netfilter: netns: shrink netns_ct struct
[linux-2.6-microblaze.git] / fs / xfs / libxfs / xfs_btree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_inode.h"
16 #include "xfs_trans.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_btree.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 #include "xfs_trace.h"
23 #include "xfs_cksum.h"
24 #include "xfs_alloc.h"
25 #include "xfs_log.h"
26
27 /*
28  * Cursor allocation zone.
29  */
30 kmem_zone_t     *xfs_btree_cur_zone;
31
32 /*
33  * Btree magic numbers.
34  */
35 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
36         { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
37           XFS_FIBT_MAGIC, 0 },
38         { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
39           XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
40           XFS_REFC_CRC_MAGIC }
41 };
42
43 uint32_t
44 xfs_btree_magic(
45         int                     crc,
46         xfs_btnum_t             btnum)
47 {
48         uint32_t                magic = xfs_magics[crc][btnum];
49
50         /* Ensure we asked for crc for crc-only magics. */
51         ASSERT(magic != 0);
52         return magic;
53 }
54
55 /*
56  * Check a long btree block header.  Return the address of the failing check,
57  * or NULL if everything is ok.
58  */
59 xfs_failaddr_t
60 __xfs_btree_check_lblock(
61         struct xfs_btree_cur    *cur,
62         struct xfs_btree_block  *block,
63         int                     level,
64         struct xfs_buf          *bp)
65 {
66         struct xfs_mount        *mp = cur->bc_mp;
67         xfs_btnum_t             btnum = cur->bc_btnum;
68         int                     crc = xfs_sb_version_hascrc(&mp->m_sb);
69
70         if (crc) {
71                 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
72                         return __this_address;
73                 if (block->bb_u.l.bb_blkno !=
74                     cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
75                         return __this_address;
76                 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
77                         return __this_address;
78         }
79
80         if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
81                 return __this_address;
82         if (be16_to_cpu(block->bb_level) != level)
83                 return __this_address;
84         if (be16_to_cpu(block->bb_numrecs) >
85             cur->bc_ops->get_maxrecs(cur, level))
86                 return __this_address;
87         if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
88             !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
89                         level + 1))
90                 return __this_address;
91         if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
92             !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
93                         level + 1))
94                 return __this_address;
95
96         return NULL;
97 }
98
99 /* Check a long btree block header. */
100 static int
101 xfs_btree_check_lblock(
102         struct xfs_btree_cur    *cur,
103         struct xfs_btree_block  *block,
104         int                     level,
105         struct xfs_buf          *bp)
106 {
107         struct xfs_mount        *mp = cur->bc_mp;
108         xfs_failaddr_t          fa;
109
110         fa = __xfs_btree_check_lblock(cur, block, level, bp);
111         if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
112                         XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
113                 if (bp)
114                         trace_xfs_btree_corrupt(bp, _RET_IP_);
115                 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
116                 return -EFSCORRUPTED;
117         }
118         return 0;
119 }
120
121 /*
122  * Check a short btree block header.  Return the address of the failing check,
123  * or NULL if everything is ok.
124  */
125 xfs_failaddr_t
126 __xfs_btree_check_sblock(
127         struct xfs_btree_cur    *cur,
128         struct xfs_btree_block  *block,
129         int                     level,
130         struct xfs_buf          *bp)
131 {
132         struct xfs_mount        *mp = cur->bc_mp;
133         xfs_btnum_t             btnum = cur->bc_btnum;
134         int                     crc = xfs_sb_version_hascrc(&mp->m_sb);
135
136         if (crc) {
137                 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
138                         return __this_address;
139                 if (block->bb_u.s.bb_blkno !=
140                     cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
141                         return __this_address;
142         }
143
144         if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
145                 return __this_address;
146         if (be16_to_cpu(block->bb_level) != level)
147                 return __this_address;
148         if (be16_to_cpu(block->bb_numrecs) >
149             cur->bc_ops->get_maxrecs(cur, level))
150                 return __this_address;
151         if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
152             !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
153                         level + 1))
154                 return __this_address;
155         if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
156             !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
157                         level + 1))
158                 return __this_address;
159
160         return NULL;
161 }
162
163 /* Check a short btree block header. */
164 STATIC int
165 xfs_btree_check_sblock(
166         struct xfs_btree_cur    *cur,
167         struct xfs_btree_block  *block,
168         int                     level,
169         struct xfs_buf          *bp)
170 {
171         struct xfs_mount        *mp = cur->bc_mp;
172         xfs_failaddr_t          fa;
173
174         fa = __xfs_btree_check_sblock(cur, block, level, bp);
175         if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
176                         XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
177                 if (bp)
178                         trace_xfs_btree_corrupt(bp, _RET_IP_);
179                 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
180                 return -EFSCORRUPTED;
181         }
182         return 0;
183 }
184
185 /*
186  * Debug routine: check that block header is ok.
187  */
188 int
189 xfs_btree_check_block(
190         struct xfs_btree_cur    *cur,   /* btree cursor */
191         struct xfs_btree_block  *block, /* generic btree block pointer */
192         int                     level,  /* level of the btree block */
193         struct xfs_buf          *bp)    /* buffer containing block, if any */
194 {
195         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
196                 return xfs_btree_check_lblock(cur, block, level, bp);
197         else
198                 return xfs_btree_check_sblock(cur, block, level, bp);
199 }
200
201 /* Check that this long pointer is valid and points within the fs. */
202 bool
203 xfs_btree_check_lptr(
204         struct xfs_btree_cur    *cur,
205         xfs_fsblock_t           fsbno,
206         int                     level)
207 {
208         if (level <= 0)
209                 return false;
210         return xfs_verify_fsbno(cur->bc_mp, fsbno);
211 }
212
213 /* Check that this short pointer is valid and points within the AG. */
214 bool
215 xfs_btree_check_sptr(
216         struct xfs_btree_cur    *cur,
217         xfs_agblock_t           agbno,
218         int                     level)
219 {
220         if (level <= 0)
221                 return false;
222         return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
223 }
224
225 /*
226  * Check that a given (indexed) btree pointer at a certain level of a
227  * btree is valid and doesn't point past where it should.
228  */
229 static int
230 xfs_btree_check_ptr(
231         struct xfs_btree_cur    *cur,
232         union xfs_btree_ptr     *ptr,
233         int                     index,
234         int                     level)
235 {
236         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
237                 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
238                                 level))
239                         return 0;
240                 xfs_err(cur->bc_mp,
241 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
242                                 cur->bc_private.b.ip->i_ino,
243                                 cur->bc_private.b.whichfork, cur->bc_btnum,
244                                 level, index);
245         } else {
246                 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
247                                 level))
248                         return 0;
249                 xfs_err(cur->bc_mp,
250 "AG %u: Corrupt btree %d pointer at level %d index %d.",
251                                 cur->bc_private.a.agno, cur->bc_btnum,
252                                 level, index);
253         }
254
255         return -EFSCORRUPTED;
256 }
257
258 #ifdef DEBUG
259 # define xfs_btree_debug_check_ptr      xfs_btree_check_ptr
260 #else
261 # define xfs_btree_debug_check_ptr(...) (0)
262 #endif
263
264 /*
265  * Calculate CRC on the whole btree block and stuff it into the
266  * long-form btree header.
267  *
268  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
269  * it into the buffer so recovery knows what the last modification was that made
270  * it to disk.
271  */
272 void
273 xfs_btree_lblock_calc_crc(
274         struct xfs_buf          *bp)
275 {
276         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
277         struct xfs_buf_log_item *bip = bp->b_log_item;
278
279         if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
280                 return;
281         if (bip)
282                 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
283         xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
284 }
285
286 bool
287 xfs_btree_lblock_verify_crc(
288         struct xfs_buf          *bp)
289 {
290         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
291         struct xfs_mount        *mp = bp->b_target->bt_mount;
292
293         if (xfs_sb_version_hascrc(&mp->m_sb)) {
294                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
295                         return false;
296                 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
297         }
298
299         return true;
300 }
301
302 /*
303  * Calculate CRC on the whole btree block and stuff it into the
304  * short-form btree header.
305  *
306  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
307  * it into the buffer so recovery knows what the last modification was that made
308  * it to disk.
309  */
310 void
311 xfs_btree_sblock_calc_crc(
312         struct xfs_buf          *bp)
313 {
314         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
315         struct xfs_buf_log_item *bip = bp->b_log_item;
316
317         if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
318                 return;
319         if (bip)
320                 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
321         xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
322 }
323
324 bool
325 xfs_btree_sblock_verify_crc(
326         struct xfs_buf          *bp)
327 {
328         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
329         struct xfs_mount        *mp = bp->b_target->bt_mount;
330
331         if (xfs_sb_version_hascrc(&mp->m_sb)) {
332                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
333                         return __this_address;
334                 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
335         }
336
337         return true;
338 }
339
340 static int
341 xfs_btree_free_block(
342         struct xfs_btree_cur    *cur,
343         struct xfs_buf          *bp)
344 {
345         int                     error;
346
347         error = cur->bc_ops->free_block(cur, bp);
348         if (!error) {
349                 xfs_trans_binval(cur->bc_tp, bp);
350                 XFS_BTREE_STATS_INC(cur, free);
351         }
352         return error;
353 }
354
355 /*
356  * Delete the btree cursor.
357  */
358 void
359 xfs_btree_del_cursor(
360         xfs_btree_cur_t *cur,           /* btree cursor */
361         int             error)          /* del because of error */
362 {
363         int             i;              /* btree level */
364
365         /*
366          * Clear the buffer pointers, and release the buffers.
367          * If we're doing this in the face of an error, we
368          * need to make sure to inspect all of the entries
369          * in the bc_bufs array for buffers to be unlocked.
370          * This is because some of the btree code works from
371          * level n down to 0, and if we get an error along
372          * the way we won't have initialized all the entries
373          * down to 0.
374          */
375         for (i = 0; i < cur->bc_nlevels; i++) {
376                 if (cur->bc_bufs[i])
377                         xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
378                 else if (!error)
379                         break;
380         }
381         /*
382          * Can't free a bmap cursor without having dealt with the
383          * allocated indirect blocks' accounting.
384          */
385         ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
386                cur->bc_private.b.allocated == 0);
387         /*
388          * Free the cursor.
389          */
390         kmem_zone_free(xfs_btree_cur_zone, cur);
391 }
392
393 /*
394  * Duplicate the btree cursor.
395  * Allocate a new one, copy the record, re-get the buffers.
396  */
397 int                                     /* error */
398 xfs_btree_dup_cursor(
399         xfs_btree_cur_t *cur,           /* input cursor */
400         xfs_btree_cur_t **ncur)         /* output cursor */
401 {
402         xfs_buf_t       *bp;            /* btree block's buffer pointer */
403         int             error;          /* error return value */
404         int             i;              /* level number of btree block */
405         xfs_mount_t     *mp;            /* mount structure for filesystem */
406         xfs_btree_cur_t *new;           /* new cursor value */
407         xfs_trans_t     *tp;            /* transaction pointer, can be NULL */
408
409         tp = cur->bc_tp;
410         mp = cur->bc_mp;
411
412         /*
413          * Allocate a new cursor like the old one.
414          */
415         new = cur->bc_ops->dup_cursor(cur);
416
417         /*
418          * Copy the record currently in the cursor.
419          */
420         new->bc_rec = cur->bc_rec;
421
422         /*
423          * For each level current, re-get the buffer and copy the ptr value.
424          */
425         for (i = 0; i < new->bc_nlevels; i++) {
426                 new->bc_ptrs[i] = cur->bc_ptrs[i];
427                 new->bc_ra[i] = cur->bc_ra[i];
428                 bp = cur->bc_bufs[i];
429                 if (bp) {
430                         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
431                                                    XFS_BUF_ADDR(bp), mp->m_bsize,
432                                                    0, &bp,
433                                                    cur->bc_ops->buf_ops);
434                         if (error) {
435                                 xfs_btree_del_cursor(new, error);
436                                 *ncur = NULL;
437                                 return error;
438                         }
439                 }
440                 new->bc_bufs[i] = bp;
441         }
442         *ncur = new;
443         return 0;
444 }
445
446 /*
447  * XFS btree block layout and addressing:
448  *
449  * There are two types of blocks in the btree: leaf and non-leaf blocks.
450  *
451  * The leaf record start with a header then followed by records containing
452  * the values.  A non-leaf block also starts with the same header, and
453  * then first contains lookup keys followed by an equal number of pointers
454  * to the btree blocks at the previous level.
455  *
456  *              +--------+-------+-------+-------+-------+-------+-------+
457  * Leaf:        | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
458  *              +--------+-------+-------+-------+-------+-------+-------+
459  *
460  *              +--------+-------+-------+-------+-------+-------+-------+
461  * Non-Leaf:    | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
462  *              +--------+-------+-------+-------+-------+-------+-------+
463  *
464  * The header is called struct xfs_btree_block for reasons better left unknown
465  * and comes in different versions for short (32bit) and long (64bit) block
466  * pointers.  The record and key structures are defined by the btree instances
467  * and opaque to the btree core.  The block pointers are simple disk endian
468  * integers, available in a short (32bit) and long (64bit) variant.
469  *
470  * The helpers below calculate the offset of a given record, key or pointer
471  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
472  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
473  * inside the btree block is done using indices starting at one, not zero!
474  *
475  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
476  * overlapping intervals.  In such a tree, records are still sorted lowest to
477  * highest and indexed by the smallest key value that refers to the record.
478  * However, nodes are different: each pointer has two associated keys -- one
479  * indexing the lowest key available in the block(s) below (the same behavior
480  * as the key in a regular btree) and another indexing the highest key
481  * available in the block(s) below.  Because records are /not/ sorted by the
482  * highest key, all leaf block updates require us to compute the highest key
483  * that matches any record in the leaf and to recursively update the high keys
484  * in the nodes going further up in the tree, if necessary.  Nodes look like
485  * this:
486  *
487  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
488  * Non-Leaf:    | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
489  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
490  *
491  * To perform an interval query on an overlapped tree, perform the usual
492  * depth-first search and use the low and high keys to decide if we can skip
493  * that particular node.  If a leaf node is reached, return the records that
494  * intersect the interval.  Note that an interval query may return numerous
495  * entries.  For a non-overlapped tree, simply search for the record associated
496  * with the lowest key and iterate forward until a non-matching record is
497  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
498  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
499  * more detail.
500  *
501  * Why do we care about overlapping intervals?  Let's say you have a bunch of
502  * reverse mapping records on a reflink filesystem:
503  *
504  * 1: +- file A startblock B offset C length D -----------+
505  * 2:      +- file E startblock F offset G length H --------------+
506  * 3:      +- file I startblock F offset J length K --+
507  * 4:                                                        +- file L... --+
508  *
509  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
510  * we'd simply increment the length of record 1.  But how do we find the record
511  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
512  * record 3 because the keys are ordered first by startblock.  An interval
513  * query would return records 1 and 2 because they both overlap (B+D-1), and
514  * from that we can pick out record 1 as the appropriate left neighbor.
515  *
516  * In the non-overlapped case you can do a LE lookup and decrement the cursor
517  * because a record's interval must end before the next record.
518  */
519
520 /*
521  * Return size of the btree block header for this btree instance.
522  */
523 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
524 {
525         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
526                 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
527                         return XFS_BTREE_LBLOCK_CRC_LEN;
528                 return XFS_BTREE_LBLOCK_LEN;
529         }
530         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
531                 return XFS_BTREE_SBLOCK_CRC_LEN;
532         return XFS_BTREE_SBLOCK_LEN;
533 }
534
535 /*
536  * Return size of btree block pointers for this btree instance.
537  */
538 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
539 {
540         return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
541                 sizeof(__be64) : sizeof(__be32);
542 }
543
544 /*
545  * Calculate offset of the n-th record in a btree block.
546  */
547 STATIC size_t
548 xfs_btree_rec_offset(
549         struct xfs_btree_cur    *cur,
550         int                     n)
551 {
552         return xfs_btree_block_len(cur) +
553                 (n - 1) * cur->bc_ops->rec_len;
554 }
555
556 /*
557  * Calculate offset of the n-th key in a btree block.
558  */
559 STATIC size_t
560 xfs_btree_key_offset(
561         struct xfs_btree_cur    *cur,
562         int                     n)
563 {
564         return xfs_btree_block_len(cur) +
565                 (n - 1) * cur->bc_ops->key_len;
566 }
567
568 /*
569  * Calculate offset of the n-th high key in a btree block.
570  */
571 STATIC size_t
572 xfs_btree_high_key_offset(
573         struct xfs_btree_cur    *cur,
574         int                     n)
575 {
576         return xfs_btree_block_len(cur) +
577                 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
578 }
579
580 /*
581  * Calculate offset of the n-th block pointer in a btree block.
582  */
583 STATIC size_t
584 xfs_btree_ptr_offset(
585         struct xfs_btree_cur    *cur,
586         int                     n,
587         int                     level)
588 {
589         return xfs_btree_block_len(cur) +
590                 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
591                 (n - 1) * xfs_btree_ptr_len(cur);
592 }
593
594 /*
595  * Return a pointer to the n-th record in the btree block.
596  */
597 union xfs_btree_rec *
598 xfs_btree_rec_addr(
599         struct xfs_btree_cur    *cur,
600         int                     n,
601         struct xfs_btree_block  *block)
602 {
603         return (union xfs_btree_rec *)
604                 ((char *)block + xfs_btree_rec_offset(cur, n));
605 }
606
607 /*
608  * Return a pointer to the n-th key in the btree block.
609  */
610 union xfs_btree_key *
611 xfs_btree_key_addr(
612         struct xfs_btree_cur    *cur,
613         int                     n,
614         struct xfs_btree_block  *block)
615 {
616         return (union xfs_btree_key *)
617                 ((char *)block + xfs_btree_key_offset(cur, n));
618 }
619
620 /*
621  * Return a pointer to the n-th high key in the btree block.
622  */
623 union xfs_btree_key *
624 xfs_btree_high_key_addr(
625         struct xfs_btree_cur    *cur,
626         int                     n,
627         struct xfs_btree_block  *block)
628 {
629         return (union xfs_btree_key *)
630                 ((char *)block + xfs_btree_high_key_offset(cur, n));
631 }
632
633 /*
634  * Return a pointer to the n-th block pointer in the btree block.
635  */
636 union xfs_btree_ptr *
637 xfs_btree_ptr_addr(
638         struct xfs_btree_cur    *cur,
639         int                     n,
640         struct xfs_btree_block  *block)
641 {
642         int                     level = xfs_btree_get_level(block);
643
644         ASSERT(block->bb_level != 0);
645
646         return (union xfs_btree_ptr *)
647                 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
648 }
649
650 /*
651  * Get the root block which is stored in the inode.
652  *
653  * For now this btree implementation assumes the btree root is always
654  * stored in the if_broot field of an inode fork.
655  */
656 STATIC struct xfs_btree_block *
657 xfs_btree_get_iroot(
658         struct xfs_btree_cur    *cur)
659 {
660         struct xfs_ifork        *ifp;
661
662         ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
663         return (struct xfs_btree_block *)ifp->if_broot;
664 }
665
666 /*
667  * Retrieve the block pointer from the cursor at the given level.
668  * This may be an inode btree root or from a buffer.
669  */
670 struct xfs_btree_block *                /* generic btree block pointer */
671 xfs_btree_get_block(
672         struct xfs_btree_cur    *cur,   /* btree cursor */
673         int                     level,  /* level in btree */
674         struct xfs_buf          **bpp)  /* buffer containing the block */
675 {
676         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
677             (level == cur->bc_nlevels - 1)) {
678                 *bpp = NULL;
679                 return xfs_btree_get_iroot(cur);
680         }
681
682         *bpp = cur->bc_bufs[level];
683         return XFS_BUF_TO_BLOCK(*bpp);
684 }
685
686 /*
687  * Get a buffer for the block, return it with no data read.
688  * Long-form addressing.
689  */
690 xfs_buf_t *                             /* buffer for fsbno */
691 xfs_btree_get_bufl(
692         xfs_mount_t     *mp,            /* file system mount point */
693         xfs_trans_t     *tp,            /* transaction pointer */
694         xfs_fsblock_t   fsbno,          /* file system block number */
695         uint            lock)           /* lock flags for get_buf */
696 {
697         xfs_daddr_t             d;              /* real disk block address */
698
699         ASSERT(fsbno != NULLFSBLOCK);
700         d = XFS_FSB_TO_DADDR(mp, fsbno);
701         return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
702 }
703
704 /*
705  * Get a buffer for the block, return it with no data read.
706  * Short-form addressing.
707  */
708 xfs_buf_t *                             /* buffer for agno/agbno */
709 xfs_btree_get_bufs(
710         xfs_mount_t     *mp,            /* file system mount point */
711         xfs_trans_t     *tp,            /* transaction pointer */
712         xfs_agnumber_t  agno,           /* allocation group number */
713         xfs_agblock_t   agbno,          /* allocation group block number */
714         uint            lock)           /* lock flags for get_buf */
715 {
716         xfs_daddr_t             d;              /* real disk block address */
717
718         ASSERT(agno != NULLAGNUMBER);
719         ASSERT(agbno != NULLAGBLOCK);
720         d = XFS_AGB_TO_DADDR(mp, agno, agbno);
721         return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
722 }
723
724 /*
725  * Check for the cursor referring to the last block at the given level.
726  */
727 int                                     /* 1=is last block, 0=not last block */
728 xfs_btree_islastblock(
729         xfs_btree_cur_t         *cur,   /* btree cursor */
730         int                     level)  /* level to check */
731 {
732         struct xfs_btree_block  *block; /* generic btree block pointer */
733         xfs_buf_t               *bp;    /* buffer containing block */
734
735         block = xfs_btree_get_block(cur, level, &bp);
736         xfs_btree_check_block(cur, block, level, bp);
737         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
738                 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
739         else
740                 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
741 }
742
743 /*
744  * Change the cursor to point to the first record at the given level.
745  * Other levels are unaffected.
746  */
747 STATIC int                              /* success=1, failure=0 */
748 xfs_btree_firstrec(
749         xfs_btree_cur_t         *cur,   /* btree cursor */
750         int                     level)  /* level to change */
751 {
752         struct xfs_btree_block  *block; /* generic btree block pointer */
753         xfs_buf_t               *bp;    /* buffer containing block */
754
755         /*
756          * Get the block pointer for this level.
757          */
758         block = xfs_btree_get_block(cur, level, &bp);
759         if (xfs_btree_check_block(cur, block, level, bp))
760                 return 0;
761         /*
762          * It's empty, there is no such record.
763          */
764         if (!block->bb_numrecs)
765                 return 0;
766         /*
767          * Set the ptr value to 1, that's the first record/key.
768          */
769         cur->bc_ptrs[level] = 1;
770         return 1;
771 }
772
773 /*
774  * Change the cursor to point to the last record in the current block
775  * at the given level.  Other levels are unaffected.
776  */
777 STATIC int                              /* success=1, failure=0 */
778 xfs_btree_lastrec(
779         xfs_btree_cur_t         *cur,   /* btree cursor */
780         int                     level)  /* level to change */
781 {
782         struct xfs_btree_block  *block; /* generic btree block pointer */
783         xfs_buf_t               *bp;    /* buffer containing block */
784
785         /*
786          * Get the block pointer for this level.
787          */
788         block = xfs_btree_get_block(cur, level, &bp);
789         if (xfs_btree_check_block(cur, block, level, bp))
790                 return 0;
791         /*
792          * It's empty, there is no such record.
793          */
794         if (!block->bb_numrecs)
795                 return 0;
796         /*
797          * Set the ptr value to numrecs, that's the last record/key.
798          */
799         cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
800         return 1;
801 }
802
803 /*
804  * Compute first and last byte offsets for the fields given.
805  * Interprets the offsets table, which contains struct field offsets.
806  */
807 void
808 xfs_btree_offsets(
809         int64_t         fields,         /* bitmask of fields */
810         const short     *offsets,       /* table of field offsets */
811         int             nbits,          /* number of bits to inspect */
812         int             *first,         /* output: first byte offset */
813         int             *last)          /* output: last byte offset */
814 {
815         int             i;              /* current bit number */
816         int64_t         imask;          /* mask for current bit number */
817
818         ASSERT(fields != 0);
819         /*
820          * Find the lowest bit, so the first byte offset.
821          */
822         for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
823                 if (imask & fields) {
824                         *first = offsets[i];
825                         break;
826                 }
827         }
828         /*
829          * Find the highest bit, so the last byte offset.
830          */
831         for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
832                 if (imask & fields) {
833                         *last = offsets[i + 1] - 1;
834                         break;
835                 }
836         }
837 }
838
839 /*
840  * Get a buffer for the block, return it read in.
841  * Long-form addressing.
842  */
843 int
844 xfs_btree_read_bufl(
845         struct xfs_mount        *mp,            /* file system mount point */
846         struct xfs_trans        *tp,            /* transaction pointer */
847         xfs_fsblock_t           fsbno,          /* file system block number */
848         uint                    lock,           /* lock flags for read_buf */
849         struct xfs_buf          **bpp,          /* buffer for fsbno */
850         int                     refval,         /* ref count value for buffer */
851         const struct xfs_buf_ops *ops)
852 {
853         struct xfs_buf          *bp;            /* return value */
854         xfs_daddr_t             d;              /* real disk block address */
855         int                     error;
856
857         if (!xfs_verify_fsbno(mp, fsbno))
858                 return -EFSCORRUPTED;
859         d = XFS_FSB_TO_DADDR(mp, fsbno);
860         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
861                                    mp->m_bsize, lock, &bp, ops);
862         if (error)
863                 return error;
864         if (bp)
865                 xfs_buf_set_ref(bp, refval);
866         *bpp = bp;
867         return 0;
868 }
869
870 /*
871  * Read-ahead the block, don't wait for it, don't return a buffer.
872  * Long-form addressing.
873  */
874 /* ARGSUSED */
875 void
876 xfs_btree_reada_bufl(
877         struct xfs_mount        *mp,            /* file system mount point */
878         xfs_fsblock_t           fsbno,          /* file system block number */
879         xfs_extlen_t            count,          /* count of filesystem blocks */
880         const struct xfs_buf_ops *ops)
881 {
882         xfs_daddr_t             d;
883
884         ASSERT(fsbno != NULLFSBLOCK);
885         d = XFS_FSB_TO_DADDR(mp, fsbno);
886         xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
887 }
888
889 /*
890  * Read-ahead the block, don't wait for it, don't return a buffer.
891  * Short-form addressing.
892  */
893 /* ARGSUSED */
894 void
895 xfs_btree_reada_bufs(
896         struct xfs_mount        *mp,            /* file system mount point */
897         xfs_agnumber_t          agno,           /* allocation group number */
898         xfs_agblock_t           agbno,          /* allocation group block number */
899         xfs_extlen_t            count,          /* count of filesystem blocks */
900         const struct xfs_buf_ops *ops)
901 {
902         xfs_daddr_t             d;
903
904         ASSERT(agno != NULLAGNUMBER);
905         ASSERT(agbno != NULLAGBLOCK);
906         d = XFS_AGB_TO_DADDR(mp, agno, agbno);
907         xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
908 }
909
910 STATIC int
911 xfs_btree_readahead_lblock(
912         struct xfs_btree_cur    *cur,
913         int                     lr,
914         struct xfs_btree_block  *block)
915 {
916         int                     rval = 0;
917         xfs_fsblock_t           left = be64_to_cpu(block->bb_u.l.bb_leftsib);
918         xfs_fsblock_t           right = be64_to_cpu(block->bb_u.l.bb_rightsib);
919
920         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
921                 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
922                                      cur->bc_ops->buf_ops);
923                 rval++;
924         }
925
926         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
927                 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
928                                      cur->bc_ops->buf_ops);
929                 rval++;
930         }
931
932         return rval;
933 }
934
935 STATIC int
936 xfs_btree_readahead_sblock(
937         struct xfs_btree_cur    *cur,
938         int                     lr,
939         struct xfs_btree_block *block)
940 {
941         int                     rval = 0;
942         xfs_agblock_t           left = be32_to_cpu(block->bb_u.s.bb_leftsib);
943         xfs_agblock_t           right = be32_to_cpu(block->bb_u.s.bb_rightsib);
944
945
946         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
947                 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
948                                      left, 1, cur->bc_ops->buf_ops);
949                 rval++;
950         }
951
952         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
953                 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
954                                      right, 1, cur->bc_ops->buf_ops);
955                 rval++;
956         }
957
958         return rval;
959 }
960
961 /*
962  * Read-ahead btree blocks, at the given level.
963  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
964  */
965 STATIC int
966 xfs_btree_readahead(
967         struct xfs_btree_cur    *cur,           /* btree cursor */
968         int                     lev,            /* level in btree */
969         int                     lr)             /* left/right bits */
970 {
971         struct xfs_btree_block  *block;
972
973         /*
974          * No readahead needed if we are at the root level and the
975          * btree root is stored in the inode.
976          */
977         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
978             (lev == cur->bc_nlevels - 1))
979                 return 0;
980
981         if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
982                 return 0;
983
984         cur->bc_ra[lev] |= lr;
985         block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
986
987         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
988                 return xfs_btree_readahead_lblock(cur, lr, block);
989         return xfs_btree_readahead_sblock(cur, lr, block);
990 }
991
992 STATIC int
993 xfs_btree_ptr_to_daddr(
994         struct xfs_btree_cur    *cur,
995         union xfs_btree_ptr     *ptr,
996         xfs_daddr_t             *daddr)
997 {
998         xfs_fsblock_t           fsbno;
999         xfs_agblock_t           agbno;
1000         int                     error;
1001
1002         error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1003         if (error)
1004                 return error;
1005
1006         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1007                 fsbno = be64_to_cpu(ptr->l);
1008                 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1009         } else {
1010                 agbno = be32_to_cpu(ptr->s);
1011                 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
1012                                 agbno);
1013         }
1014
1015         return 0;
1016 }
1017
1018 /*
1019  * Readahead @count btree blocks at the given @ptr location.
1020  *
1021  * We don't need to care about long or short form btrees here as we have a
1022  * method of converting the ptr directly to a daddr available to us.
1023  */
1024 STATIC void
1025 xfs_btree_readahead_ptr(
1026         struct xfs_btree_cur    *cur,
1027         union xfs_btree_ptr     *ptr,
1028         xfs_extlen_t            count)
1029 {
1030         xfs_daddr_t             daddr;
1031
1032         if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1033                 return;
1034         xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1035                           cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1036 }
1037
1038 /*
1039  * Set the buffer for level "lev" in the cursor to bp, releasing
1040  * any previous buffer.
1041  */
1042 STATIC void
1043 xfs_btree_setbuf(
1044         xfs_btree_cur_t         *cur,   /* btree cursor */
1045         int                     lev,    /* level in btree */
1046         xfs_buf_t               *bp)    /* new buffer to set */
1047 {
1048         struct xfs_btree_block  *b;     /* btree block */
1049
1050         if (cur->bc_bufs[lev])
1051                 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1052         cur->bc_bufs[lev] = bp;
1053         cur->bc_ra[lev] = 0;
1054
1055         b = XFS_BUF_TO_BLOCK(bp);
1056         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1057                 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1058                         cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1059                 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1060                         cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1061         } else {
1062                 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1063                         cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1064                 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1065                         cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1066         }
1067 }
1068
1069 bool
1070 xfs_btree_ptr_is_null(
1071         struct xfs_btree_cur    *cur,
1072         union xfs_btree_ptr     *ptr)
1073 {
1074         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1075                 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1076         else
1077                 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1078 }
1079
1080 STATIC void
1081 xfs_btree_set_ptr_null(
1082         struct xfs_btree_cur    *cur,
1083         union xfs_btree_ptr     *ptr)
1084 {
1085         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1086                 ptr->l = cpu_to_be64(NULLFSBLOCK);
1087         else
1088                 ptr->s = cpu_to_be32(NULLAGBLOCK);
1089 }
1090
1091 /*
1092  * Get/set/init sibling pointers
1093  */
1094 void
1095 xfs_btree_get_sibling(
1096         struct xfs_btree_cur    *cur,
1097         struct xfs_btree_block  *block,
1098         union xfs_btree_ptr     *ptr,
1099         int                     lr)
1100 {
1101         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1102
1103         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1104                 if (lr == XFS_BB_RIGHTSIB)
1105                         ptr->l = block->bb_u.l.bb_rightsib;
1106                 else
1107                         ptr->l = block->bb_u.l.bb_leftsib;
1108         } else {
1109                 if (lr == XFS_BB_RIGHTSIB)
1110                         ptr->s = block->bb_u.s.bb_rightsib;
1111                 else
1112                         ptr->s = block->bb_u.s.bb_leftsib;
1113         }
1114 }
1115
1116 STATIC void
1117 xfs_btree_set_sibling(
1118         struct xfs_btree_cur    *cur,
1119         struct xfs_btree_block  *block,
1120         union xfs_btree_ptr     *ptr,
1121         int                     lr)
1122 {
1123         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1124
1125         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1126                 if (lr == XFS_BB_RIGHTSIB)
1127                         block->bb_u.l.bb_rightsib = ptr->l;
1128                 else
1129                         block->bb_u.l.bb_leftsib = ptr->l;
1130         } else {
1131                 if (lr == XFS_BB_RIGHTSIB)
1132                         block->bb_u.s.bb_rightsib = ptr->s;
1133                 else
1134                         block->bb_u.s.bb_leftsib = ptr->s;
1135         }
1136 }
1137
1138 void
1139 xfs_btree_init_block_int(
1140         struct xfs_mount        *mp,
1141         struct xfs_btree_block  *buf,
1142         xfs_daddr_t             blkno,
1143         xfs_btnum_t             btnum,
1144         __u16                   level,
1145         __u16                   numrecs,
1146         __u64                   owner,
1147         unsigned int            flags)
1148 {
1149         int                     crc = xfs_sb_version_hascrc(&mp->m_sb);
1150         __u32                   magic = xfs_btree_magic(crc, btnum);
1151
1152         buf->bb_magic = cpu_to_be32(magic);
1153         buf->bb_level = cpu_to_be16(level);
1154         buf->bb_numrecs = cpu_to_be16(numrecs);
1155
1156         if (flags & XFS_BTREE_LONG_PTRS) {
1157                 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1158                 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1159                 if (crc) {
1160                         buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1161                         buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1162                         uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1163                         buf->bb_u.l.bb_pad = 0;
1164                         buf->bb_u.l.bb_lsn = 0;
1165                 }
1166         } else {
1167                 /* owner is a 32 bit value on short blocks */
1168                 __u32 __owner = (__u32)owner;
1169
1170                 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1171                 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1172                 if (crc) {
1173                         buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1174                         buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1175                         uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1176                         buf->bb_u.s.bb_lsn = 0;
1177                 }
1178         }
1179 }
1180
1181 void
1182 xfs_btree_init_block(
1183         struct xfs_mount *mp,
1184         struct xfs_buf  *bp,
1185         xfs_btnum_t     btnum,
1186         __u16           level,
1187         __u16           numrecs,
1188         __u64           owner,
1189         unsigned int    flags)
1190 {
1191         xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1192                                  btnum, level, numrecs, owner, flags);
1193 }
1194
1195 STATIC void
1196 xfs_btree_init_block_cur(
1197         struct xfs_btree_cur    *cur,
1198         struct xfs_buf          *bp,
1199         int                     level,
1200         int                     numrecs)
1201 {
1202         __u64                   owner;
1203
1204         /*
1205          * we can pull the owner from the cursor right now as the different
1206          * owners align directly with the pointer size of the btree. This may
1207          * change in future, but is safe for current users of the generic btree
1208          * code.
1209          */
1210         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1211                 owner = cur->bc_private.b.ip->i_ino;
1212         else
1213                 owner = cur->bc_private.a.agno;
1214
1215         xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1216                                  cur->bc_btnum, level, numrecs,
1217                                  owner, cur->bc_flags);
1218 }
1219
1220 /*
1221  * Return true if ptr is the last record in the btree and
1222  * we need to track updates to this record.  The decision
1223  * will be further refined in the update_lastrec method.
1224  */
1225 STATIC int
1226 xfs_btree_is_lastrec(
1227         struct xfs_btree_cur    *cur,
1228         struct xfs_btree_block  *block,
1229         int                     level)
1230 {
1231         union xfs_btree_ptr     ptr;
1232
1233         if (level > 0)
1234                 return 0;
1235         if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1236                 return 0;
1237
1238         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1239         if (!xfs_btree_ptr_is_null(cur, &ptr))
1240                 return 0;
1241         return 1;
1242 }
1243
1244 STATIC void
1245 xfs_btree_buf_to_ptr(
1246         struct xfs_btree_cur    *cur,
1247         struct xfs_buf          *bp,
1248         union xfs_btree_ptr     *ptr)
1249 {
1250         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1251                 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1252                                         XFS_BUF_ADDR(bp)));
1253         else {
1254                 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1255                                         XFS_BUF_ADDR(bp)));
1256         }
1257 }
1258
1259 STATIC void
1260 xfs_btree_set_refs(
1261         struct xfs_btree_cur    *cur,
1262         struct xfs_buf          *bp)
1263 {
1264         switch (cur->bc_btnum) {
1265         case XFS_BTNUM_BNO:
1266         case XFS_BTNUM_CNT:
1267                 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1268                 break;
1269         case XFS_BTNUM_INO:
1270         case XFS_BTNUM_FINO:
1271                 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1272                 break;
1273         case XFS_BTNUM_BMAP:
1274                 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1275                 break;
1276         case XFS_BTNUM_RMAP:
1277                 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1278                 break;
1279         case XFS_BTNUM_REFC:
1280                 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1281                 break;
1282         default:
1283                 ASSERT(0);
1284         }
1285 }
1286
1287 STATIC int
1288 xfs_btree_get_buf_block(
1289         struct xfs_btree_cur    *cur,
1290         union xfs_btree_ptr     *ptr,
1291         int                     flags,
1292         struct xfs_btree_block  **block,
1293         struct xfs_buf          **bpp)
1294 {
1295         struct xfs_mount        *mp = cur->bc_mp;
1296         xfs_daddr_t             d;
1297         int                     error;
1298
1299         /* need to sort out how callers deal with failures first */
1300         ASSERT(!(flags & XBF_TRYLOCK));
1301
1302         error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1303         if (error)
1304                 return error;
1305         *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1306                                  mp->m_bsize, flags);
1307
1308         if (!*bpp)
1309                 return -ENOMEM;
1310
1311         (*bpp)->b_ops = cur->bc_ops->buf_ops;
1312         *block = XFS_BUF_TO_BLOCK(*bpp);
1313         return 0;
1314 }
1315
1316 /*
1317  * Read in the buffer at the given ptr and return the buffer and
1318  * the block pointer within the buffer.
1319  */
1320 STATIC int
1321 xfs_btree_read_buf_block(
1322         struct xfs_btree_cur    *cur,
1323         union xfs_btree_ptr     *ptr,
1324         int                     flags,
1325         struct xfs_btree_block  **block,
1326         struct xfs_buf          **bpp)
1327 {
1328         struct xfs_mount        *mp = cur->bc_mp;
1329         xfs_daddr_t             d;
1330         int                     error;
1331
1332         /* need to sort out how callers deal with failures first */
1333         ASSERT(!(flags & XBF_TRYLOCK));
1334
1335         error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1336         if (error)
1337                 return error;
1338         error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1339                                    mp->m_bsize, flags, bpp,
1340                                    cur->bc_ops->buf_ops);
1341         if (error)
1342                 return error;
1343
1344         xfs_btree_set_refs(cur, *bpp);
1345         *block = XFS_BUF_TO_BLOCK(*bpp);
1346         return 0;
1347 }
1348
1349 /*
1350  * Copy keys from one btree block to another.
1351  */
1352 STATIC void
1353 xfs_btree_copy_keys(
1354         struct xfs_btree_cur    *cur,
1355         union xfs_btree_key     *dst_key,
1356         union xfs_btree_key     *src_key,
1357         int                     numkeys)
1358 {
1359         ASSERT(numkeys >= 0);
1360         memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1361 }
1362
1363 /*
1364  * Copy records from one btree block to another.
1365  */
1366 STATIC void
1367 xfs_btree_copy_recs(
1368         struct xfs_btree_cur    *cur,
1369         union xfs_btree_rec     *dst_rec,
1370         union xfs_btree_rec     *src_rec,
1371         int                     numrecs)
1372 {
1373         ASSERT(numrecs >= 0);
1374         memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1375 }
1376
1377 /*
1378  * Copy block pointers from one btree block to another.
1379  */
1380 STATIC void
1381 xfs_btree_copy_ptrs(
1382         struct xfs_btree_cur    *cur,
1383         union xfs_btree_ptr     *dst_ptr,
1384         union xfs_btree_ptr     *src_ptr,
1385         int                     numptrs)
1386 {
1387         ASSERT(numptrs >= 0);
1388         memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1389 }
1390
1391 /*
1392  * Shift keys one index left/right inside a single btree block.
1393  */
1394 STATIC void
1395 xfs_btree_shift_keys(
1396         struct xfs_btree_cur    *cur,
1397         union xfs_btree_key     *key,
1398         int                     dir,
1399         int                     numkeys)
1400 {
1401         char                    *dst_key;
1402
1403         ASSERT(numkeys >= 0);
1404         ASSERT(dir == 1 || dir == -1);
1405
1406         dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1407         memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1408 }
1409
1410 /*
1411  * Shift records one index left/right inside a single btree block.
1412  */
1413 STATIC void
1414 xfs_btree_shift_recs(
1415         struct xfs_btree_cur    *cur,
1416         union xfs_btree_rec     *rec,
1417         int                     dir,
1418         int                     numrecs)
1419 {
1420         char                    *dst_rec;
1421
1422         ASSERT(numrecs >= 0);
1423         ASSERT(dir == 1 || dir == -1);
1424
1425         dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1426         memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1427 }
1428
1429 /*
1430  * Shift block pointers one index left/right inside a single btree block.
1431  */
1432 STATIC void
1433 xfs_btree_shift_ptrs(
1434         struct xfs_btree_cur    *cur,
1435         union xfs_btree_ptr     *ptr,
1436         int                     dir,
1437         int                     numptrs)
1438 {
1439         char                    *dst_ptr;
1440
1441         ASSERT(numptrs >= 0);
1442         ASSERT(dir == 1 || dir == -1);
1443
1444         dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1445         memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1446 }
1447
1448 /*
1449  * Log key values from the btree block.
1450  */
1451 STATIC void
1452 xfs_btree_log_keys(
1453         struct xfs_btree_cur    *cur,
1454         struct xfs_buf          *bp,
1455         int                     first,
1456         int                     last)
1457 {
1458
1459         if (bp) {
1460                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1461                 xfs_trans_log_buf(cur->bc_tp, bp,
1462                                   xfs_btree_key_offset(cur, first),
1463                                   xfs_btree_key_offset(cur, last + 1) - 1);
1464         } else {
1465                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1466                                 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1467         }
1468 }
1469
1470 /*
1471  * Log record values from the btree block.
1472  */
1473 void
1474 xfs_btree_log_recs(
1475         struct xfs_btree_cur    *cur,
1476         struct xfs_buf          *bp,
1477         int                     first,
1478         int                     last)
1479 {
1480
1481         xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1482         xfs_trans_log_buf(cur->bc_tp, bp,
1483                           xfs_btree_rec_offset(cur, first),
1484                           xfs_btree_rec_offset(cur, last + 1) - 1);
1485
1486 }
1487
1488 /*
1489  * Log block pointer fields from a btree block (nonleaf).
1490  */
1491 STATIC void
1492 xfs_btree_log_ptrs(
1493         struct xfs_btree_cur    *cur,   /* btree cursor */
1494         struct xfs_buf          *bp,    /* buffer containing btree block */
1495         int                     first,  /* index of first pointer to log */
1496         int                     last)   /* index of last pointer to log */
1497 {
1498
1499         if (bp) {
1500                 struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
1501                 int                     level = xfs_btree_get_level(block);
1502
1503                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1504                 xfs_trans_log_buf(cur->bc_tp, bp,
1505                                 xfs_btree_ptr_offset(cur, first, level),
1506                                 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1507         } else {
1508                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1509                         xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1510         }
1511
1512 }
1513
1514 /*
1515  * Log fields from a btree block header.
1516  */
1517 void
1518 xfs_btree_log_block(
1519         struct xfs_btree_cur    *cur,   /* btree cursor */
1520         struct xfs_buf          *bp,    /* buffer containing btree block */
1521         int                     fields) /* mask of fields: XFS_BB_... */
1522 {
1523         int                     first;  /* first byte offset logged */
1524         int                     last;   /* last byte offset logged */
1525         static const short      soffsets[] = {  /* table of offsets (short) */
1526                 offsetof(struct xfs_btree_block, bb_magic),
1527                 offsetof(struct xfs_btree_block, bb_level),
1528                 offsetof(struct xfs_btree_block, bb_numrecs),
1529                 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1530                 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1531                 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1532                 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1533                 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1534                 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1535                 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1536                 XFS_BTREE_SBLOCK_CRC_LEN
1537         };
1538         static const short      loffsets[] = {  /* table of offsets (long) */
1539                 offsetof(struct xfs_btree_block, bb_magic),
1540                 offsetof(struct xfs_btree_block, bb_level),
1541                 offsetof(struct xfs_btree_block, bb_numrecs),
1542                 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1543                 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1544                 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1545                 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1546                 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1547                 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1548                 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1549                 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1550                 XFS_BTREE_LBLOCK_CRC_LEN
1551         };
1552
1553         if (bp) {
1554                 int nbits;
1555
1556                 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1557                         /*
1558                          * We don't log the CRC when updating a btree
1559                          * block but instead recreate it during log
1560                          * recovery.  As the log buffers have checksums
1561                          * of their own this is safe and avoids logging a crc
1562                          * update in a lot of places.
1563                          */
1564                         if (fields == XFS_BB_ALL_BITS)
1565                                 fields = XFS_BB_ALL_BITS_CRC;
1566                         nbits = XFS_BB_NUM_BITS_CRC;
1567                 } else {
1568                         nbits = XFS_BB_NUM_BITS;
1569                 }
1570                 xfs_btree_offsets(fields,
1571                                   (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1572                                         loffsets : soffsets,
1573                                   nbits, &first, &last);
1574                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1575                 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1576         } else {
1577                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1578                         xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1579         }
1580 }
1581
1582 /*
1583  * Increment cursor by one record at the level.
1584  * For nonzero levels the leaf-ward information is untouched.
1585  */
1586 int                                             /* error */
1587 xfs_btree_increment(
1588         struct xfs_btree_cur    *cur,
1589         int                     level,
1590         int                     *stat)          /* success/failure */
1591 {
1592         struct xfs_btree_block  *block;
1593         union xfs_btree_ptr     ptr;
1594         struct xfs_buf          *bp;
1595         int                     error;          /* error return value */
1596         int                     lev;
1597
1598         ASSERT(level < cur->bc_nlevels);
1599
1600         /* Read-ahead to the right at this level. */
1601         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1602
1603         /* Get a pointer to the btree block. */
1604         block = xfs_btree_get_block(cur, level, &bp);
1605
1606 #ifdef DEBUG
1607         error = xfs_btree_check_block(cur, block, level, bp);
1608         if (error)
1609                 goto error0;
1610 #endif
1611
1612         /* We're done if we remain in the block after the increment. */
1613         if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1614                 goto out1;
1615
1616         /* Fail if we just went off the right edge of the tree. */
1617         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1618         if (xfs_btree_ptr_is_null(cur, &ptr))
1619                 goto out0;
1620
1621         XFS_BTREE_STATS_INC(cur, increment);
1622
1623         /*
1624          * March up the tree incrementing pointers.
1625          * Stop when we don't go off the right edge of a block.
1626          */
1627         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1628                 block = xfs_btree_get_block(cur, lev, &bp);
1629
1630 #ifdef DEBUG
1631                 error = xfs_btree_check_block(cur, block, lev, bp);
1632                 if (error)
1633                         goto error0;
1634 #endif
1635
1636                 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1637                         break;
1638
1639                 /* Read-ahead the right block for the next loop. */
1640                 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1641         }
1642
1643         /*
1644          * If we went off the root then we are either seriously
1645          * confused or have the tree root in an inode.
1646          */
1647         if (lev == cur->bc_nlevels) {
1648                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1649                         goto out0;
1650                 ASSERT(0);
1651                 error = -EFSCORRUPTED;
1652                 goto error0;
1653         }
1654         ASSERT(lev < cur->bc_nlevels);
1655
1656         /*
1657          * Now walk back down the tree, fixing up the cursor's buffer
1658          * pointers and key numbers.
1659          */
1660         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1661                 union xfs_btree_ptr     *ptrp;
1662
1663                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1664                 --lev;
1665                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1666                 if (error)
1667                         goto error0;
1668
1669                 xfs_btree_setbuf(cur, lev, bp);
1670                 cur->bc_ptrs[lev] = 1;
1671         }
1672 out1:
1673         *stat = 1;
1674         return 0;
1675
1676 out0:
1677         *stat = 0;
1678         return 0;
1679
1680 error0:
1681         return error;
1682 }
1683
1684 /*
1685  * Decrement cursor by one record at the level.
1686  * For nonzero levels the leaf-ward information is untouched.
1687  */
1688 int                                             /* error */
1689 xfs_btree_decrement(
1690         struct xfs_btree_cur    *cur,
1691         int                     level,
1692         int                     *stat)          /* success/failure */
1693 {
1694         struct xfs_btree_block  *block;
1695         xfs_buf_t               *bp;
1696         int                     error;          /* error return value */
1697         int                     lev;
1698         union xfs_btree_ptr     ptr;
1699
1700         ASSERT(level < cur->bc_nlevels);
1701
1702         /* Read-ahead to the left at this level. */
1703         xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1704
1705         /* We're done if we remain in the block after the decrement. */
1706         if (--cur->bc_ptrs[level] > 0)
1707                 goto out1;
1708
1709         /* Get a pointer to the btree block. */
1710         block = xfs_btree_get_block(cur, level, &bp);
1711
1712 #ifdef DEBUG
1713         error = xfs_btree_check_block(cur, block, level, bp);
1714         if (error)
1715                 goto error0;
1716 #endif
1717
1718         /* Fail if we just went off the left edge of the tree. */
1719         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1720         if (xfs_btree_ptr_is_null(cur, &ptr))
1721                 goto out0;
1722
1723         XFS_BTREE_STATS_INC(cur, decrement);
1724
1725         /*
1726          * March up the tree decrementing pointers.
1727          * Stop when we don't go off the left edge of a block.
1728          */
1729         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1730                 if (--cur->bc_ptrs[lev] > 0)
1731                         break;
1732                 /* Read-ahead the left block for the next loop. */
1733                 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1734         }
1735
1736         /*
1737          * If we went off the root then we are seriously confused.
1738          * or the root of the tree is in an inode.
1739          */
1740         if (lev == cur->bc_nlevels) {
1741                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1742                         goto out0;
1743                 ASSERT(0);
1744                 error = -EFSCORRUPTED;
1745                 goto error0;
1746         }
1747         ASSERT(lev < cur->bc_nlevels);
1748
1749         /*
1750          * Now walk back down the tree, fixing up the cursor's buffer
1751          * pointers and key numbers.
1752          */
1753         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1754                 union xfs_btree_ptr     *ptrp;
1755
1756                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1757                 --lev;
1758                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1759                 if (error)
1760                         goto error0;
1761                 xfs_btree_setbuf(cur, lev, bp);
1762                 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1763         }
1764 out1:
1765         *stat = 1;
1766         return 0;
1767
1768 out0:
1769         *stat = 0;
1770         return 0;
1771
1772 error0:
1773         return error;
1774 }
1775
1776 int
1777 xfs_btree_lookup_get_block(
1778         struct xfs_btree_cur    *cur,   /* btree cursor */
1779         int                     level,  /* level in the btree */
1780         union xfs_btree_ptr     *pp,    /* ptr to btree block */
1781         struct xfs_btree_block  **blkp) /* return btree block */
1782 {
1783         struct xfs_buf          *bp;    /* buffer pointer for btree block */
1784         xfs_daddr_t             daddr;
1785         int                     error = 0;
1786
1787         /* special case the root block if in an inode */
1788         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1789             (level == cur->bc_nlevels - 1)) {
1790                 *blkp = xfs_btree_get_iroot(cur);
1791                 return 0;
1792         }
1793
1794         /*
1795          * If the old buffer at this level for the disk address we are
1796          * looking for re-use it.
1797          *
1798          * Otherwise throw it away and get a new one.
1799          */
1800         bp = cur->bc_bufs[level];
1801         error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1802         if (error)
1803                 return error;
1804         if (bp && XFS_BUF_ADDR(bp) == daddr) {
1805                 *blkp = XFS_BUF_TO_BLOCK(bp);
1806                 return 0;
1807         }
1808
1809         error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1810         if (error)
1811                 return error;
1812
1813         /* Check the inode owner since the verifiers don't. */
1814         if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1815             !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1816             (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1817             be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1818                         cur->bc_private.b.ip->i_ino)
1819                 goto out_bad;
1820
1821         /* Did we get the level we were looking for? */
1822         if (be16_to_cpu((*blkp)->bb_level) != level)
1823                 goto out_bad;
1824
1825         /* Check that internal nodes have at least one record. */
1826         if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1827                 goto out_bad;
1828
1829         xfs_btree_setbuf(cur, level, bp);
1830         return 0;
1831
1832 out_bad:
1833         *blkp = NULL;
1834         xfs_trans_brelse(cur->bc_tp, bp);
1835         return -EFSCORRUPTED;
1836 }
1837
1838 /*
1839  * Get current search key.  For level 0 we don't actually have a key
1840  * structure so we make one up from the record.  For all other levels
1841  * we just return the right key.
1842  */
1843 STATIC union xfs_btree_key *
1844 xfs_lookup_get_search_key(
1845         struct xfs_btree_cur    *cur,
1846         int                     level,
1847         int                     keyno,
1848         struct xfs_btree_block  *block,
1849         union xfs_btree_key     *kp)
1850 {
1851         if (level == 0) {
1852                 cur->bc_ops->init_key_from_rec(kp,
1853                                 xfs_btree_rec_addr(cur, keyno, block));
1854                 return kp;
1855         }
1856
1857         return xfs_btree_key_addr(cur, keyno, block);
1858 }
1859
1860 /*
1861  * Lookup the record.  The cursor is made to point to it, based on dir.
1862  * stat is set to 0 if can't find any such record, 1 for success.
1863  */
1864 int                                     /* error */
1865 xfs_btree_lookup(
1866         struct xfs_btree_cur    *cur,   /* btree cursor */
1867         xfs_lookup_t            dir,    /* <=, ==, or >= */
1868         int                     *stat)  /* success/failure */
1869 {
1870         struct xfs_btree_block  *block; /* current btree block */
1871         int64_t                 diff;   /* difference for the current key */
1872         int                     error;  /* error return value */
1873         int                     keyno;  /* current key number */
1874         int                     level;  /* level in the btree */
1875         union xfs_btree_ptr     *pp;    /* ptr to btree block */
1876         union xfs_btree_ptr     ptr;    /* ptr to btree block */
1877
1878         XFS_BTREE_STATS_INC(cur, lookup);
1879
1880         /* No such thing as a zero-level tree. */
1881         if (cur->bc_nlevels == 0)
1882                 return -EFSCORRUPTED;
1883
1884         block = NULL;
1885         keyno = 0;
1886
1887         /* initialise start pointer from cursor */
1888         cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1889         pp = &ptr;
1890
1891         /*
1892          * Iterate over each level in the btree, starting at the root.
1893          * For each level above the leaves, find the key we need, based
1894          * on the lookup record, then follow the corresponding block
1895          * pointer down to the next level.
1896          */
1897         for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1898                 /* Get the block we need to do the lookup on. */
1899                 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1900                 if (error)
1901                         goto error0;
1902
1903                 if (diff == 0) {
1904                         /*
1905                          * If we already had a key match at a higher level, we
1906                          * know we need to use the first entry in this block.
1907                          */
1908                         keyno = 1;
1909                 } else {
1910                         /* Otherwise search this block. Do a binary search. */
1911
1912                         int     high;   /* high entry number */
1913                         int     low;    /* low entry number */
1914
1915                         /* Set low and high entry numbers, 1-based. */
1916                         low = 1;
1917                         high = xfs_btree_get_numrecs(block);
1918                         if (!high) {
1919                                 /* Block is empty, must be an empty leaf. */
1920                                 if (level != 0 || cur->bc_nlevels != 1) {
1921                                         XFS_CORRUPTION_ERROR(__func__,
1922                                                         XFS_ERRLEVEL_LOW,
1923                                                         cur->bc_mp, block,
1924                                                         sizeof(*block));
1925                                         return -EFSCORRUPTED;
1926                                 }
1927
1928                                 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1929                                 *stat = 0;
1930                                 return 0;
1931                         }
1932
1933                         /* Binary search the block. */
1934                         while (low <= high) {
1935                                 union xfs_btree_key     key;
1936                                 union xfs_btree_key     *kp;
1937
1938                                 XFS_BTREE_STATS_INC(cur, compare);
1939
1940                                 /* keyno is average of low and high. */
1941                                 keyno = (low + high) >> 1;
1942
1943                                 /* Get current search key */
1944                                 kp = xfs_lookup_get_search_key(cur, level,
1945                                                 keyno, block, &key);
1946
1947                                 /*
1948                                  * Compute difference to get next direction:
1949                                  *  - less than, move right
1950                                  *  - greater than, move left
1951                                  *  - equal, we're done
1952                                  */
1953                                 diff = cur->bc_ops->key_diff(cur, kp);
1954                                 if (diff < 0)
1955                                         low = keyno + 1;
1956                                 else if (diff > 0)
1957                                         high = keyno - 1;
1958                                 else
1959                                         break;
1960                         }
1961                 }
1962
1963                 /*
1964                  * If there are more levels, set up for the next level
1965                  * by getting the block number and filling in the cursor.
1966                  */
1967                 if (level > 0) {
1968                         /*
1969                          * If we moved left, need the previous key number,
1970                          * unless there isn't one.
1971                          */
1972                         if (diff > 0 && --keyno < 1)
1973                                 keyno = 1;
1974                         pp = xfs_btree_ptr_addr(cur, keyno, block);
1975
1976                         error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1977                         if (error)
1978                                 goto error0;
1979
1980                         cur->bc_ptrs[level] = keyno;
1981                 }
1982         }
1983
1984         /* Done with the search. See if we need to adjust the results. */
1985         if (dir != XFS_LOOKUP_LE && diff < 0) {
1986                 keyno++;
1987                 /*
1988                  * If ge search and we went off the end of the block, but it's
1989                  * not the last block, we're in the wrong block.
1990                  */
1991                 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1992                 if (dir == XFS_LOOKUP_GE &&
1993                     keyno > xfs_btree_get_numrecs(block) &&
1994                     !xfs_btree_ptr_is_null(cur, &ptr)) {
1995                         int     i;
1996
1997                         cur->bc_ptrs[0] = keyno;
1998                         error = xfs_btree_increment(cur, 0, &i);
1999                         if (error)
2000                                 goto error0;
2001                         XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
2002                         *stat = 1;
2003                         return 0;
2004                 }
2005         } else if (dir == XFS_LOOKUP_LE && diff > 0)
2006                 keyno--;
2007         cur->bc_ptrs[0] = keyno;
2008
2009         /* Return if we succeeded or not. */
2010         if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2011                 *stat = 0;
2012         else if (dir != XFS_LOOKUP_EQ || diff == 0)
2013                 *stat = 1;
2014         else
2015                 *stat = 0;
2016         return 0;
2017
2018 error0:
2019         return error;
2020 }
2021
2022 /* Find the high key storage area from a regular key. */
2023 union xfs_btree_key *
2024 xfs_btree_high_key_from_key(
2025         struct xfs_btree_cur    *cur,
2026         union xfs_btree_key     *key)
2027 {
2028         ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2029         return (union xfs_btree_key *)((char *)key +
2030                         (cur->bc_ops->key_len / 2));
2031 }
2032
2033 /* Determine the low (and high if overlapped) keys of a leaf block */
2034 STATIC void
2035 xfs_btree_get_leaf_keys(
2036         struct xfs_btree_cur    *cur,
2037         struct xfs_btree_block  *block,
2038         union xfs_btree_key     *key)
2039 {
2040         union xfs_btree_key     max_hkey;
2041         union xfs_btree_key     hkey;
2042         union xfs_btree_rec     *rec;
2043         union xfs_btree_key     *high;
2044         int                     n;
2045
2046         rec = xfs_btree_rec_addr(cur, 1, block);
2047         cur->bc_ops->init_key_from_rec(key, rec);
2048
2049         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2050
2051                 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2052                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2053                         rec = xfs_btree_rec_addr(cur, n, block);
2054                         cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2055                         if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2056                                         > 0)
2057                                 max_hkey = hkey;
2058                 }
2059
2060                 high = xfs_btree_high_key_from_key(cur, key);
2061                 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2062         }
2063 }
2064
2065 /* Determine the low (and high if overlapped) keys of a node block */
2066 STATIC void
2067 xfs_btree_get_node_keys(
2068         struct xfs_btree_cur    *cur,
2069         struct xfs_btree_block  *block,
2070         union xfs_btree_key     *key)
2071 {
2072         union xfs_btree_key     *hkey;
2073         union xfs_btree_key     *max_hkey;
2074         union xfs_btree_key     *high;
2075         int                     n;
2076
2077         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2078                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2079                                 cur->bc_ops->key_len / 2);
2080
2081                 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2082                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2083                         hkey = xfs_btree_high_key_addr(cur, n, block);
2084                         if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2085                                 max_hkey = hkey;
2086                 }
2087
2088                 high = xfs_btree_high_key_from_key(cur, key);
2089                 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2090         } else {
2091                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2092                                 cur->bc_ops->key_len);
2093         }
2094 }
2095
2096 /* Derive the keys for any btree block. */
2097 void
2098 xfs_btree_get_keys(
2099         struct xfs_btree_cur    *cur,
2100         struct xfs_btree_block  *block,
2101         union xfs_btree_key     *key)
2102 {
2103         if (be16_to_cpu(block->bb_level) == 0)
2104                 xfs_btree_get_leaf_keys(cur, block, key);
2105         else
2106                 xfs_btree_get_node_keys(cur, block, key);
2107 }
2108
2109 /*
2110  * Decide if we need to update the parent keys of a btree block.  For
2111  * a standard btree this is only necessary if we're updating the first
2112  * record/key.  For an overlapping btree, we must always update the
2113  * keys because the highest key can be in any of the records or keys
2114  * in the block.
2115  */
2116 static inline bool
2117 xfs_btree_needs_key_update(
2118         struct xfs_btree_cur    *cur,
2119         int                     ptr)
2120 {
2121         return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2122 }
2123
2124 /*
2125  * Update the low and high parent keys of the given level, progressing
2126  * towards the root.  If force_all is false, stop if the keys for a given
2127  * level do not need updating.
2128  */
2129 STATIC int
2130 __xfs_btree_updkeys(
2131         struct xfs_btree_cur    *cur,
2132         int                     level,
2133         struct xfs_btree_block  *block,
2134         struct xfs_buf          *bp0,
2135         bool                    force_all)
2136 {
2137         union xfs_btree_key     key;    /* keys from current level */
2138         union xfs_btree_key     *lkey;  /* keys from the next level up */
2139         union xfs_btree_key     *hkey;
2140         union xfs_btree_key     *nlkey; /* keys from the next level up */
2141         union xfs_btree_key     *nhkey;
2142         struct xfs_buf          *bp;
2143         int                     ptr;
2144
2145         ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2146
2147         /* Exit if there aren't any parent levels to update. */
2148         if (level + 1 >= cur->bc_nlevels)
2149                 return 0;
2150
2151         trace_xfs_btree_updkeys(cur, level, bp0);
2152
2153         lkey = &key;
2154         hkey = xfs_btree_high_key_from_key(cur, lkey);
2155         xfs_btree_get_keys(cur, block, lkey);
2156         for (level++; level < cur->bc_nlevels; level++) {
2157 #ifdef DEBUG
2158                 int             error;
2159 #endif
2160                 block = xfs_btree_get_block(cur, level, &bp);
2161                 trace_xfs_btree_updkeys(cur, level, bp);
2162 #ifdef DEBUG
2163                 error = xfs_btree_check_block(cur, block, level, bp);
2164                 if (error)
2165                         return error;
2166 #endif
2167                 ptr = cur->bc_ptrs[level];
2168                 nlkey = xfs_btree_key_addr(cur, ptr, block);
2169                 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2170                 if (!force_all &&
2171                     !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2172                       cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2173                         break;
2174                 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2175                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2176                 if (level + 1 >= cur->bc_nlevels)
2177                         break;
2178                 xfs_btree_get_node_keys(cur, block, lkey);
2179         }
2180
2181         return 0;
2182 }
2183
2184 /* Update all the keys from some level in cursor back to the root. */
2185 STATIC int
2186 xfs_btree_updkeys_force(
2187         struct xfs_btree_cur    *cur,
2188         int                     level)
2189 {
2190         struct xfs_buf          *bp;
2191         struct xfs_btree_block  *block;
2192
2193         block = xfs_btree_get_block(cur, level, &bp);
2194         return __xfs_btree_updkeys(cur, level, block, bp, true);
2195 }
2196
2197 /*
2198  * Update the parent keys of the given level, progressing towards the root.
2199  */
2200 STATIC int
2201 xfs_btree_update_keys(
2202         struct xfs_btree_cur    *cur,
2203         int                     level)
2204 {
2205         struct xfs_btree_block  *block;
2206         struct xfs_buf          *bp;
2207         union xfs_btree_key     *kp;
2208         union xfs_btree_key     key;
2209         int                     ptr;
2210
2211         ASSERT(level >= 0);
2212
2213         block = xfs_btree_get_block(cur, level, &bp);
2214         if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2215                 return __xfs_btree_updkeys(cur, level, block, bp, false);
2216
2217         /*
2218          * Go up the tree from this level toward the root.
2219          * At each level, update the key value to the value input.
2220          * Stop when we reach a level where the cursor isn't pointing
2221          * at the first entry in the block.
2222          */
2223         xfs_btree_get_keys(cur, block, &key);
2224         for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2225 #ifdef DEBUG
2226                 int             error;
2227 #endif
2228                 block = xfs_btree_get_block(cur, level, &bp);
2229 #ifdef DEBUG
2230                 error = xfs_btree_check_block(cur, block, level, bp);
2231                 if (error)
2232                         return error;
2233 #endif
2234                 ptr = cur->bc_ptrs[level];
2235                 kp = xfs_btree_key_addr(cur, ptr, block);
2236                 xfs_btree_copy_keys(cur, kp, &key, 1);
2237                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2238         }
2239
2240         return 0;
2241 }
2242
2243 /*
2244  * Update the record referred to by cur to the value in the
2245  * given record. This either works (return 0) or gets an
2246  * EFSCORRUPTED error.
2247  */
2248 int
2249 xfs_btree_update(
2250         struct xfs_btree_cur    *cur,
2251         union xfs_btree_rec     *rec)
2252 {
2253         struct xfs_btree_block  *block;
2254         struct xfs_buf          *bp;
2255         int                     error;
2256         int                     ptr;
2257         union xfs_btree_rec     *rp;
2258
2259         /* Pick up the current block. */
2260         block = xfs_btree_get_block(cur, 0, &bp);
2261
2262 #ifdef DEBUG
2263         error = xfs_btree_check_block(cur, block, 0, bp);
2264         if (error)
2265                 goto error0;
2266 #endif
2267         /* Get the address of the rec to be updated. */
2268         ptr = cur->bc_ptrs[0];
2269         rp = xfs_btree_rec_addr(cur, ptr, block);
2270
2271         /* Fill in the new contents and log them. */
2272         xfs_btree_copy_recs(cur, rp, rec, 1);
2273         xfs_btree_log_recs(cur, bp, ptr, ptr);
2274
2275         /*
2276          * If we are tracking the last record in the tree and
2277          * we are at the far right edge of the tree, update it.
2278          */
2279         if (xfs_btree_is_lastrec(cur, block, 0)) {
2280                 cur->bc_ops->update_lastrec(cur, block, rec,
2281                                             ptr, LASTREC_UPDATE);
2282         }
2283
2284         /* Pass new key value up to our parent. */
2285         if (xfs_btree_needs_key_update(cur, ptr)) {
2286                 error = xfs_btree_update_keys(cur, 0);
2287                 if (error)
2288                         goto error0;
2289         }
2290
2291         return 0;
2292
2293 error0:
2294         return error;
2295 }
2296
2297 /*
2298  * Move 1 record left from cur/level if possible.
2299  * Update cur to reflect the new path.
2300  */
2301 STATIC int                                      /* error */
2302 xfs_btree_lshift(
2303         struct xfs_btree_cur    *cur,
2304         int                     level,
2305         int                     *stat)          /* success/failure */
2306 {
2307         struct xfs_buf          *lbp;           /* left buffer pointer */
2308         struct xfs_btree_block  *left;          /* left btree block */
2309         int                     lrecs;          /* left record count */
2310         struct xfs_buf          *rbp;           /* right buffer pointer */
2311         struct xfs_btree_block  *right;         /* right btree block */
2312         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2313         int                     rrecs;          /* right record count */
2314         union xfs_btree_ptr     lptr;           /* left btree pointer */
2315         union xfs_btree_key     *rkp = NULL;    /* right btree key */
2316         union xfs_btree_ptr     *rpp = NULL;    /* right address pointer */
2317         union xfs_btree_rec     *rrp = NULL;    /* right record pointer */
2318         int                     error;          /* error return value */
2319         int                     i;
2320
2321         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2322             level == cur->bc_nlevels - 1)
2323                 goto out0;
2324
2325         /* Set up variables for this block as "right". */
2326         right = xfs_btree_get_block(cur, level, &rbp);
2327
2328 #ifdef DEBUG
2329         error = xfs_btree_check_block(cur, right, level, rbp);
2330         if (error)
2331                 goto error0;
2332 #endif
2333
2334         /* If we've got no left sibling then we can't shift an entry left. */
2335         xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2336         if (xfs_btree_ptr_is_null(cur, &lptr))
2337                 goto out0;
2338
2339         /*
2340          * If the cursor entry is the one that would be moved, don't
2341          * do it... it's too complicated.
2342          */
2343         if (cur->bc_ptrs[level] <= 1)
2344                 goto out0;
2345
2346         /* Set up the left neighbor as "left". */
2347         error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2348         if (error)
2349                 goto error0;
2350
2351         /* If it's full, it can't take another entry. */
2352         lrecs = xfs_btree_get_numrecs(left);
2353         if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2354                 goto out0;
2355
2356         rrecs = xfs_btree_get_numrecs(right);
2357
2358         /*
2359          * We add one entry to the left side and remove one for the right side.
2360          * Account for it here, the changes will be updated on disk and logged
2361          * later.
2362          */
2363         lrecs++;
2364         rrecs--;
2365
2366         XFS_BTREE_STATS_INC(cur, lshift);
2367         XFS_BTREE_STATS_ADD(cur, moves, 1);
2368
2369         /*
2370          * If non-leaf, copy a key and a ptr to the left block.
2371          * Log the changes to the left block.
2372          */
2373         if (level > 0) {
2374                 /* It's a non-leaf.  Move keys and pointers. */
2375                 union xfs_btree_key     *lkp;   /* left btree key */
2376                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2377
2378                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2379                 rkp = xfs_btree_key_addr(cur, 1, right);
2380
2381                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2382                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2383
2384                 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2385                 if (error)
2386                         goto error0;
2387
2388                 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2389                 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2390
2391                 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2392                 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2393
2394                 ASSERT(cur->bc_ops->keys_inorder(cur,
2395                         xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2396         } else {
2397                 /* It's a leaf.  Move records.  */
2398                 union xfs_btree_rec     *lrp;   /* left record pointer */
2399
2400                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2401                 rrp = xfs_btree_rec_addr(cur, 1, right);
2402
2403                 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2404                 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2405
2406                 ASSERT(cur->bc_ops->recs_inorder(cur,
2407                         xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2408         }
2409
2410         xfs_btree_set_numrecs(left, lrecs);
2411         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2412
2413         xfs_btree_set_numrecs(right, rrecs);
2414         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2415
2416         /*
2417          * Slide the contents of right down one entry.
2418          */
2419         XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2420         if (level > 0) {
2421                 /* It's a nonleaf. operate on keys and ptrs */
2422                 int                     i;              /* loop index */
2423
2424                 for (i = 0; i < rrecs; i++) {
2425                         error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2426                         if (error)
2427                                 goto error0;
2428                 }
2429
2430                 xfs_btree_shift_keys(cur,
2431                                 xfs_btree_key_addr(cur, 2, right),
2432                                 -1, rrecs);
2433                 xfs_btree_shift_ptrs(cur,
2434                                 xfs_btree_ptr_addr(cur, 2, right),
2435                                 -1, rrecs);
2436
2437                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2438                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2439         } else {
2440                 /* It's a leaf. operate on records */
2441                 xfs_btree_shift_recs(cur,
2442                         xfs_btree_rec_addr(cur, 2, right),
2443                         -1, rrecs);
2444                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2445         }
2446
2447         /*
2448          * Using a temporary cursor, update the parent key values of the
2449          * block on the left.
2450          */
2451         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2452                 error = xfs_btree_dup_cursor(cur, &tcur);
2453                 if (error)
2454                         goto error0;
2455                 i = xfs_btree_firstrec(tcur, level);
2456                 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2457
2458                 error = xfs_btree_decrement(tcur, level, &i);
2459                 if (error)
2460                         goto error1;
2461
2462                 /* Update the parent high keys of the left block, if needed. */
2463                 error = xfs_btree_update_keys(tcur, level);
2464                 if (error)
2465                         goto error1;
2466
2467                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2468         }
2469
2470         /* Update the parent keys of the right block. */
2471         error = xfs_btree_update_keys(cur, level);
2472         if (error)
2473                 goto error0;
2474
2475         /* Slide the cursor value left one. */
2476         cur->bc_ptrs[level]--;
2477
2478         *stat = 1;
2479         return 0;
2480
2481 out0:
2482         *stat = 0;
2483         return 0;
2484
2485 error0:
2486         return error;
2487
2488 error1:
2489         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2490         return error;
2491 }
2492
2493 /*
2494  * Move 1 record right from cur/level if possible.
2495  * Update cur to reflect the new path.
2496  */
2497 STATIC int                                      /* error */
2498 xfs_btree_rshift(
2499         struct xfs_btree_cur    *cur,
2500         int                     level,
2501         int                     *stat)          /* success/failure */
2502 {
2503         struct xfs_buf          *lbp;           /* left buffer pointer */
2504         struct xfs_btree_block  *left;          /* left btree block */
2505         struct xfs_buf          *rbp;           /* right buffer pointer */
2506         struct xfs_btree_block  *right;         /* right btree block */
2507         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2508         union xfs_btree_ptr     rptr;           /* right block pointer */
2509         union xfs_btree_key     *rkp;           /* right btree key */
2510         int                     rrecs;          /* right record count */
2511         int                     lrecs;          /* left record count */
2512         int                     error;          /* error return value */
2513         int                     i;              /* loop counter */
2514
2515         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2516             (level == cur->bc_nlevels - 1))
2517                 goto out0;
2518
2519         /* Set up variables for this block as "left". */
2520         left = xfs_btree_get_block(cur, level, &lbp);
2521
2522 #ifdef DEBUG
2523         error = xfs_btree_check_block(cur, left, level, lbp);
2524         if (error)
2525                 goto error0;
2526 #endif
2527
2528         /* If we've got no right sibling then we can't shift an entry right. */
2529         xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2530         if (xfs_btree_ptr_is_null(cur, &rptr))
2531                 goto out0;
2532
2533         /*
2534          * If the cursor entry is the one that would be moved, don't
2535          * do it... it's too complicated.
2536          */
2537         lrecs = xfs_btree_get_numrecs(left);
2538         if (cur->bc_ptrs[level] >= lrecs)
2539                 goto out0;
2540
2541         /* Set up the right neighbor as "right". */
2542         error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2543         if (error)
2544                 goto error0;
2545
2546         /* If it's full, it can't take another entry. */
2547         rrecs = xfs_btree_get_numrecs(right);
2548         if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2549                 goto out0;
2550
2551         XFS_BTREE_STATS_INC(cur, rshift);
2552         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2553
2554         /*
2555          * Make a hole at the start of the right neighbor block, then
2556          * copy the last left block entry to the hole.
2557          */
2558         if (level > 0) {
2559                 /* It's a nonleaf. make a hole in the keys and ptrs */
2560                 union xfs_btree_key     *lkp;
2561                 union xfs_btree_ptr     *lpp;
2562                 union xfs_btree_ptr     *rpp;
2563
2564                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2565                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2566                 rkp = xfs_btree_key_addr(cur, 1, right);
2567                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2568
2569                 for (i = rrecs - 1; i >= 0; i--) {
2570                         error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2571                         if (error)
2572                                 goto error0;
2573                 }
2574
2575                 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2576                 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2577
2578                 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2579                 if (error)
2580                         goto error0;
2581
2582                 /* Now put the new data in, and log it. */
2583                 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2584                 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2585
2586                 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2587                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2588
2589                 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2590                         xfs_btree_key_addr(cur, 2, right)));
2591         } else {
2592                 /* It's a leaf. make a hole in the records */
2593                 union xfs_btree_rec     *lrp;
2594                 union xfs_btree_rec     *rrp;
2595
2596                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2597                 rrp = xfs_btree_rec_addr(cur, 1, right);
2598
2599                 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2600
2601                 /* Now put the new data in, and log it. */
2602                 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2603                 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2604         }
2605
2606         /*
2607          * Decrement and log left's numrecs, bump and log right's numrecs.
2608          */
2609         xfs_btree_set_numrecs(left, --lrecs);
2610         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2611
2612         xfs_btree_set_numrecs(right, ++rrecs);
2613         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2614
2615         /*
2616          * Using a temporary cursor, update the parent key values of the
2617          * block on the right.
2618          */
2619         error = xfs_btree_dup_cursor(cur, &tcur);
2620         if (error)
2621                 goto error0;
2622         i = xfs_btree_lastrec(tcur, level);
2623         XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2624
2625         error = xfs_btree_increment(tcur, level, &i);
2626         if (error)
2627                 goto error1;
2628
2629         /* Update the parent high keys of the left block, if needed. */
2630         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2631                 error = xfs_btree_update_keys(cur, level);
2632                 if (error)
2633                         goto error1;
2634         }
2635
2636         /* Update the parent keys of the right block. */
2637         error = xfs_btree_update_keys(tcur, level);
2638         if (error)
2639                 goto error1;
2640
2641         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2642
2643         *stat = 1;
2644         return 0;
2645
2646 out0:
2647         *stat = 0;
2648         return 0;
2649
2650 error0:
2651         return error;
2652
2653 error1:
2654         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2655         return error;
2656 }
2657
2658 /*
2659  * Split cur/level block in half.
2660  * Return new block number and the key to its first
2661  * record (to be inserted into parent).
2662  */
2663 STATIC int                                      /* error */
2664 __xfs_btree_split(
2665         struct xfs_btree_cur    *cur,
2666         int                     level,
2667         union xfs_btree_ptr     *ptrp,
2668         union xfs_btree_key     *key,
2669         struct xfs_btree_cur    **curp,
2670         int                     *stat)          /* success/failure */
2671 {
2672         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
2673         struct xfs_buf          *lbp;           /* left buffer pointer */
2674         struct xfs_btree_block  *left;          /* left btree block */
2675         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
2676         struct xfs_buf          *rbp;           /* right buffer pointer */
2677         struct xfs_btree_block  *right;         /* right btree block */
2678         union xfs_btree_ptr     rrptr;          /* right-right sibling ptr */
2679         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
2680         struct xfs_btree_block  *rrblock;       /* right-right btree block */
2681         int                     lrecs;
2682         int                     rrecs;
2683         int                     src_index;
2684         int                     error;          /* error return value */
2685         int                     i;
2686
2687         XFS_BTREE_STATS_INC(cur, split);
2688
2689         /* Set up left block (current one). */
2690         left = xfs_btree_get_block(cur, level, &lbp);
2691
2692 #ifdef DEBUG
2693         error = xfs_btree_check_block(cur, left, level, lbp);
2694         if (error)
2695                 goto error0;
2696 #endif
2697
2698         xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2699
2700         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2701         error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2702         if (error)
2703                 goto error0;
2704         if (*stat == 0)
2705                 goto out0;
2706         XFS_BTREE_STATS_INC(cur, alloc);
2707
2708         /* Set up the new block as "right". */
2709         error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2710         if (error)
2711                 goto error0;
2712
2713         /* Fill in the btree header for the new right block. */
2714         xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2715
2716         /*
2717          * Split the entries between the old and the new block evenly.
2718          * Make sure that if there's an odd number of entries now, that
2719          * each new block will have the same number of entries.
2720          */
2721         lrecs = xfs_btree_get_numrecs(left);
2722         rrecs = lrecs / 2;
2723         if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2724                 rrecs++;
2725         src_index = (lrecs - rrecs + 1);
2726
2727         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2728
2729         /* Adjust numrecs for the later get_*_keys() calls. */
2730         lrecs -= rrecs;
2731         xfs_btree_set_numrecs(left, lrecs);
2732         xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2733
2734         /*
2735          * Copy btree block entries from the left block over to the
2736          * new block, the right. Update the right block and log the
2737          * changes.
2738          */
2739         if (level > 0) {
2740                 /* It's a non-leaf.  Move keys and pointers. */
2741                 union xfs_btree_key     *lkp;   /* left btree key */
2742                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2743                 union xfs_btree_key     *rkp;   /* right btree key */
2744                 union xfs_btree_ptr     *rpp;   /* right address pointer */
2745
2746                 lkp = xfs_btree_key_addr(cur, src_index, left);
2747                 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2748                 rkp = xfs_btree_key_addr(cur, 1, right);
2749                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2750
2751                 for (i = src_index; i < rrecs; i++) {
2752                         error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2753                         if (error)
2754                                 goto error0;
2755                 }
2756
2757                 /* Copy the keys & pointers to the new block. */
2758                 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2759                 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2760
2761                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2762                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2763
2764                 /* Stash the keys of the new block for later insertion. */
2765                 xfs_btree_get_node_keys(cur, right, key);
2766         } else {
2767                 /* It's a leaf.  Move records.  */
2768                 union xfs_btree_rec     *lrp;   /* left record pointer */
2769                 union xfs_btree_rec     *rrp;   /* right record pointer */
2770
2771                 lrp = xfs_btree_rec_addr(cur, src_index, left);
2772                 rrp = xfs_btree_rec_addr(cur, 1, right);
2773
2774                 /* Copy records to the new block. */
2775                 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2776                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2777
2778                 /* Stash the keys of the new block for later insertion. */
2779                 xfs_btree_get_leaf_keys(cur, right, key);
2780         }
2781
2782         /*
2783          * Find the left block number by looking in the buffer.
2784          * Adjust sibling pointers.
2785          */
2786         xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2787         xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2788         xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2789         xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2790
2791         xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2792         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2793
2794         /*
2795          * If there's a block to the new block's right, make that block
2796          * point back to right instead of to left.
2797          */
2798         if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2799                 error = xfs_btree_read_buf_block(cur, &rrptr,
2800                                                         0, &rrblock, &rrbp);
2801                 if (error)
2802                         goto error0;
2803                 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2804                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2805         }
2806
2807         /* Update the parent high keys of the left block, if needed. */
2808         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2809                 error = xfs_btree_update_keys(cur, level);
2810                 if (error)
2811                         goto error0;
2812         }
2813
2814         /*
2815          * If the cursor is really in the right block, move it there.
2816          * If it's just pointing past the last entry in left, then we'll
2817          * insert there, so don't change anything in that case.
2818          */
2819         if (cur->bc_ptrs[level] > lrecs + 1) {
2820                 xfs_btree_setbuf(cur, level, rbp);
2821                 cur->bc_ptrs[level] -= lrecs;
2822         }
2823         /*
2824          * If there are more levels, we'll need another cursor which refers
2825          * the right block, no matter where this cursor was.
2826          */
2827         if (level + 1 < cur->bc_nlevels) {
2828                 error = xfs_btree_dup_cursor(cur, curp);
2829                 if (error)
2830                         goto error0;
2831                 (*curp)->bc_ptrs[level + 1]++;
2832         }
2833         *ptrp = rptr;
2834         *stat = 1;
2835         return 0;
2836 out0:
2837         *stat = 0;
2838         return 0;
2839
2840 error0:
2841         return error;
2842 }
2843
2844 struct xfs_btree_split_args {
2845         struct xfs_btree_cur    *cur;
2846         int                     level;
2847         union xfs_btree_ptr     *ptrp;
2848         union xfs_btree_key     *key;
2849         struct xfs_btree_cur    **curp;
2850         int                     *stat;          /* success/failure */
2851         int                     result;
2852         bool                    kswapd; /* allocation in kswapd context */
2853         struct completion       *done;
2854         struct work_struct      work;
2855 };
2856
2857 /*
2858  * Stack switching interfaces for allocation
2859  */
2860 static void
2861 xfs_btree_split_worker(
2862         struct work_struct      *work)
2863 {
2864         struct xfs_btree_split_args     *args = container_of(work,
2865                                                 struct xfs_btree_split_args, work);
2866         unsigned long           pflags;
2867         unsigned long           new_pflags = PF_MEMALLOC_NOFS;
2868
2869         /*
2870          * we are in a transaction context here, but may also be doing work
2871          * in kswapd context, and hence we may need to inherit that state
2872          * temporarily to ensure that we don't block waiting for memory reclaim
2873          * in any way.
2874          */
2875         if (args->kswapd)
2876                 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2877
2878         current_set_flags_nested(&pflags, new_pflags);
2879
2880         args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2881                                          args->key, args->curp, args->stat);
2882         complete(args->done);
2883
2884         current_restore_flags_nested(&pflags, new_pflags);
2885 }
2886
2887 /*
2888  * BMBT split requests often come in with little stack to work on. Push
2889  * them off to a worker thread so there is lots of stack to use. For the other
2890  * btree types, just call directly to avoid the context switch overhead here.
2891  */
2892 STATIC int                                      /* error */
2893 xfs_btree_split(
2894         struct xfs_btree_cur    *cur,
2895         int                     level,
2896         union xfs_btree_ptr     *ptrp,
2897         union xfs_btree_key     *key,
2898         struct xfs_btree_cur    **curp,
2899         int                     *stat)          /* success/failure */
2900 {
2901         struct xfs_btree_split_args     args;
2902         DECLARE_COMPLETION_ONSTACK(done);
2903
2904         if (cur->bc_btnum != XFS_BTNUM_BMAP)
2905                 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2906
2907         args.cur = cur;
2908         args.level = level;
2909         args.ptrp = ptrp;
2910         args.key = key;
2911         args.curp = curp;
2912         args.stat = stat;
2913         args.done = &done;
2914         args.kswapd = current_is_kswapd();
2915         INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2916         queue_work(xfs_alloc_wq, &args.work);
2917         wait_for_completion(&done);
2918         destroy_work_on_stack(&args.work);
2919         return args.result;
2920 }
2921
2922
2923 /*
2924  * Copy the old inode root contents into a real block and make the
2925  * broot point to it.
2926  */
2927 int                                             /* error */
2928 xfs_btree_new_iroot(
2929         struct xfs_btree_cur    *cur,           /* btree cursor */
2930         int                     *logflags,      /* logging flags for inode */
2931         int                     *stat)          /* return status - 0 fail */
2932 {
2933         struct xfs_buf          *cbp;           /* buffer for cblock */
2934         struct xfs_btree_block  *block;         /* btree block */
2935         struct xfs_btree_block  *cblock;        /* child btree block */
2936         union xfs_btree_key     *ckp;           /* child key pointer */
2937         union xfs_btree_ptr     *cpp;           /* child ptr pointer */
2938         union xfs_btree_key     *kp;            /* pointer to btree key */
2939         union xfs_btree_ptr     *pp;            /* pointer to block addr */
2940         union xfs_btree_ptr     nptr;           /* new block addr */
2941         int                     level;          /* btree level */
2942         int                     error;          /* error return code */
2943         int                     i;              /* loop counter */
2944
2945         XFS_BTREE_STATS_INC(cur, newroot);
2946
2947         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2948
2949         level = cur->bc_nlevels - 1;
2950
2951         block = xfs_btree_get_iroot(cur);
2952         pp = xfs_btree_ptr_addr(cur, 1, block);
2953
2954         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2955         error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2956         if (error)
2957                 goto error0;
2958         if (*stat == 0)
2959                 return 0;
2960
2961         XFS_BTREE_STATS_INC(cur, alloc);
2962
2963         /* Copy the root into a real block. */
2964         error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2965         if (error)
2966                 goto error0;
2967
2968         /*
2969          * we can't just memcpy() the root in for CRC enabled btree blocks.
2970          * In that case have to also ensure the blkno remains correct
2971          */
2972         memcpy(cblock, block, xfs_btree_block_len(cur));
2973         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2974                 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2975                         cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2976                 else
2977                         cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2978         }
2979
2980         be16_add_cpu(&block->bb_level, 1);
2981         xfs_btree_set_numrecs(block, 1);
2982         cur->bc_nlevels++;
2983         cur->bc_ptrs[level + 1] = 1;
2984
2985         kp = xfs_btree_key_addr(cur, 1, block);
2986         ckp = xfs_btree_key_addr(cur, 1, cblock);
2987         xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2988
2989         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2990         for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2991                 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2992                 if (error)
2993                         goto error0;
2994         }
2995
2996         xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2997
2998         error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2999         if (error)
3000                 goto error0;
3001
3002         xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3003
3004         xfs_iroot_realloc(cur->bc_private.b.ip,
3005                           1 - xfs_btree_get_numrecs(cblock),
3006                           cur->bc_private.b.whichfork);
3007
3008         xfs_btree_setbuf(cur, level, cbp);
3009
3010         /*
3011          * Do all this logging at the end so that
3012          * the root is at the right level.
3013          */
3014         xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3015         xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3016         xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3017
3018         *logflags |=
3019                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3020         *stat = 1;
3021         return 0;
3022 error0:
3023         return error;
3024 }
3025
3026 /*
3027  * Allocate a new root block, fill it in.
3028  */
3029 STATIC int                              /* error */
3030 xfs_btree_new_root(
3031         struct xfs_btree_cur    *cur,   /* btree cursor */
3032         int                     *stat)  /* success/failure */
3033 {
3034         struct xfs_btree_block  *block; /* one half of the old root block */
3035         struct xfs_buf          *bp;    /* buffer containing block */
3036         int                     error;  /* error return value */
3037         struct xfs_buf          *lbp;   /* left buffer pointer */
3038         struct xfs_btree_block  *left;  /* left btree block */
3039         struct xfs_buf          *nbp;   /* new (root) buffer */
3040         struct xfs_btree_block  *new;   /* new (root) btree block */
3041         int                     nptr;   /* new value for key index, 1 or 2 */
3042         struct xfs_buf          *rbp;   /* right buffer pointer */
3043         struct xfs_btree_block  *right; /* right btree block */
3044         union xfs_btree_ptr     rptr;
3045         union xfs_btree_ptr     lptr;
3046
3047         XFS_BTREE_STATS_INC(cur, newroot);
3048
3049         /* initialise our start point from the cursor */
3050         cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3051
3052         /* Allocate the new block. If we can't do it, we're toast. Give up. */
3053         error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3054         if (error)
3055                 goto error0;
3056         if (*stat == 0)
3057                 goto out0;
3058         XFS_BTREE_STATS_INC(cur, alloc);
3059
3060         /* Set up the new block. */
3061         error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3062         if (error)
3063                 goto error0;
3064
3065         /* Set the root in the holding structure  increasing the level by 1. */
3066         cur->bc_ops->set_root(cur, &lptr, 1);
3067
3068         /*
3069          * At the previous root level there are now two blocks: the old root,
3070          * and the new block generated when it was split.  We don't know which
3071          * one the cursor is pointing at, so we set up variables "left" and
3072          * "right" for each case.
3073          */
3074         block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3075
3076 #ifdef DEBUG
3077         error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3078         if (error)
3079                 goto error0;
3080 #endif
3081
3082         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3083         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3084                 /* Our block is left, pick up the right block. */
3085                 lbp = bp;
3086                 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3087                 left = block;
3088                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3089                 if (error)
3090                         goto error0;
3091                 bp = rbp;
3092                 nptr = 1;
3093         } else {
3094                 /* Our block is right, pick up the left block. */
3095                 rbp = bp;
3096                 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3097                 right = block;
3098                 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3099                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3100                 if (error)
3101                         goto error0;
3102                 bp = lbp;
3103                 nptr = 2;
3104         }
3105
3106         /* Fill in the new block's btree header and log it. */
3107         xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3108         xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3109         ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3110                         !xfs_btree_ptr_is_null(cur, &rptr));
3111
3112         /* Fill in the key data in the new root. */
3113         if (xfs_btree_get_level(left) > 0) {
3114                 /*
3115                  * Get the keys for the left block's keys and put them directly
3116                  * in the parent block.  Do the same for the right block.
3117                  */
3118                 xfs_btree_get_node_keys(cur, left,
3119                                 xfs_btree_key_addr(cur, 1, new));
3120                 xfs_btree_get_node_keys(cur, right,
3121                                 xfs_btree_key_addr(cur, 2, new));
3122         } else {
3123                 /*
3124                  * Get the keys for the left block's records and put them
3125                  * directly in the parent block.  Do the same for the right
3126                  * block.
3127                  */
3128                 xfs_btree_get_leaf_keys(cur, left,
3129                         xfs_btree_key_addr(cur, 1, new));
3130                 xfs_btree_get_leaf_keys(cur, right,
3131                         xfs_btree_key_addr(cur, 2, new));
3132         }
3133         xfs_btree_log_keys(cur, nbp, 1, 2);
3134
3135         /* Fill in the pointer data in the new root. */
3136         xfs_btree_copy_ptrs(cur,
3137                 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3138         xfs_btree_copy_ptrs(cur,
3139                 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3140         xfs_btree_log_ptrs(cur, nbp, 1, 2);
3141
3142         /* Fix up the cursor. */
3143         xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3144         cur->bc_ptrs[cur->bc_nlevels] = nptr;
3145         cur->bc_nlevels++;
3146         *stat = 1;
3147         return 0;
3148 error0:
3149         return error;
3150 out0:
3151         *stat = 0;
3152         return 0;
3153 }
3154
3155 STATIC int
3156 xfs_btree_make_block_unfull(
3157         struct xfs_btree_cur    *cur,   /* btree cursor */
3158         int                     level,  /* btree level */
3159         int                     numrecs,/* # of recs in block */
3160         int                     *oindex,/* old tree index */
3161         int                     *index, /* new tree index */
3162         union xfs_btree_ptr     *nptr,  /* new btree ptr */
3163         struct xfs_btree_cur    **ncur, /* new btree cursor */
3164         union xfs_btree_key     *key,   /* key of new block */
3165         int                     *stat)
3166 {
3167         int                     error = 0;
3168
3169         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3170             level == cur->bc_nlevels - 1) {
3171                 struct xfs_inode *ip = cur->bc_private.b.ip;
3172
3173                 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3174                         /* A root block that can be made bigger. */
3175                         xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3176                         *stat = 1;
3177                 } else {
3178                         /* A root block that needs replacing */
3179                         int     logflags = 0;
3180
3181                         error = xfs_btree_new_iroot(cur, &logflags, stat);
3182                         if (error || *stat == 0)
3183                                 return error;
3184
3185                         xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3186                 }
3187
3188                 return 0;
3189         }
3190
3191         /* First, try shifting an entry to the right neighbor. */
3192         error = xfs_btree_rshift(cur, level, stat);
3193         if (error || *stat)
3194                 return error;
3195
3196         /* Next, try shifting an entry to the left neighbor. */
3197         error = xfs_btree_lshift(cur, level, stat);
3198         if (error)
3199                 return error;
3200
3201         if (*stat) {
3202                 *oindex = *index = cur->bc_ptrs[level];
3203                 return 0;
3204         }
3205
3206         /*
3207          * Next, try splitting the current block in half.
3208          *
3209          * If this works we have to re-set our variables because we
3210          * could be in a different block now.
3211          */
3212         error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3213         if (error || *stat == 0)
3214                 return error;
3215
3216
3217         *index = cur->bc_ptrs[level];
3218         return 0;
3219 }
3220
3221 /*
3222  * Insert one record/level.  Return information to the caller
3223  * allowing the next level up to proceed if necessary.
3224  */
3225 STATIC int
3226 xfs_btree_insrec(
3227         struct xfs_btree_cur    *cur,   /* btree cursor */
3228         int                     level,  /* level to insert record at */
3229         union xfs_btree_ptr     *ptrp,  /* i/o: block number inserted */
3230         union xfs_btree_rec     *rec,   /* record to insert */
3231         union xfs_btree_key     *key,   /* i/o: block key for ptrp */
3232         struct xfs_btree_cur    **curp, /* output: new cursor replacing cur */
3233         int                     *stat)  /* success/failure */
3234 {
3235         struct xfs_btree_block  *block; /* btree block */
3236         struct xfs_buf          *bp;    /* buffer for block */
3237         union xfs_btree_ptr     nptr;   /* new block ptr */
3238         struct xfs_btree_cur    *ncur;  /* new btree cursor */
3239         union xfs_btree_key     nkey;   /* new block key */
3240         union xfs_btree_key     *lkey;
3241         int                     optr;   /* old key/record index */
3242         int                     ptr;    /* key/record index */
3243         int                     numrecs;/* number of records */
3244         int                     error;  /* error return value */
3245         int                     i;
3246         xfs_daddr_t             old_bn;
3247
3248         ncur = NULL;
3249         lkey = &nkey;
3250
3251         /*
3252          * If we have an external root pointer, and we've made it to the
3253          * root level, allocate a new root block and we're done.
3254          */
3255         if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3256             (level >= cur->bc_nlevels)) {
3257                 error = xfs_btree_new_root(cur, stat);
3258                 xfs_btree_set_ptr_null(cur, ptrp);
3259
3260                 return error;
3261         }
3262
3263         /* If we're off the left edge, return failure. */
3264         ptr = cur->bc_ptrs[level];
3265         if (ptr == 0) {
3266                 *stat = 0;
3267                 return 0;
3268         }
3269
3270         optr = ptr;
3271
3272         XFS_BTREE_STATS_INC(cur, insrec);
3273
3274         /* Get pointers to the btree buffer and block. */
3275         block = xfs_btree_get_block(cur, level, &bp);
3276         old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3277         numrecs = xfs_btree_get_numrecs(block);
3278
3279 #ifdef DEBUG
3280         error = xfs_btree_check_block(cur, block, level, bp);
3281         if (error)
3282                 goto error0;
3283
3284         /* Check that the new entry is being inserted in the right place. */
3285         if (ptr <= numrecs) {
3286                 if (level == 0) {
3287                         ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3288                                 xfs_btree_rec_addr(cur, ptr, block)));
3289                 } else {
3290                         ASSERT(cur->bc_ops->keys_inorder(cur, key,
3291                                 xfs_btree_key_addr(cur, ptr, block)));
3292                 }
3293         }
3294 #endif
3295
3296         /*
3297          * If the block is full, we can't insert the new entry until we
3298          * make the block un-full.
3299          */
3300         xfs_btree_set_ptr_null(cur, &nptr);
3301         if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3302                 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3303                                         &optr, &ptr, &nptr, &ncur, lkey, stat);
3304                 if (error || *stat == 0)
3305                         goto error0;
3306         }
3307
3308         /*
3309          * The current block may have changed if the block was
3310          * previously full and we have just made space in it.
3311          */
3312         block = xfs_btree_get_block(cur, level, &bp);
3313         numrecs = xfs_btree_get_numrecs(block);
3314
3315 #ifdef DEBUG
3316         error = xfs_btree_check_block(cur, block, level, bp);
3317         if (error)
3318                 return error;
3319 #endif
3320
3321         /*
3322          * At this point we know there's room for our new entry in the block
3323          * we're pointing at.
3324          */
3325         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3326
3327         if (level > 0) {
3328                 /* It's a nonleaf. make a hole in the keys and ptrs */
3329                 union xfs_btree_key     *kp;
3330                 union xfs_btree_ptr     *pp;
3331
3332                 kp = xfs_btree_key_addr(cur, ptr, block);
3333                 pp = xfs_btree_ptr_addr(cur, ptr, block);
3334
3335                 for (i = numrecs - ptr; i >= 0; i--) {
3336                         error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3337                         if (error)
3338                                 return error;
3339                 }
3340
3341                 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3342                 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3343
3344                 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3345                 if (error)
3346                         goto error0;
3347
3348                 /* Now put the new data in, bump numrecs and log it. */
3349                 xfs_btree_copy_keys(cur, kp, key, 1);
3350                 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3351                 numrecs++;
3352                 xfs_btree_set_numrecs(block, numrecs);
3353                 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3354                 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3355 #ifdef DEBUG
3356                 if (ptr < numrecs) {
3357                         ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3358                                 xfs_btree_key_addr(cur, ptr + 1, block)));
3359                 }
3360 #endif
3361         } else {
3362                 /* It's a leaf. make a hole in the records */
3363                 union xfs_btree_rec             *rp;
3364
3365                 rp = xfs_btree_rec_addr(cur, ptr, block);
3366
3367                 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3368
3369                 /* Now put the new data in, bump numrecs and log it. */
3370                 xfs_btree_copy_recs(cur, rp, rec, 1);
3371                 xfs_btree_set_numrecs(block, ++numrecs);
3372                 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3373 #ifdef DEBUG
3374                 if (ptr < numrecs) {
3375                         ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3376                                 xfs_btree_rec_addr(cur, ptr + 1, block)));
3377                 }
3378 #endif
3379         }
3380
3381         /* Log the new number of records in the btree header. */
3382         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3383
3384         /*
3385          * If we just inserted into a new tree block, we have to
3386          * recalculate nkey here because nkey is out of date.
3387          *
3388          * Otherwise we're just updating an existing block (having shoved
3389          * some records into the new tree block), so use the regular key
3390          * update mechanism.
3391          */
3392         if (bp && bp->b_bn != old_bn) {
3393                 xfs_btree_get_keys(cur, block, lkey);
3394         } else if (xfs_btree_needs_key_update(cur, optr)) {
3395                 error = xfs_btree_update_keys(cur, level);
3396                 if (error)
3397                         goto error0;
3398         }
3399
3400         /*
3401          * If we are tracking the last record in the tree and
3402          * we are at the far right edge of the tree, update it.
3403          */
3404         if (xfs_btree_is_lastrec(cur, block, level)) {
3405                 cur->bc_ops->update_lastrec(cur, block, rec,
3406                                             ptr, LASTREC_INSREC);
3407         }
3408
3409         /*
3410          * Return the new block number, if any.
3411          * If there is one, give back a record value and a cursor too.
3412          */
3413         *ptrp = nptr;
3414         if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3415                 xfs_btree_copy_keys(cur, key, lkey, 1);
3416                 *curp = ncur;
3417         }
3418
3419         *stat = 1;
3420         return 0;
3421
3422 error0:
3423         return error;
3424 }
3425
3426 /*
3427  * Insert the record at the point referenced by cur.
3428  *
3429  * A multi-level split of the tree on insert will invalidate the original
3430  * cursor.  All callers of this function should assume that the cursor is
3431  * no longer valid and revalidate it.
3432  */
3433 int
3434 xfs_btree_insert(
3435         struct xfs_btree_cur    *cur,
3436         int                     *stat)
3437 {
3438         int                     error;  /* error return value */
3439         int                     i;      /* result value, 0 for failure */
3440         int                     level;  /* current level number in btree */
3441         union xfs_btree_ptr     nptr;   /* new block number (split result) */
3442         struct xfs_btree_cur    *ncur;  /* new cursor (split result) */
3443         struct xfs_btree_cur    *pcur;  /* previous level's cursor */
3444         union xfs_btree_key     bkey;   /* key of block to insert */
3445         union xfs_btree_key     *key;
3446         union xfs_btree_rec     rec;    /* record to insert */
3447
3448         level = 0;
3449         ncur = NULL;
3450         pcur = cur;
3451         key = &bkey;
3452
3453         xfs_btree_set_ptr_null(cur, &nptr);
3454
3455         /* Make a key out of the record data to be inserted, and save it. */
3456         cur->bc_ops->init_rec_from_cur(cur, &rec);
3457         cur->bc_ops->init_key_from_rec(key, &rec);
3458
3459         /*
3460          * Loop going up the tree, starting at the leaf level.
3461          * Stop when we don't get a split block, that must mean that
3462          * the insert is finished with this level.
3463          */
3464         do {
3465                 /*
3466                  * Insert nrec/nptr into this level of the tree.
3467                  * Note if we fail, nptr will be null.
3468                  */
3469                 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3470                                 &ncur, &i);
3471                 if (error) {
3472                         if (pcur != cur)
3473                                 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3474                         goto error0;
3475                 }
3476
3477                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3478                 level++;
3479
3480                 /*
3481                  * See if the cursor we just used is trash.
3482                  * Can't trash the caller's cursor, but otherwise we should
3483                  * if ncur is a new cursor or we're about to be done.
3484                  */
3485                 if (pcur != cur &&
3486                     (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3487                         /* Save the state from the cursor before we trash it */
3488                         if (cur->bc_ops->update_cursor)
3489                                 cur->bc_ops->update_cursor(pcur, cur);
3490                         cur->bc_nlevels = pcur->bc_nlevels;
3491                         xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3492                 }
3493                 /* If we got a new cursor, switch to it. */
3494                 if (ncur) {
3495                         pcur = ncur;
3496                         ncur = NULL;
3497                 }
3498         } while (!xfs_btree_ptr_is_null(cur, &nptr));
3499
3500         *stat = i;
3501         return 0;
3502 error0:
3503         return error;
3504 }
3505
3506 /*
3507  * Try to merge a non-leaf block back into the inode root.
3508  *
3509  * Note: the killroot names comes from the fact that we're effectively
3510  * killing the old root block.  But because we can't just delete the
3511  * inode we have to copy the single block it was pointing to into the
3512  * inode.
3513  */
3514 STATIC int
3515 xfs_btree_kill_iroot(
3516         struct xfs_btree_cur    *cur)
3517 {
3518         int                     whichfork = cur->bc_private.b.whichfork;
3519         struct xfs_inode        *ip = cur->bc_private.b.ip;
3520         struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, whichfork);
3521         struct xfs_btree_block  *block;
3522         struct xfs_btree_block  *cblock;
3523         union xfs_btree_key     *kp;
3524         union xfs_btree_key     *ckp;
3525         union xfs_btree_ptr     *pp;
3526         union xfs_btree_ptr     *cpp;
3527         struct xfs_buf          *cbp;
3528         int                     level;
3529         int                     index;
3530         int                     numrecs;
3531         int                     error;
3532 #ifdef DEBUG
3533         union xfs_btree_ptr     ptr;
3534 #endif
3535         int                     i;
3536
3537         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3538         ASSERT(cur->bc_nlevels > 1);
3539
3540         /*
3541          * Don't deal with the root block needs to be a leaf case.
3542          * We're just going to turn the thing back into extents anyway.
3543          */
3544         level = cur->bc_nlevels - 1;
3545         if (level == 1)
3546                 goto out0;
3547
3548         /*
3549          * Give up if the root has multiple children.
3550          */
3551         block = xfs_btree_get_iroot(cur);
3552         if (xfs_btree_get_numrecs(block) != 1)
3553                 goto out0;
3554
3555         cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3556         numrecs = xfs_btree_get_numrecs(cblock);
3557
3558         /*
3559          * Only do this if the next level will fit.
3560          * Then the data must be copied up to the inode,
3561          * instead of freeing the root you free the next level.
3562          */
3563         if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3564                 goto out0;
3565
3566         XFS_BTREE_STATS_INC(cur, killroot);
3567
3568 #ifdef DEBUG
3569         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3570         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3571         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3572         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3573 #endif
3574
3575         index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3576         if (index) {
3577                 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3578                                   cur->bc_private.b.whichfork);
3579                 block = ifp->if_broot;
3580         }
3581
3582         be16_add_cpu(&block->bb_numrecs, index);
3583         ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3584
3585         kp = xfs_btree_key_addr(cur, 1, block);
3586         ckp = xfs_btree_key_addr(cur, 1, cblock);
3587         xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3588
3589         pp = xfs_btree_ptr_addr(cur, 1, block);
3590         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3591
3592         for (i = 0; i < numrecs; i++) {
3593                 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3594                 if (error)
3595                         return error;
3596         }
3597
3598         xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3599
3600         error = xfs_btree_free_block(cur, cbp);
3601         if (error)
3602                 return error;
3603
3604         cur->bc_bufs[level - 1] = NULL;
3605         be16_add_cpu(&block->bb_level, -1);
3606         xfs_trans_log_inode(cur->bc_tp, ip,
3607                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3608         cur->bc_nlevels--;
3609 out0:
3610         return 0;
3611 }
3612
3613 /*
3614  * Kill the current root node, and replace it with it's only child node.
3615  */
3616 STATIC int
3617 xfs_btree_kill_root(
3618         struct xfs_btree_cur    *cur,
3619         struct xfs_buf          *bp,
3620         int                     level,
3621         union xfs_btree_ptr     *newroot)
3622 {
3623         int                     error;
3624
3625         XFS_BTREE_STATS_INC(cur, killroot);
3626
3627         /*
3628          * Update the root pointer, decreasing the level by 1 and then
3629          * free the old root.
3630          */
3631         cur->bc_ops->set_root(cur, newroot, -1);
3632
3633         error = xfs_btree_free_block(cur, bp);
3634         if (error)
3635                 return error;
3636
3637         cur->bc_bufs[level] = NULL;
3638         cur->bc_ra[level] = 0;
3639         cur->bc_nlevels--;
3640
3641         return 0;
3642 }
3643
3644 STATIC int
3645 xfs_btree_dec_cursor(
3646         struct xfs_btree_cur    *cur,
3647         int                     level,
3648         int                     *stat)
3649 {
3650         int                     error;
3651         int                     i;
3652
3653         if (level > 0) {
3654                 error = xfs_btree_decrement(cur, level, &i);
3655                 if (error)
3656                         return error;
3657         }
3658
3659         *stat = 1;
3660         return 0;
3661 }
3662
3663 /*
3664  * Single level of the btree record deletion routine.
3665  * Delete record pointed to by cur/level.
3666  * Remove the record from its block then rebalance the tree.
3667  * Return 0 for error, 1 for done, 2 to go on to the next level.
3668  */
3669 STATIC int                                      /* error */
3670 xfs_btree_delrec(
3671         struct xfs_btree_cur    *cur,           /* btree cursor */
3672         int                     level,          /* level removing record from */
3673         int                     *stat)          /* fail/done/go-on */
3674 {
3675         struct xfs_btree_block  *block;         /* btree block */
3676         union xfs_btree_ptr     cptr;           /* current block ptr */
3677         struct xfs_buf          *bp;            /* buffer for block */
3678         int                     error;          /* error return value */
3679         int                     i;              /* loop counter */
3680         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
3681         struct xfs_buf          *lbp;           /* left buffer pointer */
3682         struct xfs_btree_block  *left;          /* left btree block */
3683         int                     lrecs = 0;      /* left record count */
3684         int                     ptr;            /* key/record index */
3685         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
3686         struct xfs_buf          *rbp;           /* right buffer pointer */
3687         struct xfs_btree_block  *right;         /* right btree block */
3688         struct xfs_btree_block  *rrblock;       /* right-right btree block */
3689         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
3690         int                     rrecs = 0;      /* right record count */
3691         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
3692         int                     numrecs;        /* temporary numrec count */
3693
3694         tcur = NULL;
3695
3696         /* Get the index of the entry being deleted, check for nothing there. */
3697         ptr = cur->bc_ptrs[level];
3698         if (ptr == 0) {
3699                 *stat = 0;
3700                 return 0;
3701         }
3702
3703         /* Get the buffer & block containing the record or key/ptr. */
3704         block = xfs_btree_get_block(cur, level, &bp);
3705         numrecs = xfs_btree_get_numrecs(block);
3706
3707 #ifdef DEBUG
3708         error = xfs_btree_check_block(cur, block, level, bp);
3709         if (error)
3710                 goto error0;
3711 #endif
3712
3713         /* Fail if we're off the end of the block. */
3714         if (ptr > numrecs) {
3715                 *stat = 0;
3716                 return 0;
3717         }
3718
3719         XFS_BTREE_STATS_INC(cur, delrec);
3720         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3721
3722         /* Excise the entries being deleted. */
3723         if (level > 0) {
3724                 /* It's a nonleaf. operate on keys and ptrs */
3725                 union xfs_btree_key     *lkp;
3726                 union xfs_btree_ptr     *lpp;
3727
3728                 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3729                 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3730
3731                 for (i = 0; i < numrecs - ptr; i++) {
3732                         error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3733                         if (error)
3734                                 goto error0;
3735                 }
3736
3737                 if (ptr < numrecs) {
3738                         xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3739                         xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3740                         xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3741                         xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3742                 }
3743         } else {
3744                 /* It's a leaf. operate on records */
3745                 if (ptr < numrecs) {
3746                         xfs_btree_shift_recs(cur,
3747                                 xfs_btree_rec_addr(cur, ptr + 1, block),
3748                                 -1, numrecs - ptr);
3749                         xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3750                 }
3751         }
3752
3753         /*
3754          * Decrement and log the number of entries in the block.
3755          */
3756         xfs_btree_set_numrecs(block, --numrecs);
3757         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3758
3759         /*
3760          * If we are tracking the last record in the tree and
3761          * we are at the far right edge of the tree, update it.
3762          */
3763         if (xfs_btree_is_lastrec(cur, block, level)) {
3764                 cur->bc_ops->update_lastrec(cur, block, NULL,
3765                                             ptr, LASTREC_DELREC);
3766         }
3767
3768         /*
3769          * We're at the root level.  First, shrink the root block in-memory.
3770          * Try to get rid of the next level down.  If we can't then there's
3771          * nothing left to do.
3772          */
3773         if (level == cur->bc_nlevels - 1) {
3774                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3775                         xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3776                                           cur->bc_private.b.whichfork);
3777
3778                         error = xfs_btree_kill_iroot(cur);
3779                         if (error)
3780                                 goto error0;
3781
3782                         error = xfs_btree_dec_cursor(cur, level, stat);
3783                         if (error)
3784                                 goto error0;
3785                         *stat = 1;
3786                         return 0;
3787                 }
3788
3789                 /*
3790                  * If this is the root level, and there's only one entry left,
3791                  * and it's NOT the leaf level, then we can get rid of this
3792                  * level.
3793                  */
3794                 if (numrecs == 1 && level > 0) {
3795                         union xfs_btree_ptr     *pp;
3796                         /*
3797                          * pp is still set to the first pointer in the block.
3798                          * Make it the new root of the btree.
3799                          */
3800                         pp = xfs_btree_ptr_addr(cur, 1, block);
3801                         error = xfs_btree_kill_root(cur, bp, level, pp);
3802                         if (error)
3803                                 goto error0;
3804                 } else if (level > 0) {
3805                         error = xfs_btree_dec_cursor(cur, level, stat);
3806                         if (error)
3807                                 goto error0;
3808                 }
3809                 *stat = 1;
3810                 return 0;
3811         }
3812
3813         /*
3814          * If we deleted the leftmost entry in the block, update the
3815          * key values above us in the tree.
3816          */
3817         if (xfs_btree_needs_key_update(cur, ptr)) {
3818                 error = xfs_btree_update_keys(cur, level);
3819                 if (error)
3820                         goto error0;
3821         }
3822
3823         /*
3824          * If the number of records remaining in the block is at least
3825          * the minimum, we're done.
3826          */
3827         if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3828                 error = xfs_btree_dec_cursor(cur, level, stat);
3829                 if (error)
3830                         goto error0;
3831                 return 0;
3832         }
3833
3834         /*
3835          * Otherwise, we have to move some records around to keep the
3836          * tree balanced.  Look at the left and right sibling blocks to
3837          * see if we can re-balance by moving only one record.
3838          */
3839         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3840         xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3841
3842         if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3843                 /*
3844                  * One child of root, need to get a chance to copy its contents
3845                  * into the root and delete it. Can't go up to next level,
3846                  * there's nothing to delete there.
3847                  */
3848                 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3849                     xfs_btree_ptr_is_null(cur, &lptr) &&
3850                     level == cur->bc_nlevels - 2) {
3851                         error = xfs_btree_kill_iroot(cur);
3852                         if (!error)
3853                                 error = xfs_btree_dec_cursor(cur, level, stat);
3854                         if (error)
3855                                 goto error0;
3856                         return 0;
3857                 }
3858         }
3859
3860         ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3861                !xfs_btree_ptr_is_null(cur, &lptr));
3862
3863         /*
3864          * Duplicate the cursor so our btree manipulations here won't
3865          * disrupt the next level up.
3866          */
3867         error = xfs_btree_dup_cursor(cur, &tcur);
3868         if (error)
3869                 goto error0;
3870
3871         /*
3872          * If there's a right sibling, see if it's ok to shift an entry
3873          * out of it.
3874          */
3875         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3876                 /*
3877                  * Move the temp cursor to the last entry in the next block.
3878                  * Actually any entry but the first would suffice.
3879                  */
3880                 i = xfs_btree_lastrec(tcur, level);
3881                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3882
3883                 error = xfs_btree_increment(tcur, level, &i);
3884                 if (error)
3885                         goto error0;
3886                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3887
3888                 i = xfs_btree_lastrec(tcur, level);
3889                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3890
3891                 /* Grab a pointer to the block. */
3892                 right = xfs_btree_get_block(tcur, level, &rbp);
3893 #ifdef DEBUG
3894                 error = xfs_btree_check_block(tcur, right, level, rbp);
3895                 if (error)
3896                         goto error0;
3897 #endif
3898                 /* Grab the current block number, for future use. */
3899                 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3900
3901                 /*
3902                  * If right block is full enough so that removing one entry
3903                  * won't make it too empty, and left-shifting an entry out
3904                  * of right to us works, we're done.
3905                  */
3906                 if (xfs_btree_get_numrecs(right) - 1 >=
3907                     cur->bc_ops->get_minrecs(tcur, level)) {
3908                         error = xfs_btree_lshift(tcur, level, &i);
3909                         if (error)
3910                                 goto error0;
3911                         if (i) {
3912                                 ASSERT(xfs_btree_get_numrecs(block) >=
3913                                        cur->bc_ops->get_minrecs(tcur, level));
3914
3915                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3916                                 tcur = NULL;
3917
3918                                 error = xfs_btree_dec_cursor(cur, level, stat);
3919                                 if (error)
3920                                         goto error0;
3921                                 return 0;
3922                         }
3923                 }
3924
3925                 /*
3926                  * Otherwise, grab the number of records in right for
3927                  * future reference, and fix up the temp cursor to point
3928                  * to our block again (last record).
3929                  */
3930                 rrecs = xfs_btree_get_numrecs(right);
3931                 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3932                         i = xfs_btree_firstrec(tcur, level);
3933                         XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3934
3935                         error = xfs_btree_decrement(tcur, level, &i);
3936                         if (error)
3937                                 goto error0;
3938                         XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3939                 }
3940         }
3941
3942         /*
3943          * If there's a left sibling, see if it's ok to shift an entry
3944          * out of it.
3945          */
3946         if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3947                 /*
3948                  * Move the temp cursor to the first entry in the
3949                  * previous block.
3950                  */
3951                 i = xfs_btree_firstrec(tcur, level);
3952                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3953
3954                 error = xfs_btree_decrement(tcur, level, &i);
3955                 if (error)
3956                         goto error0;
3957                 i = xfs_btree_firstrec(tcur, level);
3958                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3959
3960                 /* Grab a pointer to the block. */
3961                 left = xfs_btree_get_block(tcur, level, &lbp);
3962 #ifdef DEBUG
3963                 error = xfs_btree_check_block(cur, left, level, lbp);
3964                 if (error)
3965                         goto error0;
3966 #endif
3967                 /* Grab the current block number, for future use. */
3968                 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3969
3970                 /*
3971                  * If left block is full enough so that removing one entry
3972                  * won't make it too empty, and right-shifting an entry out
3973                  * of left to us works, we're done.
3974                  */
3975                 if (xfs_btree_get_numrecs(left) - 1 >=
3976                     cur->bc_ops->get_minrecs(tcur, level)) {
3977                         error = xfs_btree_rshift(tcur, level, &i);
3978                         if (error)
3979                                 goto error0;
3980                         if (i) {
3981                                 ASSERT(xfs_btree_get_numrecs(block) >=
3982                                        cur->bc_ops->get_minrecs(tcur, level));
3983                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3984                                 tcur = NULL;
3985                                 if (level == 0)
3986                                         cur->bc_ptrs[0]++;
3987
3988                                 *stat = 1;
3989                                 return 0;
3990                         }
3991                 }
3992
3993                 /*
3994                  * Otherwise, grab the number of records in right for
3995                  * future reference.
3996                  */
3997                 lrecs = xfs_btree_get_numrecs(left);
3998         }
3999
4000         /* Delete the temp cursor, we're done with it. */
4001         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4002         tcur = NULL;
4003
4004         /* If here, we need to do a join to keep the tree balanced. */
4005         ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4006
4007         if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4008             lrecs + xfs_btree_get_numrecs(block) <=
4009                         cur->bc_ops->get_maxrecs(cur, level)) {
4010                 /*
4011                  * Set "right" to be the starting block,
4012                  * "left" to be the left neighbor.
4013                  */
4014                 rptr = cptr;
4015                 right = block;
4016                 rbp = bp;
4017                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4018                 if (error)
4019                         goto error0;
4020
4021         /*
4022          * If that won't work, see if we can join with the right neighbor block.
4023          */
4024         } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4025                    rrecs + xfs_btree_get_numrecs(block) <=
4026                         cur->bc_ops->get_maxrecs(cur, level)) {
4027                 /*
4028                  * Set "left" to be the starting block,
4029                  * "right" to be the right neighbor.
4030                  */
4031                 lptr = cptr;
4032                 left = block;
4033                 lbp = bp;
4034                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4035                 if (error)
4036                         goto error0;
4037
4038         /*
4039          * Otherwise, we can't fix the imbalance.
4040          * Just return.  This is probably a logic error, but it's not fatal.
4041          */
4042         } else {
4043                 error = xfs_btree_dec_cursor(cur, level, stat);
4044                 if (error)
4045                         goto error0;
4046                 return 0;
4047         }
4048
4049         rrecs = xfs_btree_get_numrecs(right);
4050         lrecs = xfs_btree_get_numrecs(left);
4051
4052         /*
4053          * We're now going to join "left" and "right" by moving all the stuff
4054          * in "right" to "left" and deleting "right".
4055          */
4056         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4057         if (level > 0) {
4058                 /* It's a non-leaf.  Move keys and pointers. */
4059                 union xfs_btree_key     *lkp;   /* left btree key */
4060                 union xfs_btree_ptr     *lpp;   /* left address pointer */
4061                 union xfs_btree_key     *rkp;   /* right btree key */
4062                 union xfs_btree_ptr     *rpp;   /* right address pointer */
4063
4064                 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4065                 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4066                 rkp = xfs_btree_key_addr(cur, 1, right);
4067                 rpp = xfs_btree_ptr_addr(cur, 1, right);
4068
4069                 for (i = 1; i < rrecs; i++) {
4070                         error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4071                         if (error)
4072                                 goto error0;
4073                 }
4074
4075                 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4076                 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4077
4078                 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4079                 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4080         } else {
4081                 /* It's a leaf.  Move records.  */
4082                 union xfs_btree_rec     *lrp;   /* left record pointer */
4083                 union xfs_btree_rec     *rrp;   /* right record pointer */
4084
4085                 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4086                 rrp = xfs_btree_rec_addr(cur, 1, right);
4087
4088                 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4089                 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4090         }
4091
4092         XFS_BTREE_STATS_INC(cur, join);
4093
4094         /*
4095          * Fix up the number of records and right block pointer in the
4096          * surviving block, and log it.
4097          */
4098         xfs_btree_set_numrecs(left, lrecs + rrecs);
4099         xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4100         xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4101         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4102
4103         /* If there is a right sibling, point it to the remaining block. */
4104         xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4105         if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4106                 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4107                 if (error)
4108                         goto error0;
4109                 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4110                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4111         }
4112
4113         /* Free the deleted block. */
4114         error = xfs_btree_free_block(cur, rbp);
4115         if (error)
4116                 goto error0;
4117
4118         /*
4119          * If we joined with the left neighbor, set the buffer in the
4120          * cursor to the left block, and fix up the index.
4121          */
4122         if (bp != lbp) {
4123                 cur->bc_bufs[level] = lbp;
4124                 cur->bc_ptrs[level] += lrecs;
4125                 cur->bc_ra[level] = 0;
4126         }
4127         /*
4128          * If we joined with the right neighbor and there's a level above
4129          * us, increment the cursor at that level.
4130          */
4131         else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4132                    (level + 1 < cur->bc_nlevels)) {
4133                 error = xfs_btree_increment(cur, level + 1, &i);
4134                 if (error)
4135                         goto error0;
4136         }
4137
4138         /*
4139          * Readjust the ptr at this level if it's not a leaf, since it's
4140          * still pointing at the deletion point, which makes the cursor
4141          * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4142          * We can't use decrement because it would change the next level up.
4143          */
4144         if (level > 0)
4145                 cur->bc_ptrs[level]--;
4146
4147         /*
4148          * We combined blocks, so we have to update the parent keys if the
4149          * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4150          * points to the old block so that the caller knows which record to
4151          * delete.  Therefore, the caller must be savvy enough to call updkeys
4152          * for us if we return stat == 2.  The other exit points from this
4153          * function don't require deletions further up the tree, so they can
4154          * call updkeys directly.
4155          */
4156
4157         /* Return value means the next level up has something to do. */
4158         *stat = 2;
4159         return 0;
4160
4161 error0:
4162         if (tcur)
4163                 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4164         return error;
4165 }
4166
4167 /*
4168  * Delete the record pointed to by cur.
4169  * The cursor refers to the place where the record was (could be inserted)
4170  * when the operation returns.
4171  */
4172 int                                     /* error */
4173 xfs_btree_delete(
4174         struct xfs_btree_cur    *cur,
4175         int                     *stat)  /* success/failure */
4176 {
4177         int                     error;  /* error return value */
4178         int                     level;
4179         int                     i;
4180         bool                    joined = false;
4181
4182         /*
4183          * Go up the tree, starting at leaf level.
4184          *
4185          * If 2 is returned then a join was done; go to the next level.
4186          * Otherwise we are done.
4187          */
4188         for (level = 0, i = 2; i == 2; level++) {
4189                 error = xfs_btree_delrec(cur, level, &i);
4190                 if (error)
4191                         goto error0;
4192                 if (i == 2)
4193                         joined = true;
4194         }
4195
4196         /*
4197          * If we combined blocks as part of deleting the record, delrec won't
4198          * have updated the parent high keys so we have to do that here.
4199          */
4200         if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4201                 error = xfs_btree_updkeys_force(cur, 0);
4202                 if (error)
4203                         goto error0;
4204         }
4205
4206         if (i == 0) {
4207                 for (level = 1; level < cur->bc_nlevels; level++) {
4208                         if (cur->bc_ptrs[level] == 0) {
4209                                 error = xfs_btree_decrement(cur, level, &i);
4210                                 if (error)
4211                                         goto error0;
4212                                 break;
4213                         }
4214                 }
4215         }
4216
4217         *stat = i;
4218         return 0;
4219 error0:
4220         return error;
4221 }
4222
4223 /*
4224  * Get the data from the pointed-to record.
4225  */
4226 int                                     /* error */
4227 xfs_btree_get_rec(
4228         struct xfs_btree_cur    *cur,   /* btree cursor */
4229         union xfs_btree_rec     **recp, /* output: btree record */
4230         int                     *stat)  /* output: success/failure */
4231 {
4232         struct xfs_btree_block  *block; /* btree block */
4233         struct xfs_buf          *bp;    /* buffer pointer */
4234         int                     ptr;    /* record number */
4235 #ifdef DEBUG
4236         int                     error;  /* error return value */
4237 #endif
4238
4239         ptr = cur->bc_ptrs[0];
4240         block = xfs_btree_get_block(cur, 0, &bp);
4241
4242 #ifdef DEBUG
4243         error = xfs_btree_check_block(cur, block, 0, bp);
4244         if (error)
4245                 return error;
4246 #endif
4247
4248         /*
4249          * Off the right end or left end, return failure.
4250          */
4251         if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4252                 *stat = 0;
4253                 return 0;
4254         }
4255
4256         /*
4257          * Point to the record and extract its data.
4258          */
4259         *recp = xfs_btree_rec_addr(cur, ptr, block);
4260         *stat = 1;
4261         return 0;
4262 }
4263
4264 /* Visit a block in a btree. */
4265 STATIC int
4266 xfs_btree_visit_block(
4267         struct xfs_btree_cur            *cur,
4268         int                             level,
4269         xfs_btree_visit_blocks_fn       fn,
4270         void                            *data)
4271 {
4272         struct xfs_btree_block          *block;
4273         struct xfs_buf                  *bp;
4274         union xfs_btree_ptr             rptr;
4275         int                             error;
4276
4277         /* do right sibling readahead */
4278         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4279         block = xfs_btree_get_block(cur, level, &bp);
4280
4281         /* process the block */
4282         error = fn(cur, level, data);
4283         if (error)
4284                 return error;
4285
4286         /* now read rh sibling block for next iteration */
4287         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4288         if (xfs_btree_ptr_is_null(cur, &rptr))
4289                 return -ENOENT;
4290
4291         return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4292 }
4293
4294
4295 /* Visit every block in a btree. */
4296 int
4297 xfs_btree_visit_blocks(
4298         struct xfs_btree_cur            *cur,
4299         xfs_btree_visit_blocks_fn       fn,
4300         void                            *data)
4301 {
4302         union xfs_btree_ptr             lptr;
4303         int                             level;
4304         struct xfs_btree_block          *block = NULL;
4305         int                             error = 0;
4306
4307         cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4308
4309         /* for each level */
4310         for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4311                 /* grab the left hand block */
4312                 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4313                 if (error)
4314                         return error;
4315
4316                 /* readahead the left most block for the next level down */
4317                 if (level > 0) {
4318                         union xfs_btree_ptr     *ptr;
4319
4320                         ptr = xfs_btree_ptr_addr(cur, 1, block);
4321                         xfs_btree_readahead_ptr(cur, ptr, 1);
4322
4323                         /* save for the next iteration of the loop */
4324                         xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4325                 }
4326
4327                 /* for each buffer in the level */
4328                 do {
4329                         error = xfs_btree_visit_block(cur, level, fn, data);
4330                 } while (!error);
4331
4332                 if (error != -ENOENT)
4333                         return error;
4334         }
4335
4336         return 0;
4337 }
4338
4339 /*
4340  * Change the owner of a btree.
4341  *
4342  * The mechanism we use here is ordered buffer logging. Because we don't know
4343  * how many buffers were are going to need to modify, we don't really want to
4344  * have to make transaction reservations for the worst case of every buffer in a
4345  * full size btree as that may be more space that we can fit in the log....
4346  *
4347  * We do the btree walk in the most optimal manner possible - we have sibling
4348  * pointers so we can just walk all the blocks on each level from left to right
4349  * in a single pass, and then move to the next level and do the same. We can
4350  * also do readahead on the sibling pointers to get IO moving more quickly,
4351  * though for slow disks this is unlikely to make much difference to performance
4352  * as the amount of CPU work we have to do before moving to the next block is
4353  * relatively small.
4354  *
4355  * For each btree block that we load, modify the owner appropriately, set the
4356  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4357  * we mark the region we change dirty so that if the buffer is relogged in
4358  * a subsequent transaction the changes we make here as an ordered buffer are
4359  * correctly relogged in that transaction.  If we are in recovery context, then
4360  * just queue the modified buffer as delayed write buffer so the transaction
4361  * recovery completion writes the changes to disk.
4362  */
4363 struct xfs_btree_block_change_owner_info {
4364         uint64_t                new_owner;
4365         struct list_head        *buffer_list;
4366 };
4367
4368 static int
4369 xfs_btree_block_change_owner(
4370         struct xfs_btree_cur    *cur,
4371         int                     level,
4372         void                    *data)
4373 {
4374         struct xfs_btree_block_change_owner_info        *bbcoi = data;
4375         struct xfs_btree_block  *block;
4376         struct xfs_buf          *bp;
4377
4378         /* modify the owner */
4379         block = xfs_btree_get_block(cur, level, &bp);
4380         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4381                 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4382                         return 0;
4383                 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4384         } else {
4385                 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4386                         return 0;
4387                 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4388         }
4389
4390         /*
4391          * If the block is a root block hosted in an inode, we might not have a
4392          * buffer pointer here and we shouldn't attempt to log the change as the
4393          * information is already held in the inode and discarded when the root
4394          * block is formatted into the on-disk inode fork. We still change it,
4395          * though, so everything is consistent in memory.
4396          */
4397         if (!bp) {
4398                 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4399                 ASSERT(level == cur->bc_nlevels - 1);
4400                 return 0;
4401         }
4402
4403         if (cur->bc_tp) {
4404                 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4405                         xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4406                         return -EAGAIN;
4407                 }
4408         } else {
4409                 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4410         }
4411
4412         return 0;
4413 }
4414
4415 int
4416 xfs_btree_change_owner(
4417         struct xfs_btree_cur    *cur,
4418         uint64_t                new_owner,
4419         struct list_head        *buffer_list)
4420 {
4421         struct xfs_btree_block_change_owner_info        bbcoi;
4422
4423         bbcoi.new_owner = new_owner;
4424         bbcoi.buffer_list = buffer_list;
4425
4426         return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4427                         &bbcoi);
4428 }
4429
4430 /* Verify the v5 fields of a long-format btree block. */
4431 xfs_failaddr_t
4432 xfs_btree_lblock_v5hdr_verify(
4433         struct xfs_buf          *bp,
4434         uint64_t                owner)
4435 {
4436         struct xfs_mount        *mp = bp->b_target->bt_mount;
4437         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4438
4439         if (!xfs_sb_version_hascrc(&mp->m_sb))
4440                 return __this_address;
4441         if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4442                 return __this_address;
4443         if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4444                 return __this_address;
4445         if (owner != XFS_RMAP_OWN_UNKNOWN &&
4446             be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4447                 return __this_address;
4448         return NULL;
4449 }
4450
4451 /* Verify a long-format btree block. */
4452 xfs_failaddr_t
4453 xfs_btree_lblock_verify(
4454         struct xfs_buf          *bp,
4455         unsigned int            max_recs)
4456 {
4457         struct xfs_mount        *mp = bp->b_target->bt_mount;
4458         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4459
4460         /* numrecs verification */
4461         if (be16_to_cpu(block->bb_numrecs) > max_recs)
4462                 return __this_address;
4463
4464         /* sibling pointer verification */
4465         if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4466             !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4467                 return __this_address;
4468         if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4469             !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4470                 return __this_address;
4471
4472         return NULL;
4473 }
4474
4475 /**
4476  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4477  *                                    btree block
4478  *
4479  * @bp: buffer containing the btree block
4480  * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4481  * @pag_max_level: pointer to the per-ag max level field
4482  */
4483 xfs_failaddr_t
4484 xfs_btree_sblock_v5hdr_verify(
4485         struct xfs_buf          *bp)
4486 {
4487         struct xfs_mount        *mp = bp->b_target->bt_mount;
4488         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4489         struct xfs_perag        *pag = bp->b_pag;
4490
4491         if (!xfs_sb_version_hascrc(&mp->m_sb))
4492                 return __this_address;
4493         if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4494                 return __this_address;
4495         if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4496                 return __this_address;
4497         if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4498                 return __this_address;
4499         return NULL;
4500 }
4501
4502 /**
4503  * xfs_btree_sblock_verify() -- verify a short-format btree block
4504  *
4505  * @bp: buffer containing the btree block
4506  * @max_recs: maximum records allowed in this btree node
4507  */
4508 xfs_failaddr_t
4509 xfs_btree_sblock_verify(
4510         struct xfs_buf          *bp,
4511         unsigned int            max_recs)
4512 {
4513         struct xfs_mount        *mp = bp->b_target->bt_mount;
4514         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4515         xfs_agblock_t           agno;
4516
4517         /* numrecs verification */
4518         if (be16_to_cpu(block->bb_numrecs) > max_recs)
4519                 return __this_address;
4520
4521         /* sibling pointer verification */
4522         agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4523         if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4524             !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4525                 return __this_address;
4526         if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4527             !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4528                 return __this_address;
4529
4530         return NULL;
4531 }
4532
4533 /*
4534  * Calculate the number of btree levels needed to store a given number of
4535  * records in a short-format btree.
4536  */
4537 uint
4538 xfs_btree_compute_maxlevels(
4539         uint                    *limits,
4540         unsigned long           len)
4541 {
4542         uint                    level;
4543         unsigned long           maxblocks;
4544
4545         maxblocks = (len + limits[0] - 1) / limits[0];
4546         for (level = 1; maxblocks > 1; level++)
4547                 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4548         return level;
4549 }
4550
4551 /*
4552  * Query a regular btree for all records overlapping a given interval.
4553  * Start with a LE lookup of the key of low_rec and return all records
4554  * until we find a record with a key greater than the key of high_rec.
4555  */
4556 STATIC int
4557 xfs_btree_simple_query_range(
4558         struct xfs_btree_cur            *cur,
4559         union xfs_btree_key             *low_key,
4560         union xfs_btree_key             *high_key,
4561         xfs_btree_query_range_fn        fn,
4562         void                            *priv)
4563 {
4564         union xfs_btree_rec             *recp;
4565         union xfs_btree_key             rec_key;
4566         int64_t                         diff;
4567         int                             stat;
4568         bool                            firstrec = true;
4569         int                             error;
4570
4571         ASSERT(cur->bc_ops->init_high_key_from_rec);
4572         ASSERT(cur->bc_ops->diff_two_keys);
4573
4574         /*
4575          * Find the leftmost record.  The btree cursor must be set
4576          * to the low record used to generate low_key.
4577          */
4578         stat = 0;
4579         error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4580         if (error)
4581                 goto out;
4582
4583         /* Nothing?  See if there's anything to the right. */
4584         if (!stat) {
4585                 error = xfs_btree_increment(cur, 0, &stat);
4586                 if (error)
4587                         goto out;
4588         }
4589
4590         while (stat) {
4591                 /* Find the record. */
4592                 error = xfs_btree_get_rec(cur, &recp, &stat);
4593                 if (error || !stat)
4594                         break;
4595
4596                 /* Skip if high_key(rec) < low_key. */
4597                 if (firstrec) {
4598                         cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4599                         firstrec = false;
4600                         diff = cur->bc_ops->diff_two_keys(cur, low_key,
4601                                         &rec_key);
4602                         if (diff > 0)
4603                                 goto advloop;
4604                 }
4605
4606                 /* Stop if high_key < low_key(rec). */
4607                 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4608                 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4609                 if (diff > 0)
4610                         break;
4611
4612                 /* Callback */
4613                 error = fn(cur, recp, priv);
4614                 if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4615                         break;
4616
4617 advloop:
4618                 /* Move on to the next record. */
4619                 error = xfs_btree_increment(cur, 0, &stat);
4620                 if (error)
4621                         break;
4622         }
4623
4624 out:
4625         return error;
4626 }
4627
4628 /*
4629  * Query an overlapped interval btree for all records overlapping a given
4630  * interval.  This function roughly follows the algorithm given in
4631  * "Interval Trees" of _Introduction to Algorithms_, which is section
4632  * 14.3 in the 2nd and 3rd editions.
4633  *
4634  * First, generate keys for the low and high records passed in.
4635  *
4636  * For any leaf node, generate the high and low keys for the record.
4637  * If the record keys overlap with the query low/high keys, pass the
4638  * record to the function iterator.
4639  *
4640  * For any internal node, compare the low and high keys of each
4641  * pointer against the query low/high keys.  If there's an overlap,
4642  * follow the pointer.
4643  *
4644  * As an optimization, we stop scanning a block when we find a low key
4645  * that is greater than the query's high key.
4646  */
4647 STATIC int
4648 xfs_btree_overlapped_query_range(
4649         struct xfs_btree_cur            *cur,
4650         union xfs_btree_key             *low_key,
4651         union xfs_btree_key             *high_key,
4652         xfs_btree_query_range_fn        fn,
4653         void                            *priv)
4654 {
4655         union xfs_btree_ptr             ptr;
4656         union xfs_btree_ptr             *pp;
4657         union xfs_btree_key             rec_key;
4658         union xfs_btree_key             rec_hkey;
4659         union xfs_btree_key             *lkp;
4660         union xfs_btree_key             *hkp;
4661         union xfs_btree_rec             *recp;
4662         struct xfs_btree_block          *block;
4663         int64_t                         ldiff;
4664         int64_t                         hdiff;
4665         int                             level;
4666         struct xfs_buf                  *bp;
4667         int                             i;
4668         int                             error;
4669
4670         /* Load the root of the btree. */
4671         level = cur->bc_nlevels - 1;
4672         cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4673         error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4674         if (error)
4675                 return error;
4676         xfs_btree_get_block(cur, level, &bp);
4677         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4678 #ifdef DEBUG
4679         error = xfs_btree_check_block(cur, block, level, bp);
4680         if (error)
4681                 goto out;
4682 #endif
4683         cur->bc_ptrs[level] = 1;
4684
4685         while (level < cur->bc_nlevels) {
4686                 block = xfs_btree_get_block(cur, level, &bp);
4687
4688                 /* End of node, pop back towards the root. */
4689                 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4690 pop_up:
4691                         if (level < cur->bc_nlevels - 1)
4692                                 cur->bc_ptrs[level + 1]++;
4693                         level++;
4694                         continue;
4695                 }
4696
4697                 if (level == 0) {
4698                         /* Handle a leaf node. */
4699                         recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4700
4701                         cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4702                         ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4703                                         low_key);
4704
4705                         cur->bc_ops->init_key_from_rec(&rec_key, recp);
4706                         hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4707                                         &rec_key);
4708
4709                         /*
4710                          * If (record's high key >= query's low key) and
4711                          *    (query's high key >= record's low key), then
4712                          * this record overlaps the query range; callback.
4713                          */
4714                         if (ldiff >= 0 && hdiff >= 0) {
4715                                 error = fn(cur, recp, priv);
4716                                 if (error < 0 ||
4717                                     error == XFS_BTREE_QUERY_RANGE_ABORT)
4718                                         break;
4719                         } else if (hdiff < 0) {
4720                                 /* Record is larger than high key; pop. */
4721                                 goto pop_up;
4722                         }
4723                         cur->bc_ptrs[level]++;
4724                         continue;
4725                 }
4726
4727                 /* Handle an internal node. */
4728                 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4729                 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4730                 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4731
4732                 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4733                 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4734
4735                 /*
4736                  * If (pointer's high key >= query's low key) and
4737                  *    (query's high key >= pointer's low key), then
4738                  * this record overlaps the query range; follow pointer.
4739                  */
4740                 if (ldiff >= 0 && hdiff >= 0) {
4741                         level--;
4742                         error = xfs_btree_lookup_get_block(cur, level, pp,
4743                                         &block);
4744                         if (error)
4745                                 goto out;
4746                         xfs_btree_get_block(cur, level, &bp);
4747                         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4748 #ifdef DEBUG
4749                         error = xfs_btree_check_block(cur, block, level, bp);
4750                         if (error)
4751                                 goto out;
4752 #endif
4753                         cur->bc_ptrs[level] = 1;
4754                         continue;
4755                 } else if (hdiff < 0) {
4756                         /* The low key is larger than the upper range; pop. */
4757                         goto pop_up;
4758                 }
4759                 cur->bc_ptrs[level]++;
4760         }
4761
4762 out:
4763         /*
4764          * If we don't end this function with the cursor pointing at a record
4765          * block, a subsequent non-error cursor deletion will not release
4766          * node-level buffers, causing a buffer leak.  This is quite possible
4767          * with a zero-results range query, so release the buffers if we
4768          * failed to return any results.
4769          */
4770         if (cur->bc_bufs[0] == NULL) {
4771                 for (i = 0; i < cur->bc_nlevels; i++) {
4772                         if (cur->bc_bufs[i]) {
4773                                 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4774                                 cur->bc_bufs[i] = NULL;
4775                                 cur->bc_ptrs[i] = 0;
4776                                 cur->bc_ra[i] = 0;
4777                         }
4778                 }
4779         }
4780
4781         return error;
4782 }
4783
4784 /*
4785  * Query a btree for all records overlapping a given interval of keys.  The
4786  * supplied function will be called with each record found; return one of the
4787  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4788  * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4789  * negative error code.
4790  */
4791 int
4792 xfs_btree_query_range(
4793         struct xfs_btree_cur            *cur,
4794         union xfs_btree_irec            *low_rec,
4795         union xfs_btree_irec            *high_rec,
4796         xfs_btree_query_range_fn        fn,
4797         void                            *priv)
4798 {
4799         union xfs_btree_rec             rec;
4800         union xfs_btree_key             low_key;
4801         union xfs_btree_key             high_key;
4802
4803         /* Find the keys of both ends of the interval. */
4804         cur->bc_rec = *high_rec;
4805         cur->bc_ops->init_rec_from_cur(cur, &rec);
4806         cur->bc_ops->init_key_from_rec(&high_key, &rec);
4807
4808         cur->bc_rec = *low_rec;
4809         cur->bc_ops->init_rec_from_cur(cur, &rec);
4810         cur->bc_ops->init_key_from_rec(&low_key, &rec);
4811
4812         /* Enforce low key < high key. */
4813         if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4814                 return -EINVAL;
4815
4816         if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4817                 return xfs_btree_simple_query_range(cur, &low_key,
4818                                 &high_key, fn, priv);
4819         return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4820                         fn, priv);
4821 }
4822
4823 /* Query a btree for all records. */
4824 int
4825 xfs_btree_query_all(
4826         struct xfs_btree_cur            *cur,
4827         xfs_btree_query_range_fn        fn,
4828         void                            *priv)
4829 {
4830         union xfs_btree_key             low_key;
4831         union xfs_btree_key             high_key;
4832
4833         memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4834         memset(&low_key, 0, sizeof(low_key));
4835         memset(&high_key, 0xFF, sizeof(high_key));
4836
4837         return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4838 }
4839
4840 /*
4841  * Calculate the number of blocks needed to store a given number of records
4842  * in a short-format (per-AG metadata) btree.
4843  */
4844 unsigned long long
4845 xfs_btree_calc_size(
4846         uint                    *limits,
4847         unsigned long long      len)
4848 {
4849         int                     level;
4850         int                     maxrecs;
4851         unsigned long long      rval;
4852
4853         maxrecs = limits[0];
4854         for (level = 0, rval = 0; len > 1; level++) {
4855                 len += maxrecs - 1;
4856                 do_div(len, maxrecs);
4857                 maxrecs = limits[1];
4858                 rval += len;
4859         }
4860         return rval;
4861 }
4862
4863 static int
4864 xfs_btree_count_blocks_helper(
4865         struct xfs_btree_cur    *cur,
4866         int                     level,
4867         void                    *data)
4868 {
4869         xfs_extlen_t            *blocks = data;
4870         (*blocks)++;
4871
4872         return 0;
4873 }
4874
4875 /* Count the blocks in a btree and return the result in *blocks. */
4876 int
4877 xfs_btree_count_blocks(
4878         struct xfs_btree_cur    *cur,
4879         xfs_extlen_t            *blocks)
4880 {
4881         *blocks = 0;
4882         return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4883                         blocks);
4884 }
4885
4886 /* Compare two btree pointers. */
4887 int64_t
4888 xfs_btree_diff_two_ptrs(
4889         struct xfs_btree_cur            *cur,
4890         const union xfs_btree_ptr       *a,
4891         const union xfs_btree_ptr       *b)
4892 {
4893         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4894                 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4895         return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4896 }
4897
4898 /* If there's an extent, we're done. */
4899 STATIC int
4900 xfs_btree_has_record_helper(
4901         struct xfs_btree_cur            *cur,
4902         union xfs_btree_rec             *rec,
4903         void                            *priv)
4904 {
4905         return XFS_BTREE_QUERY_RANGE_ABORT;
4906 }
4907
4908 /* Is there a record covering a given range of keys? */
4909 int
4910 xfs_btree_has_record(
4911         struct xfs_btree_cur    *cur,
4912         union xfs_btree_irec    *low,
4913         union xfs_btree_irec    *high,
4914         bool                    *exists)
4915 {
4916         int                     error;
4917
4918         error = xfs_btree_query_range(cur, low, high,
4919                         &xfs_btree_has_record_helper, NULL);
4920         if (error == XFS_BTREE_QUERY_RANGE_ABORT) {
4921                 *exists = true;
4922                 return 0;
4923         }
4924         *exists = false;
4925         return error;
4926 }
4927
4928 /* Are there more records in this btree? */
4929 bool
4930 xfs_btree_has_more_records(
4931         struct xfs_btree_cur    *cur)
4932 {
4933         struct xfs_btree_block  *block;
4934         struct xfs_buf          *bp;
4935
4936         block = xfs_btree_get_block(cur, 0, &bp);
4937
4938         /* There are still records in this block. */
4939         if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4940                 return true;
4941
4942         /* There are more record blocks. */
4943         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4944                 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4945         else
4946                 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4947 }