Merge branch 'address-masking'
[linux-2.6-microblaze.git] / fs / xfs / libxfs / xfs_bmap_btree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_alloc.h"
17 #include "xfs_btree.h"
18 #include "xfs_btree_staging.h"
19 #include "xfs_bmap_btree.h"
20 #include "xfs_bmap.h"
21 #include "xfs_error.h"
22 #include "xfs_quota.h"
23 #include "xfs_trace.h"
24 #include "xfs_rmap.h"
25 #include "xfs_ag.h"
26
27 static struct kmem_cache        *xfs_bmbt_cur_cache;
28
29 void
30 xfs_bmbt_init_block(
31         struct xfs_inode                *ip,
32         struct xfs_btree_block          *buf,
33         struct xfs_buf                  *bp,
34         __u16                           level,
35         __u16                           numrecs)
36 {
37         if (bp)
38                 xfs_btree_init_buf(ip->i_mount, bp, &xfs_bmbt_ops, level,
39                                 numrecs, ip->i_ino);
40         else
41                 xfs_btree_init_block(ip->i_mount, buf, &xfs_bmbt_ops, level,
42                                 numrecs, ip->i_ino);
43 }
44
45 /*
46  * Convert on-disk form of btree root to in-memory form.
47  */
48 void
49 xfs_bmdr_to_bmbt(
50         struct xfs_inode        *ip,
51         xfs_bmdr_block_t        *dblock,
52         int                     dblocklen,
53         struct xfs_btree_block  *rblock,
54         int                     rblocklen)
55 {
56         struct xfs_mount        *mp = ip->i_mount;
57         int                     dmxr;
58         xfs_bmbt_key_t          *fkp;
59         __be64                  *fpp;
60         xfs_bmbt_key_t          *tkp;
61         __be64                  *tpp;
62
63         xfs_bmbt_init_block(ip, rblock, NULL, 0, 0);
64         rblock->bb_level = dblock->bb_level;
65         ASSERT(be16_to_cpu(rblock->bb_level) > 0);
66         rblock->bb_numrecs = dblock->bb_numrecs;
67         dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
68         fkp = xfs_bmdr_key_addr(dblock, 1);
69         tkp = xfs_bmbt_key_addr(mp, rblock, 1);
70         fpp = xfs_bmdr_ptr_addr(dblock, 1, dmxr);
71         tpp = xfs_bmap_broot_ptr_addr(mp, rblock, 1, rblocklen);
72         dmxr = be16_to_cpu(dblock->bb_numrecs);
73         memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
74         memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
75 }
76
77 void
78 xfs_bmbt_disk_get_all(
79         const struct xfs_bmbt_rec *rec,
80         struct xfs_bmbt_irec    *irec)
81 {
82         uint64_t                l0 = get_unaligned_be64(&rec->l0);
83         uint64_t                l1 = get_unaligned_be64(&rec->l1);
84
85         irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
86         irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21);
87         irec->br_blockcount = l1 & xfs_mask64lo(21);
88         if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN))
89                 irec->br_state = XFS_EXT_UNWRITTEN;
90         else
91                 irec->br_state = XFS_EXT_NORM;
92 }
93
94 /*
95  * Extract the blockcount field from an on disk bmap extent record.
96  */
97 xfs_filblks_t
98 xfs_bmbt_disk_get_blockcount(
99         const struct xfs_bmbt_rec       *r)
100 {
101         return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21));
102 }
103
104 /*
105  * Extract the startoff field from a disk format bmap extent record.
106  */
107 xfs_fileoff_t
108 xfs_bmbt_disk_get_startoff(
109         const struct xfs_bmbt_rec       *r)
110 {
111         return ((xfs_fileoff_t)be64_to_cpu(r->l0) &
112                  xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
113 }
114
115 /*
116  * Set all the fields in a bmap extent record from the uncompressed form.
117  */
118 void
119 xfs_bmbt_disk_set_all(
120         struct xfs_bmbt_rec     *r,
121         struct xfs_bmbt_irec    *s)
122 {
123         int                     extent_flag = (s->br_state != XFS_EXT_NORM);
124
125         ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN);
126         ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)));
127         ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)));
128         ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)));
129
130         put_unaligned_be64(
131                 ((xfs_bmbt_rec_base_t)extent_flag << 63) |
132                  ((xfs_bmbt_rec_base_t)s->br_startoff << 9) |
133                  ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0);
134         put_unaligned_be64(
135                 ((xfs_bmbt_rec_base_t)s->br_startblock << 21) |
136                  ((xfs_bmbt_rec_base_t)s->br_blockcount &
137                   (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1);
138 }
139
140 /*
141  * Convert in-memory form of btree root to on-disk form.
142  */
143 void
144 xfs_bmbt_to_bmdr(
145         struct xfs_mount        *mp,
146         struct xfs_btree_block  *rblock,
147         int                     rblocklen,
148         xfs_bmdr_block_t        *dblock,
149         int                     dblocklen)
150 {
151         int                     dmxr;
152         xfs_bmbt_key_t          *fkp;
153         __be64                  *fpp;
154         xfs_bmbt_key_t          *tkp;
155         __be64                  *tpp;
156
157         if (xfs_has_crc(mp)) {
158                 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC));
159                 ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid,
160                        &mp->m_sb.sb_meta_uuid));
161                 ASSERT(rblock->bb_u.l.bb_blkno ==
162                        cpu_to_be64(XFS_BUF_DADDR_NULL));
163         } else
164                 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC));
165         ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
166         ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
167         ASSERT(rblock->bb_level != 0);
168         dblock->bb_level = rblock->bb_level;
169         dblock->bb_numrecs = rblock->bb_numrecs;
170         dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
171         fkp = xfs_bmbt_key_addr(mp, rblock, 1);
172         tkp = xfs_bmdr_key_addr(dblock, 1);
173         fpp = xfs_bmap_broot_ptr_addr(mp, rblock, 1, rblocklen);
174         tpp = xfs_bmdr_ptr_addr(dblock, 1, dmxr);
175         dmxr = be16_to_cpu(dblock->bb_numrecs);
176         memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
177         memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
178 }
179
180 STATIC struct xfs_btree_cur *
181 xfs_bmbt_dup_cursor(
182         struct xfs_btree_cur    *cur)
183 {
184         struct xfs_btree_cur    *new;
185
186         new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp,
187                         cur->bc_ino.ip, cur->bc_ino.whichfork);
188         new->bc_flags |= (cur->bc_flags &
189                 (XFS_BTREE_BMBT_INVALID_OWNER | XFS_BTREE_BMBT_WASDEL));
190         return new;
191 }
192
193 STATIC void
194 xfs_bmbt_update_cursor(
195         struct xfs_btree_cur    *src,
196         struct xfs_btree_cur    *dst)
197 {
198         ASSERT((dst->bc_tp->t_highest_agno != NULLAGNUMBER) ||
199                (dst->bc_ino.ip->i_diflags & XFS_DIFLAG_REALTIME));
200
201         dst->bc_bmap.allocated += src->bc_bmap.allocated;
202         dst->bc_tp->t_highest_agno = src->bc_tp->t_highest_agno;
203
204         src->bc_bmap.allocated = 0;
205 }
206
207 STATIC int
208 xfs_bmbt_alloc_block(
209         struct xfs_btree_cur            *cur,
210         const union xfs_btree_ptr       *start,
211         union xfs_btree_ptr             *new,
212         int                             *stat)
213 {
214         struct xfs_alloc_arg    args;
215         int                     error;
216
217         memset(&args, 0, sizeof(args));
218         args.tp = cur->bc_tp;
219         args.mp = cur->bc_mp;
220         xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_ino.ip->i_ino,
221                         cur->bc_ino.whichfork);
222         args.minlen = args.maxlen = args.prod = 1;
223         args.wasdel = cur->bc_flags & XFS_BTREE_BMBT_WASDEL;
224         if (!args.wasdel && args.tp->t_blk_res == 0)
225                 return -ENOSPC;
226
227         /*
228          * If we are coming here from something like unwritten extent
229          * conversion, there has been no data extent allocation already done, so
230          * we have to ensure that we attempt to locate the entire set of bmbt
231          * allocations in the same AG, as xfs_bmapi_write() would have reserved.
232          */
233         if (cur->bc_tp->t_highest_agno == NULLAGNUMBER)
234                 args.minleft = xfs_bmapi_minleft(cur->bc_tp, cur->bc_ino.ip,
235                                         cur->bc_ino.whichfork);
236
237         error = xfs_alloc_vextent_start_ag(&args, be64_to_cpu(start->l));
238         if (error)
239                 return error;
240
241         if (args.fsbno == NULLFSBLOCK && args.minleft) {
242                 /*
243                  * Could not find an AG with enough free space to satisfy
244                  * a full btree split.  Try again and if
245                  * successful activate the lowspace algorithm.
246                  */
247                 args.minleft = 0;
248                 error = xfs_alloc_vextent_start_ag(&args, 0);
249                 if (error)
250                         return error;
251                 cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE;
252         }
253         if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) {
254                 *stat = 0;
255                 return 0;
256         }
257
258         ASSERT(args.len == 1);
259         cur->bc_bmap.allocated++;
260         cur->bc_ino.ip->i_nblocks++;
261         xfs_trans_log_inode(args.tp, cur->bc_ino.ip, XFS_ILOG_CORE);
262         xfs_trans_mod_dquot_byino(args.tp, cur->bc_ino.ip,
263                         XFS_TRANS_DQ_BCOUNT, 1L);
264
265         new->l = cpu_to_be64(args.fsbno);
266
267         *stat = 1;
268         return 0;
269 }
270
271 STATIC int
272 xfs_bmbt_free_block(
273         struct xfs_btree_cur    *cur,
274         struct xfs_buf          *bp)
275 {
276         struct xfs_mount        *mp = cur->bc_mp;
277         struct xfs_inode        *ip = cur->bc_ino.ip;
278         struct xfs_trans        *tp = cur->bc_tp;
279         xfs_fsblock_t           fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
280         struct xfs_owner_info   oinfo;
281         int                     error;
282
283         xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork);
284         error = xfs_free_extent_later(cur->bc_tp, fsbno, 1, &oinfo,
285                         XFS_AG_RESV_NONE, 0);
286         if (error)
287                 return error;
288
289         ip->i_nblocks--;
290         xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
291         xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L);
292         return 0;
293 }
294
295 STATIC int
296 xfs_bmbt_get_minrecs(
297         struct xfs_btree_cur    *cur,
298         int                     level)
299 {
300         if (level == cur->bc_nlevels - 1) {
301                 struct xfs_ifork        *ifp = xfs_btree_ifork_ptr(cur);
302
303                 return xfs_bmbt_maxrecs(cur->bc_mp,
304                                         ifp->if_broot_bytes, level == 0) / 2;
305         }
306
307         return cur->bc_mp->m_bmap_dmnr[level != 0];
308 }
309
310 int
311 xfs_bmbt_get_maxrecs(
312         struct xfs_btree_cur    *cur,
313         int                     level)
314 {
315         if (level == cur->bc_nlevels - 1) {
316                 struct xfs_ifork        *ifp = xfs_btree_ifork_ptr(cur);
317
318                 return xfs_bmbt_maxrecs(cur->bc_mp,
319                                         ifp->if_broot_bytes, level == 0);
320         }
321
322         return cur->bc_mp->m_bmap_dmxr[level != 0];
323
324 }
325
326 /*
327  * Get the maximum records we could store in the on-disk format.
328  *
329  * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but
330  * for the root node this checks the available space in the dinode fork
331  * so that we can resize the in-memory buffer to match it.  After a
332  * resize to the maximum size this function returns the same value
333  * as xfs_bmbt_get_maxrecs for the root node, too.
334  */
335 STATIC int
336 xfs_bmbt_get_dmaxrecs(
337         struct xfs_btree_cur    *cur,
338         int                     level)
339 {
340         if (level != cur->bc_nlevels - 1)
341                 return cur->bc_mp->m_bmap_dmxr[level != 0];
342         return xfs_bmdr_maxrecs(cur->bc_ino.forksize, level == 0);
343 }
344
345 STATIC void
346 xfs_bmbt_init_key_from_rec(
347         union xfs_btree_key             *key,
348         const union xfs_btree_rec       *rec)
349 {
350         key->bmbt.br_startoff =
351                 cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt));
352 }
353
354 STATIC void
355 xfs_bmbt_init_high_key_from_rec(
356         union xfs_btree_key             *key,
357         const union xfs_btree_rec       *rec)
358 {
359         key->bmbt.br_startoff = cpu_to_be64(
360                         xfs_bmbt_disk_get_startoff(&rec->bmbt) +
361                         xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1);
362 }
363
364 STATIC void
365 xfs_bmbt_init_rec_from_cur(
366         struct xfs_btree_cur    *cur,
367         union xfs_btree_rec     *rec)
368 {
369         xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b);
370 }
371
372 STATIC int64_t
373 xfs_bmbt_key_diff(
374         struct xfs_btree_cur            *cur,
375         const union xfs_btree_key       *key)
376 {
377         return (int64_t)be64_to_cpu(key->bmbt.br_startoff) -
378                                       cur->bc_rec.b.br_startoff;
379 }
380
381 STATIC int64_t
382 xfs_bmbt_diff_two_keys(
383         struct xfs_btree_cur            *cur,
384         const union xfs_btree_key       *k1,
385         const union xfs_btree_key       *k2,
386         const union xfs_btree_key       *mask)
387 {
388         uint64_t                        a = be64_to_cpu(k1->bmbt.br_startoff);
389         uint64_t                        b = be64_to_cpu(k2->bmbt.br_startoff);
390
391         ASSERT(!mask || mask->bmbt.br_startoff);
392
393         /*
394          * Note: This routine previously casted a and b to int64 and subtracted
395          * them to generate a result.  This lead to problems if b was the
396          * "maximum" key value (all ones) being signed incorrectly, hence this
397          * somewhat less efficient version.
398          */
399         if (a > b)
400                 return 1;
401         if (b > a)
402                 return -1;
403         return 0;
404 }
405
406 static xfs_failaddr_t
407 xfs_bmbt_verify(
408         struct xfs_buf          *bp)
409 {
410         struct xfs_mount        *mp = bp->b_mount;
411         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
412         xfs_failaddr_t          fa;
413         unsigned int            level;
414
415         if (!xfs_verify_magic(bp, block->bb_magic))
416                 return __this_address;
417
418         if (xfs_has_crc(mp)) {
419                 /*
420                  * XXX: need a better way of verifying the owner here. Right now
421                  * just make sure there has been one set.
422                  */
423                 fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
424                 if (fa)
425                         return fa;
426         }
427
428         /*
429          * numrecs and level verification.
430          *
431          * We don't know what fork we belong to, so just verify that the level
432          * is less than the maximum of the two. Later checks will be more
433          * precise.
434          */
435         level = be16_to_cpu(block->bb_level);
436         if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1]))
437                 return __this_address;
438
439         return xfs_btree_fsblock_verify(bp, mp->m_bmap_dmxr[level != 0]);
440 }
441
442 static void
443 xfs_bmbt_read_verify(
444         struct xfs_buf  *bp)
445 {
446         xfs_failaddr_t  fa;
447
448         if (!xfs_btree_fsblock_verify_crc(bp))
449                 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
450         else {
451                 fa = xfs_bmbt_verify(bp);
452                 if (fa)
453                         xfs_verifier_error(bp, -EFSCORRUPTED, fa);
454         }
455
456         if (bp->b_error)
457                 trace_xfs_btree_corrupt(bp, _RET_IP_);
458 }
459
460 static void
461 xfs_bmbt_write_verify(
462         struct xfs_buf  *bp)
463 {
464         xfs_failaddr_t  fa;
465
466         fa = xfs_bmbt_verify(bp);
467         if (fa) {
468                 trace_xfs_btree_corrupt(bp, _RET_IP_);
469                 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
470                 return;
471         }
472         xfs_btree_fsblock_calc_crc(bp);
473 }
474
475 const struct xfs_buf_ops xfs_bmbt_buf_ops = {
476         .name = "xfs_bmbt",
477         .magic = { cpu_to_be32(XFS_BMAP_MAGIC),
478                    cpu_to_be32(XFS_BMAP_CRC_MAGIC) },
479         .verify_read = xfs_bmbt_read_verify,
480         .verify_write = xfs_bmbt_write_verify,
481         .verify_struct = xfs_bmbt_verify,
482 };
483
484
485 STATIC int
486 xfs_bmbt_keys_inorder(
487         struct xfs_btree_cur            *cur,
488         const union xfs_btree_key       *k1,
489         const union xfs_btree_key       *k2)
490 {
491         return be64_to_cpu(k1->bmbt.br_startoff) <
492                 be64_to_cpu(k2->bmbt.br_startoff);
493 }
494
495 STATIC int
496 xfs_bmbt_recs_inorder(
497         struct xfs_btree_cur            *cur,
498         const union xfs_btree_rec       *r1,
499         const union xfs_btree_rec       *r2)
500 {
501         return xfs_bmbt_disk_get_startoff(&r1->bmbt) +
502                 xfs_bmbt_disk_get_blockcount(&r1->bmbt) <=
503                 xfs_bmbt_disk_get_startoff(&r2->bmbt);
504 }
505
506 STATIC enum xbtree_key_contig
507 xfs_bmbt_keys_contiguous(
508         struct xfs_btree_cur            *cur,
509         const union xfs_btree_key       *key1,
510         const union xfs_btree_key       *key2,
511         const union xfs_btree_key       *mask)
512 {
513         ASSERT(!mask || mask->bmbt.br_startoff);
514
515         return xbtree_key_contig(be64_to_cpu(key1->bmbt.br_startoff),
516                                  be64_to_cpu(key2->bmbt.br_startoff));
517 }
518
519 const struct xfs_btree_ops xfs_bmbt_ops = {
520         .name                   = "bmap",
521         .type                   = XFS_BTREE_TYPE_INODE,
522
523         .rec_len                = sizeof(xfs_bmbt_rec_t),
524         .key_len                = sizeof(xfs_bmbt_key_t),
525         .ptr_len                = XFS_BTREE_LONG_PTR_LEN,
526
527         .lru_refs               = XFS_BMAP_BTREE_REF,
528         .statoff                = XFS_STATS_CALC_INDEX(xs_bmbt_2),
529
530         .dup_cursor             = xfs_bmbt_dup_cursor,
531         .update_cursor          = xfs_bmbt_update_cursor,
532         .alloc_block            = xfs_bmbt_alloc_block,
533         .free_block             = xfs_bmbt_free_block,
534         .get_maxrecs            = xfs_bmbt_get_maxrecs,
535         .get_minrecs            = xfs_bmbt_get_minrecs,
536         .get_dmaxrecs           = xfs_bmbt_get_dmaxrecs,
537         .init_key_from_rec      = xfs_bmbt_init_key_from_rec,
538         .init_high_key_from_rec = xfs_bmbt_init_high_key_from_rec,
539         .init_rec_from_cur      = xfs_bmbt_init_rec_from_cur,
540         .key_diff               = xfs_bmbt_key_diff,
541         .diff_two_keys          = xfs_bmbt_diff_two_keys,
542         .buf_ops                = &xfs_bmbt_buf_ops,
543         .keys_inorder           = xfs_bmbt_keys_inorder,
544         .recs_inorder           = xfs_bmbt_recs_inorder,
545         .keys_contiguous        = xfs_bmbt_keys_contiguous,
546 };
547
548 /*
549  * Create a new bmap btree cursor.
550  *
551  * For staging cursors -1 in passed in whichfork.
552  */
553 struct xfs_btree_cur *
554 xfs_bmbt_init_cursor(
555         struct xfs_mount        *mp,
556         struct xfs_trans        *tp,
557         struct xfs_inode        *ip,
558         int                     whichfork)
559 {
560         struct xfs_btree_cur    *cur;
561         unsigned int            maxlevels;
562
563         ASSERT(whichfork != XFS_COW_FORK);
564
565         /*
566          * The Data fork always has larger maxlevel, so use that for staging
567          * cursors.
568          */
569         switch (whichfork) {
570         case XFS_STAGING_FORK:
571                 maxlevels = mp->m_bm_maxlevels[XFS_DATA_FORK];
572                 break;
573         default:
574                 maxlevels = mp->m_bm_maxlevels[whichfork];
575                 break;
576         }
577         cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bmbt_ops, maxlevels,
578                         xfs_bmbt_cur_cache);
579         cur->bc_ino.ip = ip;
580         cur->bc_ino.whichfork = whichfork;
581         cur->bc_bmap.allocated = 0;
582         if (whichfork != XFS_STAGING_FORK) {
583                 struct xfs_ifork        *ifp = xfs_ifork_ptr(ip, whichfork);
584
585                 cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1;
586                 cur->bc_ino.forksize = xfs_inode_fork_size(ip, whichfork);
587         }
588         return cur;
589 }
590
591 /* Calculate number of records in a block mapping btree block. */
592 static inline unsigned int
593 xfs_bmbt_block_maxrecs(
594         unsigned int            blocklen,
595         bool                    leaf)
596 {
597         if (leaf)
598                 return blocklen / sizeof(xfs_bmbt_rec_t);
599         return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t));
600 }
601
602 /*
603  * Swap in the new inode fork root.  Once we pass this point the newly rebuilt
604  * mappings are in place and we have to kill off any old btree blocks.
605  */
606 void
607 xfs_bmbt_commit_staged_btree(
608         struct xfs_btree_cur    *cur,
609         struct xfs_trans        *tp,
610         int                     whichfork)
611 {
612         struct xbtree_ifakeroot *ifake = cur->bc_ino.ifake;
613         struct xfs_ifork        *ifp;
614         static const short      brootflag[2] = {XFS_ILOG_DBROOT, XFS_ILOG_ABROOT};
615         static const short      extflag[2] = {XFS_ILOG_DEXT, XFS_ILOG_AEXT};
616         int                     flags = XFS_ILOG_CORE;
617
618         ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
619         ASSERT(whichfork != XFS_COW_FORK);
620
621         /*
622          * Free any resources hanging off the real fork, then shallow-copy the
623          * staging fork's contents into the real fork to transfer everything
624          * we just built.
625          */
626         ifp = xfs_ifork_ptr(cur->bc_ino.ip, whichfork);
627         xfs_idestroy_fork(ifp);
628         memcpy(ifp, ifake->if_fork, sizeof(struct xfs_ifork));
629
630         switch (ifp->if_format) {
631         case XFS_DINODE_FMT_EXTENTS:
632                 flags |= extflag[whichfork];
633                 break;
634         case XFS_DINODE_FMT_BTREE:
635                 flags |= brootflag[whichfork];
636                 break;
637         default:
638                 ASSERT(0);
639                 break;
640         }
641         xfs_trans_log_inode(tp, cur->bc_ino.ip, flags);
642         xfs_btree_commit_ifakeroot(cur, tp, whichfork);
643 }
644
645 /*
646  * Calculate number of records in a bmap btree block.
647  */
648 unsigned int
649 xfs_bmbt_maxrecs(
650         struct xfs_mount        *mp,
651         unsigned int            blocklen,
652         bool                    leaf)
653 {
654         blocklen -= xfs_bmbt_block_len(mp);
655         return xfs_bmbt_block_maxrecs(blocklen, leaf);
656 }
657
658 /*
659  * Calculate the maximum possible height of the btree that the on-disk format
660  * supports. This is used for sizing structures large enough to support every
661  * possible configuration of a filesystem that might get mounted.
662  */
663 unsigned int
664 xfs_bmbt_maxlevels_ondisk(void)
665 {
666         unsigned int            minrecs[2];
667         unsigned int            blocklen;
668
669         blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
670                        XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
671
672         minrecs[0] = xfs_bmbt_block_maxrecs(blocklen, true) / 2;
673         minrecs[1] = xfs_bmbt_block_maxrecs(blocklen, false) / 2;
674
675         /* One extra level for the inode root. */
676         return xfs_btree_compute_maxlevels(minrecs,
677                         XFS_MAX_EXTCNT_DATA_FORK_LARGE) + 1;
678 }
679
680 /*
681  * Calculate number of records in a bmap btree inode root.
682  */
683 int
684 xfs_bmdr_maxrecs(
685         int                     blocklen,
686         int                     leaf)
687 {
688         blocklen -= sizeof(xfs_bmdr_block_t);
689
690         if (leaf)
691                 return blocklen / sizeof(xfs_bmdr_rec_t);
692         return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t));
693 }
694
695 /*
696  * Change the owner of a btree format fork fo the inode passed in. Change it to
697  * the owner of that is passed in so that we can change owners before or after
698  * we switch forks between inodes. The operation that the caller is doing will
699  * determine whether is needs to change owner before or after the switch.
700  *
701  * For demand paged transactional modification, the fork switch should be done
702  * after reading in all the blocks, modifying them and pinning them in the
703  * transaction. For modification when the buffers are already pinned in memory,
704  * the fork switch can be done before changing the owner as we won't need to
705  * validate the owner until the btree buffers are unpinned and writes can occur
706  * again.
707  *
708  * For recovery based ownership change, there is no transactional context and
709  * so a buffer list must be supplied so that we can record the buffers that we
710  * modified for the caller to issue IO on.
711  */
712 int
713 xfs_bmbt_change_owner(
714         struct xfs_trans        *tp,
715         struct xfs_inode        *ip,
716         int                     whichfork,
717         xfs_ino_t               new_owner,
718         struct list_head        *buffer_list)
719 {
720         struct xfs_btree_cur    *cur;
721         int                     error;
722
723         ASSERT(tp || buffer_list);
724         ASSERT(!(tp && buffer_list));
725         ASSERT(xfs_ifork_ptr(ip, whichfork)->if_format == XFS_DINODE_FMT_BTREE);
726
727         cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork);
728         cur->bc_flags |= XFS_BTREE_BMBT_INVALID_OWNER;
729
730         error = xfs_btree_change_owner(cur, new_owner, buffer_list);
731         xfs_btree_del_cursor(cur, error);
732         return error;
733 }
734
735 /* Calculate the bmap btree size for some records. */
736 unsigned long long
737 xfs_bmbt_calc_size(
738         struct xfs_mount        *mp,
739         unsigned long long      len)
740 {
741         return xfs_btree_calc_size(mp->m_bmap_dmnr, len);
742 }
743
744 int __init
745 xfs_bmbt_init_cur_cache(void)
746 {
747         xfs_bmbt_cur_cache = kmem_cache_create("xfs_bmbt_cur",
748                         xfs_btree_cur_sizeof(xfs_bmbt_maxlevels_ondisk()),
749                         0, 0, NULL);
750
751         if (!xfs_bmbt_cur_cache)
752                 return -ENOMEM;
753         return 0;
754 }
755
756 void
757 xfs_bmbt_destroy_cur_cache(void)
758 {
759         kmem_cache_destroy(xfs_bmbt_cur_cache);
760         xfs_bmbt_cur_cache = NULL;
761 }