Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34 #include <linux/uio.h>
35
36 static int sysctl_unprivileged_userfaultfd __read_mostly;
37
38 #ifdef CONFIG_SYSCTL
39 static struct ctl_table vm_userfaultfd_table[] = {
40         {
41                 .procname       = "unprivileged_userfaultfd",
42                 .data           = &sysctl_unprivileged_userfaultfd,
43                 .maxlen         = sizeof(sysctl_unprivileged_userfaultfd),
44                 .mode           = 0644,
45                 .proc_handler   = proc_dointvec_minmax,
46                 .extra1         = SYSCTL_ZERO,
47                 .extra2         = SYSCTL_ONE,
48         },
49 };
50 #endif
51
52 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
53
54 struct userfaultfd_fork_ctx {
55         struct userfaultfd_ctx *orig;
56         struct userfaultfd_ctx *new;
57         struct list_head list;
58 };
59
60 struct userfaultfd_unmap_ctx {
61         struct userfaultfd_ctx *ctx;
62         unsigned long start;
63         unsigned long end;
64         struct list_head list;
65 };
66
67 struct userfaultfd_wait_queue {
68         struct uffd_msg msg;
69         wait_queue_entry_t wq;
70         struct userfaultfd_ctx *ctx;
71         bool waken;
72 };
73
74 struct userfaultfd_wake_range {
75         unsigned long start;
76         unsigned long len;
77 };
78
79 /* internal indication that UFFD_API ioctl was successfully executed */
80 #define UFFD_FEATURE_INITIALIZED                (1u << 31)
81
82 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
83 {
84         return ctx->features & UFFD_FEATURE_INITIALIZED;
85 }
86
87 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
88 {
89         return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
90 }
91
92 /*
93  * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
94  * meaningful when userfaultfd_wp()==true on the vma and when it's
95  * anonymous.
96  */
97 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
98 {
99         struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
100
101         if (!ctx)
102                 return false;
103
104         return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
105 }
106
107 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
108                                      vm_flags_t flags)
109 {
110         const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
111
112         vm_flags_reset(vma, flags);
113         /*
114          * For shared mappings, we want to enable writenotify while
115          * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
116          * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
117          */
118         if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
119                 vma_set_page_prot(vma);
120 }
121
122 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
123                                      int wake_flags, void *key)
124 {
125         struct userfaultfd_wake_range *range = key;
126         int ret;
127         struct userfaultfd_wait_queue *uwq;
128         unsigned long start, len;
129
130         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
131         ret = 0;
132         /* len == 0 means wake all */
133         start = range->start;
134         len = range->len;
135         if (len && (start > uwq->msg.arg.pagefault.address ||
136                     start + len <= uwq->msg.arg.pagefault.address))
137                 goto out;
138         WRITE_ONCE(uwq->waken, true);
139         /*
140          * The Program-Order guarantees provided by the scheduler
141          * ensure uwq->waken is visible before the task is woken.
142          */
143         ret = wake_up_state(wq->private, mode);
144         if (ret) {
145                 /*
146                  * Wake only once, autoremove behavior.
147                  *
148                  * After the effect of list_del_init is visible to the other
149                  * CPUs, the waitqueue may disappear from under us, see the
150                  * !list_empty_careful() in handle_userfault().
151                  *
152                  * try_to_wake_up() has an implicit smp_mb(), and the
153                  * wq->private is read before calling the extern function
154                  * "wake_up_state" (which in turns calls try_to_wake_up).
155                  */
156                 list_del_init(&wq->entry);
157         }
158 out:
159         return ret;
160 }
161
162 /**
163  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
164  * context.
165  * @ctx: [in] Pointer to the userfaultfd context.
166  */
167 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
168 {
169         refcount_inc(&ctx->refcount);
170 }
171
172 /**
173  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
174  * context.
175  * @ctx: [in] Pointer to userfaultfd context.
176  *
177  * The userfaultfd context reference must have been previously acquired either
178  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
179  */
180 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
181 {
182         if (refcount_dec_and_test(&ctx->refcount)) {
183                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
184                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
185                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
186                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
187                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
188                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
189                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
190                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
191                 mmdrop(ctx->mm);
192                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
193         }
194 }
195
196 static inline void msg_init(struct uffd_msg *msg)
197 {
198         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
199         /*
200          * Must use memset to zero out the paddings or kernel data is
201          * leaked to userland.
202          */
203         memset(msg, 0, sizeof(struct uffd_msg));
204 }
205
206 static inline struct uffd_msg userfault_msg(unsigned long address,
207                                             unsigned long real_address,
208                                             unsigned int flags,
209                                             unsigned long reason,
210                                             unsigned int features)
211 {
212         struct uffd_msg msg;
213
214         msg_init(&msg);
215         msg.event = UFFD_EVENT_PAGEFAULT;
216
217         msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
218                                     real_address : address;
219
220         /*
221          * These flags indicate why the userfault occurred:
222          * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
223          * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
224          * - Neither of these flags being set indicates a MISSING fault.
225          *
226          * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
227          * fault. Otherwise, it was a read fault.
228          */
229         if (flags & FAULT_FLAG_WRITE)
230                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
231         if (reason & VM_UFFD_WP)
232                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
233         if (reason & VM_UFFD_MINOR)
234                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
235         if (features & UFFD_FEATURE_THREAD_ID)
236                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
237         return msg;
238 }
239
240 #ifdef CONFIG_HUGETLB_PAGE
241 /*
242  * Same functionality as userfaultfd_must_wait below with modifications for
243  * hugepmd ranges.
244  */
245 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
246                                               struct vm_fault *vmf,
247                                               unsigned long reason)
248 {
249         struct vm_area_struct *vma = vmf->vma;
250         pte_t *ptep, pte;
251         bool ret = true;
252
253         assert_fault_locked(vmf);
254
255         ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
256         if (!ptep)
257                 goto out;
258
259         ret = false;
260         pte = huge_ptep_get(ptep);
261
262         /*
263          * Lockless access: we're in a wait_event so it's ok if it
264          * changes under us.  PTE markers should be handled the same as none
265          * ptes here.
266          */
267         if (huge_pte_none_mostly(pte))
268                 ret = true;
269         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
270                 ret = true;
271 out:
272         return ret;
273 }
274 #else
275 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
276                                               struct vm_fault *vmf,
277                                               unsigned long reason)
278 {
279         return false;   /* should never get here */
280 }
281 #endif /* CONFIG_HUGETLB_PAGE */
282
283 /*
284  * Verify the pagetables are still not ok after having reigstered into
285  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
286  * userfault that has already been resolved, if userfaultfd_read_iter and
287  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
288  * threads.
289  */
290 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
291                                          struct vm_fault *vmf,
292                                          unsigned long reason)
293 {
294         struct mm_struct *mm = ctx->mm;
295         unsigned long address = vmf->address;
296         pgd_t *pgd;
297         p4d_t *p4d;
298         pud_t *pud;
299         pmd_t *pmd, _pmd;
300         pte_t *pte;
301         pte_t ptent;
302         bool ret = true;
303
304         assert_fault_locked(vmf);
305
306         pgd = pgd_offset(mm, address);
307         if (!pgd_present(*pgd))
308                 goto out;
309         p4d = p4d_offset(pgd, address);
310         if (!p4d_present(*p4d))
311                 goto out;
312         pud = pud_offset(p4d, address);
313         if (!pud_present(*pud))
314                 goto out;
315         pmd = pmd_offset(pud, address);
316 again:
317         _pmd = pmdp_get_lockless(pmd);
318         if (pmd_none(_pmd))
319                 goto out;
320
321         ret = false;
322         if (!pmd_present(_pmd) || pmd_devmap(_pmd))
323                 goto out;
324
325         if (pmd_trans_huge(_pmd)) {
326                 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
327                         ret = true;
328                 goto out;
329         }
330
331         pte = pte_offset_map(pmd, address);
332         if (!pte) {
333                 ret = true;
334                 goto again;
335         }
336         /*
337          * Lockless access: we're in a wait_event so it's ok if it
338          * changes under us.  PTE markers should be handled the same as none
339          * ptes here.
340          */
341         ptent = ptep_get(pte);
342         if (pte_none_mostly(ptent))
343                 ret = true;
344         if (!pte_write(ptent) && (reason & VM_UFFD_WP))
345                 ret = true;
346         pte_unmap(pte);
347
348 out:
349         return ret;
350 }
351
352 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
353 {
354         if (flags & FAULT_FLAG_INTERRUPTIBLE)
355                 return TASK_INTERRUPTIBLE;
356
357         if (flags & FAULT_FLAG_KILLABLE)
358                 return TASK_KILLABLE;
359
360         return TASK_UNINTERRUPTIBLE;
361 }
362
363 /*
364  * The locking rules involved in returning VM_FAULT_RETRY depending on
365  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
366  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
367  * recommendation in __lock_page_or_retry is not an understatement.
368  *
369  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
370  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
371  * not set.
372  *
373  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
374  * set, VM_FAULT_RETRY can still be returned if and only if there are
375  * fatal_signal_pending()s, and the mmap_lock must be released before
376  * returning it.
377  */
378 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
379 {
380         struct vm_area_struct *vma = vmf->vma;
381         struct mm_struct *mm = vma->vm_mm;
382         struct userfaultfd_ctx *ctx;
383         struct userfaultfd_wait_queue uwq;
384         vm_fault_t ret = VM_FAULT_SIGBUS;
385         bool must_wait;
386         unsigned int blocking_state;
387
388         /*
389          * We don't do userfault handling for the final child pid update.
390          *
391          * We also don't do userfault handling during
392          * coredumping. hugetlbfs has the special
393          * hugetlb_follow_page_mask() to skip missing pages in the
394          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
395          * the no_page_table() helper in follow_page_mask(), but the
396          * shmem_vm_ops->fault method is invoked even during
397          * coredumping and it ends up here.
398          */
399         if (current->flags & (PF_EXITING|PF_DUMPCORE))
400                 goto out;
401
402         assert_fault_locked(vmf);
403
404         ctx = vma->vm_userfaultfd_ctx.ctx;
405         if (!ctx)
406                 goto out;
407
408         BUG_ON(ctx->mm != mm);
409
410         /* Any unrecognized flag is a bug. */
411         VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
412         /* 0 or > 1 flags set is a bug; we expect exactly 1. */
413         VM_BUG_ON(!reason || (reason & (reason - 1)));
414
415         if (ctx->features & UFFD_FEATURE_SIGBUS)
416                 goto out;
417         if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
418                 goto out;
419
420         /*
421          * If it's already released don't get it. This avoids to loop
422          * in __get_user_pages if userfaultfd_release waits on the
423          * caller of handle_userfault to release the mmap_lock.
424          */
425         if (unlikely(READ_ONCE(ctx->released))) {
426                 /*
427                  * Don't return VM_FAULT_SIGBUS in this case, so a non
428                  * cooperative manager can close the uffd after the
429                  * last UFFDIO_COPY, without risking to trigger an
430                  * involuntary SIGBUS if the process was starting the
431                  * userfaultfd while the userfaultfd was still armed
432                  * (but after the last UFFDIO_COPY). If the uffd
433                  * wasn't already closed when the userfault reached
434                  * this point, that would normally be solved by
435                  * userfaultfd_must_wait returning 'false'.
436                  *
437                  * If we were to return VM_FAULT_SIGBUS here, the non
438                  * cooperative manager would be instead forced to
439                  * always call UFFDIO_UNREGISTER before it can safely
440                  * close the uffd.
441                  */
442                 ret = VM_FAULT_NOPAGE;
443                 goto out;
444         }
445
446         /*
447          * Check that we can return VM_FAULT_RETRY.
448          *
449          * NOTE: it should become possible to return VM_FAULT_RETRY
450          * even if FAULT_FLAG_TRIED is set without leading to gup()
451          * -EBUSY failures, if the userfaultfd is to be extended for
452          * VM_UFFD_WP tracking and we intend to arm the userfault
453          * without first stopping userland access to the memory. For
454          * VM_UFFD_MISSING userfaults this is enough for now.
455          */
456         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
457                 /*
458                  * Validate the invariant that nowait must allow retry
459                  * to be sure not to return SIGBUS erroneously on
460                  * nowait invocations.
461                  */
462                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
463 #ifdef CONFIG_DEBUG_VM
464                 if (printk_ratelimit()) {
465                         printk(KERN_WARNING
466                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
467                                vmf->flags);
468                         dump_stack();
469                 }
470 #endif
471                 goto out;
472         }
473
474         /*
475          * Handle nowait, not much to do other than tell it to retry
476          * and wait.
477          */
478         ret = VM_FAULT_RETRY;
479         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
480                 goto out;
481
482         /* take the reference before dropping the mmap_lock */
483         userfaultfd_ctx_get(ctx);
484
485         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
486         uwq.wq.private = current;
487         uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
488                                 reason, ctx->features);
489         uwq.ctx = ctx;
490         uwq.waken = false;
491
492         blocking_state = userfaultfd_get_blocking_state(vmf->flags);
493
494         /*
495          * Take the vma lock now, in order to safely call
496          * userfaultfd_huge_must_wait() later. Since acquiring the
497          * (sleepable) vma lock can modify the current task state, that
498          * must be before explicitly calling set_current_state().
499          */
500         if (is_vm_hugetlb_page(vma))
501                 hugetlb_vma_lock_read(vma);
502
503         spin_lock_irq(&ctx->fault_pending_wqh.lock);
504         /*
505          * After the __add_wait_queue the uwq is visible to userland
506          * through poll/read().
507          */
508         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
509         /*
510          * The smp_mb() after __set_current_state prevents the reads
511          * following the spin_unlock to happen before the list_add in
512          * __add_wait_queue.
513          */
514         set_current_state(blocking_state);
515         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
516
517         if (!is_vm_hugetlb_page(vma))
518                 must_wait = userfaultfd_must_wait(ctx, vmf, reason);
519         else
520                 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
521         if (is_vm_hugetlb_page(vma))
522                 hugetlb_vma_unlock_read(vma);
523         release_fault_lock(vmf);
524
525         if (likely(must_wait && !READ_ONCE(ctx->released))) {
526                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
527                 schedule();
528         }
529
530         __set_current_state(TASK_RUNNING);
531
532         /*
533          * Here we race with the list_del; list_add in
534          * userfaultfd_ctx_read(), however because we don't ever run
535          * list_del_init() to refile across the two lists, the prev
536          * and next pointers will never point to self. list_add also
537          * would never let any of the two pointers to point to
538          * self. So list_empty_careful won't risk to see both pointers
539          * pointing to self at any time during the list refile. The
540          * only case where list_del_init() is called is the full
541          * removal in the wake function and there we don't re-list_add
542          * and it's fine not to block on the spinlock. The uwq on this
543          * kernel stack can be released after the list_del_init.
544          */
545         if (!list_empty_careful(&uwq.wq.entry)) {
546                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
547                 /*
548                  * No need of list_del_init(), the uwq on the stack
549                  * will be freed shortly anyway.
550                  */
551                 list_del(&uwq.wq.entry);
552                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
553         }
554
555         /*
556          * ctx may go away after this if the userfault pseudo fd is
557          * already released.
558          */
559         userfaultfd_ctx_put(ctx);
560
561 out:
562         return ret;
563 }
564
565 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
566                                               struct userfaultfd_wait_queue *ewq)
567 {
568         struct userfaultfd_ctx *release_new_ctx;
569
570         if (WARN_ON_ONCE(current->flags & PF_EXITING))
571                 goto out;
572
573         ewq->ctx = ctx;
574         init_waitqueue_entry(&ewq->wq, current);
575         release_new_ctx = NULL;
576
577         spin_lock_irq(&ctx->event_wqh.lock);
578         /*
579          * After the __add_wait_queue the uwq is visible to userland
580          * through poll/read().
581          */
582         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
583         for (;;) {
584                 set_current_state(TASK_KILLABLE);
585                 if (ewq->msg.event == 0)
586                         break;
587                 if (READ_ONCE(ctx->released) ||
588                     fatal_signal_pending(current)) {
589                         /*
590                          * &ewq->wq may be queued in fork_event, but
591                          * __remove_wait_queue ignores the head
592                          * parameter. It would be a problem if it
593                          * didn't.
594                          */
595                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
596                         if (ewq->msg.event == UFFD_EVENT_FORK) {
597                                 struct userfaultfd_ctx *new;
598
599                                 new = (struct userfaultfd_ctx *)
600                                         (unsigned long)
601                                         ewq->msg.arg.reserved.reserved1;
602                                 release_new_ctx = new;
603                         }
604                         break;
605                 }
606
607                 spin_unlock_irq(&ctx->event_wqh.lock);
608
609                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
610                 schedule();
611
612                 spin_lock_irq(&ctx->event_wqh.lock);
613         }
614         __set_current_state(TASK_RUNNING);
615         spin_unlock_irq(&ctx->event_wqh.lock);
616
617         if (release_new_ctx) {
618                 struct vm_area_struct *vma;
619                 struct mm_struct *mm = release_new_ctx->mm;
620                 VMA_ITERATOR(vmi, mm, 0);
621
622                 /* the various vma->vm_userfaultfd_ctx still points to it */
623                 mmap_write_lock(mm);
624                 for_each_vma(vmi, vma) {
625                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
626                                 vma_start_write(vma);
627                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
628                                 userfaultfd_set_vm_flags(vma,
629                                                          vma->vm_flags & ~__VM_UFFD_FLAGS);
630                         }
631                 }
632                 mmap_write_unlock(mm);
633
634                 userfaultfd_ctx_put(release_new_ctx);
635         }
636
637         /*
638          * ctx may go away after this if the userfault pseudo fd is
639          * already released.
640          */
641 out:
642         atomic_dec(&ctx->mmap_changing);
643         VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
644         userfaultfd_ctx_put(ctx);
645 }
646
647 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
648                                        struct userfaultfd_wait_queue *ewq)
649 {
650         ewq->msg.event = 0;
651         wake_up_locked(&ctx->event_wqh);
652         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
653 }
654
655 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
656 {
657         struct userfaultfd_ctx *ctx = NULL, *octx;
658         struct userfaultfd_fork_ctx *fctx;
659
660         octx = vma->vm_userfaultfd_ctx.ctx;
661         if (!octx)
662                 return 0;
663
664         if (!(octx->features & UFFD_FEATURE_EVENT_FORK)) {
665                 vma_start_write(vma);
666                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
667                 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
668                 return 0;
669         }
670
671         list_for_each_entry(fctx, fcs, list)
672                 if (fctx->orig == octx) {
673                         ctx = fctx->new;
674                         break;
675                 }
676
677         if (!ctx) {
678                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
679                 if (!fctx)
680                         return -ENOMEM;
681
682                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
683                 if (!ctx) {
684                         kfree(fctx);
685                         return -ENOMEM;
686                 }
687
688                 refcount_set(&ctx->refcount, 1);
689                 ctx->flags = octx->flags;
690                 ctx->features = octx->features;
691                 ctx->released = false;
692                 init_rwsem(&ctx->map_changing_lock);
693                 atomic_set(&ctx->mmap_changing, 0);
694                 ctx->mm = vma->vm_mm;
695                 mmgrab(ctx->mm);
696
697                 userfaultfd_ctx_get(octx);
698                 down_write(&octx->map_changing_lock);
699                 atomic_inc(&octx->mmap_changing);
700                 up_write(&octx->map_changing_lock);
701                 fctx->orig = octx;
702                 fctx->new = ctx;
703                 list_add_tail(&fctx->list, fcs);
704         }
705
706         vma->vm_userfaultfd_ctx.ctx = ctx;
707         return 0;
708 }
709
710 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
711 {
712         struct userfaultfd_ctx *ctx = fctx->orig;
713         struct userfaultfd_wait_queue ewq;
714
715         msg_init(&ewq.msg);
716
717         ewq.msg.event = UFFD_EVENT_FORK;
718         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
719
720         userfaultfd_event_wait_completion(ctx, &ewq);
721 }
722
723 void dup_userfaultfd_complete(struct list_head *fcs)
724 {
725         struct userfaultfd_fork_ctx *fctx, *n;
726
727         list_for_each_entry_safe(fctx, n, fcs, list) {
728                 dup_fctx(fctx);
729                 list_del(&fctx->list);
730                 kfree(fctx);
731         }
732 }
733
734 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
735                              struct vm_userfaultfd_ctx *vm_ctx)
736 {
737         struct userfaultfd_ctx *ctx;
738
739         ctx = vma->vm_userfaultfd_ctx.ctx;
740
741         if (!ctx)
742                 return;
743
744         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
745                 vm_ctx->ctx = ctx;
746                 userfaultfd_ctx_get(ctx);
747                 down_write(&ctx->map_changing_lock);
748                 atomic_inc(&ctx->mmap_changing);
749                 up_write(&ctx->map_changing_lock);
750         } else {
751                 /* Drop uffd context if remap feature not enabled */
752                 vma_start_write(vma);
753                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
754                 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
755         }
756 }
757
758 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
759                                  unsigned long from, unsigned long to,
760                                  unsigned long len)
761 {
762         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
763         struct userfaultfd_wait_queue ewq;
764
765         if (!ctx)
766                 return;
767
768         if (to & ~PAGE_MASK) {
769                 userfaultfd_ctx_put(ctx);
770                 return;
771         }
772
773         msg_init(&ewq.msg);
774
775         ewq.msg.event = UFFD_EVENT_REMAP;
776         ewq.msg.arg.remap.from = from;
777         ewq.msg.arg.remap.to = to;
778         ewq.msg.arg.remap.len = len;
779
780         userfaultfd_event_wait_completion(ctx, &ewq);
781 }
782
783 bool userfaultfd_remove(struct vm_area_struct *vma,
784                         unsigned long start, unsigned long end)
785 {
786         struct mm_struct *mm = vma->vm_mm;
787         struct userfaultfd_ctx *ctx;
788         struct userfaultfd_wait_queue ewq;
789
790         ctx = vma->vm_userfaultfd_ctx.ctx;
791         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
792                 return true;
793
794         userfaultfd_ctx_get(ctx);
795         down_write(&ctx->map_changing_lock);
796         atomic_inc(&ctx->mmap_changing);
797         up_write(&ctx->map_changing_lock);
798         mmap_read_unlock(mm);
799
800         msg_init(&ewq.msg);
801
802         ewq.msg.event = UFFD_EVENT_REMOVE;
803         ewq.msg.arg.remove.start = start;
804         ewq.msg.arg.remove.end = end;
805
806         userfaultfd_event_wait_completion(ctx, &ewq);
807
808         return false;
809 }
810
811 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
812                           unsigned long start, unsigned long end)
813 {
814         struct userfaultfd_unmap_ctx *unmap_ctx;
815
816         list_for_each_entry(unmap_ctx, unmaps, list)
817                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
818                     unmap_ctx->end == end)
819                         return true;
820
821         return false;
822 }
823
824 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
825                            unsigned long end, struct list_head *unmaps)
826 {
827         struct userfaultfd_unmap_ctx *unmap_ctx;
828         struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
829
830         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
831             has_unmap_ctx(ctx, unmaps, start, end))
832                 return 0;
833
834         unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
835         if (!unmap_ctx)
836                 return -ENOMEM;
837
838         userfaultfd_ctx_get(ctx);
839         down_write(&ctx->map_changing_lock);
840         atomic_inc(&ctx->mmap_changing);
841         up_write(&ctx->map_changing_lock);
842         unmap_ctx->ctx = ctx;
843         unmap_ctx->start = start;
844         unmap_ctx->end = end;
845         list_add_tail(&unmap_ctx->list, unmaps);
846
847         return 0;
848 }
849
850 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
851 {
852         struct userfaultfd_unmap_ctx *ctx, *n;
853         struct userfaultfd_wait_queue ewq;
854
855         list_for_each_entry_safe(ctx, n, uf, list) {
856                 msg_init(&ewq.msg);
857
858                 ewq.msg.event = UFFD_EVENT_UNMAP;
859                 ewq.msg.arg.remove.start = ctx->start;
860                 ewq.msg.arg.remove.end = ctx->end;
861
862                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
863
864                 list_del(&ctx->list);
865                 kfree(ctx);
866         }
867 }
868
869 static int userfaultfd_release(struct inode *inode, struct file *file)
870 {
871         struct userfaultfd_ctx *ctx = file->private_data;
872         struct mm_struct *mm = ctx->mm;
873         struct vm_area_struct *vma, *prev;
874         /* len == 0 means wake all */
875         struct userfaultfd_wake_range range = { .len = 0, };
876         unsigned long new_flags;
877         VMA_ITERATOR(vmi, mm, 0);
878
879         WRITE_ONCE(ctx->released, true);
880
881         if (!mmget_not_zero(mm))
882                 goto wakeup;
883
884         /*
885          * Flush page faults out of all CPUs. NOTE: all page faults
886          * must be retried without returning VM_FAULT_SIGBUS if
887          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
888          * changes while handle_userfault released the mmap_lock. So
889          * it's critical that released is set to true (above), before
890          * taking the mmap_lock for writing.
891          */
892         mmap_write_lock(mm);
893         prev = NULL;
894         for_each_vma(vmi, vma) {
895                 cond_resched();
896                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
897                        !!(vma->vm_flags & __VM_UFFD_FLAGS));
898                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
899                         prev = vma;
900                         continue;
901                 }
902                 /* Reset ptes for the whole vma range if wr-protected */
903                 if (userfaultfd_wp(vma))
904                         uffd_wp_range(vma, vma->vm_start,
905                                       vma->vm_end - vma->vm_start, false);
906                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
907                 vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start,
908                                             vma->vm_end, new_flags,
909                                             NULL_VM_UFFD_CTX);
910
911                 vma_start_write(vma);
912                 userfaultfd_set_vm_flags(vma, new_flags);
913                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
914
915                 prev = vma;
916         }
917         mmap_write_unlock(mm);
918         mmput(mm);
919 wakeup:
920         /*
921          * After no new page faults can wait on this fault_*wqh, flush
922          * the last page faults that may have been already waiting on
923          * the fault_*wqh.
924          */
925         spin_lock_irq(&ctx->fault_pending_wqh.lock);
926         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
927         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
928         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
929
930         /* Flush pending events that may still wait on event_wqh */
931         wake_up_all(&ctx->event_wqh);
932
933         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
934         userfaultfd_ctx_put(ctx);
935         return 0;
936 }
937
938 /* fault_pending_wqh.lock must be hold by the caller */
939 static inline struct userfaultfd_wait_queue *find_userfault_in(
940                 wait_queue_head_t *wqh)
941 {
942         wait_queue_entry_t *wq;
943         struct userfaultfd_wait_queue *uwq;
944
945         lockdep_assert_held(&wqh->lock);
946
947         uwq = NULL;
948         if (!waitqueue_active(wqh))
949                 goto out;
950         /* walk in reverse to provide FIFO behavior to read userfaults */
951         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
952         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
953 out:
954         return uwq;
955 }
956
957 static inline struct userfaultfd_wait_queue *find_userfault(
958                 struct userfaultfd_ctx *ctx)
959 {
960         return find_userfault_in(&ctx->fault_pending_wqh);
961 }
962
963 static inline struct userfaultfd_wait_queue *find_userfault_evt(
964                 struct userfaultfd_ctx *ctx)
965 {
966         return find_userfault_in(&ctx->event_wqh);
967 }
968
969 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
970 {
971         struct userfaultfd_ctx *ctx = file->private_data;
972         __poll_t ret;
973
974         poll_wait(file, &ctx->fd_wqh, wait);
975
976         if (!userfaultfd_is_initialized(ctx))
977                 return EPOLLERR;
978
979         /*
980          * poll() never guarantees that read won't block.
981          * userfaults can be waken before they're read().
982          */
983         if (unlikely(!(file->f_flags & O_NONBLOCK)))
984                 return EPOLLERR;
985         /*
986          * lockless access to see if there are pending faults
987          * __pollwait last action is the add_wait_queue but
988          * the spin_unlock would allow the waitqueue_active to
989          * pass above the actual list_add inside
990          * add_wait_queue critical section. So use a full
991          * memory barrier to serialize the list_add write of
992          * add_wait_queue() with the waitqueue_active read
993          * below.
994          */
995         ret = 0;
996         smp_mb();
997         if (waitqueue_active(&ctx->fault_pending_wqh))
998                 ret = EPOLLIN;
999         else if (waitqueue_active(&ctx->event_wqh))
1000                 ret = EPOLLIN;
1001
1002         return ret;
1003 }
1004
1005 static const struct file_operations userfaultfd_fops;
1006
1007 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1008                                   struct inode *inode,
1009                                   struct uffd_msg *msg)
1010 {
1011         int fd;
1012
1013         fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
1014                         O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1015         if (fd < 0)
1016                 return fd;
1017
1018         msg->arg.reserved.reserved1 = 0;
1019         msg->arg.fork.ufd = fd;
1020         return 0;
1021 }
1022
1023 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1024                                     struct uffd_msg *msg, struct inode *inode)
1025 {
1026         ssize_t ret;
1027         DECLARE_WAITQUEUE(wait, current);
1028         struct userfaultfd_wait_queue *uwq;
1029         /*
1030          * Handling fork event requires sleeping operations, so
1031          * we drop the event_wqh lock, then do these ops, then
1032          * lock it back and wake up the waiter. While the lock is
1033          * dropped the ewq may go away so we keep track of it
1034          * carefully.
1035          */
1036         LIST_HEAD(fork_event);
1037         struct userfaultfd_ctx *fork_nctx = NULL;
1038
1039         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1040         spin_lock_irq(&ctx->fd_wqh.lock);
1041         __add_wait_queue(&ctx->fd_wqh, &wait);
1042         for (;;) {
1043                 set_current_state(TASK_INTERRUPTIBLE);
1044                 spin_lock(&ctx->fault_pending_wqh.lock);
1045                 uwq = find_userfault(ctx);
1046                 if (uwq) {
1047                         /*
1048                          * Use a seqcount to repeat the lockless check
1049                          * in wake_userfault() to avoid missing
1050                          * wakeups because during the refile both
1051                          * waitqueue could become empty if this is the
1052                          * only userfault.
1053                          */
1054                         write_seqcount_begin(&ctx->refile_seq);
1055
1056                         /*
1057                          * The fault_pending_wqh.lock prevents the uwq
1058                          * to disappear from under us.
1059                          *
1060                          * Refile this userfault from
1061                          * fault_pending_wqh to fault_wqh, it's not
1062                          * pending anymore after we read it.
1063                          *
1064                          * Use list_del() by hand (as
1065                          * userfaultfd_wake_function also uses
1066                          * list_del_init() by hand) to be sure nobody
1067                          * changes __remove_wait_queue() to use
1068                          * list_del_init() in turn breaking the
1069                          * !list_empty_careful() check in
1070                          * handle_userfault(). The uwq->wq.head list
1071                          * must never be empty at any time during the
1072                          * refile, or the waitqueue could disappear
1073                          * from under us. The "wait_queue_head_t"
1074                          * parameter of __remove_wait_queue() is unused
1075                          * anyway.
1076                          */
1077                         list_del(&uwq->wq.entry);
1078                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1079
1080                         write_seqcount_end(&ctx->refile_seq);
1081
1082                         /* careful to always initialize msg if ret == 0 */
1083                         *msg = uwq->msg;
1084                         spin_unlock(&ctx->fault_pending_wqh.lock);
1085                         ret = 0;
1086                         break;
1087                 }
1088                 spin_unlock(&ctx->fault_pending_wqh.lock);
1089
1090                 spin_lock(&ctx->event_wqh.lock);
1091                 uwq = find_userfault_evt(ctx);
1092                 if (uwq) {
1093                         *msg = uwq->msg;
1094
1095                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1096                                 fork_nctx = (struct userfaultfd_ctx *)
1097                                         (unsigned long)
1098                                         uwq->msg.arg.reserved.reserved1;
1099                                 list_move(&uwq->wq.entry, &fork_event);
1100                                 /*
1101                                  * fork_nctx can be freed as soon as
1102                                  * we drop the lock, unless we take a
1103                                  * reference on it.
1104                                  */
1105                                 userfaultfd_ctx_get(fork_nctx);
1106                                 spin_unlock(&ctx->event_wqh.lock);
1107                                 ret = 0;
1108                                 break;
1109                         }
1110
1111                         userfaultfd_event_complete(ctx, uwq);
1112                         spin_unlock(&ctx->event_wqh.lock);
1113                         ret = 0;
1114                         break;
1115                 }
1116                 spin_unlock(&ctx->event_wqh.lock);
1117
1118                 if (signal_pending(current)) {
1119                         ret = -ERESTARTSYS;
1120                         break;
1121                 }
1122                 if (no_wait) {
1123                         ret = -EAGAIN;
1124                         break;
1125                 }
1126                 spin_unlock_irq(&ctx->fd_wqh.lock);
1127                 schedule();
1128                 spin_lock_irq(&ctx->fd_wqh.lock);
1129         }
1130         __remove_wait_queue(&ctx->fd_wqh, &wait);
1131         __set_current_state(TASK_RUNNING);
1132         spin_unlock_irq(&ctx->fd_wqh.lock);
1133
1134         if (!ret && msg->event == UFFD_EVENT_FORK) {
1135                 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1136                 spin_lock_irq(&ctx->event_wqh.lock);
1137                 if (!list_empty(&fork_event)) {
1138                         /*
1139                          * The fork thread didn't abort, so we can
1140                          * drop the temporary refcount.
1141                          */
1142                         userfaultfd_ctx_put(fork_nctx);
1143
1144                         uwq = list_first_entry(&fork_event,
1145                                                typeof(*uwq),
1146                                                wq.entry);
1147                         /*
1148                          * If fork_event list wasn't empty and in turn
1149                          * the event wasn't already released by fork
1150                          * (the event is allocated on fork kernel
1151                          * stack), put the event back to its place in
1152                          * the event_wq. fork_event head will be freed
1153                          * as soon as we return so the event cannot
1154                          * stay queued there no matter the current
1155                          * "ret" value.
1156                          */
1157                         list_del(&uwq->wq.entry);
1158                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1159
1160                         /*
1161                          * Leave the event in the waitqueue and report
1162                          * error to userland if we failed to resolve
1163                          * the userfault fork.
1164                          */
1165                         if (likely(!ret))
1166                                 userfaultfd_event_complete(ctx, uwq);
1167                 } else {
1168                         /*
1169                          * Here the fork thread aborted and the
1170                          * refcount from the fork thread on fork_nctx
1171                          * has already been released. We still hold
1172                          * the reference we took before releasing the
1173                          * lock above. If resolve_userfault_fork
1174                          * failed we've to drop it because the
1175                          * fork_nctx has to be freed in such case. If
1176                          * it succeeded we'll hold it because the new
1177                          * uffd references it.
1178                          */
1179                         if (ret)
1180                                 userfaultfd_ctx_put(fork_nctx);
1181                 }
1182                 spin_unlock_irq(&ctx->event_wqh.lock);
1183         }
1184
1185         return ret;
1186 }
1187
1188 static ssize_t userfaultfd_read_iter(struct kiocb *iocb, struct iov_iter *to)
1189 {
1190         struct file *file = iocb->ki_filp;
1191         struct userfaultfd_ctx *ctx = file->private_data;
1192         ssize_t _ret, ret = 0;
1193         struct uffd_msg msg;
1194         struct inode *inode = file_inode(file);
1195         bool no_wait;
1196
1197         if (!userfaultfd_is_initialized(ctx))
1198                 return -EINVAL;
1199
1200         no_wait = file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT;
1201         for (;;) {
1202                 if (iov_iter_count(to) < sizeof(msg))
1203                         return ret ? ret : -EINVAL;
1204                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1205                 if (_ret < 0)
1206                         return ret ? ret : _ret;
1207                 _ret = !copy_to_iter_full(&msg, sizeof(msg), to);
1208                 if (_ret)
1209                         return ret ? ret : -EFAULT;
1210                 ret += sizeof(msg);
1211                 /*
1212                  * Allow to read more than one fault at time but only
1213                  * block if waiting for the very first one.
1214                  */
1215                 no_wait = true;
1216         }
1217 }
1218
1219 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1220                              struct userfaultfd_wake_range *range)
1221 {
1222         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1223         /* wake all in the range and autoremove */
1224         if (waitqueue_active(&ctx->fault_pending_wqh))
1225                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1226                                      range);
1227         if (waitqueue_active(&ctx->fault_wqh))
1228                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1229         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1230 }
1231
1232 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1233                                            struct userfaultfd_wake_range *range)
1234 {
1235         unsigned seq;
1236         bool need_wakeup;
1237
1238         /*
1239          * To be sure waitqueue_active() is not reordered by the CPU
1240          * before the pagetable update, use an explicit SMP memory
1241          * barrier here. PT lock release or mmap_read_unlock(mm) still
1242          * have release semantics that can allow the
1243          * waitqueue_active() to be reordered before the pte update.
1244          */
1245         smp_mb();
1246
1247         /*
1248          * Use waitqueue_active because it's very frequent to
1249          * change the address space atomically even if there are no
1250          * userfaults yet. So we take the spinlock only when we're
1251          * sure we've userfaults to wake.
1252          */
1253         do {
1254                 seq = read_seqcount_begin(&ctx->refile_seq);
1255                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1256                         waitqueue_active(&ctx->fault_wqh);
1257                 cond_resched();
1258         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1259         if (need_wakeup)
1260                 __wake_userfault(ctx, range);
1261 }
1262
1263 static __always_inline int validate_unaligned_range(
1264         struct mm_struct *mm, __u64 start, __u64 len)
1265 {
1266         __u64 task_size = mm->task_size;
1267
1268         if (len & ~PAGE_MASK)
1269                 return -EINVAL;
1270         if (!len)
1271                 return -EINVAL;
1272         if (start < mmap_min_addr)
1273                 return -EINVAL;
1274         if (start >= task_size)
1275                 return -EINVAL;
1276         if (len > task_size - start)
1277                 return -EINVAL;
1278         if (start + len <= start)
1279                 return -EINVAL;
1280         return 0;
1281 }
1282
1283 static __always_inline int validate_range(struct mm_struct *mm,
1284                                           __u64 start, __u64 len)
1285 {
1286         if (start & ~PAGE_MASK)
1287                 return -EINVAL;
1288
1289         return validate_unaligned_range(mm, start, len);
1290 }
1291
1292 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1293                                 unsigned long arg)
1294 {
1295         struct mm_struct *mm = ctx->mm;
1296         struct vm_area_struct *vma, *prev, *cur;
1297         int ret;
1298         struct uffdio_register uffdio_register;
1299         struct uffdio_register __user *user_uffdio_register;
1300         unsigned long vm_flags, new_flags;
1301         bool found;
1302         bool basic_ioctls;
1303         unsigned long start, end, vma_end;
1304         struct vma_iterator vmi;
1305         bool wp_async = userfaultfd_wp_async_ctx(ctx);
1306
1307         user_uffdio_register = (struct uffdio_register __user *) arg;
1308
1309         ret = -EFAULT;
1310         if (copy_from_user(&uffdio_register, user_uffdio_register,
1311                            sizeof(uffdio_register)-sizeof(__u64)))
1312                 goto out;
1313
1314         ret = -EINVAL;
1315         if (!uffdio_register.mode)
1316                 goto out;
1317         if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1318                 goto out;
1319         vm_flags = 0;
1320         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1321                 vm_flags |= VM_UFFD_MISSING;
1322         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1323 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1324                 goto out;
1325 #endif
1326                 vm_flags |= VM_UFFD_WP;
1327         }
1328         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1329 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1330                 goto out;
1331 #endif
1332                 vm_flags |= VM_UFFD_MINOR;
1333         }
1334
1335         ret = validate_range(mm, uffdio_register.range.start,
1336                              uffdio_register.range.len);
1337         if (ret)
1338                 goto out;
1339
1340         start = uffdio_register.range.start;
1341         end = start + uffdio_register.range.len;
1342
1343         ret = -ENOMEM;
1344         if (!mmget_not_zero(mm))
1345                 goto out;
1346
1347         ret = -EINVAL;
1348         mmap_write_lock(mm);
1349         vma_iter_init(&vmi, mm, start);
1350         vma = vma_find(&vmi, end);
1351         if (!vma)
1352                 goto out_unlock;
1353
1354         /*
1355          * If the first vma contains huge pages, make sure start address
1356          * is aligned to huge page size.
1357          */
1358         if (is_vm_hugetlb_page(vma)) {
1359                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1360
1361                 if (start & (vma_hpagesize - 1))
1362                         goto out_unlock;
1363         }
1364
1365         /*
1366          * Search for not compatible vmas.
1367          */
1368         found = false;
1369         basic_ioctls = false;
1370         cur = vma;
1371         do {
1372                 cond_resched();
1373
1374                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1375                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1376
1377                 /* check not compatible vmas */
1378                 ret = -EINVAL;
1379                 if (!vma_can_userfault(cur, vm_flags, wp_async))
1380                         goto out_unlock;
1381
1382                 /*
1383                  * UFFDIO_COPY will fill file holes even without
1384                  * PROT_WRITE. This check enforces that if this is a
1385                  * MAP_SHARED, the process has write permission to the backing
1386                  * file. If VM_MAYWRITE is set it also enforces that on a
1387                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1388                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1389                  */
1390                 ret = -EPERM;
1391                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1392                         goto out_unlock;
1393
1394                 /*
1395                  * If this vma contains ending address, and huge pages
1396                  * check alignment.
1397                  */
1398                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1399                     end > cur->vm_start) {
1400                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1401
1402                         ret = -EINVAL;
1403
1404                         if (end & (vma_hpagesize - 1))
1405                                 goto out_unlock;
1406                 }
1407                 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1408                         goto out_unlock;
1409
1410                 /*
1411                  * Check that this vma isn't already owned by a
1412                  * different userfaultfd. We can't allow more than one
1413                  * userfaultfd to own a single vma simultaneously or we
1414                  * wouldn't know which one to deliver the userfaults to.
1415                  */
1416                 ret = -EBUSY;
1417                 if (cur->vm_userfaultfd_ctx.ctx &&
1418                     cur->vm_userfaultfd_ctx.ctx != ctx)
1419                         goto out_unlock;
1420
1421                 /*
1422                  * Note vmas containing huge pages
1423                  */
1424                 if (is_vm_hugetlb_page(cur))
1425                         basic_ioctls = true;
1426
1427                 found = true;
1428         } for_each_vma_range(vmi, cur, end);
1429         BUG_ON(!found);
1430
1431         vma_iter_set(&vmi, start);
1432         prev = vma_prev(&vmi);
1433         if (vma->vm_start < start)
1434                 prev = vma;
1435
1436         ret = 0;
1437         for_each_vma_range(vmi, vma, end) {
1438                 cond_resched();
1439
1440                 BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
1441                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1442                        vma->vm_userfaultfd_ctx.ctx != ctx);
1443                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1444
1445                 /*
1446                  * Nothing to do: this vma is already registered into this
1447                  * userfaultfd and with the right tracking mode too.
1448                  */
1449                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1450                     (vma->vm_flags & vm_flags) == vm_flags)
1451                         goto skip;
1452
1453                 if (vma->vm_start > start)
1454                         start = vma->vm_start;
1455                 vma_end = min(end, vma->vm_end);
1456
1457                 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1458                 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1459                                             new_flags,
1460                                             (struct vm_userfaultfd_ctx){ctx});
1461                 if (IS_ERR(vma)) {
1462                         ret = PTR_ERR(vma);
1463                         break;
1464                 }
1465
1466                 /*
1467                  * In the vma_merge() successful mprotect-like case 8:
1468                  * the next vma was merged into the current one and
1469                  * the current one has not been updated yet.
1470                  */
1471                 vma_start_write(vma);
1472                 userfaultfd_set_vm_flags(vma, new_flags);
1473                 vma->vm_userfaultfd_ctx.ctx = ctx;
1474
1475                 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1476                         hugetlb_unshare_all_pmds(vma);
1477
1478         skip:
1479                 prev = vma;
1480                 start = vma->vm_end;
1481         }
1482
1483 out_unlock:
1484         mmap_write_unlock(mm);
1485         mmput(mm);
1486         if (!ret) {
1487                 __u64 ioctls_out;
1488
1489                 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1490                     UFFD_API_RANGE_IOCTLS;
1491
1492                 /*
1493                  * Declare the WP ioctl only if the WP mode is
1494                  * specified and all checks passed with the range
1495                  */
1496                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1497                         ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1498
1499                 /* CONTINUE ioctl is only supported for MINOR ranges. */
1500                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1501                         ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1502
1503                 /*
1504                  * Now that we scanned all vmas we can already tell
1505                  * userland which ioctls methods are guaranteed to
1506                  * succeed on this range.
1507                  */
1508                 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1509                         ret = -EFAULT;
1510         }
1511 out:
1512         return ret;
1513 }
1514
1515 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1516                                   unsigned long arg)
1517 {
1518         struct mm_struct *mm = ctx->mm;
1519         struct vm_area_struct *vma, *prev, *cur;
1520         int ret;
1521         struct uffdio_range uffdio_unregister;
1522         unsigned long new_flags;
1523         bool found;
1524         unsigned long start, end, vma_end;
1525         const void __user *buf = (void __user *)arg;
1526         struct vma_iterator vmi;
1527         bool wp_async = userfaultfd_wp_async_ctx(ctx);
1528
1529         ret = -EFAULT;
1530         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1531                 goto out;
1532
1533         ret = validate_range(mm, uffdio_unregister.start,
1534                              uffdio_unregister.len);
1535         if (ret)
1536                 goto out;
1537
1538         start = uffdio_unregister.start;
1539         end = start + uffdio_unregister.len;
1540
1541         ret = -ENOMEM;
1542         if (!mmget_not_zero(mm))
1543                 goto out;
1544
1545         mmap_write_lock(mm);
1546         ret = -EINVAL;
1547         vma_iter_init(&vmi, mm, start);
1548         vma = vma_find(&vmi, end);
1549         if (!vma)
1550                 goto out_unlock;
1551
1552         /*
1553          * If the first vma contains huge pages, make sure start address
1554          * is aligned to huge page size.
1555          */
1556         if (is_vm_hugetlb_page(vma)) {
1557                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1558
1559                 if (start & (vma_hpagesize - 1))
1560                         goto out_unlock;
1561         }
1562
1563         /*
1564          * Search for not compatible vmas.
1565          */
1566         found = false;
1567         cur = vma;
1568         do {
1569                 cond_resched();
1570
1571                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1572                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1573
1574                 /*
1575                  * Check not compatible vmas, not strictly required
1576                  * here as not compatible vmas cannot have an
1577                  * userfaultfd_ctx registered on them, but this
1578                  * provides for more strict behavior to notice
1579                  * unregistration errors.
1580                  */
1581                 if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1582                         goto out_unlock;
1583
1584                 found = true;
1585         } for_each_vma_range(vmi, cur, end);
1586         BUG_ON(!found);
1587
1588         vma_iter_set(&vmi, start);
1589         prev = vma_prev(&vmi);
1590         if (vma->vm_start < start)
1591                 prev = vma;
1592
1593         ret = 0;
1594         for_each_vma_range(vmi, vma, end) {
1595                 cond_resched();
1596
1597                 BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1598
1599                 /*
1600                  * Nothing to do: this vma is already registered into this
1601                  * userfaultfd and with the right tracking mode too.
1602                  */
1603                 if (!vma->vm_userfaultfd_ctx.ctx)
1604                         goto skip;
1605
1606                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1607
1608                 if (vma->vm_start > start)
1609                         start = vma->vm_start;
1610                 vma_end = min(end, vma->vm_end);
1611
1612                 if (userfaultfd_missing(vma)) {
1613                         /*
1614                          * Wake any concurrent pending userfault while
1615                          * we unregister, so they will not hang
1616                          * permanently and it avoids userland to call
1617                          * UFFDIO_WAKE explicitly.
1618                          */
1619                         struct userfaultfd_wake_range range;
1620                         range.start = start;
1621                         range.len = vma_end - start;
1622                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1623                 }
1624
1625                 /* Reset ptes for the whole vma range if wr-protected */
1626                 if (userfaultfd_wp(vma))
1627                         uffd_wp_range(vma, start, vma_end - start, false);
1628
1629                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1630                 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1631                                             new_flags, NULL_VM_UFFD_CTX);
1632                 if (IS_ERR(vma)) {
1633                         ret = PTR_ERR(vma);
1634                         break;
1635                 }
1636
1637                 /*
1638                  * In the vma_merge() successful mprotect-like case 8:
1639                  * the next vma was merged into the current one and
1640                  * the current one has not been updated yet.
1641                  */
1642                 vma_start_write(vma);
1643                 userfaultfd_set_vm_flags(vma, new_flags);
1644                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1645
1646         skip:
1647                 prev = vma;
1648                 start = vma->vm_end;
1649         }
1650
1651 out_unlock:
1652         mmap_write_unlock(mm);
1653         mmput(mm);
1654 out:
1655         return ret;
1656 }
1657
1658 /*
1659  * userfaultfd_wake may be used in combination with the
1660  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1661  */
1662 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1663                             unsigned long arg)
1664 {
1665         int ret;
1666         struct uffdio_range uffdio_wake;
1667         struct userfaultfd_wake_range range;
1668         const void __user *buf = (void __user *)arg;
1669
1670         ret = -EFAULT;
1671         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1672                 goto out;
1673
1674         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1675         if (ret)
1676                 goto out;
1677
1678         range.start = uffdio_wake.start;
1679         range.len = uffdio_wake.len;
1680
1681         /*
1682          * len == 0 means wake all and we don't want to wake all here,
1683          * so check it again to be sure.
1684          */
1685         VM_BUG_ON(!range.len);
1686
1687         wake_userfault(ctx, &range);
1688         ret = 0;
1689
1690 out:
1691         return ret;
1692 }
1693
1694 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1695                             unsigned long arg)
1696 {
1697         __s64 ret;
1698         struct uffdio_copy uffdio_copy;
1699         struct uffdio_copy __user *user_uffdio_copy;
1700         struct userfaultfd_wake_range range;
1701         uffd_flags_t flags = 0;
1702
1703         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1704
1705         ret = -EAGAIN;
1706         if (atomic_read(&ctx->mmap_changing))
1707                 goto out;
1708
1709         ret = -EFAULT;
1710         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1711                            /* don't copy "copy" last field */
1712                            sizeof(uffdio_copy)-sizeof(__s64)))
1713                 goto out;
1714
1715         ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1716                                        uffdio_copy.len);
1717         if (ret)
1718                 goto out;
1719         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1720         if (ret)
1721                 goto out;
1722
1723         ret = -EINVAL;
1724         if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1725                 goto out;
1726         if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1727                 flags |= MFILL_ATOMIC_WP;
1728         if (mmget_not_zero(ctx->mm)) {
1729                 ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1730                                         uffdio_copy.len, flags);
1731                 mmput(ctx->mm);
1732         } else {
1733                 return -ESRCH;
1734         }
1735         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1736                 return -EFAULT;
1737         if (ret < 0)
1738                 goto out;
1739         BUG_ON(!ret);
1740         /* len == 0 would wake all */
1741         range.len = ret;
1742         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1743                 range.start = uffdio_copy.dst;
1744                 wake_userfault(ctx, &range);
1745         }
1746         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1747 out:
1748         return ret;
1749 }
1750
1751 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1752                                 unsigned long arg)
1753 {
1754         __s64 ret;
1755         struct uffdio_zeropage uffdio_zeropage;
1756         struct uffdio_zeropage __user *user_uffdio_zeropage;
1757         struct userfaultfd_wake_range range;
1758
1759         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1760
1761         ret = -EAGAIN;
1762         if (atomic_read(&ctx->mmap_changing))
1763                 goto out;
1764
1765         ret = -EFAULT;
1766         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1767                            /* don't copy "zeropage" last field */
1768                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1769                 goto out;
1770
1771         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1772                              uffdio_zeropage.range.len);
1773         if (ret)
1774                 goto out;
1775         ret = -EINVAL;
1776         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1777                 goto out;
1778
1779         if (mmget_not_zero(ctx->mm)) {
1780                 ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1781                                            uffdio_zeropage.range.len);
1782                 mmput(ctx->mm);
1783         } else {
1784                 return -ESRCH;
1785         }
1786         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1787                 return -EFAULT;
1788         if (ret < 0)
1789                 goto out;
1790         /* len == 0 would wake all */
1791         BUG_ON(!ret);
1792         range.len = ret;
1793         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1794                 range.start = uffdio_zeropage.range.start;
1795                 wake_userfault(ctx, &range);
1796         }
1797         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1798 out:
1799         return ret;
1800 }
1801
1802 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1803                                     unsigned long arg)
1804 {
1805         int ret;
1806         struct uffdio_writeprotect uffdio_wp;
1807         struct uffdio_writeprotect __user *user_uffdio_wp;
1808         struct userfaultfd_wake_range range;
1809         bool mode_wp, mode_dontwake;
1810
1811         if (atomic_read(&ctx->mmap_changing))
1812                 return -EAGAIN;
1813
1814         user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1815
1816         if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1817                            sizeof(struct uffdio_writeprotect)))
1818                 return -EFAULT;
1819
1820         ret = validate_range(ctx->mm, uffdio_wp.range.start,
1821                              uffdio_wp.range.len);
1822         if (ret)
1823                 return ret;
1824
1825         if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1826                                UFFDIO_WRITEPROTECT_MODE_WP))
1827                 return -EINVAL;
1828
1829         mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1830         mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1831
1832         if (mode_wp && mode_dontwake)
1833                 return -EINVAL;
1834
1835         if (mmget_not_zero(ctx->mm)) {
1836                 ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1837                                           uffdio_wp.range.len, mode_wp);
1838                 mmput(ctx->mm);
1839         } else {
1840                 return -ESRCH;
1841         }
1842
1843         if (ret)
1844                 return ret;
1845
1846         if (!mode_wp && !mode_dontwake) {
1847                 range.start = uffdio_wp.range.start;
1848                 range.len = uffdio_wp.range.len;
1849                 wake_userfault(ctx, &range);
1850         }
1851         return ret;
1852 }
1853
1854 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1855 {
1856         __s64 ret;
1857         struct uffdio_continue uffdio_continue;
1858         struct uffdio_continue __user *user_uffdio_continue;
1859         struct userfaultfd_wake_range range;
1860         uffd_flags_t flags = 0;
1861
1862         user_uffdio_continue = (struct uffdio_continue __user *)arg;
1863
1864         ret = -EAGAIN;
1865         if (atomic_read(&ctx->mmap_changing))
1866                 goto out;
1867
1868         ret = -EFAULT;
1869         if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1870                            /* don't copy the output fields */
1871                            sizeof(uffdio_continue) - (sizeof(__s64))))
1872                 goto out;
1873
1874         ret = validate_range(ctx->mm, uffdio_continue.range.start,
1875                              uffdio_continue.range.len);
1876         if (ret)
1877                 goto out;
1878
1879         ret = -EINVAL;
1880         if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1881                                      UFFDIO_CONTINUE_MODE_WP))
1882                 goto out;
1883         if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1884                 flags |= MFILL_ATOMIC_WP;
1885
1886         if (mmget_not_zero(ctx->mm)) {
1887                 ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1888                                             uffdio_continue.range.len, flags);
1889                 mmput(ctx->mm);
1890         } else {
1891                 return -ESRCH;
1892         }
1893
1894         if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1895                 return -EFAULT;
1896         if (ret < 0)
1897                 goto out;
1898
1899         /* len == 0 would wake all */
1900         BUG_ON(!ret);
1901         range.len = ret;
1902         if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1903                 range.start = uffdio_continue.range.start;
1904                 wake_userfault(ctx, &range);
1905         }
1906         ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1907
1908 out:
1909         return ret;
1910 }
1911
1912 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1913 {
1914         __s64 ret;
1915         struct uffdio_poison uffdio_poison;
1916         struct uffdio_poison __user *user_uffdio_poison;
1917         struct userfaultfd_wake_range range;
1918
1919         user_uffdio_poison = (struct uffdio_poison __user *)arg;
1920
1921         ret = -EAGAIN;
1922         if (atomic_read(&ctx->mmap_changing))
1923                 goto out;
1924
1925         ret = -EFAULT;
1926         if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1927                            /* don't copy the output fields */
1928                            sizeof(uffdio_poison) - (sizeof(__s64))))
1929                 goto out;
1930
1931         ret = validate_range(ctx->mm, uffdio_poison.range.start,
1932                              uffdio_poison.range.len);
1933         if (ret)
1934                 goto out;
1935
1936         ret = -EINVAL;
1937         if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1938                 goto out;
1939
1940         if (mmget_not_zero(ctx->mm)) {
1941                 ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1942                                           uffdio_poison.range.len, 0);
1943                 mmput(ctx->mm);
1944         } else {
1945                 return -ESRCH;
1946         }
1947
1948         if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1949                 return -EFAULT;
1950         if (ret < 0)
1951                 goto out;
1952
1953         /* len == 0 would wake all */
1954         BUG_ON(!ret);
1955         range.len = ret;
1956         if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1957                 range.start = uffdio_poison.range.start;
1958                 wake_userfault(ctx, &range);
1959         }
1960         ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1961
1962 out:
1963         return ret;
1964 }
1965
1966 bool userfaultfd_wp_async(struct vm_area_struct *vma)
1967 {
1968         return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1969 }
1970
1971 static inline unsigned int uffd_ctx_features(__u64 user_features)
1972 {
1973         /*
1974          * For the current set of features the bits just coincide. Set
1975          * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1976          */
1977         return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1978 }
1979
1980 static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1981                             unsigned long arg)
1982 {
1983         __s64 ret;
1984         struct uffdio_move uffdio_move;
1985         struct uffdio_move __user *user_uffdio_move;
1986         struct userfaultfd_wake_range range;
1987         struct mm_struct *mm = ctx->mm;
1988
1989         user_uffdio_move = (struct uffdio_move __user *) arg;
1990
1991         if (atomic_read(&ctx->mmap_changing))
1992                 return -EAGAIN;
1993
1994         if (copy_from_user(&uffdio_move, user_uffdio_move,
1995                            /* don't copy "move" last field */
1996                            sizeof(uffdio_move)-sizeof(__s64)))
1997                 return -EFAULT;
1998
1999         /* Do not allow cross-mm moves. */
2000         if (mm != current->mm)
2001                 return -EINVAL;
2002
2003         ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
2004         if (ret)
2005                 return ret;
2006
2007         ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
2008         if (ret)
2009                 return ret;
2010
2011         if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
2012                                   UFFDIO_MOVE_MODE_DONTWAKE))
2013                 return -EINVAL;
2014
2015         if (mmget_not_zero(mm)) {
2016                 ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
2017                                  uffdio_move.len, uffdio_move.mode);
2018                 mmput(mm);
2019         } else {
2020                 return -ESRCH;
2021         }
2022
2023         if (unlikely(put_user(ret, &user_uffdio_move->move)))
2024                 return -EFAULT;
2025         if (ret < 0)
2026                 goto out;
2027
2028         /* len == 0 would wake all */
2029         VM_WARN_ON(!ret);
2030         range.len = ret;
2031         if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
2032                 range.start = uffdio_move.dst;
2033                 wake_userfault(ctx, &range);
2034         }
2035         ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
2036
2037 out:
2038         return ret;
2039 }
2040
2041 /*
2042  * userland asks for a certain API version and we return which bits
2043  * and ioctl commands are implemented in this kernel for such API
2044  * version or -EINVAL if unknown.
2045  */
2046 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2047                            unsigned long arg)
2048 {
2049         struct uffdio_api uffdio_api;
2050         void __user *buf = (void __user *)arg;
2051         unsigned int ctx_features;
2052         int ret;
2053         __u64 features;
2054
2055         ret = -EFAULT;
2056         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2057                 goto out;
2058         features = uffdio_api.features;
2059         ret = -EINVAL;
2060         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2061                 goto err_out;
2062         ret = -EPERM;
2063         if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2064                 goto err_out;
2065
2066         /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
2067         if (features & UFFD_FEATURE_WP_ASYNC)
2068                 features |= UFFD_FEATURE_WP_UNPOPULATED;
2069
2070         /* report all available features and ioctls to userland */
2071         uffdio_api.features = UFFD_API_FEATURES;
2072 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2073         uffdio_api.features &=
2074                 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2075 #endif
2076 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2077         uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2078 #endif
2079 #ifndef CONFIG_PTE_MARKER_UFFD_WP
2080         uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2081         uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2082         uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
2083 #endif
2084         uffdio_api.ioctls = UFFD_API_IOCTLS;
2085         ret = -EFAULT;
2086         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2087                 goto out;
2088
2089         /* only enable the requested features for this uffd context */
2090         ctx_features = uffd_ctx_features(features);
2091         ret = -EINVAL;
2092         if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2093                 goto err_out;
2094
2095         ret = 0;
2096 out:
2097         return ret;
2098 err_out:
2099         memset(&uffdio_api, 0, sizeof(uffdio_api));
2100         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2101                 ret = -EFAULT;
2102         goto out;
2103 }
2104
2105 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2106                               unsigned long arg)
2107 {
2108         int ret = -EINVAL;
2109         struct userfaultfd_ctx *ctx = file->private_data;
2110
2111         if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2112                 return -EINVAL;
2113
2114         switch(cmd) {
2115         case UFFDIO_API:
2116                 ret = userfaultfd_api(ctx, arg);
2117                 break;
2118         case UFFDIO_REGISTER:
2119                 ret = userfaultfd_register(ctx, arg);
2120                 break;
2121         case UFFDIO_UNREGISTER:
2122                 ret = userfaultfd_unregister(ctx, arg);
2123                 break;
2124         case UFFDIO_WAKE:
2125                 ret = userfaultfd_wake(ctx, arg);
2126                 break;
2127         case UFFDIO_COPY:
2128                 ret = userfaultfd_copy(ctx, arg);
2129                 break;
2130         case UFFDIO_ZEROPAGE:
2131                 ret = userfaultfd_zeropage(ctx, arg);
2132                 break;
2133         case UFFDIO_MOVE:
2134                 ret = userfaultfd_move(ctx, arg);
2135                 break;
2136         case UFFDIO_WRITEPROTECT:
2137                 ret = userfaultfd_writeprotect(ctx, arg);
2138                 break;
2139         case UFFDIO_CONTINUE:
2140                 ret = userfaultfd_continue(ctx, arg);
2141                 break;
2142         case UFFDIO_POISON:
2143                 ret = userfaultfd_poison(ctx, arg);
2144                 break;
2145         }
2146         return ret;
2147 }
2148
2149 #ifdef CONFIG_PROC_FS
2150 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2151 {
2152         struct userfaultfd_ctx *ctx = f->private_data;
2153         wait_queue_entry_t *wq;
2154         unsigned long pending = 0, total = 0;
2155
2156         spin_lock_irq(&ctx->fault_pending_wqh.lock);
2157         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2158                 pending++;
2159                 total++;
2160         }
2161         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2162                 total++;
2163         }
2164         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2165
2166         /*
2167          * If more protocols will be added, there will be all shown
2168          * separated by a space. Like this:
2169          *      protocols: aa:... bb:...
2170          */
2171         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2172                    pending, total, UFFD_API, ctx->features,
2173                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2174 }
2175 #endif
2176
2177 static const struct file_operations userfaultfd_fops = {
2178 #ifdef CONFIG_PROC_FS
2179         .show_fdinfo    = userfaultfd_show_fdinfo,
2180 #endif
2181         .release        = userfaultfd_release,
2182         .poll           = userfaultfd_poll,
2183         .read_iter      = userfaultfd_read_iter,
2184         .unlocked_ioctl = userfaultfd_ioctl,
2185         .compat_ioctl   = compat_ptr_ioctl,
2186         .llseek         = noop_llseek,
2187 };
2188
2189 static void init_once_userfaultfd_ctx(void *mem)
2190 {
2191         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2192
2193         init_waitqueue_head(&ctx->fault_pending_wqh);
2194         init_waitqueue_head(&ctx->fault_wqh);
2195         init_waitqueue_head(&ctx->event_wqh);
2196         init_waitqueue_head(&ctx->fd_wqh);
2197         seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2198 }
2199
2200 static int new_userfaultfd(int flags)
2201 {
2202         struct userfaultfd_ctx *ctx;
2203         struct file *file;
2204         int fd;
2205
2206         BUG_ON(!current->mm);
2207
2208         /* Check the UFFD_* constants for consistency.  */
2209         BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2210         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2211         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2212
2213         if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2214                 return -EINVAL;
2215
2216         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2217         if (!ctx)
2218                 return -ENOMEM;
2219
2220         refcount_set(&ctx->refcount, 1);
2221         ctx->flags = flags;
2222         ctx->features = 0;
2223         ctx->released = false;
2224         init_rwsem(&ctx->map_changing_lock);
2225         atomic_set(&ctx->mmap_changing, 0);
2226         ctx->mm = current->mm;
2227
2228         fd = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
2229         if (fd < 0)
2230                 goto err_out;
2231
2232         /* Create a new inode so that the LSM can block the creation.  */
2233         file = anon_inode_create_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
2234                         O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2235         if (IS_ERR(file)) {
2236                 put_unused_fd(fd);
2237                 fd = PTR_ERR(file);
2238                 goto err_out;
2239         }
2240         /* prevent the mm struct to be freed */
2241         mmgrab(ctx->mm);
2242         file->f_mode |= FMODE_NOWAIT;
2243         fd_install(fd, file);
2244         return fd;
2245 err_out:
2246         kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2247         return fd;
2248 }
2249
2250 static inline bool userfaultfd_syscall_allowed(int flags)
2251 {
2252         /* Userspace-only page faults are always allowed */
2253         if (flags & UFFD_USER_MODE_ONLY)
2254                 return true;
2255
2256         /*
2257          * The user is requesting a userfaultfd which can handle kernel faults.
2258          * Privileged users are always allowed to do this.
2259          */
2260         if (capable(CAP_SYS_PTRACE))
2261                 return true;
2262
2263         /* Otherwise, access to kernel fault handling is sysctl controlled. */
2264         return sysctl_unprivileged_userfaultfd;
2265 }
2266
2267 SYSCALL_DEFINE1(userfaultfd, int, flags)
2268 {
2269         if (!userfaultfd_syscall_allowed(flags))
2270                 return -EPERM;
2271
2272         return new_userfaultfd(flags);
2273 }
2274
2275 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2276 {
2277         if (cmd != USERFAULTFD_IOC_NEW)
2278                 return -EINVAL;
2279
2280         return new_userfaultfd(flags);
2281 }
2282
2283 static const struct file_operations userfaultfd_dev_fops = {
2284         .unlocked_ioctl = userfaultfd_dev_ioctl,
2285         .compat_ioctl = userfaultfd_dev_ioctl,
2286         .owner = THIS_MODULE,
2287         .llseek = noop_llseek,
2288 };
2289
2290 static struct miscdevice userfaultfd_misc = {
2291         .minor = MISC_DYNAMIC_MINOR,
2292         .name = "userfaultfd",
2293         .fops = &userfaultfd_dev_fops
2294 };
2295
2296 static int __init userfaultfd_init(void)
2297 {
2298         int ret;
2299
2300         ret = misc_register(&userfaultfd_misc);
2301         if (ret)
2302                 return ret;
2303
2304         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2305                                                 sizeof(struct userfaultfd_ctx),
2306                                                 0,
2307                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2308                                                 init_once_userfaultfd_ctx);
2309 #ifdef CONFIG_SYSCTL
2310         register_sysctl_init("vm", vm_userfaultfd_table);
2311 #endif
2312         return 0;
2313 }
2314 __initcall(userfaultfd_init);