Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[linux-2.6-microblaze.git] / fs / xfs / libxfs / xfs_bmap_btree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_inode.h"
16 #include "xfs_trans.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_alloc.h"
19 #include "xfs_btree.h"
20 #include "xfs_bmap_btree.h"
21 #include "xfs_bmap.h"
22 #include "xfs_error.h"
23 #include "xfs_quota.h"
24 #include "xfs_trace.h"
25 #include "xfs_cksum.h"
26 #include "xfs_rmap.h"
27
28 /*
29  * Convert on-disk form of btree root to in-memory form.
30  */
31 void
32 xfs_bmdr_to_bmbt(
33         struct xfs_inode        *ip,
34         xfs_bmdr_block_t        *dblock,
35         int                     dblocklen,
36         struct xfs_btree_block  *rblock,
37         int                     rblocklen)
38 {
39         struct xfs_mount        *mp = ip->i_mount;
40         int                     dmxr;
41         xfs_bmbt_key_t          *fkp;
42         __be64                  *fpp;
43         xfs_bmbt_key_t          *tkp;
44         __be64                  *tpp;
45
46         xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL,
47                                  XFS_BTNUM_BMAP, 0, 0, ip->i_ino,
48                                  XFS_BTREE_LONG_PTRS);
49         rblock->bb_level = dblock->bb_level;
50         ASSERT(be16_to_cpu(rblock->bb_level) > 0);
51         rblock->bb_numrecs = dblock->bb_numrecs;
52         dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
53         fkp = XFS_BMDR_KEY_ADDR(dblock, 1);
54         tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
55         fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
56         tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
57         dmxr = be16_to_cpu(dblock->bb_numrecs);
58         memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
59         memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
60 }
61
62 void
63 xfs_bmbt_disk_get_all(
64         struct xfs_bmbt_rec     *rec,
65         struct xfs_bmbt_irec    *irec)
66 {
67         uint64_t                l0 = get_unaligned_be64(&rec->l0);
68         uint64_t                l1 = get_unaligned_be64(&rec->l1);
69
70         irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
71         irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21);
72         irec->br_blockcount = l1 & xfs_mask64lo(21);
73         if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN))
74                 irec->br_state = XFS_EXT_UNWRITTEN;
75         else
76                 irec->br_state = XFS_EXT_NORM;
77 }
78
79 /*
80  * Extract the blockcount field from an on disk bmap extent record.
81  */
82 xfs_filblks_t
83 xfs_bmbt_disk_get_blockcount(
84         xfs_bmbt_rec_t  *r)
85 {
86         return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21));
87 }
88
89 /*
90  * Extract the startoff field from a disk format bmap extent record.
91  */
92 xfs_fileoff_t
93 xfs_bmbt_disk_get_startoff(
94         xfs_bmbt_rec_t  *r)
95 {
96         return ((xfs_fileoff_t)be64_to_cpu(r->l0) &
97                  xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
98 }
99
100 /*
101  * Set all the fields in a bmap extent record from the uncompressed form.
102  */
103 void
104 xfs_bmbt_disk_set_all(
105         struct xfs_bmbt_rec     *r,
106         struct xfs_bmbt_irec    *s)
107 {
108         int                     extent_flag = (s->br_state != XFS_EXT_NORM);
109
110         ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN);
111         ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)));
112         ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)));
113         ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)));
114
115         put_unaligned_be64(
116                 ((xfs_bmbt_rec_base_t)extent_flag << 63) |
117                  ((xfs_bmbt_rec_base_t)s->br_startoff << 9) |
118                  ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0);
119         put_unaligned_be64(
120                 ((xfs_bmbt_rec_base_t)s->br_startblock << 21) |
121                  ((xfs_bmbt_rec_base_t)s->br_blockcount &
122                   (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1);
123 }
124
125 /*
126  * Convert in-memory form of btree root to on-disk form.
127  */
128 void
129 xfs_bmbt_to_bmdr(
130         struct xfs_mount        *mp,
131         struct xfs_btree_block  *rblock,
132         int                     rblocklen,
133         xfs_bmdr_block_t        *dblock,
134         int                     dblocklen)
135 {
136         int                     dmxr;
137         xfs_bmbt_key_t          *fkp;
138         __be64                  *fpp;
139         xfs_bmbt_key_t          *tkp;
140         __be64                  *tpp;
141
142         if (xfs_sb_version_hascrc(&mp->m_sb)) {
143                 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC));
144                 ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid,
145                        &mp->m_sb.sb_meta_uuid));
146                 ASSERT(rblock->bb_u.l.bb_blkno ==
147                        cpu_to_be64(XFS_BUF_DADDR_NULL));
148         } else
149                 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC));
150         ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
151         ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
152         ASSERT(rblock->bb_level != 0);
153         dblock->bb_level = rblock->bb_level;
154         dblock->bb_numrecs = rblock->bb_numrecs;
155         dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
156         fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
157         tkp = XFS_BMDR_KEY_ADDR(dblock, 1);
158         fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
159         tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
160         dmxr = be16_to_cpu(dblock->bb_numrecs);
161         memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
162         memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
163 }
164
165 STATIC struct xfs_btree_cur *
166 xfs_bmbt_dup_cursor(
167         struct xfs_btree_cur    *cur)
168 {
169         struct xfs_btree_cur    *new;
170
171         new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp,
172                         cur->bc_private.b.ip, cur->bc_private.b.whichfork);
173
174         /*
175          * Copy the firstblock, dfops, and flags values,
176          * since init cursor doesn't get them.
177          */
178         new->bc_private.b.flags = cur->bc_private.b.flags;
179
180         return new;
181 }
182
183 STATIC void
184 xfs_bmbt_update_cursor(
185         struct xfs_btree_cur    *src,
186         struct xfs_btree_cur    *dst)
187 {
188         ASSERT((dst->bc_tp->t_firstblock != NULLFSBLOCK) ||
189                (dst->bc_private.b.ip->i_d.di_flags & XFS_DIFLAG_REALTIME));
190
191         dst->bc_private.b.allocated += src->bc_private.b.allocated;
192         dst->bc_tp->t_firstblock = src->bc_tp->t_firstblock;
193
194         src->bc_private.b.allocated = 0;
195 }
196
197 STATIC int
198 xfs_bmbt_alloc_block(
199         struct xfs_btree_cur    *cur,
200         union xfs_btree_ptr     *start,
201         union xfs_btree_ptr     *new,
202         int                     *stat)
203 {
204         xfs_alloc_arg_t         args;           /* block allocation args */
205         int                     error;          /* error return value */
206
207         memset(&args, 0, sizeof(args));
208         args.tp = cur->bc_tp;
209         args.mp = cur->bc_mp;
210         args.fsbno = cur->bc_tp->t_firstblock;
211         xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_private.b.ip->i_ino,
212                         cur->bc_private.b.whichfork);
213
214         if (args.fsbno == NULLFSBLOCK) {
215                 args.fsbno = be64_to_cpu(start->l);
216                 args.type = XFS_ALLOCTYPE_START_BNO;
217                 /*
218                  * Make sure there is sufficient room left in the AG to
219                  * complete a full tree split for an extent insert.  If
220                  * we are converting the middle part of an extent then
221                  * we may need space for two tree splits.
222                  *
223                  * We are relying on the caller to make the correct block
224                  * reservation for this operation to succeed.  If the
225                  * reservation amount is insufficient then we may fail a
226                  * block allocation here and corrupt the filesystem.
227                  */
228                 args.minleft = args.tp->t_blk_res;
229         } else if (cur->bc_tp->t_flags & XFS_TRANS_LOWMODE) {
230                 args.type = XFS_ALLOCTYPE_START_BNO;
231         } else {
232                 args.type = XFS_ALLOCTYPE_NEAR_BNO;
233         }
234
235         args.minlen = args.maxlen = args.prod = 1;
236         args.wasdel = cur->bc_private.b.flags & XFS_BTCUR_BPRV_WASDEL;
237         if (!args.wasdel && args.tp->t_blk_res == 0) {
238                 error = -ENOSPC;
239                 goto error0;
240         }
241         error = xfs_alloc_vextent(&args);
242         if (error)
243                 goto error0;
244
245         if (args.fsbno == NULLFSBLOCK && args.minleft) {
246                 /*
247                  * Could not find an AG with enough free space to satisfy
248                  * a full btree split.  Try again and if
249                  * successful activate the lowspace algorithm.
250                  */
251                 args.fsbno = 0;
252                 args.type = XFS_ALLOCTYPE_FIRST_AG;
253                 error = xfs_alloc_vextent(&args);
254                 if (error)
255                         goto error0;
256                 cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE;
257         }
258         if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) {
259                 *stat = 0;
260                 return 0;
261         }
262
263         ASSERT(args.len == 1);
264         cur->bc_tp->t_firstblock = args.fsbno;
265         cur->bc_private.b.allocated++;
266         cur->bc_private.b.ip->i_d.di_nblocks++;
267         xfs_trans_log_inode(args.tp, cur->bc_private.b.ip, XFS_ILOG_CORE);
268         xfs_trans_mod_dquot_byino(args.tp, cur->bc_private.b.ip,
269                         XFS_TRANS_DQ_BCOUNT, 1L);
270
271         new->l = cpu_to_be64(args.fsbno);
272
273         *stat = 1;
274         return 0;
275
276  error0:
277         return error;
278 }
279
280 STATIC int
281 xfs_bmbt_free_block(
282         struct xfs_btree_cur    *cur,
283         struct xfs_buf          *bp)
284 {
285         struct xfs_mount        *mp = cur->bc_mp;
286         struct xfs_inode        *ip = cur->bc_private.b.ip;
287         struct xfs_trans        *tp = cur->bc_tp;
288         xfs_fsblock_t           fsbno = XFS_DADDR_TO_FSB(mp, XFS_BUF_ADDR(bp));
289         struct xfs_owner_info   oinfo;
290
291         xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_private.b.whichfork);
292         xfs_bmap_add_free(cur->bc_tp, fsbno, 1, &oinfo);
293         ip->i_d.di_nblocks--;
294
295         xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
296         xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L);
297         return 0;
298 }
299
300 STATIC int
301 xfs_bmbt_get_minrecs(
302         struct xfs_btree_cur    *cur,
303         int                     level)
304 {
305         if (level == cur->bc_nlevels - 1) {
306                 struct xfs_ifork        *ifp;
307
308                 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip,
309                                     cur->bc_private.b.whichfork);
310
311                 return xfs_bmbt_maxrecs(cur->bc_mp,
312                                         ifp->if_broot_bytes, level == 0) / 2;
313         }
314
315         return cur->bc_mp->m_bmap_dmnr[level != 0];
316 }
317
318 int
319 xfs_bmbt_get_maxrecs(
320         struct xfs_btree_cur    *cur,
321         int                     level)
322 {
323         if (level == cur->bc_nlevels - 1) {
324                 struct xfs_ifork        *ifp;
325
326                 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip,
327                                     cur->bc_private.b.whichfork);
328
329                 return xfs_bmbt_maxrecs(cur->bc_mp,
330                                         ifp->if_broot_bytes, level == 0);
331         }
332
333         return cur->bc_mp->m_bmap_dmxr[level != 0];
334
335 }
336
337 /*
338  * Get the maximum records we could store in the on-disk format.
339  *
340  * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but
341  * for the root node this checks the available space in the dinode fork
342  * so that we can resize the in-memory buffer to match it.  After a
343  * resize to the maximum size this function returns the same value
344  * as xfs_bmbt_get_maxrecs for the root node, too.
345  */
346 STATIC int
347 xfs_bmbt_get_dmaxrecs(
348         struct xfs_btree_cur    *cur,
349         int                     level)
350 {
351         if (level != cur->bc_nlevels - 1)
352                 return cur->bc_mp->m_bmap_dmxr[level != 0];
353         return xfs_bmdr_maxrecs(cur->bc_private.b.forksize, level == 0);
354 }
355
356 STATIC void
357 xfs_bmbt_init_key_from_rec(
358         union xfs_btree_key     *key,
359         union xfs_btree_rec     *rec)
360 {
361         key->bmbt.br_startoff =
362                 cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt));
363 }
364
365 STATIC void
366 xfs_bmbt_init_high_key_from_rec(
367         union xfs_btree_key     *key,
368         union xfs_btree_rec     *rec)
369 {
370         key->bmbt.br_startoff = cpu_to_be64(
371                         xfs_bmbt_disk_get_startoff(&rec->bmbt) +
372                         xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1);
373 }
374
375 STATIC void
376 xfs_bmbt_init_rec_from_cur(
377         struct xfs_btree_cur    *cur,
378         union xfs_btree_rec     *rec)
379 {
380         xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b);
381 }
382
383 STATIC void
384 xfs_bmbt_init_ptr_from_cur(
385         struct xfs_btree_cur    *cur,
386         union xfs_btree_ptr     *ptr)
387 {
388         ptr->l = 0;
389 }
390
391 STATIC int64_t
392 xfs_bmbt_key_diff(
393         struct xfs_btree_cur    *cur,
394         union xfs_btree_key     *key)
395 {
396         return (int64_t)be64_to_cpu(key->bmbt.br_startoff) -
397                                       cur->bc_rec.b.br_startoff;
398 }
399
400 STATIC int64_t
401 xfs_bmbt_diff_two_keys(
402         struct xfs_btree_cur    *cur,
403         union xfs_btree_key     *k1,
404         union xfs_btree_key     *k2)
405 {
406         return (int64_t)be64_to_cpu(k1->bmbt.br_startoff) -
407                           be64_to_cpu(k2->bmbt.br_startoff);
408 }
409
410 static xfs_failaddr_t
411 xfs_bmbt_verify(
412         struct xfs_buf          *bp)
413 {
414         struct xfs_mount        *mp = bp->b_target->bt_mount;
415         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
416         xfs_failaddr_t          fa;
417         unsigned int            level;
418
419         switch (block->bb_magic) {
420         case cpu_to_be32(XFS_BMAP_CRC_MAGIC):
421                 /*
422                  * XXX: need a better way of verifying the owner here. Right now
423                  * just make sure there has been one set.
424                  */
425                 fa = xfs_btree_lblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
426                 if (fa)
427                         return fa;
428                 /* fall through */
429         case cpu_to_be32(XFS_BMAP_MAGIC):
430                 break;
431         default:
432                 return __this_address;
433         }
434
435         /*
436          * numrecs and level verification.
437          *
438          * We don't know what fork we belong to, so just verify that the level
439          * is less than the maximum of the two. Later checks will be more
440          * precise.
441          */
442         level = be16_to_cpu(block->bb_level);
443         if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1]))
444                 return __this_address;
445
446         return xfs_btree_lblock_verify(bp, mp->m_bmap_dmxr[level != 0]);
447 }
448
449 static void
450 xfs_bmbt_read_verify(
451         struct xfs_buf  *bp)
452 {
453         xfs_failaddr_t  fa;
454
455         if (!xfs_btree_lblock_verify_crc(bp))
456                 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
457         else {
458                 fa = xfs_bmbt_verify(bp);
459                 if (fa)
460                         xfs_verifier_error(bp, -EFSCORRUPTED, fa);
461         }
462
463         if (bp->b_error)
464                 trace_xfs_btree_corrupt(bp, _RET_IP_);
465 }
466
467 static void
468 xfs_bmbt_write_verify(
469         struct xfs_buf  *bp)
470 {
471         xfs_failaddr_t  fa;
472
473         fa = xfs_bmbt_verify(bp);
474         if (fa) {
475                 trace_xfs_btree_corrupt(bp, _RET_IP_);
476                 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
477                 return;
478         }
479         xfs_btree_lblock_calc_crc(bp);
480 }
481
482 const struct xfs_buf_ops xfs_bmbt_buf_ops = {
483         .name = "xfs_bmbt",
484         .verify_read = xfs_bmbt_read_verify,
485         .verify_write = xfs_bmbt_write_verify,
486         .verify_struct = xfs_bmbt_verify,
487 };
488
489
490 STATIC int
491 xfs_bmbt_keys_inorder(
492         struct xfs_btree_cur    *cur,
493         union xfs_btree_key     *k1,
494         union xfs_btree_key     *k2)
495 {
496         return be64_to_cpu(k1->bmbt.br_startoff) <
497                 be64_to_cpu(k2->bmbt.br_startoff);
498 }
499
500 STATIC int
501 xfs_bmbt_recs_inorder(
502         struct xfs_btree_cur    *cur,
503         union xfs_btree_rec     *r1,
504         union xfs_btree_rec     *r2)
505 {
506         return xfs_bmbt_disk_get_startoff(&r1->bmbt) +
507                 xfs_bmbt_disk_get_blockcount(&r1->bmbt) <=
508                 xfs_bmbt_disk_get_startoff(&r2->bmbt);
509 }
510
511 static const struct xfs_btree_ops xfs_bmbt_ops = {
512         .rec_len                = sizeof(xfs_bmbt_rec_t),
513         .key_len                = sizeof(xfs_bmbt_key_t),
514
515         .dup_cursor             = xfs_bmbt_dup_cursor,
516         .update_cursor          = xfs_bmbt_update_cursor,
517         .alloc_block            = xfs_bmbt_alloc_block,
518         .free_block             = xfs_bmbt_free_block,
519         .get_maxrecs            = xfs_bmbt_get_maxrecs,
520         .get_minrecs            = xfs_bmbt_get_minrecs,
521         .get_dmaxrecs           = xfs_bmbt_get_dmaxrecs,
522         .init_key_from_rec      = xfs_bmbt_init_key_from_rec,
523         .init_high_key_from_rec = xfs_bmbt_init_high_key_from_rec,
524         .init_rec_from_cur      = xfs_bmbt_init_rec_from_cur,
525         .init_ptr_from_cur      = xfs_bmbt_init_ptr_from_cur,
526         .key_diff               = xfs_bmbt_key_diff,
527         .diff_two_keys          = xfs_bmbt_diff_two_keys,
528         .buf_ops                = &xfs_bmbt_buf_ops,
529         .keys_inorder           = xfs_bmbt_keys_inorder,
530         .recs_inorder           = xfs_bmbt_recs_inorder,
531 };
532
533 /*
534  * Allocate a new bmap btree cursor.
535  */
536 struct xfs_btree_cur *                          /* new bmap btree cursor */
537 xfs_bmbt_init_cursor(
538         struct xfs_mount        *mp,            /* file system mount point */
539         struct xfs_trans        *tp,            /* transaction pointer */
540         struct xfs_inode        *ip,            /* inode owning the btree */
541         int                     whichfork)      /* data or attr fork */
542 {
543         struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, whichfork);
544         struct xfs_btree_cur    *cur;
545         ASSERT(whichfork != XFS_COW_FORK);
546
547         cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
548
549         cur->bc_tp = tp;
550         cur->bc_mp = mp;
551         cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1;
552         cur->bc_btnum = XFS_BTNUM_BMAP;
553         cur->bc_blocklog = mp->m_sb.sb_blocklog;
554         cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2);
555
556         cur->bc_ops = &xfs_bmbt_ops;
557         cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE;
558         if (xfs_sb_version_hascrc(&mp->m_sb))
559                 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
560
561         cur->bc_private.b.forksize = XFS_IFORK_SIZE(ip, whichfork);
562         cur->bc_private.b.ip = ip;
563         cur->bc_private.b.allocated = 0;
564         cur->bc_private.b.flags = 0;
565         cur->bc_private.b.whichfork = whichfork;
566
567         return cur;
568 }
569
570 /*
571  * Calculate number of records in a bmap btree block.
572  */
573 int
574 xfs_bmbt_maxrecs(
575         struct xfs_mount        *mp,
576         int                     blocklen,
577         int                     leaf)
578 {
579         blocklen -= XFS_BMBT_BLOCK_LEN(mp);
580
581         if (leaf)
582                 return blocklen / sizeof(xfs_bmbt_rec_t);
583         return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t));
584 }
585
586 /*
587  * Calculate number of records in a bmap btree inode root.
588  */
589 int
590 xfs_bmdr_maxrecs(
591         int                     blocklen,
592         int                     leaf)
593 {
594         blocklen -= sizeof(xfs_bmdr_block_t);
595
596         if (leaf)
597                 return blocklen / sizeof(xfs_bmdr_rec_t);
598         return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t));
599 }
600
601 /*
602  * Change the owner of a btree format fork fo the inode passed in. Change it to
603  * the owner of that is passed in so that we can change owners before or after
604  * we switch forks between inodes. The operation that the caller is doing will
605  * determine whether is needs to change owner before or after the switch.
606  *
607  * For demand paged transactional modification, the fork switch should be done
608  * after reading in all the blocks, modifying them and pinning them in the
609  * transaction. For modification when the buffers are already pinned in memory,
610  * the fork switch can be done before changing the owner as we won't need to
611  * validate the owner until the btree buffers are unpinned and writes can occur
612  * again.
613  *
614  * For recovery based ownership change, there is no transactional context and
615  * so a buffer list must be supplied so that we can record the buffers that we
616  * modified for the caller to issue IO on.
617  */
618 int
619 xfs_bmbt_change_owner(
620         struct xfs_trans        *tp,
621         struct xfs_inode        *ip,
622         int                     whichfork,
623         xfs_ino_t               new_owner,
624         struct list_head        *buffer_list)
625 {
626         struct xfs_btree_cur    *cur;
627         int                     error;
628
629         ASSERT(tp || buffer_list);
630         ASSERT(!(tp && buffer_list));
631         if (whichfork == XFS_DATA_FORK)
632                 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_BTREE);
633         else
634                 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE);
635
636         cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork);
637         if (!cur)
638                 return -ENOMEM;
639         cur->bc_private.b.flags |= XFS_BTCUR_BPRV_INVALID_OWNER;
640
641         error = xfs_btree_change_owner(cur, new_owner, buffer_list);
642         xfs_btree_del_cursor(cur, error);
643         return error;
644 }
645
646 /* Calculate the bmap btree size for some records. */
647 unsigned long long
648 xfs_bmbt_calc_size(
649         struct xfs_mount        *mp,
650         unsigned long long      len)
651 {
652         return xfs_btree_calc_size(mp->m_bmap_dmnr, len);
653 }