp,            /* transaction pointer */
670         xfs_agnumber_t  agno,           /* allocation group number */
671         xfs_agblock_t   agbno,          /* allocation group block number */
672         uint            lock)           /* lock flags for get_buf */
673 {
674         xfs_daddr_t             d;              /* real disk block address */
675
676         ASSERT(agno != NULLAGNUMBER);
677         ASSERT(agbno != NULLAGBLOCK);
678         d = XFS_AGB_TO_DADDR(mp, agno, agbno);
679         return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
680 }
681
682 /*
683  * Check for the cursor referring to the last block at the given level.
684  */
685 int                                     /* 1=is last block, 0=not last block */
686 xfs_btree_islastblock(
687         xfs_btree_cur_t         *cur,   /* btree cursor */
688         int                     level)  /* level to check */
689 {
690         struct xfs_btree_block  *block; /* generic btree block pointer */
691         xfs_buf_t               *bp;    /* buffer containing block */
692
693         block = xfs_btree_get_block(cur, level, &bp);
694         xfs_btree_check_block(cur, block, level, bp);
695         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
696                 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
697         else
698                 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
699 }
700
701 /*
702  * Change the cursor to point to the first record at the given level.
703  * Other levels are unaffected.
704  */
705 STATIC int                              /* success=1, failure=0 */
706 xfs_btree_firstrec(
707         xfs_btree_cur_t         *cur,   /* btree cursor */
708         int                     level)  /* level to change */
709 {
710         struct xfs_btree_block  *block; /* generic btree block pointer */
711         xfs_buf_t               *bp;    /* buffer containing block */
712
713         /*
714          * Get the block pointer for this level.
715          */
716         block = xfs_btree_get_block(cur, level, &bp);
717         xfs_btree_check_block(cur, block, level, bp);
718         /*
719          * It's empty, there is no such record.
720          */
721         if (!block->bb_numrecs)
722                 return 0;
723         /*
724          * Set the ptr value to 1, that's the first record/key.
725          */
726         cur->bc_ptrs[level] = 1;
727         return 1;
728 }
729
730 /*
731  * Change the cursor to point to the last record in the current block
732  * at the given level.  Other levels are unaffected.
733  */
734 STATIC int                              /* success=1, failure=0 */
735 xfs_btree_lastrec(
736         xfs_btree_cur_t         *cur,   /* btree cursor */
737         int                     level)  /* level to change */
738 {
739         struct xfs_btree_block  *block; /* generic btree block pointer */
740         xfs_buf_t               *bp;    /* buffer containing block */
741
742         /*
743          * Get the block pointer for this level.
744          */
745         block = xfs_btree_get_block(cur, level, &bp);
746         xfs_btree_check_block(cur, block, level, bp);
747         /*
748          * It's empty, there is no such record.
749          */
750         if (!block->bb_numrecs)
751                 return 0;
752         /*
753          * Set the ptr value to numrecs, that's the last record/key.
754          */
755         cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
756         return 1;
757 }
758
759 /*
760  * Compute first and last byte offsets for the fields given.
761  * Interprets the offsets table, which contains struct field offsets.
762  */
763 void
764 xfs_btree_offsets(
765         __int64_t       fields,         /* bitmask of fields */
766         const short     *offsets,       /* table of field offsets */
767         int             nbits,          /* number of bits to inspect */
768         int             *first,         /* output: first byte offset */
769         int             *last)          /* output: last byte offset */
770 {
771         int             i;              /* current bit number */
772         __int64_t       imask;          /* mask for current bit number */
773
774         ASSERT(fields != 0);
775         /*
776          * Find the lowest bit, so the first byte offset.
777          */
778         for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
779                 if (imask & fields) {
780                         *first = offsets[i];
781                         break;
782                 }
783         }
784         /*
785          * Find the highest bit, so the last byte offset.
786          */
787         for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
788                 if (imask & fields) {
789                         *last = offsets[i + 1] - 1;
790                         break;
791                 }
792         }
793 }
794
795 /*
796  * Get a buffer for the block, return it read in.
797  * Long-form addressing.
798  */
799 int
800 xfs_btree_read_bufl(
801         struct xfs_mount        *mp,            /* file system mount point */
802         struct xfs_trans        *tp,            /* transaction pointer */
803         xfs_fsblock_t           fsbno,          /* file system block number */
804         uint                    lock,           /* lock flags for read_buf */
805         struct xfs_buf          **bpp,          /* buffer for fsbno */
806         int                     refval,         /* ref count value for buffer */
807         const struct xfs_buf_ops *ops)
808 {
809         struct xfs_buf          *bp;            /* return value */
810         xfs_daddr_t             d;              /* real disk block address */
811         int                     error;
812
813         ASSERT(fsbno != NULLFSBLOCK);
814         d = XFS_FSB_TO_DADDR(mp, fsbno);
815         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
816                                    mp->m_bsize, lock, &bp, ops);
817         if (error)
818                 return error;
819         if (bp)
820                 xfs_buf_set_ref(bp, refval);
821         *bpp = bp;
822         return 0;
823 }
824
825 /*
826  * Read-ahead the block, don't wait for it, don't return a buffer.
827  * Long-form addressing.
828  */
829 /* ARGSUSED */
830 void
831 xfs_btree_reada_bufl(
832         struct xfs_mount        *mp,            /* file system mount point */
833         xfs_fsblock_t           fsbno,          /* file system block number */
834         xfs_extlen_t            count,          /* count of filesystem blocks */
835         const struct xfs_buf_ops *ops)
836 {
837         xfs_daddr_t             d;
838
839         ASSERT(fsbno != NULLFSBLOCK);
840         d = XFS_FSB_TO_DADDR(mp, fsbno);
841         xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
842 }
843
844 /*
845  * Read-ahead the block, don't wait for it, don't return a buffer.
846  * Short-form addressing.
847  */
848 /* ARGSUSED */
849 void
850 xfs_btree_reada_bufs(
851         struct xfs_mount        *mp,            /* file system mount point */
852         xfs_agnumber_t          agno,           /* allocation group number */
853         xfs_agblock_t           agbno,          /* allocation group block number */
854         xfs_extlen_t            count,          /* count of filesystem blocks */
855         const struct xfs_buf_ops *ops)
856 {
857         xfs_daddr_t             d;
858
859         ASSERT(agno != NULLAGNUMBER);
860         ASSERT(agbno != NULLAGBLOCK);
861         d = XFS_AGB_TO_DADDR(mp, agno, agbno);
862         xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
863 }
864
865 STATIC int
866 xfs_btree_readahead_lblock(
867         struct xfs_btree_cur    *cur,
868         int                     lr,
869         struct xfs_btree_block  *block)
870 {
871         int                     rval = 0;
872         xfs_fsblock_t           left = be64_to_cpu(block->bb_u.l.bb_leftsib);
873         xfs_fsblock_t           right = be64_to_cpu(block->bb_u.l.bb_rightsib);
874
875         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
876                 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
877                                      cur->bc_ops->buf_ops);
878                 rval++;
879         }
880
881         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
882                 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
883                                      cur->bc_ops->buf_ops);
884                 rval++;
885         }
886
887         return rval;
888 }
889
890 STATIC int
891 xfs_btree_readahead_sblock(
892         struct xfs_btree_cur    *cur,
893         int                     lr,
894         struct xfs_btree_block *block)
895 {
896         int                     rval = 0;
897         xfs_agblock_t           left = be32_to_cpu(block->bb_u.s.bb_leftsib);
898         xfs_agblock_t           right = be32_to_cpu(block->bb_u.s.bb_rightsib);
899
900
901         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
902                 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
903                                      left, 1, cur->bc_ops->buf_ops);
904                 rval++;
905         }
906
907         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
908                 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
909                                      right, 1, cur->bc_ops->buf_ops);
910                 rval++;
911         }
912
913         return rval;
914 }
915
916 /*
917  * Read-ahead btree blocks, at the given level.
918  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
919  */
920 STATIC int
921 xfs_btree_readahead(
922         struct xfs_btree_cur    *cur,           /* btree cursor */
923         int                     lev,            /* level in btree */
924         int                     lr)             /* left/right bits */
925 {
926         struct xfs_btree_block  *block;
927
928         /*
929          * No readahead needed if we are at the root level and the
930          * btree root is stored in the inode.
931          */
932         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
933             (lev == cur->bc_nlevels - 1))
934                 return 0;
935
936         if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
937                 return 0;
938
939         cur->bc_ra[lev] |= lr;
940         block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
941
942         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
943                 return xfs_btree_readahead_lblock(cur, lr, block);
944         return xfs_btree_readahead_sblock(cur, lr, block);
945 }
946
947 STATIC xfs_daddr_t
948 xfs_btree_ptr_to_daddr(
949         struct xfs_btree_cur    *cur,
950         union xfs_btree_ptr     *ptr)
951 {
952         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
953                 ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
954
955                 return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
956         } else {
957                 ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
958                 ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
959
960                 return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
961                                         be32_to_cpu(ptr->s));
962         }
963 }
964
965 /*
966  * Readahead @count btree blocks at the given @ptr location.
967  *
968  * We don't need to care about long or short form btrees here as we have a
969  * method of converting the ptr directly to a daddr available to us.
970  */
971 STATIC void
972 xfs_btree_readahead_ptr(
973         struct xfs_btree_cur    *cur,
974         union xfs_btree_ptr     *ptr,
975         xfs_extlen_t            count)
976 {
977         xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
978                           xfs_btree_ptr_to_daddr(cur, ptr),
979                           cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
980 }
981
982 /*
983  * Set the buffer for level "lev" in the cursor to bp, releasing
984  * any previous buffer.
985  */
986 STATIC void
987 xfs_btree_setbuf(
988         xfs_btree_cur_t         *cur,   /* btree cursor */
989         int                     lev,    /* level in btree */
990         xfs_buf_t               *bp)    /* new buffer to set */
991 {
992         struct xfs_btree_block  *b;     /* btree block */
993
994         if (cur->bc_bufs[lev])
995                 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
996         cur->bc_bufs[lev] = bp;
997         cur->bc_ra[lev] = 0;
998
999         b = XFS_BUF_TO_BLOCK(bp);
1000         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1001                 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1002                         cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1003                 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1004                         cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1005         } else {
1006                 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1007                         cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1008                 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1009                         cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1010         }
1011 }
1012
1013 STATIC int
1014 xfs_btree_ptr_is_null(
1015         struct xfs_btree_cur    *cur,
1016         union xfs_btree_ptr     *ptr)
1017 {
1018         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1019                 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1020         else
1021                 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1022 }
1023
1024 STATIC void
1025 xfs_btree_set_ptr_null(
1026         struct xfs_btree_cur    *cur,
1027         union xfs_btree_ptr     *ptr)
1028 {
1029         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1030                 ptr->l = cpu_to_be64(NULLFSBLOCK);
1031         else
1032                 ptr->s = cpu_to_be32(NULLAGBLOCK);
1033 }
1034
1035 /*
1036  * Get/set/init sibling pointers
1037  */
1038 STATIC void
1039 xfs_btree_get_sibling(
1040         struct xfs_btree_cur    *cur,
1041         struct xfs_btree_block  *block,
1042         union xfs_btree_ptr     *ptr,
1043         int                     lr)
1044 {
1045         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1046
1047         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1048                 if (lr == XFS_BB_RIGHTSIB)
1049                         ptr->l = block->bb_u.l.bb_rightsib;
1050                 else
1051                         ptr->l = block->bb_u.l.bb_leftsib;
1052         } else {
1053                 if (lr == XFS_BB_RIGHTSIB)
1054                         ptr->s = block->bb_u.s.bb_rightsib;
1055                 else
1056                         ptr->s = block->bb_u.s.bb_leftsib;
1057         }
1058 }
1059
1060 STATIC void
1061 xfs_btree_set_sibling(
1062         struct xfs_btree_cur    *cur,
1063         struct xfs_btree_block  *block,
1064         union xfs_btree_ptr     *ptr,
1065         int                     lr)
1066 {
1067         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1068
1069         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1070                 if (lr == XFS_BB_RIGHTSIB)
1071                         block->bb_u.l.bb_rightsib = ptr->l;
1072                 else
1073                         block->bb_u.l.bb_leftsib = ptr->l;
1074         } else {
1075                 if (lr == XFS_BB_RIGHTSIB)
1076                         block->bb_u.s.bb_rightsib = ptr->s;
1077                 else
1078                         block->bb_u.s.bb_leftsib = ptr->s;
1079         }
1080 }
1081
1082 void
1083 xfs_btree_init_block_int(
1084         struct xfs_mount        *mp,
1085         struct xfs_btree_block  *buf,
1086         xfs_daddr_t             blkno,
1087         __u32                   magic,
1088         __u16                   level,
1089         __u16                   numrecs,
1090         __u64                   owner,
1091         unsigned int            flags)
1092 {
1093         buf->bb_magic = cpu_to_be32(magic);
1094         buf->bb_level = cpu_to_be16(level);
1095         buf->bb_numrecs = cpu_to_be16(numrecs);
1096
1097         if (flags & XFS_BTREE_LONG_PTRS) {
1098                 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1099                 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1100                 if (flags & XFS_BTREE_CRC_BLOCKS) {
1101                         buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1102                         buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1103                         uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1104                         buf->bb_u.l.bb_pad = 0;
1105                         buf->bb_u.l.bb_lsn = 0;
1106                 }
1107         } else {
1108                 /* owner is a 32 bit value on short blocks */
1109                 __u32 __owner = (__u32)owner;
1110
1111                 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1112                 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1113                 if (flags & XFS_BTREE_CRC_BLOCKS) {
1114                         buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1115                         buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1116                         uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1117                         buf->bb_u.s.bb_lsn = 0;
1118                 }
1119         }
1120 }
1121
1122 void
1123 xfs_btree_init_block(
1124         struct xfs_mount *mp,
1125         struct xfs_buf  *bp,
1126         __u32           magic,
1127         __u16           level,
1128         __u16           numrecs,
1129         __u64           owner,
1130         unsigned int    flags)
1131 {
1132         xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1133                                  magic, level, numrecs, owner, flags);
1134 }
1135
1136 STATIC void
1137 xfs_btree_init_block_cur(
1138         struct xfs_btree_cur    *cur,
1139         struct xfs_buf          *bp,
1140         int                     level,
1141         int                     numrecs)
1142 {
1143         __u64 owner;
1144
1145         /*
1146          * we can pull the owner from the cursor right now as the different
1147          * owners align directly with the pointer size of the btree. This may
1148          * change in future, but is safe for current users of the generic btree
1149          * code.
1150          */
1151         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1152                 owner = cur->bc_private.b.ip->i_ino;
1153         else
1154                 owner = cur->bc_private.a.agno;
1155
1156         xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1157                                  xfs_btree_magic(cur), level, numrecs,
1158                                  owner, cur->bc_flags);
1159 }
1160
1161 /*
1162  * Return true if ptr is the last record in the btree and
1163  * we need to track updates to this record.  The decision
1164  * will be further refined in the update_lastrec method.
1165  */
1166 STATIC int
1167 xfs_btree_is_lastrec(
1168         struct xfs_btree_cur    *cur,
1169         struct xfs_btree_block  *block,
1170         int                     level)
1171 {
1172         union xfs_btree_ptr     ptr;
1173
1174         if (level > 0)
1175                 return 0;
1176         if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1177                 return 0;
1178
1179         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1180         if (!xfs_btree_ptr_is_null(cur, &ptr))
1181                 return 0;
1182         return 1;
1183 }
1184
1185 STATIC void
1186 xfs_btree_buf_to_ptr(
1187         struct xfs_btree_cur    *cur,
1188         struct xfs_buf          *bp,
1189         union xfs_btree_ptr     *ptr)
1190 {
1191         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1192                 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1193                                         XFS_BUF_ADDR(bp)));
1194         else {
1195                 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1196                                         XFS_BUF_ADDR(bp)));
1197         }
1198 }
1199
1200 STATIC void
1201 xfs_btree_set_refs(
1202         struct xfs_btree_cur    *cur,
1203         struct xfs_buf          *bp)
1204 {
1205         switch (cur->bc_btnum) {
1206         case XFS_BTNUM_BNO:
1207         case XFS_BTNUM_CNT:
1208                 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1209                 break;
1210         case XFS_BTNUM_INO:
1211         case XFS_BTNUM_FINO:
1212                 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1213                 break;
1214         case XFS_BTNUM_BMAP:
1215                 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1216                 break;
1217         case XFS_BTNUM_RMAP:
1218                 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1219                 break;
1220         case XFS_BTNUM_REFC:
1221                 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1222                 break;
1223         default:
1224                 ASSERT(0);
1225         }
1226 }
1227
1228 STATIC int
1229 xfs_btree_get_buf_block(
1230         struct xfs_btree_cur    *cur,
1231         union xfs_btree_ptr     *ptr,
1232         int                     flags,
1233         struct xfs_btree_block  **block,
1234         struct xfs_buf          **bpp)
1235 {
1236         struct xfs_mount        *mp = cur->bc_mp;
1237         xfs_daddr_t             d;
1238
1239         /* need to sort out how callers deal with failures first */
1240         ASSERT(!(flags & XBF_TRYLOCK));
1241
1242         d = xfs_btree_ptr_to_daddr(cur, ptr);
1243         *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1244                                  mp->m_bsize, flags);
1245
1246         if (!*bpp)
1247                 return -ENOMEM;
1248
1249         (*bpp)->b_ops = cur->bc_ops->buf_ops;
1250         *block = XFS_BUF_TO_BLOCK(*bpp);
1251         return 0;
1252 }
1253
1254 /*
1255  * Read in the buffer at the given ptr and return the buffer and
1256  * the block pointer within the buffer.
1257  */
1258 STATIC int
1259 xfs_btree_read_buf_block(
1260         struct xfs_btree_cur    *cur,
1261         union xfs_btree_ptr     *ptr,
1262         int                     flags,
1263         struct xfs_btree_block  **block,
1264         struct xfs_buf          **bpp)
1265 {
1266         struct xfs_mount        *mp = cur->bc_mp;
1267         xfs_daddr_t             d;
1268         int                     error;
1269
1270         /* need to sort out how callers deal with failures first */
1271         ASSERT(!(flags & XBF_TRYLOCK));
1272
1273         d = xfs_btree_ptr_to_daddr(cur, ptr);
1274         error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1275                                    mp->m_bsize, flags, bpp,
1276                                    cur->bc_ops->buf_ops);
1277         if (error)
1278                 return error;
1279
1280         xfs_btree_set_refs(cur, *bpp);
1281         *block = XFS_BUF_TO_BLOCK(*bpp);
1282         return 0;
1283 }
1284
1285 /*
1286  * Copy keys from one btree block to another.
1287  */
1288 STATIC void
1289 xfs_btree_copy_keys(
1290         struct xfs_btree_cur    *cur,
1291         union xfs_btree_key     *dst_key,
1292         union xfs_btree_key     *src_key,
1293         int                     numkeys)
1294 {
1295         ASSERT(numkeys >= 0);
1296         memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1297 }
1298
1299 /*
1300  * Copy records from one btree block to another.
1301  */
1302 STATIC void
1303 xfs_btree_copy_recs(
1304         struct xfs_btree_cur    *cur,
1305         union xfs_btree_rec     *dst_rec,
1306         union xfs_btree_rec     *src_rec,
1307         int                     numrecs)
1308 {
1309         ASSERT(numrecs >= 0);
1310         memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1311 }
1312
1313 /*
1314  * Copy block pointers from one btree block to another.
1315  */
1316 STATIC void
1317 xfs_btree_copy_ptrs(
1318         struct xfs_btree_cur    *cur,
1319         union xfs_btree_ptr     *dst_ptr,
1320         union xfs_btree_ptr     *src_ptr,
1321         int                     numptrs)
1322 {
1323         ASSERT(numptrs >= 0);
1324         memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1325 }
1326
1327 /*
1328  * Shift keys one index left/right inside a single btree block.
1329  */
1330 STATIC void
1331 xfs_btree_shift_keys(
1332         struct xfs_btree_cur    *cur,
1333         union xfs_btree_key     *key,
1334         int                     dir,
1335         int                     numkeys)
1336 {
1337         char                    *dst_key;
1338
1339         ASSERT(numkeys >= 0);
1340         ASSERT(dir == 1 || dir == -1);
1341
1342         dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1343         memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1344 }
1345
1346 /*
1347  * Shift records one index left/right inside a single btree block.
1348  */
1349 STATIC void
1350 xfs_btree_shift_recs(
1351         struct xfs_btree_cur    *cur,
1352         union xfs_btree_rec     *rec,
1353         int                     dir,
1354         int                     numrecs)
1355 {
1356         char                    *dst_rec;
1357
1358         ASSERT(numrecs >= 0);
1359         ASSERT(dir == 1 || dir == -1);
1360
1361         dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1362         memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1363 }
1364
1365 /*
1366  * Shift block pointers one index left/right inside a single btree block.
1367  */
1368 STATIC void
1369 xfs_btree_shift_ptrs(
1370         struct xfs_btree_cur    *cur,
1371         union xfs_btree_ptr     *ptr,
1372         int                     dir,
1373         int                     numptrs)
1374 {
1375         char                    *dst_ptr;
1376
1377         ASSERT(numptrs >= 0);
1378         ASSERT(dir == 1 || dir == -1);
1379
1380         dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1381         memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1382 }
1383
1384 /*
1385  * Log key values from the btree block.
1386  */
1387 STATIC void
1388 xfs_btree_log_keys(
1389         struct xfs_btree_cur    *cur,
1390         struct xfs_buf          *bp,
1391         int                     first,
1392         int                     last)
1393 {
1394         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1395         XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1396
1397         if (bp) {
1398                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1399                 xfs_trans_log_buf(cur->bc_tp, bp,
1400                                   xfs_btree_key_offset(cur, first),
1401                                   xfs_btree_key_offset(cur, last + 1) - 1);
1402         } else {
1403                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1404                                 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1405         }
1406
1407         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1408 }
1409
1410 /*
1411  * Log record values from the btree block.
1412  */
1413 void
1414 xfs_btree_log_recs(
1415         struct xfs_btree_cur    *cur,
1416         struct xfs_buf          *bp,
1417         int                     first,
1418         int                     last)
1419 {
1420         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1421         XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1422
1423         xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1424         xfs_trans_log_buf(cur->bc_tp, bp,
1425                           xfs_btree_rec_offset(cur, first),
1426                           xfs_btree_rec_offset(cur, last + 1) - 1);
1427
1428         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1429 }
1430
1431 /*
1432  * Log block pointer fields from a btree block (nonleaf).
1433  */
1434 STATIC void
1435 xfs_btree_log_ptrs(
1436         struct xfs_btree_cur    *cur,   /* btree cursor */
1437         struct xfs_buf          *bp,    /* buffer containing btree block */
1438         int                     first,  /* index of first pointer to log */
1439         int                     last)   /* index of last pointer to log */
1440 {
1441         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1442         XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1443
1444         if (bp) {
1445                 struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
1446                 int                     level = xfs_btree_get_level(block);
1447
1448                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1449                 xfs_trans_log_buf(cur->bc_tp, bp,
1450                                 xfs_btree_ptr_offset(cur, first, level),
1451                                 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1452         } else {
1453                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1454                         xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1455         }
1456
1457         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1458 }
1459
1460 /*
1461  * Log fields from a btree block header.
1462  */
1463 void
1464 xfs_btree_log_block(
1465         struct xfs_btree_cur    *cur,   /* btree cursor */
1466         struct xfs_buf          *bp,    /* buffer containing btree block */
1467         int                     fields) /* mask of fields: XFS_BB_... */
1468 {
1469         int                     first;  /* first byte offset logged */
1470         int                     last;   /* last byte offset logged */
1471         static const short      soffsets[] = {  /* table of offsets (short) */
1472                 offsetof(struct xfs_btree_block, bb_magic),
1473                 offsetof(struct xfs_btree_block, bb_level),
1474                 offsetof(struct xfs_btree_block, bb_numrecs),
1475                 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1476                 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1477                 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1478                 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1479                 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1480                 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1481                 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1482                 XFS_BTREE_SBLOCK_CRC_LEN
1483         };
1484         static const short      loffsets[] = {  /* table of offsets (long) */
1485                 offsetof(struct xfs_btree_block, bb_magic),
1486                 offsetof(struct xfs_btree_block, bb_level),
1487                 offsetof(struct xfs_btree_block, bb_numrecs),
1488                 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1489                 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1490                 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1491                 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1492                 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1493                 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1494                 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1495                 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1496                 XFS_BTREE_LBLOCK_CRC_LEN
1497         };
1498
1499         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1500         XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1501
1502         if (bp) {
1503                 int nbits;
1504
1505                 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1506                         /*
1507                          * We don't log the CRC when updating a btree
1508                          * block but instead recreate it during log
1509                          * recovery.  As the log buffers have checksums
1510                          * of their own this is safe and avoids logging a crc
1511                          * update in a lot of places.
1512                          */
1513                         if (fields == XFS_BB_ALL_BITS)
1514                                 fields = XFS_BB_ALL_BITS_CRC;
1515                         nbits = XFS_BB_NUM_BITS_CRC;
1516                 } else {
1517                         nbits = XFS_BB_NUM_BITS;
1518                 }
1519                 xfs_btree_offsets(fields,
1520                                   (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1521                                         loffsets : soffsets,
1522                                   nbits, &first, &last);
1523                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1524                 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1525         } else {
1526                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1527                         xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1528         }
1529
1530         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1531 }
1532
1533 /*
1534  * Increment cursor by one record at the level.
1535  * For nonzero levels the leaf-ward information is untouched.
1536  */
1537 int                                             /* error */
1538 xfs_btree_increment(
1539         struct xfs_btree_cur    *cur,
1540         int                     level,
1541         int                     *stat)          /* success/failure */
1542 {
1543         struct xfs_btree_block  *block;
1544         union xfs_btree_ptr     ptr;
1545         struct xfs_buf          *bp;
1546         int                     error;          /* error return value */
1547         int                     lev;
1548
1549         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1550         XFS_BTREE_TRACE_ARGI(cur, level);
1551
1552         ASSERT(level < cur->bc_nlevels);
1553
1554         /* Read-ahead to the right at this level. */
1555         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1556
1557         /* Get a pointer to the btree block. */
1558         block = xfs_btree_get_block(cur, level, &bp);
1559
1560 #ifdef DEBUG
1561         error = xfs_btree_check_block(cur, block, level, bp);
1562         if (error)
1563                 goto error0;
1564 #endif
1565
1566         /* We're done if we remain in the block after the increment. */
1567         if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1568                 goto out1;
1569
1570         /* Fail if we just went off the right edge of the tree. */
1571         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1572         if (xfs_btree_ptr_is_null(cur, &ptr))
1573                 goto out0;
1574
1575         XFS_BTREE_STATS_INC(cur, increment);
1576
1577         /*
1578          * March up the tree incrementing pointers.
1579          * Stop when we don't go off the right edge of a block.
1580          */
1581         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1582                 block = xfs_btree_get_block(cur, lev, &bp);
1583
1584 #ifdef DEBUG
1585                 error = xfs_btree_check_block(cur, block, lev, bp);
1586                 if (error)
1587                         goto error0;
1588 #endif
1589
1590                 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1591                         break;
1592
1593                 /* Read-ahead the right block for the next loop. */
1594                 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1595         }
1596
1597         /*
1598          * If we went off the root then we are either seriously
1599          * confused or have the tree root in an inode.
1600          */
1601         if (lev == cur->bc_nlevels) {
1602                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1603                         goto out0;
1604                 ASSERT(0);
1605                 error = -EFSCORRUPTED;
1606                 goto error0;
1607         }
1608         ASSERT(lev < cur->bc_nlevels);
1609
1610         /*
1611          * Now walk back down the tree, fixing up the cursor's buffer
1612          * pointers and key numbers.
1613          */
1614         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1615                 union xfs_btree_ptr     *ptrp;
1616
1617                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1618                 --lev;
1619                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1620                 if (error)
1621                         goto error0;
1622
1623                 xfs_btree_setbuf(cur, lev, bp);
1624                 cur->bc_ptrs[lev] = 1;
1625         }
1626 out1:
1627         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1628         *stat = 1;
1629         return 0;
1630
1631 out0:
1632         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1633         *stat = 0;
1634         return 0;
1635
1636 error0:
1637         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1638         return error;
1639 }
1640
1641 /*
1642  * Decrement cursor by one record at the level.
1643  * For nonzero levels the leaf-ward information is untouched.
1644  */
1645 int                                             /* error */
1646 xfs_btree_decrement(
1647         struct xfs_btree_cur    *cur,
1648         int                     level,
1649         int                     *stat)          /* success/failure */
1650 {
1651         struct xfs_btree_block  *block;
1652         xfs_buf_t               *bp;
1653         int                     error;          /* error return value */
1654         int                     lev;
1655         union xfs_btree_ptr     ptr;
1656
1657         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1658         XFS_BTREE_TRACE_ARGI(cur, level);
1659
1660         ASSERT(level < cur->bc_nlevels);
1661
1662         /* Read-ahead to the left at this level. */
1663         xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1664
1665         /* We're done if we remain in the block after the decrement. */
1666         if (--cur->bc_ptrs[level] > 0)
1667                 goto out1;
1668
1669         /* Get a pointer to the btree block. */
1670         block = xfs_btree_get_block(cur, level, &bp);
1671
1672 #ifdef DEBUG
1673         error = xfs_btree_check_block(cur, block, level, bp);
1674         if (error)
1675                 goto error0;
1676 #endif
1677
1678         /* Fail if we just went off the left edge of the tree. */
1679         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1680         if (xfs_btree_ptr_is_null(cur, &ptr))
1681                 goto out0;
1682
1683         XFS_BTREE_STATS_INC(cur, decrement);
1684
1685         /*
1686          * March up the tree decrementing pointers.
1687          * Stop when we don't go off the left edge of a block.
1688          */
1689         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1690                 if (--cur->bc_ptrs[lev] > 0)
1691                         break;
1692                 /* Read-ahead the left block for the next loop. */
1693                 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1694         }
1695
1696         /*
1697          * If we went off the root then we are seriously confused.
1698          * or the root of the tree is in an inode.
1699          */
1700         if (lev == cur->bc_nlevels) {
1701                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1702                         goto out0;
1703                 ASSERT(0);
1704                 error = -EFSCORRUPTED;
1705                 goto error0;
1706         }
1707         ASSERT(lev < cur->bc_nlevels);
1708
1709         /*
1710          * Now walk back down the tree, fixing up the cursor's buffer
1711          * pointers and key numbers.
1712          */
1713         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1714                 union xfs_btree_ptr     *ptrp;
1715
1716                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1717                 --lev;
1718                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1719                 if (error)
1720                         goto error0;
1721                 xfs_btree_setbuf(cur, lev, bp);
1722                 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1723         }
1724 out1:
1725         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1726         *stat = 1;
1727         return 0;
1728
1729 out0:
1730         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1731         *stat = 0;
1732         return 0;
1733
1734 error0:
1735         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1736         return error;
1737 }
1738
1739 STATIC int
1740 xfs_btree_lookup_get_block(
1741         struct xfs_btree_cur    *cur,   /* btree cursor */
1742         int                     level,  /* level in the btree */
1743         union xfs_btree_ptr     *pp,    /* ptr to btree block */
1744         struct xfs_btree_block  **blkp) /* return btree block */
1745 {
1746         struct xfs_buf          *bp;    /* buffer pointer for btree block */
1747         int                     error = 0;
1748
1749         /* special case the root block if in an inode */
1750         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1751             (level == cur->bc_nlevels - 1)) {
1752                 *blkp = xfs_btree_get_iroot(cur);
1753                 return 0;
1754         }
1755
1756         /*
1757          * If the old buffer at this level for the disk address we are
1758          * looking for re-use it.
1759          *
1760          * Otherwise throw it away and get a new one.
1761          */
1762         bp = cur->bc_bufs[level];
1763         if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1764                 *blkp = XFS_BUF_TO_BLOCK(bp);
1765                 return 0;
1766         }
1767
1768         error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1769         if (error)
1770                 return error;
1771
1772         /* Check the inode owner since the verifiers don't. */
1773         if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1774             (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1775             be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1776                         cur->bc_private.b.ip->i_ino)
1777                 goto out_bad;
1778
1779         /* Did we get the level we were looking for? */
1780         if (be16_to_cpu((*blkp)->bb_level) != level)
1781                 goto out_bad;
1782
1783         /* Check that internal nodes have at least one record. */
1784         if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1785                 goto out_bad;
1786
1787         xfs_btree_setbuf(cur, level, bp);
1788         return 0;
1789
1790 out_bad:
1791         *blkp = NULL;
1792         xfs_trans_brelse(cur->bc_tp, bp);
1793         return -EFSCORRUPTED;
1794 }
1795
1796 /*
1797  * Get current search key.  For level 0 we don't actually have a key
1798  * structure so we make one up from the record.  For all other levels
1799  * we just return the right key.
1800  */
1801 STATIC union xfs_btree_key *
1802 xfs_lookup_get_search_key(
1803         struct xfs_btree_cur    *cur,
1804         int                     level,
1805         int                     keyno,
1806         struct xfs_btree_block  *block,
1807         union xfs_btree_key     *kp)
1808 {
1809         if (level == 0) {
1810                 cur->bc_ops->init_key_from_rec(kp,
1811                                 xfs_btree_rec_addr(cur, keyno, block));
1812                 return kp;
1813         }
1814
1815         return xfs_btree_key_addr(cur, keyno, block);
1816 }
1817
1818 /*
1819  * Lookup the record.  The cursor is made to point to it, based on dir.
1820  * stat is set to 0 if can't find any such record, 1 for success.
1821  */
1822 int                                     /* error */
1823 xfs_btree_lookup(
1824         struct xfs_btree_cur    *cur,   /* btree cursor */
1825         xfs_lookup_t            dir,    /* <=, ==, or >= */
1826         int                     *stat)  /* success/failure */
1827 {
1828         struct xfs_btree_block  *block; /* current btree block */
1829         __int64_t               diff;   /* difference for the current key */
1830         int                     error;  /* error return value */
1831         int                     keyno;  /* current key number */
1832         int                     level;  /* level in the btree */
1833         union xfs_btree_ptr     *pp;    /* ptr to btree block */
1834         union xfs_btree_ptr     ptr;    /* ptr to btree block */
1835
1836         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1837         XFS_BTREE_TRACE_ARGI(cur, dir);
1838
1839         XFS_BTREE_STATS_INC(cur, lookup);
1840
1841         /* No such thing as a zero-level tree. */
1842         if (cur->bc_nlevels == 0)
1843                 return -EFSCORRUPTED;
1844
1845         block = NULL;
1846         keyno = 0;
1847
1848         /* initialise start pointer from cursor */
1849         cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1850         pp = &ptr;
1851
1852         /*
1853          * Iterate over each level in the btree, starting at the root.
1854          * For each level above the leaves, find the key we need, based
1855          * on the lookup record, then follow the corresponding block
1856          * pointer down to the next level.
1857          */
1858         for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1859                 /* Get the block we need to do the lookup on. */
1860                 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1861                 if (error)
1862                         goto error0;
1863
1864                 if (diff == 0) {
1865                         /*
1866                          * If we already had a key match at a higher level, we
1867                          * know we need to use the first entry in this block.
1868                          */
1869                         keyno = 1;
1870                 } else {
1871                         /* Otherwise search this block. Do a binary search. */
1872
1873                         int     high;   /* high entry number */
1874                         int     low;    /* low entry number */
1875
1876                         /* Set low and high entry numbers, 1-based. */
1877                         low = 1;
1878                         high = xfs_btree_get_numrecs(block);
1879                         if (!high) {
1880                                 /* Block is empty, must be an empty leaf. */
1881                                 ASSERT(level == 0 && cur->bc_nlevels == 1);
1882
1883                                 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1884                                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1885                                 *stat = 0;
1886                                 return 0;
1887                         }
1888
1889                         /* Binary search the block. */
1890                         while (low <= high) {
1891                                 union xfs_btree_key     key;
1892                                 union xfs_btree_key     *kp;
1893
1894                                 XFS_BTREE_STATS_INC(cur, compare);
1895
1896                                 /* keyno is average of low and high. */
1897                                 keyno = (low + high) >> 1;
1898
1899                                 /* Get current search key */
1900                                 kp = xfs_lookup_get_search_key(cur, level,
1901                                                 keyno, block, &key);
1902
1903                                 /*
1904                                  * Compute difference to get next direction:
1905                                  *  - less than, move right
1906                                  *  - greater than, move left
1907                                  *  - equal, we're done
1908                                  */
1909                                 diff = cur->bc_ops->key_diff(cur, kp);
1910                                 if (diff < 0)
1911                                         low = keyno + 1;
1912                                 else if (diff > 0)
1913                                         high = keyno - 1;
1914                                 else
1915                                         break;
1916                         }
1917                 }
1918
1919                 /*
1920                  * If there are more levels, set up for the next level
1921                  * by getting the block number and filling in the cursor.
1922                  */
1923                 if (level > 0) {
1924                         /*
1925                          * If we moved left, need the previous key number,
1926                          * unless there isn't one.
1927                          */
1928                         if (diff > 0 && --keyno < 1)
1929                                 keyno = 1;
1930                         pp = xfs_btree_ptr_addr(cur, keyno, block);
1931
1932 #ifdef DEBUG
1933                         error = xfs_btree_check_ptr(cur, pp, 0, level);
1934                         if (error)
1935                                 goto error0;
1936 #endif
1937                         cur->bc_ptrs[level] = keyno;
1938                 }
1939         }
1940
1941         /* Done with the search. See if we need to adjust the results. */
1942         if (dir != XFS_LOOKUP_LE && diff < 0) {
1943                 keyno++;
1944                 /*
1945                  * If ge search and we went off the end of the block, but it's
1946                  * not the last block, we're in the wrong block.
1947                  */
1948                 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1949                 if (dir == XFS_LOOKUP_GE &&
1950                     keyno > xfs_btree_get_numrecs(block) &&
1951                     !xfs_btree_ptr_is_null(cur, &ptr)) {
1952                         int     i;
1953
1954                         cur->bc_ptrs[0] = keyno;
1955                         error = xfs_btree_increment(cur, 0, &i);
1956                         if (error)
1957                                 goto error0;
1958                         XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1959                         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1960                         *stat = 1;
1961                         return 0;
1962                 }
1963         } else if (dir == XFS_LOOKUP_LE && diff > 0)
1964                 keyno--;
1965         cur->bc_ptrs[0] = keyno;
1966
1967         /* Return if we succeeded or not. */
1968         if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1969                 *stat = 0;
1970         else if (dir != XFS_LOOKUP_EQ || diff == 0)
1971                 *stat = 1;
1972         else
1973                 *stat = 0;
1974         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1975         return 0;
1976
1977 error0:
1978         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1979         return error;
1980 }
1981
1982 /* Find the high key storage area from a regular key. */
1983 STATIC union xfs_btree_key *
1984 xfs_btree_high_key_from_key(
1985         struct xfs_btree_cur    *cur,
1986         union xfs_btree_key     *key)
1987 {
1988         ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1989         return (union xfs_btree_key *)((char *)key +
1990                         (cur->bc_ops->key_len / 2));
1991 }
1992
1993 /* Determine the low (and high if overlapped) keys of a leaf block */
1994 STATIC void
1995 xfs_btree_get_leaf_keys(
1996         struct xfs_btree_cur    *cur,
1997         struct xfs_btree_block  *block,
1998         union xfs_btree_key     *key)
1999 {
2000         union xfs_btree_key     max_hkey;
2001         union xfs_btree_key     hkey;
2002         union xfs_btree_rec     *rec;
2003         union xfs_btree_key     *high;
2004         int                     n;
2005
2006         rec = xfs_btree_rec_addr(cur, 1, block);
2007         cur->bc_ops->init_key_from_rec(key, rec);
2008
2009         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2010
2011                 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2012                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2013                         rec = xfs_btree_rec_addr(cur, n, block);
2014                         cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2015                         if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2016                                         > 0)
2017                                 max_hkey = hkey;
2018                 }
2019
2020                 high = xfs_btree_high_key_from_key(cur, key);
2021                 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2022         }
2023 }
2024
2025 /* Determine the low (and high if overlapped) keys of a node block */
2026 STATIC void
2027 xfs_btree_get_node_keys(
2028         struct xfs_btree_cur    *cur,
2029         struct xfs_btree_block  *block,
2030         union xfs_btree_key     *key)
2031 {
2032         union xfs_btree_key     *hkey;
2033         union xfs_btree_key     *max_hkey;
2034         union xfs_btree_key     *high;
2035         int                     n;
2036
2037         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2038                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2039                                 cur->bc_ops->key_len / 2);
2040
2041                 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2042                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2043                         hkey = xfs_btree_high_key_addr(cur, n, block);
2044                         if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2045                                 max_hkey = hkey;
2046                 }
2047
2048                 high = xfs_btree_high_key_from_key(cur, key);
2049                 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2050         } else {
2051                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2052                                 cur->bc_ops->key_len);
2053         }
2054 }
2055
2056 /* Derive the keys for any btree block. */
2057 STATIC void
2058 xfs_btree_get_keys(
2059         struct xfs_btree_cur    *cur,
2060         struct xfs_btree_block  *block,
2061         union xfs_btree_key     *key)
2062 {
2063         if (be16_to_cpu(block->bb_level) == 0)
2064                 xfs_btree_get_leaf_keys(cur, block, key);
2065         else
2066                 xfs_btree_get_node_keys(cur, block, key);
2067 }
2068
2069 /*
2070  * Decide if we need to update the parent keys of a btree block.  For
2071  * a standard btree this is only necessary if we're updating the first
2072  * record/key.  For an overlapping btree, we must always update the
2073  * keys because the highest key can be in any of the records or keys
2074  * in the block.
2075  */
2076 static inline bool
2077 xfs_btree_needs_key_update(
2078         struct xfs_btree_cur    *cur,
2079         int                     ptr)
2080 {
2081         return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2082 }
2083
2084 /*
2085  * Update the low and high parent keys of the given level, progressing
2086  * towards the root.  If force_all is false, stop if the keys for a given
2087  * level do not need updating.
2088  */
2089 STATIC int
2090 __xfs_btree_updkeys(
2091         struct xfs_btree_cur    *cur,
2092         int                     level,
2093         struct xfs_btree_block  *block,
2094         struct xfs_buf          *bp0,
2095         bool                    force_all)
2096 {
2097         union xfs_btree_key     key;    /* keys from current level */
2098         union xfs_btree_key     *lkey;  /* keys from the next level up */
2099         union xfs_btree_key     *hkey;
2100         union xfs_btree_key     *nlkey; /* keys from the next level up */
2101         union xfs_btree_key     *nhkey;
2102         struct xfs_buf          *bp;
2103         int                     ptr;
2104
2105         ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2106
2107         /* Exit if there aren't any parent levels to update. */
2108         if (level + 1 >= cur->bc_nlevels)
2109                 return 0;
2110
2111         trace_xfs_btree_updkeys(cur, level, bp0);
2112
2113         lkey = &key;
2114         hkey = xfs_btree_high_key_from_key(cur, lkey);
2115         xfs_btree_get_keys(cur, block, lkey);
2116         for (level++; level < cur->bc_nlevels; level++) {
2117 #ifdef DEBUG
2118                 int             error;
2119 #endif
2120                 block = xfs_btree_get_block(cur, level, &bp);
2121                 trace_xfs_btree_updkeys(cur, level, bp);
2122 #ifdef DEBUG
2123                 error = xfs_btree_check_block(cur, block, level, bp);
2124                 if (error) {
2125                         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2126                         return error;
2127                 }
2128 #endif
2129                 ptr = cur->bc_ptrs[level];
2130                 nlkey = xfs_btree_key_addr(cur, ptr, block);
2131                 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2132                 if (!force_all &&
2133                     !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2134                       cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2135                         break;
2136                 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2137                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2138                 if (level + 1 >= cur->bc_nlevels)
2139                         break;
2140                 xfs_btree_get_node_keys(cur, block, lkey);
2141         }
2142
2143         return 0;
2144 }
2145
2146 /* Update all the keys from some level in cursor back to the root. */
2147 STATIC int
2148 xfs_btree_updkeys_force(
2149         struct xfs_btree_cur    *cur,
2150         int                     level)
2151 {
2152         struct xfs_buf          *bp;
2153         struct xfs_btree_block  *block;
2154
2155         block = xfs_btree_get_block(cur, level, &bp);
2156         return __xfs_btree_updkeys(cur, level, block, bp, true);
2157 }
2158
2159 /*
2160  * Update the parent keys of the given level, progressing towards the root.
2161  */
2162 STATIC int
2163 xfs_btree_update_keys(
2164         struct xfs_btree_cur    *cur,
2165         int                     level)
2166 {
2167         struct xfs_btree_block  *block;
2168         struct xfs_buf          *bp;
2169         union xfs_btree_key     *kp;
2170         union xfs_btree_key     key;
2171         int                     ptr;
2172
2173         ASSERT(level >= 0);
2174
2175         block = xfs_btree_get_block(cur, level, &bp);
2176         if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2177                 return __xfs_btree_updkeys(cur, level, block, bp, false);
2178
2179         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2180         XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2181
2182         /*
2183          * Go up the tree from this level toward the root.
2184          * At each level, update the key value to the value input.
2185          * Stop when we reach a level where the cursor isn't pointing
2186          * at the first entry in the block.
2187          */
2188         xfs_btree_get_keys(cur, block, &key);
2189         for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2190 #ifdef DEBUG
2191                 int             error;
2192 #endif
2193                 block = xfs_btree_get_block(cur, level, &bp);
2194 #ifdef DEBUG
2195                 error = xfs_btree_check_block(cur, block, level, bp);
2196                 if (error) {
2197                         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2198                         return error;
2199                 }
2200 #endif
2201                 ptr = cur->bc_ptrs[level];
2202                 kp = xfs_btree_key_addr(cur, ptr, block);
2203                 xfs_btree_copy_keys(cur, kp, &key, 1);
2204                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2205         }
2206
2207         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2208         return 0;
2209 }
2210
2211 /*
2212  * Update the record referred to by cur to the value in the
2213  * given record. This either works (return 0) or gets an
2214  * EFSCORRUPTED error.
2215  */
2216 int
2217 xfs_btree_update(
2218         struct xfs_btree_cur    *cur,
2219         union xfs_btree_rec     *rec)
2220 {
2221         struct xfs_btree_block  *block;
2222         struct xfs_buf          *bp;
2223         int                     error;
2224         int                     ptr;
2225         union xfs_btree_rec     *rp;
2226
2227         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2228         XFS_BTREE_TRACE_ARGR(cur, rec);
2229
2230         /* Pick up the current block. */
2231         block = xfs_btree_get_block(cur, 0, &bp);
2232
2233 #ifdef DEBUG
2234         error = xfs_btree_check_block(cur, block, 0, bp);
2235         if (error)
2236                 goto error0;
2237 #endif
2238         /* Get the address of the rec to be updated. */
2239         ptr = cur->bc_ptrs[0];
2240         rp = xfs_btree_rec_addr(cur, ptr, block);
2241
2242         /* Fill in the new contents and log them. */
2243         xfs_btree_copy_recs(cur, rp, rec, 1);
2244         xfs_btree_log_recs(cur, bp, ptr, ptr);
2245
2246         /*
2247          * If we are tracking the last record in the tree and
2248          * we are at the far right edge of the tree, update it.
2249          */
2250         if (xfs_btree_is_lastrec(cur, block, 0)) {
2251                 cur->bc_ops->update_lastrec(cur, block, rec,
2252                                             ptr, LASTREC_UPDATE);
2253         }
2254
2255         /* Pass new key value up to our parent. */
2256         if (xfs_btree_needs_key_update(cur, ptr)) {
2257                 error = xfs_btree_update_keys(cur, 0);
2258                 if (error)
2259                         goto error0;
2260         }
2261
2262         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2263         return 0;
2264
2265 error0:
2266         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2267         return error;
2268 }
2269
2270 /*
2271  * Move 1 record left from cur/level if possible.
2272  * Update cur to reflect the new path.
2273  */
2274 STATIC int                                      /* error */
2275 xfs_btree_lshift(
2276         struct xfs_btree_cur    *cur,
2277         int                     level,
2278         int                     *stat)          /* success/failure */
2279 {
2280         struct xfs_buf          *lbp;           /* left buffer pointer */
2281         struct xfs_btree_block  *left;          /* left btree block */
2282         int                     lrecs;          /* left record count */
2283         struct xfs_buf          *rbp;           /* right buffer pointer */
2284         struct xfs_btree_block  *right;         /* right btree block */
2285         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2286         int                     rrecs;          /* right record count */
2287         union xfs_btree_ptr     lptr;           /* left btree pointer */
2288         union xfs_btree_key     *rkp = NULL;    /* right btree key */
2289         union xfs_btree_ptr     *rpp = NULL;    /* right address pointer */
2290         union xfs_btree_rec     *rrp = NULL;    /* right record pointer */
2291         int                     error;          /* error return value */
2292         int                     i;
2293
2294         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2295         XFS_BTREE_TRACE_ARGI(cur, level);
2296
2297         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2298             level == cur->bc_nlevels - 1)
2299                 goto out0;
2300
2301         /* Set up variables for this block as "right". */
2302         right = xfs_btree_get_block(cur, level, &rbp);
2303
2304 #ifdef DEBUG
2305         error = xfs_btree_check_block(cur, right, level, rbp);
2306         if (error)
2307                 goto error0;
2308 #endif
2309
2310         /* If we've got no left sibling then we can't shift an entry left. */
2311         xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2312         if (xfs_btree_ptr_is_null(cur, &lptr))
2313                 goto out0;
2314
2315         /*
2316          * If the cursor entry is the one that would be moved, don't
2317          * do it... it's too complicated.
2318          */
2319         if (cur->bc_ptrs[level] <= 1)
2320                 goto out0;
2321
2322         /* Set up the left neighbor as "left". */
2323         error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2324         if (error)
2325                 goto error0;
2326
2327         /* If it's full, it can't take another entry. */
2328         lrecs = xfs_btree_get_numrecs(left);
2329         if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2330                 goto out0;
2331
2332         rrecs = xfs_btree_get_numrecs(right);
2333
2334         /*
2335          * We add one entry to the left side and remove one for the right side.
2336          * Account for it here, the changes will be updated on disk and logged
2337          * later.
2338          */
2339         lrecs++;
2340         rrecs--;
2341
2342         XFS_BTREE_STATS_INC(cur, lshift);
2343         XFS_BTREE_STATS_ADD(cur, moves, 1);
2344
2345         /*
2346          * If non-leaf, copy a key and a ptr to the left block.
2347          * Log the changes to the left block.
2348          */
2349         if (level > 0) {
2350                 /* It's a non-leaf.  Move keys and pointers. */
2351                 union xfs_btree_key     *lkp;   /* left btree key */
2352                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2353
2354                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2355                 rkp = xfs_btree_key_addr(cur, 1, right);
2356
2357                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2358                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2359 #ifdef DEBUG
2360                 error = xfs_btree_check_ptr(cur, rpp, 0, level);
2361                 if (error)
2362                         goto error0;
2363 #endif
2364                 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2365                 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2366
2367                 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2368                 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2369
2370                 ASSERT(cur->bc_ops->keys_inorder(cur,
2371                         xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2372         } else {
2373                 /* It's a leaf.  Move records.  */
2374                 union xfs_btree_rec     *lrp;   /* left record pointer */
2375
2376                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2377                 rrp = xfs_btree_rec_addr(cur, 1, right);
2378
2379                 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2380                 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2381
2382                 ASSERT(cur->bc_ops->recs_inorder(cur,
2383                         xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2384         }
2385
2386         xfs_btree_set_numrecs(left, lrecs);
2387         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2388
2389         xfs_btree_set_numrecs(right, rrecs);
2390         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2391
2392         /*
2393          * Slide the contents of right down one entry.
2394          */
2395         XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2396         if (level > 0) {
2397                 /* It's a nonleaf. operate on keys and ptrs */
2398 #ifdef DEBUG
2399                 int                     i;              /* loop index */
2400
2401                 for (i = 0; i < rrecs; i++) {
2402                         error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2403                         if (error)
2404                                 goto error0;
2405                 }
2406 #endif
2407                 xfs_btree_shift_keys(cur,
2408                                 xfs_btree_key_addr(cur, 2, right),
2409                                 -1, rrecs);
2410                 xfs_btree_shift_ptrs(cur,
2411                                 xfs_btree_ptr_addr(cur, 2, right),
2412                                 -1, rrecs);
2413
2414                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2415                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2416         } else {
2417                 /* It's a leaf. operate on records */
2418                 xfs_btree_shift_recs(cur,
2419                         xfs_btree_rec_addr(cur, 2, right),
2420                         -1, rrecs);
2421                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2422         }
2423
2424         /*
2425          * Using a temporary cursor, update the parent key values of the
2426          * block on the left.
2427          */
2428         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2429                 error = xfs_btree_dup_cursor(cur, &tcur);
2430                 if (error)
2431                         goto error0;
2432                 i = xfs_btree_firstrec(tcur, level);
2433                 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2434
2435                 error = xfs_btree_decrement(tcur, level, &i);
2436                 if (error)
2437                         goto error1;
2438
2439                 /* Update the parent high keys of the left block, if needed. */
2440                 error = xfs_btree_update_keys(tcur, level);
2441                 if (error)
2442                         goto error1;
2443
2444                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2445         }
2446
2447         /* Update the parent keys of the right block. */
2448         error = xfs_btree_update_keys(cur, level);
2449         if (error)
2450                 goto error0;
2451
2452         /* Slide the cursor value left one. */
2453         cur->bc_ptrs[level]--;
2454
2455         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2456         *stat = 1;
2457         return 0;
2458
2459 out0:
2460         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2461         *stat = 0;
2462         return 0;
2463
2464 error0:
2465         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2466         return error;
2467
2468 error1:
2469         XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2470         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2471         return error;
2472 }
2473
2474 /*
2475  * Move 1 record right from cur/level if possible.
2476  * Update cur to reflect the new path.
2477  */
2478 STATIC int                                      /* error */
2479 xfs_btree_rshift(
2480         struct xfs_btree_cur    *cur,
2481         int                     level,
2482         int                     *stat)          /* success/failure */
2483 {
2484         struct xfs_buf          *lbp;           /* left buffer pointer */
2485         struct xfs_btree_block  *left;          /* left btree block */
2486         struct xfs_buf          *rbp;           /* right buffer pointer */
2487         struct xfs_btree_block  *right;         /* right btree block */
2488         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2489         union xfs_btree_ptr     rptr;           /* right block pointer */
2490         union xfs_btree_key     *rkp;           /* right btree key */
2491         int                     rrecs;          /* right record count */
2492         int                     lrecs;          /* left record count */
2493         int                     error;          /* error return value */
2494         int                     i;              /* loop counter */
2495
2496         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2497         XFS_BTREE_TRACE_ARGI(cur, level);
2498
2499         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2500             (level == cur->bc_nlevels - 1))
2501                 goto out0;
2502
2503         /* Set up variables for this block as "left". */
2504         left = xfs_btree_get_block(cur, level, &lbp);
2505
2506 #ifdef DEBUG
2507         error = xfs_btree_check_block(cur, left, level, lbp);
2508         if (error)
2509                 goto error0;
2510 #endif
2511
2512         /* If we've got no right sibling then we can't shift an entry right. */
2513         xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2514         if (xfs_btree_ptr_is_null(cur, &rptr))
2515                 goto out0;
2516
2517         /*
2518          * If the cursor entry is the one that would be moved, don't
2519          * do it... it's too complicated.
2520          */
2521         lrecs = xfs_btree_get_numrecs(left);
2522         if (cur->bc_ptrs[level] >= lrecs)
2523                 goto out0;
2524
2525         /* Set up the right neighbor as "right". */
2526         error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2527         if (error)
2528                 goto error0;
2529
2530         /* If it's full, it can't take another entry. */
2531         rrecs = xfs_btree_get_numrecs(right);
2532         if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2533                 goto out0;
2534
2535         XFS_BTREE_STATS_INC(cur, rshift);
2536         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2537
2538         /*
2539          * Make a hole at the start of the right neighbor block, then
2540          * copy the last left block entry to the hole.
2541          */
2542         if (level > 0) {
2543                 /* It's a nonleaf. make a hole in the keys and ptrs */
2544                 union xfs_btree_key     *lkp;
2545                 union xfs_btree_ptr     *lpp;
2546                 union xfs_btree_ptr     *rpp;
2547
2548                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2549                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2550                 rkp = xfs_btree_key_addr(cur, 1, right);
2551                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2552
2553 #ifdef DEBUG
2554                 for (i = rrecs - 1; i >= 0; i--) {
2555                         error = xfs_btree_check_ptr(cur, rpp, i, level);
2556                         if (error)
2557                                 goto error0;
2558                 }
2559 #endif
2560
2561                 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2562                 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2563
2564 #ifdef DEBUG
2565                 error = xfs_btree_check_ptr(cur, lpp, 0, level);
2566                 if (error)
2567                         goto error0;
2568 #endif
2569
2570                 /* Now put the new data in, and log it. */
2571                 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2572                 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2573
2574                 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2575                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2576
2577                 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2578                         xfs_btree_key_addr(cur, 2, right)));
2579         } else {
2580                 /* It's a leaf. make a hole in the records */
2581                 union xfs_btree_rec     *lrp;
2582                 union xfs_btree_rec     *rrp;
2583
2584                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2585                 rrp = xfs_btree_rec_addr(cur, 1, right);
2586
2587                 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2588
2589                 /* Now put the new data in, and log it. */
2590                 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2591                 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2592         }
2593
2594         /*
2595          * Decrement and log left's numrecs, bump and log right's numrecs.
2596          */
2597         xfs_btree_set_numrecs(left, --lrecs);
2598         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2599
2600         xfs_btree_set_numrecs(right, ++rrecs);
2601         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2602
2603         /*
2604          * Using a temporary cursor, update the parent key values of the
2605          * block on the right.
2606          */
2607         error = xfs_btree_dup_cursor(cur, &tcur);
2608         if (error)
2609                 goto error0;
2610         i = xfs_btree_lastrec(tcur, level);
2611         XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2612
2613         error = xfs_btree_increment(tcur, level, &i);
2614         if (error)
2615                 goto error1;
2616
2617         /* Update the parent high keys of the left block, if needed. */
2618         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2619                 error = xfs_btree_update_keys(cur, level);
2620                 if (error)
2621                         goto error1;
2622         }
2623
2624         /* Update the parent keys of the right block. */
2625         error = xfs_btree_update_keys(tcur, level);
2626         if (error)
2627                 goto error1;
2628
2629         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2630
2631         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2632         *stat = 1;
2633         return 0;
2634
2635 out0:
2636         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2637         *stat = 0;
2638         return 0;
2639
2640 error0:
2641         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2642         return error;
2643
2644 error1:
2645         XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2646         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2647         return error;
2648 }
2649
2650 /*
2651  * Split cur/level block in half.
2652  * Return new block number and the key to its first
2653  * record (to be inserted into parent).
2654  */
2655 STATIC int                                      /* error */
2656 __xfs_btree_split(
2657         struct xfs_btree_cur    *cur,
2658         int                     level,
2659         union xfs_btree_ptr     *ptrp,
2660         union xfs_btree_key     *key,
2661         struct xfs_btree_cur    **curp,
2662         int                     *stat)          /* success/failure */
2663 {
2664         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
2665         struct xfs_buf          *lbp;           /* left buffer pointer */
2666         struct xfs_btree_block  *left;          /* left btree block */
2667         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
2668         struct xfs_buf          *rbp;           /* right buffer pointer */
2669         struct xfs_btree_block  *right;         /* right btree block */
2670         union xfs_btree_ptr     rrptr;          /* right-right sibling ptr */
2671         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
2672         struct xfs_btree_block  *rrblock;       /* right-right btree block */
2673         int                     lrecs;
2674         int                     rrecs;
2675         int                     src_index;
2676         int                     error;          /* error return value */
2677 #ifdef DEBUG
2678         int                     i;
2679 #endif
2680
2681         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2682         XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2683
2684         XFS_BTREE_STATS_INC(cur, split);
2685
2686         /* Set up left block (current one). */
2687         left = xfs_btree_get_block(cur, level, &lbp);
2688
2689 #ifdef DEBUG
2690         error = xfs_btree_check_block(cur, left, level, lbp);
2691         if (error)
2692                 goto error0;
2693 #endif
2694
2695         xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2696
2697         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2698         error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2699         if (error)
2700                 goto error0;
2701         if (*stat == 0)
2702                 goto out0;
2703         XFS_BTREE_STATS_INC(cur, alloc);
2704
2705         /* Set up the new block as "right". */
2706         error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2707         if (error)
2708                 goto error0;
2709
2710         /* Fill in the btree header for the new right block. */
2711         xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2712
2713         /*
2714          * Split the entries between the old and the new block evenly.
2715          * Make sure that if there's an odd number of entries now, that
2716          * each new block will have the same number of entries.
2717          */
2718         lrecs = xfs_btree_get_numrecs(left);
2719         rrecs = lrecs / 2;
2720         if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2721                 rrecs++;
2722         src_index = (lrecs - rrecs + 1);
2723
2724         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2725
2726         /* Adjust numrecs for the later get_*_keys() calls. */
2727         lrecs -= rrecs;
2728         xfs_btree_set_numrecs(left, lrecs);
2729         xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2730
2731         /*
2732          * Copy btree block entries from the left block over to the
2733          * new block, the right. Update the right block and log the
2734          * changes.
2735          */
2736         if (level > 0) {
2737                 /* It's a non-leaf.  Move keys and pointers. */
2738                 union xfs_btree_key     *lkp;   /* left btree key */
2739                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2740                 union xfs_btree_key     *rkp;   /* right btree key */
2741                 union xfs_btree_ptr     *rpp;   /* right address pointer */
2742
2743                 lkp = xfs_btree_key_addr(cur, src_index, left);
2744                 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2745                 rkp = xfs_btree_key_addr(cur, 1, right);
2746                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2747
2748 #ifdef DEBUG
2749                 for (i = src_index; i < rrecs; i++) {
2750                         error = xfs_btree_check_ptr(cur, lpp, i, level);
2751                         if (error)
2752                                 goto error0;
2753                 }
2754 #endif
2755
2756                 /* Copy the keys & pointers to the new block. */
2757                 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2758                 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2759
2760                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2761                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2762
2763                 /* Stash the keys of the new block for later insertion. */
2764                 xfs_btree_get_node_keys(cur, right, key);
2765         } else {
2766                 /* It's a leaf.  Move records.  */
2767                 union xfs_btree_rec     *lrp;   /* left record pointer */
2768                 union xfs_btree_rec     *rrp;   /* right record pointer */
2769
2770                 lrp = xfs_btree_rec_addr(cur, src_index, left);
2771                 rrp = xfs_btree_rec_addr(cur, 1, right);
2772
2773                 /* Copy records to the new block. */
2774                 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2775                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2776
2777                 /* Stash the keys of the new block for later insertion. */
2778                 xfs_btree_get_leaf_keys(cur, right, key);
2779         }
2780
2781         /*
2782          * Find the left block number by looking in the buffer.
2783          * Adjust sibling pointers.
2784          */
2785         xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2786         xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2787         xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2788         xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2789
2790         xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2791         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2792
2793         /*
2794          * If there's a block to the new block's right, make that block
2795          * point back to right instead of to left.
2796          */
2797         if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2798                 error = xfs_btree_read_buf_block(cur, &rrptr,
2799                                                         0, &rrblock, &rrbp);
2800                 if (error)
2801                         goto error0;
2802                 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2803                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2804         }
2805
2806         /* Update the parent high keys of the left block, if needed. */
2807         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2808                 error = xfs_btree_update_keys(cur, level);
2809                 if (error)
2810                         goto error0;
2811         }
2812
2813         /*
2814          * If the cursor is really in the right block, move it there.
2815          * If it's just pointing past the last entry in left, then we'll
2816          * insert there, so don't change anything in that case.
2817          */
2818         if (cur->bc_ptrs[level] > lrecs + 1) {
2819                 xfs_btree_setbuf(cur, level, rbp);
2820                 cur->bc_ptrs[level] -= lrecs;
2821         }
2822         /*
2823          * If there are more levels, we'll need another cursor which refers
2824          * the right block, no matter where this cursor was.
2825          */
2826         if (level + 1 < cur->bc_nlevels) {
2827                 error = xfs_btree_dup_cursor(cur, curp);
2828                 if (error)
2829                         goto error0;
2830                 (*curp)->bc_ptrs[level + 1]++;
2831         }
2832         *ptrp = rptr;
2833         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2834         *stat = 1;
2835         return 0;
2836 out0:
2837         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2838         *stat = 0;
2839         return 0;
2840
2841 error0:
2842         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2843         return error;
2844 }
2845
2846 struct xfs_btree_split_args {
2847         struct xfs_btree_cur    *cur;
2848         int                     level;
2849         union xfs_btree_ptr     *ptrp;
2850         union xfs_btree_key     *key;
2851         struct xfs_btree_cur    **curp;
2852         int                     *stat;          /* success/failure */
2853         int                     result;
2854         bool                    kswapd; /* allocation in kswapd context */
2855         struct completion       *done;
2856         struct work_struct      work;
2857 };
2858
2859 /*
2860  * Stack switching interfaces for allocation
2861  */
2862 static void
2863 xfs_btree_split_worker(
2864         struct work_struct      *work)
2865 {
2866         struct xfs_btree_split_args     *args = container_of(work,
2867                                                 struct xfs_btree_split_args, work);
2868         unsigned long           pflags;
2869         unsigned long           new_pflags = PF_FSTRANS;
2870
2871         /*
2872          * we are in a transaction context here, but may also be doing work
2873          * in kswapd context, and hence we may need to inherit that state
2874          * temporarily to ensure that we don't block waiting for memory reclaim
2875          * in any way.
2876          */
2877         if (args->kswapd)
2878                 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2879
2880         current_set_flags_nested(&pflags, new_pflags);
2881
2882         args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2883                                          args->key, args->curp, args->stat);
2884         complete(args->done);
2885
2886         current_restore_flags_nested(&pflags, new_pflags);
2887 }
2888
2889 /*
2890  * BMBT split requests often come in with little stack to work on. Push
2891  * them off to a worker thread so there is lots of stack to use. For the other
2892  * btree types, just call directly to avoid the context switch overhead here.
2893  */
2894 STATIC int                                      /* error */
2895 xfs_btree_split(
2896         struct xfs_btree_cur    *cur,
2897         int                     level,
2898         union xfs_btree_ptr     *ptrp,
2899         union xfs_btree_key     *key,
2900         struct xfs_btree_cur    **curp,
2901         int                     *stat)          /* success/failure */
2902 {
2903         struct xfs_btree_split_args     args;
2904         DECLARE_COMPLETION_ONSTACK(done);
2905
2906         if (cur->bc_btnum != XFS_BTNUM_BMAP)
2907                 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2908
2909         args.cur = cur;
2910         args.level = level;
2911         args.ptrp = ptrp;
2912         args.key = key;
2913         args.curp = curp;
2914         args.stat = stat;
2915         args.done = &done;
2916         args.kswapd = current_is_kswapd();
2917         INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2918         queue_work(xfs_alloc_wq, &args.work);
2919         wait_for_completion(&done);
2920         destroy_work_on_stack(&args.work);
2921         return args.result;
2922 }
2923
2924
2925 /*
2926  * Copy the old inode root contents into a real block and make the
2927  * broot point to it.
2928  */
2929 int                                             /* error */
2930 xfs_btree_new_iroot(
2931         struct xfs_btree_cur    *cur,           /* btree cursor */
2932         int                     *logflags,      /* logging flags for inode */
2933         int                     *stat)          /* return status - 0 fail */
2934 {
2935         struct xfs_buf          *cbp;           /* buffer for cblock */
2936         struct xfs_btree_block  *block;         /* btree block */
2937         struct xfs_btree_block  *cblock;        /* child btree block */
2938         union xfs_btree_key     *ckp;           /* child key pointer */
2939         union xfs_btree_ptr     *cpp;           /* child ptr pointer */
2940         union xfs_btree_key     *kp;            /* pointer to btree key */
2941         union xfs_btree_ptr     *pp;            /* pointer to block addr */
2942         union xfs_btree_ptr     nptr;           /* new block addr */
2943         int                     level;          /* btree level */
2944         int                     error;          /* error return code */
2945 #ifdef DEBUG
2946         int                     i;              /* loop counter */
2947 #endif
2948
2949         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2950         XFS_BTREE_STATS_INC(cur, newroot);
2951
2952         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2953
2954         level = cur->bc_nlevels - 1;
2955
2956         block = xfs_btree_get_iroot(cur);
2957         pp = xfs_btree_ptr_addr(cur, 1, block);
2958
2959         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2960         error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2961         if (error)
2962                 goto error0;
2963         if (*stat == 0) {
2964                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2965                 return 0;
2966         }
2967         XFS_BTREE_STATS_INC(cur, alloc);
2968
2969         /* Copy the root into a real block. */
2970         error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2971         if (error)
2972                 goto error0;
2973
2974         /*
2975          * we can't just memcpy() the root in for CRC enabled btree blocks.
2976          * In that case have to also ensure the blkno remains correct
2977          */
2978         memcpy(cblock, block, xfs_btree_block_len(cur));
2979         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2980                 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2981                         cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2982                 else
2983                         cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2984         }
2985
2986         be16_add_cpu(&block->bb_level, 1);
2987         xfs_btree_set_numrecs(block, 1);
2988         cur->bc_nlevels++;
2989         cur->bc_ptrs[level + 1] = 1;
2990
2991         kp = xfs_btree_key_addr(cur, 1, block);
2992         ckp = xfs_btree_key_addr(cur, 1, cblock);
2993         xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2994
2995         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2996 #ifdef DEBUG
2997         for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2998                 error = xfs_btree_check_ptr(cur, pp, i, level);
2999                 if (error)
3000                         goto error0;
3001         }
3002 #endif
3003         xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3004
3005 #ifdef DEBUG
3006         error = xfs_btree_check_ptr(cur, &nptr, 0, level);
3007         if (error)
3008                 goto error0;
3009 #endif
3010         xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3011
3012         xfs_iroot_realloc(cur->bc_private.b.ip,
3013                           1 - xfs_btree_get_numrecs(cblock),
3014                           cur->bc_private.b.whichfork);
3015
3016         xfs_btree_setbuf(cur, level, cbp);
3017
3018         /*
3019          * Do all this logging at the end so that
3020          * the root is at the right level.
3021          */
3022         xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3023         xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3024         xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3025
3026         *logflags |=
3027                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3028         *stat = 1;
3029         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3030         return 0;
3031 error0:
3032         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3033         return error;
3034 }
3035
3036 /*
3037  * Allocate a new root block, fill it in.
3038  */
3039 STATIC int                              /* error */
3040 xfs_btree_new_root(
3041         struct xfs_btree_cur    *cur,   /* btree cursor */
3042         int                     *stat)  /* success/failure */
3043 {
3044         struct xfs_btree_block  *block; /* one half of the old root block */
3045         struct xfs_buf          *bp;    /* buffer containing block */
3046         int                     error;  /* error return value */
3047         struct xfs_buf          *lbp;   /* left buffer pointer */
3048         struct xfs_btree_block  *left;  /* left btree block */
3049         struct xfs_buf          *nbp;   /* new (root) buffer */
3050         struct xfs_btree_block  *new;   /* new (root) btree block */
3051         int                     nptr;   /* new value for key index, 1 or 2 */
3052         struct xfs_buf          *rbp;   /* right buffer pointer */
3053         struct xfs_btree_block  *right; /* right btree block */
3054         union xfs_btree_ptr     rptr;
3055         union xfs_btree_ptr     lptr;
3056
3057         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3058         XFS_BTREE_STATS_INC(cur, newroot);
3059
3060         /* initialise our start point from the cursor */
3061         cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3062
3063         /* Allocate the new block. If we can't do it, we're toast. Give up. */
3064         error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3065         if (error)
3066                 goto error0;
3067         if (*stat == 0)
3068                 goto out0;
3069         XFS_BTREE_STATS_INC(cur, alloc);
3070
3071         /* Set up the new block. */
3072         error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3073         if (error)
3074                 goto error0;
3075
3076         /* Set the root in the holding structure  increasing the level by 1. */
3077         cur->bc_ops->set_root(cur, &lptr, 1);
3078
3079         /*
3080          * At the previous root level there are now two blocks: the old root,
3081          * and the new block generated when it was split.  We don't know which
3082          * one the cursor is pointing at, so we set up variables "left" and
3083          * "right" for each case.
3084          */
3085         block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3086
3087 #ifdef DEBUG
3088         error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3089         if (error)
3090                 goto error0;
3091 #endif
3092
3093         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3094         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3095                 /* Our block is left, pick up the right block. */
3096                 lbp = bp;
3097                 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3098                 left = block;
3099                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3100                 if (error)
3101                         goto error0;
3102                 bp = rbp;
3103                 nptr = 1;
3104         } else {
3105                 /* Our block is right, pick up the left block. */
3106                 rbp = bp;
3107                 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3108                 right = block;
3109                 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3110                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3111                 if (error)
3112                         goto error0;
3113                 bp = lbp;
3114                 nptr = 2;
3115         }
3116
3117         /* Fill in the new block's btree header and log it. */
3118         xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3119         xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3120         ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3121                         !xfs_btree_ptr_is_null(cur, &rptr));
3122
3123         /* Fill in the key data in the new root. */
3124         if (xfs_btree_get_level(left) > 0) {
3125                 /*
3126                  * Get the keys for the left block's keys and put them directly
3127                  * in the parent block.  Do the same for the right block.
3128                  */
3129                 xfs_btree_get_node_keys(cur, left,
3130                                 xfs_btree_key_addr(cur, 1, new));
3131                 xfs_btree_get_node_keys(cur, right,
3132                                 xfs_btree_key_addr(cur, 2, new));
3133         } else {
3134                 /*
3135                  * Get the keys for the left block's records and put them
3136                  * directly in the parent block.  Do the same for the right
3137                  * block.
3138                  */
3139                 xfs_btree_get_leaf_keys(cur, left,
3140                         xfs_btree_key_addr(cur, 1, new));
3141                 xfs_btree_get_leaf_keys(cur, right,
3142                         xfs_btree_key_addr(cur, 2, new));
3143         }
3144         xfs_btree_log_keys(cur, nbp, 1, 2);
3145
3146         /* Fill in the pointer data in the new root. */
3147         xfs_btree_copy_ptrs(cur,
3148                 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3149         xfs_btree_copy_ptrs(cur,
3150                 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3151         xfs_btree_log_ptrs(cur, nbp, 1, 2);
3152
3153         /* Fix up the cursor. */
3154         xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3155         cur->bc_ptrs[cur->bc_nlevels] = nptr;
3156         cur->bc_nlevels++;
3157         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3158         *stat = 1;
3159         return 0;
3160 error0:
3161         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3162         return error;
3163 out0:
3164         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3165         *stat = 0;
3166         return 0;
3167 }
3168
3169 STATIC int
3170 xfs_btree_make_block_unfull(
3171         struct xfs_btree_cur    *cur,   /* btree cursor */
3172         int                     level,  /* btree level */
3173         int                     numrecs,/* # of recs in block */
3174         int                     *oindex,/* old tree index */
3175         int                     *index, /* new tree index */
3176         union xfs_btree_ptr     *nptr,  /* new btree ptr */
3177         struct xfs_btree_cur    **ncur, /* new btree cursor */
3178         union xfs_btree_key     *key,   /* key of new block */
3179         int                     *stat)
3180 {
3181         int                     error = 0;
3182
3183         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3184             level == cur->bc_nlevels - 1) {
3185                 struct xfs_inode *ip = cur->bc_private.b.ip;
3186
3187                 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3188                         /* A root block that can be made bigger. */
3189                         xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3190                         *stat = 1;
3191                 } else {
3192                         /* A root block that needs replacing */
3193                         int     logflags = 0;
3194
3195                         error = xfs_btree_new_iroot(cur, &logflags, stat);
3196                         if (error || *stat == 0)
3197                                 return error;
3198
3199                         xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3200                 }
3201
3202                 return 0;
3203         }
3204
3205         /* First, try shifting an entry to the right neighbor. */
3206         error = xfs_btree_rshift(cur, level, stat);
3207         if (error || *stat)
3208                 return error;
3209
3210         /* Next, try shifting an entry to the left neighbor. */
3211         error = xfs_btree_lshift(cur, level, stat);
3212         if (error)
3213                 return error;
3214
3215         if (*stat) {
3216                 *oindex = *index = cur->bc_ptrs[level];
3217                 return 0;
3218         }
3219
3220         /*
3221          * Next, try splitting the current block in half.
3222          *
3223          * If this works we have to re-set our variables because we
3224          * could be in a different block now.
3225          */
3226         error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3227         if (error || *stat == 0)
3228                 return error;
3229
3230
3231         *index = cur->bc_ptrs[level];
3232         return 0;
3233 }
3234
3235 /*
3236  * Insert one record/level.  Return information to the caller
3237  * allowing the next level up to proceed if necessary.
3238  */
3239 STATIC int
3240 xfs_btree_insrec(
3241         struct xfs_btree_cur    *cur,   /* btree cursor */
3242         int                     level,  /* level to insert record at */
3243         union xfs_btree_ptr     *ptrp,  /* i/o: block number inserted */
3244         union xfs_btree_rec     *rec,   /* record to insert */
3245         union xfs_btree_key     *key,   /* i/o: block key for ptrp */
3246         struct xfs_btree_cur    **curp, /* output: new cursor replacing cur */
3247         int                     *stat)  /* success/failure */
3248 {
3249         struct xfs_btree_block  *block; /* btree block */
3250         struct xfs_buf          *bp;    /* buffer for block */
3251         union xfs_btree_ptr     nptr;   /* new block ptr */
3252         struct xfs_btree_cur    *ncur;  /* new btree cursor */
3253         union xfs_btree_key     nkey;   /* new block key */
3254         union xfs_btree_key     *lkey;
3255         int                     optr;   /* old key/record index */
3256         int                     ptr;    /* key/record index */
3257         int                     numrecs;/* number of records */
3258         int                     error;  /* error return value */
3259 #ifdef DEBUG
3260         int                     i;
3261 #endif
3262         xfs_daddr_t             old_bn;
3263
3264         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3265         XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3266
3267         ncur = NULL;
3268         lkey = &nkey;
3269
3270         /*
3271          * If we have an external root pointer, and we've made it to the
3272          * root level, allocate a new root block and we're done.
3273          */
3274         if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3275             (level >= cur->bc_nlevels)) {
3276                 error = xfs_btree_new_root(cur, stat);
3277                 xfs_btree_set_ptr_null(cur, ptrp);
3278
3279                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3280                 return error;
3281         }
3282
3283         /* If we're off the left edge, return failure. */
3284         ptr = cur->bc_ptrs[level];
3285         if (ptr == 0) {
3286                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3287                 *stat = 0;
3288                 return 0;
3289         }
3290
3291         optr = ptr;
3292
3293         XFS_BTREE_STATS_INC(cur, insrec);
3294
3295         /* Get pointers to the btree buffer and block. */
3296         block = xfs_btree_get_block(cur, level, &bp);
3297         old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3298         numrecs = xfs_btree_get_numrecs(block);
3299
3300 #ifdef DEBUG
3301         error = xfs_btree_check_block(cur, block, level, bp);
3302         if (error)
3303                 goto error0;
3304
3305         /* Check that the new entry is being inserted in the right place. */
3306         if (ptr <= numrecs) {
3307                 if (level == 0) {
3308                         ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3309                                 xfs_btree_rec_addr(cur, ptr, block)));
3310                 } else {
3311                         ASSERT(cur->bc_ops->keys_inorder(cur, key,
3312                                 xfs_btree_key_addr(cur, ptr, block)));
3313                 }
3314         }
3315 #endif
3316
3317         /*
3318          * If the block is full, we can't insert the new entry until we
3319          * make the block un-full.
3320          */
3321         xfs_btree_set_ptr_null(cur, &nptr);
3322         if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3323                 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3324                                         &optr, &ptr, &nptr, &ncur, lkey, stat);
3325                 if (error || *stat == 0)
3326                         goto error0;
3327         }
3328
3329         /*
3330          * The current block may have changed if the block was
3331          * previously full and we have just made space in it.
3332          */
3333         block = xfs_btree_get_block(cur, level, &bp);
3334         numrecs = xfs_btree_get_numrecs(block);
3335
3336 #ifdef DEBUG
3337         error = xfs_btree_check_block(cur, block, level, bp);
3338         if (error)
3339                 return error;
3340 #endif
3341
3342         /*
3343          * At this point we know there's room for our new entry in the block
3344          * we're pointing at.
3345          */
3346         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3347
3348         if (level > 0) {
3349                 /* It's a nonleaf. make a hole in the keys and ptrs */
3350                 union xfs_btree_key     *kp;
3351                 union xfs_btree_ptr     *pp;
3352
3353                 kp = xfs_btree_key_addr(cur, ptr, block);
3354                 pp = xfs_btree_ptr_addr(cur, ptr, block);
3355
3356 #ifdef DEBUG
3357                 for (i = numrecs - ptr; i >= 0; i--) {
3358                         error = xfs_btree_check_ptr(cur, pp, i, level);
3359                         if (error)
3360                                 return error;
3361                 }
3362 #endif
3363
3364                 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3365                 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3366
3367 #ifdef DEBUG
3368                 error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3369                 if (error)
3370                         goto error0;
3371 #endif
3372
3373                 /* Now put the new data in, bump numrecs and log it. */
3374                 xfs_btree_copy_keys(cur, kp, key, 1);
3375                 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3376                 numrecs++;
3377                 xfs_btree_set_numrecs(block, numrecs);
3378                 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3379                 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3380 #ifdef DEBUG
3381                 if (ptr < numrecs) {
3382                         ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3383                                 xfs_btree_key_addr(cur, ptr + 1, block)));
3384                 }
3385 #endif
3386         } else {
3387                 /* It's a leaf. make a hole in the records */
3388                 union xfs_btree_rec             *rp;
3389
3390                 rp = xfs_btree_rec_addr(cur, ptr, block);
3391
3392                 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3393
3394                 /* Now put the new data in, bump numrecs and log it. */
3395                 xfs_btree_copy_recs(cur, rp, rec, 1);
3396                 xfs_btree_set_numrecs(block, ++numrecs);
3397                 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3398 #ifdef DEBUG
3399                 if (ptr < numrecs) {
3400                         ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3401                                 xfs_btree_rec_addr(cur, ptr + 1, block)));
3402                 }
3403 #endif
3404         }
3405
3406         /* Log the new number of records in the btree header. */
3407         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3408
3409         /*
3410          * If we just inserted into a new tree block, we have to
3411          * recalculate nkey here because nkey is out of date.
3412          *
3413          * Otherwise we're just updating an existing block (having shoved
3414          * some records into the new tree block), so use the regular key
3415          * update mechanism.
3416          */
3417         if (bp && bp->b_bn != old_bn) {
3418                 xfs_btree_get_keys(cur, block, lkey);
3419         } else if (xfs_btree_needs_key_update(cur, optr)) {
3420                 error = xfs_btree_update_keys(cur, level);
3421                 if (error)
3422                         goto error0;
3423         }
3424
3425         /*
3426          * If we are tracking the last record in the tree and
3427          * we are at the far right edge of the tree, update it.
3428          */
3429         if (xfs_btree_is_lastrec(cur, block, level)) {
3430                 cur->bc_ops->update_lastrec(cur, block, rec,
3431                                             ptr, LASTREC_INSREC);
3432         }
3433
3434         /*
3435          * Return the new block number, if any.
3436          * If there is one, give back a record value and a cursor too.
3437          */
3438         *ptrp = nptr;
3439         if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3440                 xfs_btree_copy_keys(cur, key, lkey, 1);
3441                 *curp = ncur;
3442         }
3443
3444         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3445         *stat = 1;
3446         return 0;
3447
3448 error0:
3449         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3450         return error;
3451 }
3452
3453 /*
3454  * Insert the record at the point referenced by cur.
3455  *
3456  * A multi-level split of the tree on insert will invalidate the original
3457  * cursor.  All callers of this function should assume that the cursor is
3458  * no longer valid and revalidate it.
3459  */
3460 int
3461 xfs_btree_insert(
3462         struct xfs_btree_cur    *cur,
3463         int                     *stat)
3464 {
3465         int                     error;  /* error return value */
3466         int                     i;      /* result value, 0 for failure */
3467         int                     level;  /* current level number in btree */
3468         union xfs_btree_ptr     nptr;   /* new block number (split result) */
3469         struct xfs_btree_cur    *ncur;  /* new cursor (split result) */
3470         struct xfs_btree_cur    *pcur;  /* previous level's cursor */
3471         union xfs_btree_key     bkey;   /* key of block to insert */
3472         union xfs_btree_key     *key;
3473         union xfs_btree_rec     rec;    /* record to insert */
3474
3475         level = 0;
3476         ncur = NULL;
3477         pcur = cur;
3478         key = &bkey;
3479
3480         xfs_btree_set_ptr_null(cur, &nptr);
3481
3482         /* Make a key out of the record data to be inserted, and save it. */
3483         cur->bc_ops->init_rec_from_cur(cur, &rec);
3484         cur->bc_ops->init_key_from_rec(key, &rec);
3485
3486         /*
3487          * Loop going up the tree, starting at the leaf level.
3488          * Stop when we don't get a split block, that must mean that
3489          * the insert is finished with this level.
3490          */
3491         do {
3492                 /*
3493                  * Insert nrec/nptr into this level of the tree.
3494                  * Note if we fail, nptr will be null.
3495                  */
3496                 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3497                                 &ncur, &i);
3498                 if (error) {
3499                         if (pcur != cur)
3500                                 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3501                         goto error0;
3502                 }
3503
3504                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3505                 level++;
3506
3507                 /*
3508                  * See if the cursor we just used is trash.
3509                  * Can't trash the caller's cursor, but otherwise we should
3510                  * if ncur is a new cursor or we're about to be done.
3511                  */
3512                 if (pcur != cur &&
3513                     (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3514                         /* Save the state from the cursor before we trash it */
3515                         if (cur->bc_ops->update_cursor)
3516                                 cur->bc_ops->update_cursor(pcur, cur);
3517                         cur->bc_nlevels = pcur->bc_nlevels;
3518                         xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3519                 }
3520                 /* If we got a new cursor, switch to it. */
3521                 if (ncur) {
3522                         pcur = ncur;
3523                         ncur = NULL;
3524                 }
3525         } while (!xfs_btree_ptr_is_null(cur, &nptr));
3526
3527         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3528         *stat = i;
3529         return 0;
3530 error0:
3531         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3532         return error;
3533 }
3534
3535 /*
3536  * Try to merge a non-leaf block back into the inode root.
3537  *
3538  * Note: the killroot names comes from the fact that we're effectively
3539  * killing the old root block.  But because we can't just delete the
3540  * inode we have to copy the single block it was pointing to into the
3541  * inode.
3542  */
3543 STATIC int
3544 xfs_btree_kill_iroot(
3545         struct xfs_btree_cur    *cur)
3546 {
3547         int                     whichfork = cur->bc_private.b.whichfork;
3548         struct xfs_inode        *ip = cur->bc_private.b.ip;
3549         struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, whichfork);
3550         struct xfs_btree_block  *block;
3551         struct xfs_btree_block  *cblock;
3552         union xfs_btree_key     *kp;
3553         union xfs_btree_key     *ckp;
3554         union xfs_btree_ptr     *pp;
3555         union xfs_btree_ptr     *cpp;
3556         struct xfs_buf          *cbp;
3557         int                     level;
3558         int                     index;
3559         int                     numrecs;
3560         int                     error;
3561 #ifdef DEBUG
3562         union xfs_btree_ptr     ptr;
3563         int                     i;
3564 #endif
3565
3566         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3567
3568         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3569         ASSERT(cur->bc_nlevels > 1);
3570
3571         /*
3572          * Don't deal with the root block needs to be a leaf case.
3573          * We're just going to turn the thing back into extents anyway.
3574          */
3575         level = cur->bc_nlevels - 1;
3576         if (level == 1)
3577                 goto out0;
3578
3579         /*
3580          * Give up if the root has multiple children.
3581          */
3582         block = xfs_btree_get_iroot(cur);
3583         if (xfs_btree_get_numrecs(block) != 1)
3584                 goto out0;
3585
3586         cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3587         numrecs = xfs_btree_get_numrecs(cblock);
3588
3589         /*
3590          * Only do this if the next level will fit.
3591          * Then the data must be copied up to the inode,
3592          * instead of freeing the root you free the next level.
3593          */
3594         if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3595                 goto out0;
3596
3597         XFS_BTREE_STATS_INC(cur, killroot);
3598
3599 #ifdef DEBUG
3600         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3601         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3602         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3603         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3604 #endif
3605
3606         index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3607         if (index) {
3608                 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3609                                   cur->bc_private.b.whichfork);
3610                 block = ifp->if_broot;
3611         }
3612
3613         be16_add_cpu(&block->bb_numrecs, index);
3614         ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3615
3616         kp = xfs_btree_key_addr(cur, 1, block);
3617         ckp = xfs_btree_key_addr(cur, 1, cblock);
3618         xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3619
3620         pp = xfs_btree_ptr_addr(cur, 1, block);
3621         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3622 #ifdef DEBUG
3623         for (i = 0; i < numrecs; i++) {
3624                 error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3625                 if (error) {
3626                         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3627                         return error;
3628                 }
3629         }
3630 #endif
3631         xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3632
3633         error = xfs_btree_free_block(cur, cbp);
3634         if (error) {
3635                 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3636                 return error;
3637         }
3638
3639         cur->bc_bufs[level - 1] = NULL;
3640         be16_add_cpu(&block->bb_level, -1);
3641         xfs_trans_log_inode(cur->bc_tp, ip,
3642                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3643         cur->bc_nlevels--;
3644 out0:
3645         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3646         return 0;
3647 }
3648
3649 /*
3650  * Kill the current root node, and replace it with it's only child node.
3651  */
3652 STATIC int
3653 xfs_btree_kill_root(
3654         struct xfs_btree_cur    *cur,
3655         struct xfs_buf          *bp,
3656         int                     level,
3657         union xfs_btree_ptr     *newroot)
3658 {
3659         int                     error;
3660
3661         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3662         XFS_BTREE_STATS_INC(cur, killroot);
3663
3664         /*
3665          * Update the root pointer, decreasing the level by 1 and then
3666          * free the old root.
3667          */
3668         cur->bc_ops->set_root(cur, newroot, -1);
3669
3670         error = xfs_btree_free_block(cur, bp);
3671         if (error) {
3672                 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3673                 return error;
3674         }
3675
3676         cur->bc_bufs[level] = NULL;
3677         cur->bc_ra[level] = 0;
3678         cur->bc_nlevels--;
3679
3680         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3681         return 0;
3682 }
3683
3684 STATIC int
3685 xfs_btree_dec_cursor(
3686         struct xfs_btree_cur    *cur,
3687         int                     level,
3688         int                     *stat)
3689 {
3690         int                     error;
3691         int                     i;
3692
3693         if (level > 0) {
3694                 error = xfs_btree_decrement(cur, level, &i);
3695                 if (error)
3696                         return error;
3697         }
3698
3699         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3700         *stat = 1;
3701         return 0;
3702 }
3703
3704 /*
3705  * Single level of the btree record deletion routine.
3706  * Delete record pointed to by cur/level.
3707  * Remove the record from its block then rebalance the tree.
3708  * Return 0 for error, 1 for done, 2 to go on to the next level.
3709  */
3710 STATIC int                                      /* error */
3711 xfs_btree_delrec(
3712         struct xfs_btree_cur    *cur,           /* btree cursor */
3713         int                     level,          /* level removing record from */
3714         int                     *stat)          /* fail/done/go-on */
3715 {
3716         struct xfs_btree_block  *block;         /* btree block */
3717         union xfs_btree_ptr     cptr;           /* current block ptr */
3718         struct xfs_buf          *bp;            /* buffer for block */
3719         int                     error;          /* error return value */
3720         int                     i;              /* loop counter */
3721         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
3722         struct xfs_buf          *lbp;           /* left buffer pointer */
3723         struct xfs_btree_block  *left;          /* left btree block */
3724         int                     lrecs = 0;      /* left record count */
3725         int                     ptr;            /* key/record index */
3726         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
3727         struct xfs_buf          *rbp;           /* right buffer pointer */
3728         struct xfs_btree_block  *right;         /* right btree block */
3729         struct xfs_btree_block  *rrblock;       /* right-right btree block */
3730         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
3731         int                     rrecs = 0;      /* right record count */
3732         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
3733         int                     numrecs;        /* temporary numrec count */
3734
3735         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3736         XFS_BTREE_TRACE_ARGI(cur, level);
3737
3738         tcur = NULL;
3739
3740         /* Get the index of the entry being deleted, check for nothing there. */
3741         ptr = cur->bc_ptrs[level];
3742         if (ptr == 0) {
3743                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3744                 *stat = 0;
3745                 return 0;
3746         }
3747
3748         /* Get the buffer & block containing the record or key/ptr. */
3749         block = xfs_btree_get_block(cur, level, &bp);
3750         numrecs = xfs_btree_get_numrecs(block);
3751
3752 #ifdef DEBUG
3753         error = xfs_btree_check_block(cur, block, level, bp);
3754         if (error)
3755                 goto error0;
3756 #endif
3757
3758         /* Fail if we're off the end of the block. */
3759         if (ptr > numrecs) {
3760                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3761                 *stat = 0;
3762                 return 0;
3763         }
3764
3765         XFS_BTREE_STATS_INC(cur, delrec);
3766         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3767
3768         /* Excise the entries being deleted. */
3769         if (level > 0) {
3770                 /* It's a nonleaf. operate on keys and ptrs */
3771                 union xfs_btree_key     *lkp;
3772                 union xfs_btree_ptr     *lpp;
3773
3774                 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3775                 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3776
3777 #ifdef DEBUG
3778                 for (i = 0; i < numrecs - ptr; i++) {
3779                         error = xfs_btree_check_ptr(cur, lpp, i, level);
3780                         if (error)
3781                                 goto error0;
3782                 }
3783 #endif
3784
3785                 if (ptr < numrecs) {
3786                         xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3787                         xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3788                         xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3789                         xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3790                 }
3791         } else {
3792                 /* It's a leaf. operate on records */
3793                 if (ptr < numrecs) {
3794                         xfs_btree_shift_recs(cur,
3795                                 xfs_btree_rec_addr(cur, ptr + 1, block),
3796                                 -1, numrecs - ptr);
3797                         xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3798                 }
3799         }
3800
3801         /*
3802          * Decrement and log the number of entries in the block.
3803          */
3804         xfs_btree_set_numrecs(block, --numrecs);
3805         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3806
3807         /*
3808          * If we are tracking the last record in the tree and
3809          * we are at the far right edge of the tree, update it.
3810          */
3811         if (xfs_btree_is_lastrec(cur, block, level)) {
3812                 cur->bc_ops->update_lastrec(cur, block, NULL,
3813                                             ptr, LASTREC_DELREC);
3814         }
3815
3816         /*
3817          * We're at the root level.  First, shrink the root block in-memory.
3818          * Try to get rid of the next level down.  If we can't then there's
3819          * nothing left to do.
3820          */
3821         if (level == cur->bc_nlevels - 1) {
3822                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3823                         xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3824                                           cur->bc_private.b.whichfork);
3825
3826                         error = xfs_btree_kill_iroot(cur);
3827                         if (error)
3828                                 goto error0;
3829
3830                         error = xfs_btree_dec_cursor(cur, level, stat);
3831                         if (error)
3832                                 goto error0;
3833                         *stat = 1;
3834                         return 0;
3835                 }
3836
3837                 /*
3838                  * If this is the root level, and there's only one entry left,
3839                  * and it's NOT the leaf level, then we can get rid of this
3840                  * level.
3841                  */
3842                 if (numrecs == 1 && level > 0) {
3843                         union xfs_btree_ptr     *pp;
3844                         /*
3845                          * pp is still set to the first pointer in the block.
3846                          * Make it the new root of the btree.
3847                          */
3848                         pp = xfs_btree_ptr_addr(cur, 1, block);
3849                         error = xfs_btree_kill_root(cur, bp, level, pp);
3850                         if (error)
3851                                 goto error0;
3852                 } else if (level > 0) {
3853                         error = xfs_btree_dec_cursor(cur, level, stat);
3854                         if (error)
3855                                 goto error0;
3856                 }
3857                 *stat = 1;
3858                 return 0;
3859         }
3860
3861         /*
3862          * If we deleted the leftmost entry in the block, update the
3863          * key values above us in the tree.
3864          */
3865         if (xfs_btree_needs_key_update(cur, ptr)) {
3866                 error = xfs_btree_update_keys(cur, level);
3867                 if (error)
3868                         goto error0;
3869         }
3870
3871         /*
3872          * If the number of records remaining in the block is at least
3873          * the minimum, we're done.
3874          */
3875         if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3876                 error = xfs_btree_dec_cursor(cur, level, stat);
3877                 if (error)
3878                         goto error0;
3879                 return 0;
3880         }
3881
3882         /*
3883          * Otherwise, we have to move some records around to keep the
3884          * tree balanced.  Look at the left and right sibling blocks to
3885          * see if we can re-balance by moving only one record.
3886          */
3887         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3888         xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3889
3890         if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3891                 /*
3892                  * One child of root, need to get a chance to copy its contents
3893                  * into the root and delete it. Can't go up to next level,
3894                  * there's nothing to delete there.
3895                  */
3896                 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3897                     xfs_btree_ptr_is_null(cur, &lptr) &&
3898                     level == cur->bc_nlevels - 2) {
3899                         error = xfs_btree_kill_iroot(cur);
3900                         if (!error)
3901                                 error = xfs_btree_dec_cursor(cur, level, stat);
3902                         if (error)
3903                                 goto error0;
3904                         return 0;
3905                 }
3906         }
3907
3908         ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3909                !xfs_btree_ptr_is_null(cur, &lptr));
3910
3911         /*
3912          * Duplicate the cursor so our btree manipulations here won't
3913          * disrupt the next level up.
3914          */
3915         error = xfs_btree_dup_cursor(cur, &tcur);
3916         if (error)
3917                 goto error0;
3918
3919         /*
3920          * If there's a right sibling, see if it's ok to shift an entry
3921          * out of it.
3922          */
3923         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3924                 /*
3925                  * Move the temp cursor to the last entry in the next block.
3926                  * Actually any entry but the first would suffice.
3927                  */
3928                 i = xfs_btree_lastrec(tcur, level);
3929                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3930
3931                 error = xfs_btree_increment(tcur, level, &i);
3932                 if (error)
3933                         goto error0;
3934                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3935
3936                 i = xfs_btree_lastrec(tcur, level);
3937                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3938
3939                 /* Grab a pointer to the block. */
3940                 right = xfs_btree_get_block(tcur, level, &rbp);
3941 #ifdef DEBUG
3942                 error = xfs_btree_check_block(tcur, right, level, rbp);
3943                 if (error)
3944                         goto error0;
3945 #endif
3946                 /* Grab the current block number, for future use. */
3947                 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3948
3949                 /*
3950                  * If right block is full enough so that removing one entry
3951                  * won't make it too empty, and left-shifting an entry out
3952                  * of right to us works, we're done.
3953                  */
3954                 if (xfs_btree_get_numrecs(right) - 1 >=
3955                     cur->bc_ops->get_minrecs(tcur, level)) {
3956                         error = xfs_btree_lshift(tcur, level, &i);
3957                         if (error)
3958                                 goto error0;
3959                         if (i) {
3960                                 ASSERT(xfs_btree_get_numrecs(block) >=
3961                                        cur->bc_ops->get_minrecs(tcur, level));
3962
3963                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3964                                 tcur = NULL;
3965
3966                                 error = xfs_btree_dec_cursor(cur, level, stat);
3967                                 if (error)
3968                                         goto error0;
3969                                 return 0;
3970                         }
3971                 }
3972
3973                 /*
3974                  * Otherwise, grab the number of records in right for
3975                  * future reference, and fix up the temp cursor to point
3976                  * to our block again (last record).
3977                  */
3978                 rrecs = xfs_btree_get_numrecs(right);
3979                 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3980                         i = xfs_btree_firstrec(tcur, level);
3981                         XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3982
3983                         error = xfs_btree_decrement(tcur, level, &i);
3984                         if (error)
3985                                 goto error0;
3986                         XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3987                 }
3988         }
3989
3990         /*
3991          * If there's a left sibling, see if it's ok to shift an entry
3992          * out of it.
3993          */
3994         if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3995                 /*
3996                  * Move the temp cursor to the first entry in the
3997                  * previous block.
3998                  */
3999                 i = xfs_btree_firstrec(tcur, level);
4000                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4001
4002                 error = xfs_btree_decrement(tcur, level, &i);
4003                 if (error)
4004                         goto error0;
4005                 i = xfs_btree_firstrec(tcur, level);
4006                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4007
4008                 /* Grab a pointer to the block. */
4009                 left = xfs_btree_get_block(tcur, level, &lbp);
4010 #ifdef DEBUG
4011                 error = xfs_btree_check_block(cur, left, level, lbp);
4012                 if (error)
4013                         goto error0;
4014 #endif
4015                 /* Grab the current block number, for future use. */
4016                 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4017
4018                 /*
4019                  * If left block is full enough so that removing one entry
4020                  * won't make it too empty, and right-shifting an entry out
4021                  * of left to us works, we're done.
4022                  */
4023                 if (xfs_btree_get_numrecs(left) - 1 >=
4024                     cur->bc_ops->get_minrecs(tcur, level)) {
4025                         error = xfs_btree_rshift(tcur, level, &i);
4026                         if (error)
4027                                 goto error0;
4028                         if (i) {
4029                                 ASSERT(xfs_btree_get_numrecs(block) >=
4030                                        cur->bc_ops->get_minrecs(tcur, level));
4031                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4032                                 tcur = NULL;
4033                                 if (level == 0)
4034                                         cur->bc_ptrs[0]++;
4035                                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4036                                 *stat = 1;
4037                                 return 0;
4038                         }
4039                 }
4040
4041                 /*
4042                  * Otherwise, grab the number of records in right for
4043                  * future reference.
4044                  */
4045                 lrecs = xfs_btree_get_numrecs(left);
4046         }
4047
4048         /* Delete the temp cursor, we're done with it. */
4049         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4050         tcur = NULL;
4051
4052         /* If here, we need to do a join to keep the tree balanced. */
4053         ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4054
4055         if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4056             lrecs + xfs_btree_get_numrecs(block) <=
4057                         cur->bc_ops->get_maxrecs(cur, level)) {
4058                 /*
4059                  * Set "right" to be the starting block,
4060                  * "left" to be the left neighbor.
4061                  */
4062                 rptr = cptr;
4063                 right = block;
4064                 rbp = bp;
4065                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4066                 if (error)
4067                         goto error0;
4068
4069         /*
4070          * If that won't work, see if we can join with the right neighbor block.
4071          */
4072         } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4073                    rrecs + xfs_btree_get_numrecs(block) <=
4074                         cur->bc_ops->get_maxrecs(cur, level)) {
4075                 /*
4076                  * Set "left" to be the starting block,
4077                  * "right" to be the right neighbor.
4078                  */
4079                 lptr = cptr;
4080                 left = block;
4081                 lbp = bp;
4082                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4083                 if (error)
4084                         goto error0;
4085
4086         /*
4087          * Otherwise, we can't fix the imbalance.
4088          * Just return.  This is probably a logic error, but it's not fatal.
4089          */
4090         } else {
4091                 error = xfs_btree_dec_cursor(cur, level, stat);
4092                 if (error)
4093                         goto error0;
4094                 return 0;
4095         }
4096
4097         rrecs = xfs_btree_get_numrecs(right);
4098         lrecs = xfs_btree_get_numrecs(left);
4099
4100         /*
4101          * We're now going to join "left" and "right" by moving all the stuff
4102          * in "right" to "left" and deleting "right".
4103          */
4104         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4105         if (level > 0) {
4106                 /* It's a non-leaf.  Move keys and pointers. */
4107                 union xfs_btree_key     *lkp;   /* left btree key */
4108                 union xfs_btree_ptr     *lpp;   /* left address pointer */
4109                 union xfs_btree_key     *rkp;   /* right btree key */
4110                 union xfs_btree_ptr     *rpp;   /* right address pointer */
4111
4112                 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4113                 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4114                 rkp = xfs_btree_key_addr(cur, 1, right);
4115                 rpp = xfs_btree_ptr_addr(cur, 1, right);
4116 #ifdef DEBUG
4117                 for (i = 1; i < rrecs; i++) {
4118                         error = xfs_btree_check_ptr(cur, rpp, i, level);
4119                         if (error)
4120                                 goto error0;
4121                 }
4122 #endif
4123                 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4124                 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4125
4126                 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4127                 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4128         } else {
4129                 /* It's a leaf.  Move records.  */
4130                 union xfs_btree_rec     *lrp;   /* left record pointer */
4131                 union xfs_btree_rec     *rrp;   /* right record pointer */
4132
4133                 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4134                 rrp = xfs_btree_rec_addr(cur, 1, right);
4135
4136                 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4137                 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4138         }
4139
4140         XFS_BTREE_STATS_INC(cur, join);
4141
4142         /*
4143          * Fix up the number of records and right block pointer in the
4144          * surviving block, and log it.
4145          */
4146         xfs_btree_set_numrecs(left, lrecs + rrecs);
4147         xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4148         xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4149         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4150
4151         /* If there is a right sibling, point it to the remaining block. */
4152         xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4153         if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4154                 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4155                 if (error)
4156                         goto error0;
4157                 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4158                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4159         }
4160
4161         /* Free the deleted block. */
4162         error = xfs_btree_free_block(cur, rbp);
4163         if (error)
4164                 goto error0;
4165
4166         /*
4167          * If we joined with the left neighbor, set the buffer in the
4168          * cursor to the left block, and fix up the index.
4169          */
4170         if (bp != lbp) {
4171                 cur->bc_bufs[level] = lbp;
4172                 cur->bc_ptrs[level] += lrecs;
4173                 cur->bc_ra[level] = 0;
4174         }
4175         /*
4176          * If we joined with the right neighbor and there's a level above
4177          * us, increment the cursor at that level.
4178          */
4179         else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4180                    (level + 1 < cur->bc_nlevels)) {
4181                 error = xfs_btree_increment(cur, level + 1, &i);
4182                 if (error)
4183                         goto error0;
4184         }
4185
4186         /*
4187          * Readjust the ptr at this level if it's not a leaf, since it's
4188          * still pointing at the deletion point, which makes the cursor
4189          * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4190          * We can't use decrement because it would change the next level up.
4191          */
4192         if (level > 0)
4193                 cur->bc_ptrs[level]--;
4194
4195         /*
4196          * We combined blocks, so we have to update the parent keys if the
4197          * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4198          * points to the old block so that the caller knows which record to
4199          * delete.  Therefore, the caller must be savvy enough to call updkeys
4200          * for us if we return stat == 2.  The other exit points from this
4201          * function don't require deletions further up the tree, so they can
4202          * call updkeys directly.
4203          */
4204
4205         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4206         /* Return value means the next level up has something to do. */
4207         *stat = 2;
4208         return 0;
4209
4210 error0:
4211         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4212         if (tcur)
4213                 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4214         return error;
4215 }
4216
4217 /*
4218  * Delete the record pointed to by cur.
4219  * The cursor refers to the place where the record was (could be inserted)
4220  * when the operation returns.
4221  */
4222 int                                     /* error */
4223 xfs_btree_delete(
4224         struct xfs_btree_cur    *cur,
4225         int                     *stat)  /* success/failure */
4226 {
4227         int                     error;  /* error return value */
4228         int                     level;
4229         int                     i;
4230         bool                    joined = false;
4231
4232         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4233
4234         /*
4235          * Go up the tree, starting at leaf level.
4236          *
4237          * If 2 is returned then a join was done; go to the next level.
4238          * Otherwise we are done.
4239          */
4240         for (level = 0, i = 2; i == 2; level++) {
4241                 error = xfs_btree_delrec(cur, level, &i);
4242                 if (error)
4243                         goto error0;
4244                 if (i == 2)
4245                         joined = true;
4246         }
4247
4248         /*
4249          * If we combined blocks as part of deleting the record, delrec won't
4250          * have updated the parent high keys so we have to do that here.
4251          */
4252         if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4253                 error = xfs_btree_updkeys_force(cur, 0);
4254                 if (error)
4255                         goto error0;
4256         }
4257
4258         if (i == 0) {
4259                 for (level = 1; level < cur->bc_nlevels; level++) {
4260                         if (cur->bc_ptrs[level] == 0) {
4261                                 error = xfs_btree_decrement(cur, level, &i);
4262                                 if (error)
4263                                         goto error0;
4264                                 break;
4265                         }
4266                 }
4267         }
4268
4269         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4270         *stat = i;
4271         return 0;
4272 error0:
4273         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4274         return error;
4275 }
4276
4277 /*
4278  * Get the data from the pointed-to record.
4279  */
4280 int                                     /* error */
4281 xfs_btree_get_rec(
4282         struct xfs_btree_cur    *cur,   /* btree cursor */
4283         union xfs_btree_rec     **recp, /* output: btree record */
4284         int                     *stat)  /* output: success/failure */
4285 {
4286         struct xfs_btree_block  *block; /* btree block */
4287         struct xfs_buf          *bp;    /* buffer pointer */
4288         int                     ptr;    /* record number */
4289 #ifdef DEBUG
4290         int                     error;  /* error return value */
4291 #endif
4292
4293         ptr = cur->bc_ptrs[0];
4294         block = xfs_btree_get_block(cur, 0, &bp);
4295
4296 #ifdef DEBUG
4297         error = xfs_btree_check_block(cur, block, 0, bp);
4298         if (error)
4299                 return error;
4300 #endif
4301
4302         /*
4303          * Off the right end or left end, return failure.
4304          */
4305         if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4306                 *stat = 0;
4307                 return 0;
4308         }
4309
4310         /*
4311          * Point to the record and extract its data.
4312          */
4313         *recp = xfs_btree_rec_addr(cur, ptr, block);
4314         *stat = 1;
4315         return 0;
4316 }
4317
4318 /* Visit a block in a btree. */
4319 STATIC int
4320 xfs_btree_visit_block(
4321         struct xfs_btree_cur            *cur,
4322         int                             level,
4323         xfs_btree_visit_blocks_fn       fn,
4324         void                            *data)
4325 {
4326         struct xfs_btree_block          *block;
4327         struct xfs_buf                  *bp;
4328         union xfs_btree_ptr             rptr;
4329         int                             error;
4330
4331         /* do right sibling readahead */
4332         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4333         block = xfs_btree_get_block(cur, level, &bp);
4334
4335         /* process the block */
4336         error = fn(cur, level, data);
4337         if (error)
4338                 return error;
4339
4340         /* now read rh sibling block for next iteration */
4341         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4342         if (xfs_btree_ptr_is_null(cur, &rptr))
4343                 return -ENOENT;
4344
4345         return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4346 }
4347
4348
4349 /* Visit every block in a btree. */
4350 int
4351 xfs_btree_visit_blocks(
4352         struct xfs_btree_cur            *cur,
4353         xfs_btree_visit_blocks_fn       fn,
4354         void                            *data)
4355 {
4356         union xfs_btree_ptr             lptr;
4357         int                             level;
4358         struct xfs_btree_block          *block = NULL;
4359         int                             error = 0;
4360
4361         cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4362
4363         /* for each level */
4364         for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4365                 /* grab the left hand block */
4366                 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4367                 if (error)
4368                         return error;
4369
4370                 /* readahead the left most block for the next level down */
4371                 if (level > 0) {
4372                         union xfs_btree_ptr     *ptr;
4373
4374                         ptr = xfs_btree_ptr_addr(cur, 1, block);
4375                         xfs_btree_readahead_ptr(cur, ptr, 1);
4376
4377                         /* save for the next iteration of the loop */
4378                         lptr = *ptr;
4379                 }
4380
4381                 /* for each buffer in the level */
4382                 do {
4383                         error = xfs_btree_visit_block(cur, level, fn, data);
4384                 } while (!error);
4385
4386                 if (error != -ENOENT)
4387                         return error;
4388         }
4389
4390         return 0;
4391 }
4392
4393 /*
4394  * Change the owner of a btree.
4395  *
4396  * The mechanism we use here is ordered buffer logging. Because we don't know
4397  * how many buffers were are going to need to modify, we don't really want to
4398  * have to make transaction reservations for the worst case of every buffer in a
4399  * full size btree as that may be more space that we can fit in the log....
4400  *
4401  * We do the btree walk in the most optimal manner possible - we have sibling
4402  * pointers so we can just walk all the blocks on each level from left to right
4403  * in a single pass, and then move to the next level and do the same. We can
4404  * also do readahead on the sibling pointers to get IO moving more quickly,
4405  * though for slow disks this is unlikely to make much difference to performance
4406  * as the amount of CPU work we have to do before moving to the next block is
4407  * relatively small.
4408  *
4409  * For each btree block that we load, modify the owner appropriately, set the
4410  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4411  * we mark the region we change dirty so that if the buffer is relogged in
4412  * a subsequent transaction the changes we make here as an ordered buffer are
4413  * correctly relogged in that transaction.  If we are in recovery context, then
4414  * just queue the modified buffer as delayed write buffer so the transaction
4415  * recovery completion writes the changes to disk.
4416  */
4417 struct xfs_btree_block_change_owner_info {
4418         __uint64_t              new_owner;
4419         struct list_head        *buffer_list;
4420 };
4421
4422 static int
4423 xfs_btree_block_change_owner(
4424         struct xfs_btree_cur    *cur,
4425         int                     level,
4426         void                    *data)
4427 {
4428         struct xfs_btree_block_change_owner_info        *bbcoi = data;
4429         struct xfs_btree_block  *block;
4430         struct xfs_buf          *bp;
4431
4432         /* modify the owner */
4433         block = xfs_btree_get_block(cur, level, &bp);
4434         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4435                 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4436         else
4437                 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4438
4439         /*
4440          * If the block is a root block hosted in an inode, we might not have a
4441          * buffer pointer here and we shouldn't attempt to log the change as the
4442          * information is already held in the inode and discarded when the root
4443          * block is formatted into the on-disk inode fork. We still change it,
4444          * though, so everything is consistent in memory.
4445          */
4446         if (bp) {
4447                 if (cur->bc_tp) {
4448                         xfs_trans_ordered_buf(cur->bc_tp, bp);
4449                         xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4450                 } else {
4451                         xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4452                 }
4453         } else {
4454                 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4455                 ASSERT(level == cur->bc_nlevels - 1);
4456         }
4457
4458         return 0;
4459 }
4460
4461 int
4462 xfs_btree_change_owner(
4463         struct xfs_btree_cur    *cur,
4464         __uint64_t              new_owner,
4465         struct list_head        *buffer_list)
4466 {
4467         struct xfs_btree_block_change_owner_info        bbcoi;
4468
4469         bbcoi.new_owner = new_owner;
4470         bbcoi.buffer_list = buffer_list;
4471
4472         return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4473                         &bbcoi);
4474 }
4475
4476 /**
4477  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4478  *                                    btree block
4479  *
4480  * @bp: buffer containing the btree block
4481  * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4482  * @pag_max_level: pointer to the per-ag max level field
4483  */
4484 bool
4485 xfs_btree_sblock_v5hdr_verify(
4486         struct xfs_buf          *bp)
4487 {
4488         struct xfs_mount        *mp = bp->b_target->bt_mount;
4489         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4490         struct xfs_perag        *pag = bp->b_pag;
4491
4492         if (!xfs_sb_version_hascrc(&mp->m_sb))
4493                 return false;
4494         if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4495                 return false;
4496         if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4497                 return false;
4498         if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4499                 return false;
4500         return true;
4501 }
4502
4503 /**
4504  * xfs_btree_sblock_verify() -- verify a short-format btree block
4505  *
4506  * @bp: buffer containing the btree block
4507  * @max_recs: maximum records allowed in this btree node
4508  */
4509 bool
4510 xfs_btree_sblock_verify(
4511         struct xfs_buf          *bp,
4512         unsigned int            max_recs)
4513 {
4514         struct xfs_mount        *mp = bp->b_target->bt_mount;
4515         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4516
4517         /* numrecs verification */
4518         if (be16_to_cpu(block->bb_numrecs) > max_recs)
4519                 return false;
4520
4521         /* sibling pointer verification */
4522         if (!block->bb_u.s.bb_leftsib ||
4523             (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
4524              block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
4525                 return false;
4526         if (!block->bb_u.s.bb_rightsib ||
4527             (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
4528              block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
4529                 return false;
4530
4531         return true;
4532 }
4533
4534 /*
4535  * Calculate the number of btree levels needed to store a given number of
4536  * records in a short-format btree.
4537  */
4538 uint
4539 xfs_btree_compute_maxlevels(
4540         struct xfs_mount        *mp,
4541         uint                    *limits,
4542         unsigned long           len)
4543 {
4544         uint                    level;
4545         unsigned long           maxblocks;
4546
4547         maxblocks = (len + limits[0] - 1) / limits[0];
4548         for (level = 1; maxblocks > 1; level++)
4549                 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4550         return level;
4551 }
4552
4553 /*
4554  * Query a regular btree for all records overlapping a given interval.
4555  * Start with a LE lookup of the key of low_rec and return all records
4556  * until we find a record with a key greater than the key of high_rec.
4557  */
4558 STATIC int
4559 xfs_btree_simple_query_range(
4560         struct xfs_btree_cur            *cur,
4561         union xfs_btree_key             *low_key,
4562         union xfs_btree_key             *high_key,
4563         xfs_btree_query_range_fn        fn,
4564         void                            *priv)
4565 {
4566         union xfs_btree_rec             *recp;
4567         union xfs_btree_key             rec_key;
4568         __int64_t                       diff;
4569         int                             stat;
4570         bool                            firstrec = true;
4571         int                             error;
4572
4573         ASSERT(cur->bc_ops->init_high_key_from_rec);
4574         ASSERT(cur->bc_ops->diff_two_keys);
4575
4576         /*
4577          * Find the leftmost record.  The btree cursor must be set
4578          * to the low record used to generate low_key.
4579          */
4580         stat = 0;
4581         error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4582         if (error)
4583                 goto out;
4584
4585         /* Nothing?  See if there's anything to the right. */
4586         if (!stat) {
4587                 error = xfs_btree_increment(cur, 0, &stat);
4588                 if (error)
4589                         goto out;
4590         }
4591
4592         while (stat) {
4593                 /* Find the record. */
4594                 error = xfs_btree_get_rec(cur, &recp, &stat);
4595                 if (error || !stat)
4596                         break;
4597
4598                 /* Skip if high_key(rec) < low_key. */
4599                 if (firstrec) {
4600                         cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4601                         firstrec = false;
4602                         diff = cur->bc_ops->diff_two_keys(cur, low_key,
4603                                         &rec_key);
4604                         if (diff > 0)
4605                                 goto advloop;
4606                 }
4607
4608                 /* Stop if high_key < low_key(rec). */
4609                 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4610                 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4611                 if (diff > 0)
4612                         break;
4613
4614                 /* Callback */
4615                 error = fn(cur, recp, priv);
4616                 if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4617                         break;
4618
4619 advloop:
4620                 /* Move on to the next record. */
4621                 error = xfs_btree_increment(cur, 0, &stat);
4622                 if (error)
4623                         break;
4624         }
4625
4626 out:
4627         return error;
4628 }
4629
4630 /*
4631  * Query an overlapped interval btree for all records overlapping a given
4632  * interval.  This function roughly follows the algorithm given in
4633  * "Interval Trees" of _Introduction to Algorithms_, which is section
4634  * 14.3 in the 2nd and 3rd editions.
4635  *
4636  * First, generate keys for the low and high records passed in.
4637  *
4638  * For any leaf node, generate the high and low keys for the record.
4639  * If the record keys overlap with the query low/high keys, pass the
4640  * record to the function iterator.
4641  *
4642  * For any internal node, compare the low and high keys of each
4643  * pointer against the query low/high keys.  If there's an overlap,
4644  * follow the pointer.
4645  *
4646  * As an optimization, we stop scanning a block when we find a low key
4647  * that is greater than the query's high key.
4648  */
4649 STATIC int
4650 xfs_btree_overlapped_query_range(
4651         struct xfs_btree_cur            *cur,
4652         union xfs_btree_key             *low_key,
4653         union xfs_btree_key             *high_key,
4654         xfs_btree_query_range_fn        fn,
4655         void                            *priv)
4656 {
4657         union xfs_btree_ptr             ptr;
4658         union xfs_btree_ptr             *pp;
4659         union xfs_btree_key             rec_key;
4660         union xfs_btree_key             rec_hkey;
4661         union xfs_btree_key             *lkp;
4662         union xfs_btree_key             *hkp;
4663         union xfs_btree_rec             *recp;
4664         struct xfs_btree_block          *block;
4665         __int64_t                       ldiff;
4666         __int64_t                       hdiff;
4667         int                             level;
4668         struct xfs_buf                  *bp;
4669         int                             i;
4670         int                             error;
4671
4672         /* Load the root of the btree. */
4673         level = cur->bc_nlevels - 1;
4674         cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4675         error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4676         if (error)
4677                 return error;
4678         xfs_btree_get_block(cur, level, &bp);
4679         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4680 #ifdef DEBUG
4681         error = xfs_btree_check_block(cur, block, level, bp);
4682         if (error)
4683                 goto out;
4684 #endif
4685         cur->bc_ptrs[level] = 1;
4686
4687         while (level < cur->bc_nlevels) {
4688                 block = xfs_btree_get_block(cur, level, &bp);
4689
4690                 /* End of node, pop back towards the root. */
4691                 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4692 pop_up:
4693                         if (level < cur->bc_nlevels - 1)
4694                                 cur->bc_ptrs[level + 1]++;
4695                         level++;
4696                         continue;
4697                 }
4698
4699                 if (level == 0) {
4700                         /* Handle a leaf node. */
4701                         recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4702
4703                         cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4704                         ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4705                                         low_key);
4706
4707                         cur->bc_ops->init_key_from_rec(&rec_key, recp);
4708                         hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4709                                         &rec_key);
4710
4711                         /*
4712                          * If (record's high key >= query's low key) and
4713                          *    (query's high key >= record's low key), then
4714                          * this record overlaps the query range; callback.
4715                          */
4716                         if (ldiff >= 0 && hdiff >= 0) {
4717                                 error = fn(cur, recp, priv);
4718                                 if (error < 0 ||
4719                                     error == XFS_BTREE_QUERY_RANGE_ABORT)
4720                                         break;
4721                         } else if (hdiff < 0) {
4722                                 /* Record is larger than high key; pop. */
4723                                 goto pop_up;
4724                         }
4725                         cur->bc_ptrs[level]++;
4726                         continue;
4727                 }
4728
4729                 /* Handle an internal node. */
4730                 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4731                 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4732                 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4733
4734                 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4735                 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4736
4737                 /*
4738                  * If (pointer's high key >= query's low key) and
4739                  *    (query's high key >= pointer's low key), then
4740                  * this record overlaps the query range; follow pointer.
4741                  */
4742                 if (ldiff >= 0 && hdiff >= 0) {
4743                         level--;
4744                         error = xfs_btree_lookup_get_block(cur, level, pp,
4745                                         &block);
4746                         if (error)
4747                                 goto out;
4748                         xfs_btree_get_block(cur, level, &bp);
4749                         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4750 #ifdef DEBUG
4751                         error = xfs_btree_check_block(cur, block, level, bp);
4752                         if (error)
4753                                 goto out;
4754 #endif
4755                         cur->bc_ptrs[level] = 1;
4756                         continue;
4757                 } else if (hdiff < 0) {
4758                         /* The low key is larger than the upper range; pop. */
4759                         goto pop_up;
4760                 }
4761                 cur->bc_ptrs[level]++;
4762         }
4763
4764 out:
4765         /*
4766          * If we don't end this function with the cursor pointing at a record
4767          * block, a subsequent non-error cursor deletion will not release
4768          * node-level buffers, causing a buffer leak.  This is quite possible
4769          * with a zero-results range query, so release the buffers if we
4770          * failed to return any results.
4771          */
4772         if (cur->bc_bufs[0] == NULL) {
4773                 for (i = 0; i < cur->bc_nlevels; i++) {
4774                         if (cur->bc_bufs[i]) {
4775                                 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4776                                 cur->bc_bufs[i] = NULL;
4777                                 cur->bc_ptrs[i] = 0;
4778                                 cur->bc_ra[i] = 0;
4779                         }
4780                 }
4781         }
4782
4783         return error;
4784 }
4785
4786 /*
4787  * Query a btree for all records overlapping a given interval of keys.  The
4788  * supplied function will be called with each record found; return one of the
4789  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4790  * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4791  * negative error code.
4792  */
4793 int
4794 xfs_btree_query_range(
4795         struct xfs_btree_cur            *cur,
4796         union xfs_btree_irec            *low_rec,
4797         union xfs_btree_irec            *high_rec,
4798         xfs_btree_query_range_fn        fn,
4799         void                            *priv)
4800 {
4801         union xfs_btree_rec             rec;
4802         union xfs_btree_key             low_key;
4803         union xfs_btree_key             high_key;
4804
4805         /* Find the keys of both ends of the interval. */
4806         cur->bc_rec = *high_rec;
4807         cur->bc_ops->init_rec_from_cur(cur, &rec);
4808         cur->bc_ops->init_key_from_rec(&high_key, &rec);
4809
4810         cur->bc_rec = *low_rec;
4811         cur->bc_ops->init_rec_from_cur(cur, &rec);
4812         cur->bc_ops->init_key_from_rec(&low_key, &rec);
4813
4814         /* Enforce low key < high key. */
4815         if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4816                 return -EINVAL;
4817
4818         if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4819                 return xfs_btree_simple_query_range(cur, &low_key,
4820                                 &high_key, fn, priv);
4821         return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4822                         fn, priv);
4823 }
4824
4825 /*
4826  * Calculate the number of blocks needed to store a given number of records
4827  * in a short-format (per-AG metadata) btree.
4828  */
4829 xfs_extlen_t
4830 xfs_btree_calc_size(
4831         struct xfs_mount        *mp,
4832         uint                    *limits,
4833         unsigned long long      len)
4834 {
4835         int                     level;
4836         int                     maxrecs;
4837         xfs_extlen_t            rval;
4838
4839         maxrecs = limits[0];
4840         for (level = 0, rval = 0; len > 1; level++) {
4841                 len += maxrecs - 1;
4842                 do_div(len, maxrecs);
4843                 maxrecs = limits[1];
4844                 rval += len;
4845         }
4846         return rval;
4847 }
4848
4849 static int
4850 xfs_btree_count_blocks_helper(
4851         struct xfs_btree_cur    *cur,
4852         int                     level,
4853         void                    *data)
4854 {
4855         xfs_extlen_t            *blocks = data;
4856         (*blocks)++;
4857
4858         return 0;
4859 }
4860
4861 /* Count the blocks in a btree and return the result in *blocks. */
4862 int
4863 xfs_btree_count_blocks(
4864         struct xfs_btree_cur    *cur,
4865         xfs_extlen_t            *blocks)
4866 {
4867         *blocks = 0;
4868         return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4869                         blocks);
4870 }