Merge tag 'trace-ringbuffer-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34 #include <linux/uio.h>
35
36 static int sysctl_unprivileged_userfaultfd __read_mostly;
37
38 #ifdef CONFIG_SYSCTL
39 static struct ctl_table vm_userfaultfd_table[] = {
40         {
41                 .procname       = "unprivileged_userfaultfd",
42                 .data           = &sysctl_unprivileged_userfaultfd,
43                 .maxlen         = sizeof(sysctl_unprivileged_userfaultfd),
44                 .mode           = 0644,
45                 .proc_handler   = proc_dointvec_minmax,
46                 .extra1         = SYSCTL_ZERO,
47                 .extra2         = SYSCTL_ONE,
48         },
49 };
50 #endif
51
52 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
53
54 struct userfaultfd_fork_ctx {
55         struct userfaultfd_ctx *orig;
56         struct userfaultfd_ctx *new;
57         struct list_head list;
58 };
59
60 struct userfaultfd_unmap_ctx {
61         struct userfaultfd_ctx *ctx;
62         unsigned long start;
63         unsigned long end;
64         struct list_head list;
65 };
66
67 struct userfaultfd_wait_queue {
68         struct uffd_msg msg;
69         wait_queue_entry_t wq;
70         struct userfaultfd_ctx *ctx;
71         bool waken;
72 };
73
74 struct userfaultfd_wake_range {
75         unsigned long start;
76         unsigned long len;
77 };
78
79 /* internal indication that UFFD_API ioctl was successfully executed */
80 #define UFFD_FEATURE_INITIALIZED                (1u << 31)
81
82 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
83 {
84         return ctx->features & UFFD_FEATURE_INITIALIZED;
85 }
86
87 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
88 {
89         return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
90 }
91
92 /*
93  * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
94  * meaningful when userfaultfd_wp()==true on the vma and when it's
95  * anonymous.
96  */
97 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
98 {
99         struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
100
101         if (!ctx)
102                 return false;
103
104         return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
105 }
106
107 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
108                                      vm_flags_t flags)
109 {
110         const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
111
112         vm_flags_reset(vma, flags);
113         /*
114          * For shared mappings, we want to enable writenotify while
115          * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
116          * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
117          */
118         if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
119                 vma_set_page_prot(vma);
120 }
121
122 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
123                                      int wake_flags, void *key)
124 {
125         struct userfaultfd_wake_range *range = key;
126         int ret;
127         struct userfaultfd_wait_queue *uwq;
128         unsigned long start, len;
129
130         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
131         ret = 0;
132         /* len == 0 means wake all */
133         start = range->start;
134         len = range->len;
135         if (len && (start > uwq->msg.arg.pagefault.address ||
136                     start + len <= uwq->msg.arg.pagefault.address))
137                 goto out;
138         WRITE_ONCE(uwq->waken, true);
139         /*
140          * The Program-Order guarantees provided by the scheduler
141          * ensure uwq->waken is visible before the task is woken.
142          */
143         ret = wake_up_state(wq->private, mode);
144         if (ret) {
145                 /*
146                  * Wake only once, autoremove behavior.
147                  *
148                  * After the effect of list_del_init is visible to the other
149                  * CPUs, the waitqueue may disappear from under us, see the
150                  * !list_empty_careful() in handle_userfault().
151                  *
152                  * try_to_wake_up() has an implicit smp_mb(), and the
153                  * wq->private is read before calling the extern function
154                  * "wake_up_state" (which in turns calls try_to_wake_up).
155                  */
156                 list_del_init(&wq->entry);
157         }
158 out:
159         return ret;
160 }
161
162 /**
163  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
164  * context.
165  * @ctx: [in] Pointer to the userfaultfd context.
166  */
167 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
168 {
169         refcount_inc(&ctx->refcount);
170 }
171
172 /**
173  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
174  * context.
175  * @ctx: [in] Pointer to userfaultfd context.
176  *
177  * The userfaultfd context reference must have been previously acquired either
178  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
179  */
180 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
181 {
182         if (refcount_dec_and_test(&ctx->refcount)) {
183                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
184                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
185                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
186                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
187                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
188                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
189                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
190                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
191                 mmdrop(ctx->mm);
192                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
193         }
194 }
195
196 static inline void msg_init(struct uffd_msg *msg)
197 {
198         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
199         /*
200          * Must use memset to zero out the paddings or kernel data is
201          * leaked to userland.
202          */
203         memset(msg, 0, sizeof(struct uffd_msg));
204 }
205
206 static inline struct uffd_msg userfault_msg(unsigned long address,
207                                             unsigned long real_address,
208                                             unsigned int flags,
209                                             unsigned long reason,
210                                             unsigned int features)
211 {
212         struct uffd_msg msg;
213
214         msg_init(&msg);
215         msg.event = UFFD_EVENT_PAGEFAULT;
216
217         msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
218                                     real_address : address;
219
220         /*
221          * These flags indicate why the userfault occurred:
222          * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
223          * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
224          * - Neither of these flags being set indicates a MISSING fault.
225          *
226          * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
227          * fault. Otherwise, it was a read fault.
228          */
229         if (flags & FAULT_FLAG_WRITE)
230                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
231         if (reason & VM_UFFD_WP)
232                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
233         if (reason & VM_UFFD_MINOR)
234                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
235         if (features & UFFD_FEATURE_THREAD_ID)
236                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
237         return msg;
238 }
239
240 #ifdef CONFIG_HUGETLB_PAGE
241 /*
242  * Same functionality as userfaultfd_must_wait below with modifications for
243  * hugepmd ranges.
244  */
245 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
246                                               struct vm_fault *vmf,
247                                               unsigned long reason)
248 {
249         struct vm_area_struct *vma = vmf->vma;
250         pte_t *ptep, pte;
251         bool ret = true;
252
253         assert_fault_locked(vmf);
254
255         ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
256         if (!ptep)
257                 goto out;
258
259         ret = false;
260         pte = huge_ptep_get(ptep);
261
262         /*
263          * Lockless access: we're in a wait_event so it's ok if it
264          * changes under us.  PTE markers should be handled the same as none
265          * ptes here.
266          */
267         if (huge_pte_none_mostly(pte))
268                 ret = true;
269         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
270                 ret = true;
271 out:
272         return ret;
273 }
274 #else
275 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
276                                               struct vm_fault *vmf,
277                                               unsigned long reason)
278 {
279         return false;   /* should never get here */
280 }
281 #endif /* CONFIG_HUGETLB_PAGE */
282
283 /*
284  * Verify the pagetables are still not ok after having reigstered into
285  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
286  * userfault that has already been resolved, if userfaultfd_read_iter and
287  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
288  * threads.
289  */
290 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
291                                          struct vm_fault *vmf,
292                                          unsigned long reason)
293 {
294         struct mm_struct *mm = ctx->mm;
295         unsigned long address = vmf->address;
296         pgd_t *pgd;
297         p4d_t *p4d;
298         pud_t *pud;
299         pmd_t *pmd, _pmd;
300         pte_t *pte;
301         pte_t ptent;
302         bool ret = true;
303
304         assert_fault_locked(vmf);
305
306         pgd = pgd_offset(mm, address);
307         if (!pgd_present(*pgd))
308                 goto out;
309         p4d = p4d_offset(pgd, address);
310         if (!p4d_present(*p4d))
311                 goto out;
312         pud = pud_offset(p4d, address);
313         if (!pud_present(*pud))
314                 goto out;
315         pmd = pmd_offset(pud, address);
316 again:
317         _pmd = pmdp_get_lockless(pmd);
318         if (pmd_none(_pmd))
319                 goto out;
320
321         ret = false;
322         if (!pmd_present(_pmd) || pmd_devmap(_pmd))
323                 goto out;
324
325         if (pmd_trans_huge(_pmd)) {
326                 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
327                         ret = true;
328                 goto out;
329         }
330
331         pte = pte_offset_map(pmd, address);
332         if (!pte) {
333                 ret = true;
334                 goto again;
335         }
336         /*
337          * Lockless access: we're in a wait_event so it's ok if it
338          * changes under us.  PTE markers should be handled the same as none
339          * ptes here.
340          */
341         ptent = ptep_get(pte);
342         if (pte_none_mostly(ptent))
343                 ret = true;
344         if (!pte_write(ptent) && (reason & VM_UFFD_WP))
345                 ret = true;
346         pte_unmap(pte);
347
348 out:
349         return ret;
350 }
351
352 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
353 {
354         if (flags & FAULT_FLAG_INTERRUPTIBLE)
355                 return TASK_INTERRUPTIBLE;
356
357         if (flags & FAULT_FLAG_KILLABLE)
358                 return TASK_KILLABLE;
359
360         return TASK_UNINTERRUPTIBLE;
361 }
362
363 /*
364  * The locking rules involved in returning VM_FAULT_RETRY depending on
365  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
366  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
367  * recommendation in __lock_page_or_retry is not an understatement.
368  *
369  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
370  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
371  * not set.
372  *
373  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
374  * set, VM_FAULT_RETRY can still be returned if and only if there are
375  * fatal_signal_pending()s, and the mmap_lock must be released before
376  * returning it.
377  */
378 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
379 {
380         struct vm_area_struct *vma = vmf->vma;
381         struct mm_struct *mm = vma->vm_mm;
382         struct userfaultfd_ctx *ctx;
383         struct userfaultfd_wait_queue uwq;
384         vm_fault_t ret = VM_FAULT_SIGBUS;
385         bool must_wait;
386         unsigned int blocking_state;
387
388         /*
389          * We don't do userfault handling for the final child pid update.
390          *
391          * We also don't do userfault handling during
392          * coredumping. hugetlbfs has the special
393          * hugetlb_follow_page_mask() to skip missing pages in the
394          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
395          * the no_page_table() helper in follow_page_mask(), but the
396          * shmem_vm_ops->fault method is invoked even during
397          * coredumping and it ends up here.
398          */
399         if (current->flags & (PF_EXITING|PF_DUMPCORE))
400                 goto out;
401
402         assert_fault_locked(vmf);
403
404         ctx = vma->vm_userfaultfd_ctx.ctx;
405         if (!ctx)
406                 goto out;
407
408         BUG_ON(ctx->mm != mm);
409
410         /* Any unrecognized flag is a bug. */
411         VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
412         /* 0 or > 1 flags set is a bug; we expect exactly 1. */
413         VM_BUG_ON(!reason || (reason & (reason - 1)));
414
415         if (ctx->features & UFFD_FEATURE_SIGBUS)
416                 goto out;
417         if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
418                 goto out;
419
420         /*
421          * If it's already released don't get it. This avoids to loop
422          * in __get_user_pages if userfaultfd_release waits on the
423          * caller of handle_userfault to release the mmap_lock.
424          */
425         if (unlikely(READ_ONCE(ctx->released))) {
426                 /*
427                  * Don't return VM_FAULT_SIGBUS in this case, so a non
428                  * cooperative manager can close the uffd after the
429                  * last UFFDIO_COPY, without risking to trigger an
430                  * involuntary SIGBUS if the process was starting the
431                  * userfaultfd while the userfaultfd was still armed
432                  * (but after the last UFFDIO_COPY). If the uffd
433                  * wasn't already closed when the userfault reached
434                  * this point, that would normally be solved by
435                  * userfaultfd_must_wait returning 'false'.
436                  *
437                  * If we were to return VM_FAULT_SIGBUS here, the non
438                  * cooperative manager would be instead forced to
439                  * always call UFFDIO_UNREGISTER before it can safely
440                  * close the uffd.
441                  */
442                 ret = VM_FAULT_NOPAGE;
443                 goto out;
444         }
445
446         /*
447          * Check that we can return VM_FAULT_RETRY.
448          *
449          * NOTE: it should become possible to return VM_FAULT_RETRY
450          * even if FAULT_FLAG_TRIED is set without leading to gup()
451          * -EBUSY failures, if the userfaultfd is to be extended for
452          * VM_UFFD_WP tracking and we intend to arm the userfault
453          * without first stopping userland access to the memory. For
454          * VM_UFFD_MISSING userfaults this is enough for now.
455          */
456         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
457                 /*
458                  * Validate the invariant that nowait must allow retry
459                  * to be sure not to return SIGBUS erroneously on
460                  * nowait invocations.
461                  */
462                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
463 #ifdef CONFIG_DEBUG_VM
464                 if (printk_ratelimit()) {
465                         printk(KERN_WARNING
466                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
467                                vmf->flags);
468                         dump_stack();
469                 }
470 #endif
471                 goto out;
472         }
473
474         /*
475          * Handle nowait, not much to do other than tell it to retry
476          * and wait.
477          */
478         ret = VM_FAULT_RETRY;
479         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
480                 goto out;
481
482         /* take the reference before dropping the mmap_lock */
483         userfaultfd_ctx_get(ctx);
484
485         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
486         uwq.wq.private = current;
487         uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
488                                 reason, ctx->features);
489         uwq.ctx = ctx;
490         uwq.waken = false;
491
492         blocking_state = userfaultfd_get_blocking_state(vmf->flags);
493
494         /*
495          * Take the vma lock now, in order to safely call
496          * userfaultfd_huge_must_wait() later. Since acquiring the
497          * (sleepable) vma lock can modify the current task state, that
498          * must be before explicitly calling set_current_state().
499          */
500         if (is_vm_hugetlb_page(vma))
501                 hugetlb_vma_lock_read(vma);
502
503         spin_lock_irq(&ctx->fault_pending_wqh.lock);
504         /*
505          * After the __add_wait_queue the uwq is visible to userland
506          * through poll/read().
507          */
508         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
509         /*
510          * The smp_mb() after __set_current_state prevents the reads
511          * following the spin_unlock to happen before the list_add in
512          * __add_wait_queue.
513          */
514         set_current_state(blocking_state);
515         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
516
517         if (!is_vm_hugetlb_page(vma))
518                 must_wait = userfaultfd_must_wait(ctx, vmf, reason);
519         else
520                 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
521         if (is_vm_hugetlb_page(vma))
522                 hugetlb_vma_unlock_read(vma);
523         release_fault_lock(vmf);
524
525         if (likely(must_wait && !READ_ONCE(ctx->released))) {
526                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
527                 schedule();
528         }
529
530         __set_current_state(TASK_RUNNING);
531
532         /*
533          * Here we race with the list_del; list_add in
534          * userfaultfd_ctx_read(), however because we don't ever run
535          * list_del_init() to refile across the two lists, the prev
536          * and next pointers will never point to self. list_add also
537          * would never let any of the two pointers to point to
538          * self. So list_empty_careful won't risk to see both pointers
539          * pointing to self at any time during the list refile. The
540          * only case where list_del_init() is called is the full
541          * removal in the wake function and there we don't re-list_add
542          * and it's fine not to block on the spinlock. The uwq on this
543          * kernel stack can be released after the list_del_init.
544          */
545         if (!list_empty_careful(&uwq.wq.entry)) {
546                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
547                 /*
548                  * No need of list_del_init(), the uwq on the stack
549                  * will be freed shortly anyway.
550                  */
551                 list_del(&uwq.wq.entry);
552                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
553         }
554
555         /*
556          * ctx may go away after this if the userfault pseudo fd is
557          * already released.
558          */
559         userfaultfd_ctx_put(ctx);
560
561 out:
562         return ret;
563 }
564
565 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
566                                               struct userfaultfd_wait_queue *ewq)
567 {
568         struct userfaultfd_ctx *release_new_ctx;
569
570         if (WARN_ON_ONCE(current->flags & PF_EXITING))
571                 goto out;
572
573         ewq->ctx = ctx;
574         init_waitqueue_entry(&ewq->wq, current);
575         release_new_ctx = NULL;
576
577         spin_lock_irq(&ctx->event_wqh.lock);
578         /*
579          * After the __add_wait_queue the uwq is visible to userland
580          * through poll/read().
581          */
582         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
583         for (;;) {
584                 set_current_state(TASK_KILLABLE);
585                 if (ewq->msg.event == 0)
586                         break;
587                 if (READ_ONCE(ctx->released) ||
588                     fatal_signal_pending(current)) {
589                         /*
590                          * &ewq->wq may be queued in fork_event, but
591                          * __remove_wait_queue ignores the head
592                          * parameter. It would be a problem if it
593                          * didn't.
594                          */
595                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
596                         if (ewq->msg.event == UFFD_EVENT_FORK) {
597                                 struct userfaultfd_ctx *new;
598
599                                 new = (struct userfaultfd_ctx *)
600                                         (unsigned long)
601                                         ewq->msg.arg.reserved.reserved1;
602                                 release_new_ctx = new;
603                         }
604                         break;
605                 }
606
607                 spin_unlock_irq(&ctx->event_wqh.lock);
608
609                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
610                 schedule();
611
612                 spin_lock_irq(&ctx->event_wqh.lock);
613         }
614         __set_current_state(TASK_RUNNING);
615         spin_unlock_irq(&ctx->event_wqh.lock);
616
617         if (release_new_ctx) {
618                 struct vm_area_struct *vma;
619                 struct mm_struct *mm = release_new_ctx->mm;
620                 VMA_ITERATOR(vmi, mm, 0);
621
622                 /* the various vma->vm_userfaultfd_ctx still points to it */
623                 mmap_write_lock(mm);
624                 for_each_vma(vmi, vma) {
625                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
626                                 vma_start_write(vma);
627                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
628                                 userfaultfd_set_vm_flags(vma,
629                                                          vma->vm_flags & ~__VM_UFFD_FLAGS);
630                         }
631                 }
632                 mmap_write_unlock(mm);
633
634                 userfaultfd_ctx_put(release_new_ctx);
635         }
636
637         /*
638          * ctx may go away after this if the userfault pseudo fd is
639          * already released.
640          */
641 out:
642         atomic_dec(&ctx->mmap_changing);
643         VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
644         userfaultfd_ctx_put(ctx);
645 }
646
647 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
648                                        struct userfaultfd_wait_queue *ewq)
649 {
650         ewq->msg.event = 0;
651         wake_up_locked(&ctx->event_wqh);
652         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
653 }
654
655 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
656 {
657         struct userfaultfd_ctx *ctx = NULL, *octx;
658         struct userfaultfd_fork_ctx *fctx;
659
660         octx = vma->vm_userfaultfd_ctx.ctx;
661         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
662                 vma_start_write(vma);
663                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
664                 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
665                 return 0;
666         }
667
668         list_for_each_entry(fctx, fcs, list)
669                 if (fctx->orig == octx) {
670                         ctx = fctx->new;
671                         break;
672                 }
673
674         if (!ctx) {
675                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
676                 if (!fctx)
677                         return -ENOMEM;
678
679                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
680                 if (!ctx) {
681                         kfree(fctx);
682                         return -ENOMEM;
683                 }
684
685                 refcount_set(&ctx->refcount, 1);
686                 ctx->flags = octx->flags;
687                 ctx->features = octx->features;
688                 ctx->released = false;
689                 init_rwsem(&ctx->map_changing_lock);
690                 atomic_set(&ctx->mmap_changing, 0);
691                 ctx->mm = vma->vm_mm;
692                 mmgrab(ctx->mm);
693
694                 userfaultfd_ctx_get(octx);
695                 down_write(&octx->map_changing_lock);
696                 atomic_inc(&octx->mmap_changing);
697                 up_write(&octx->map_changing_lock);
698                 fctx->orig = octx;
699                 fctx->new = ctx;
700                 list_add_tail(&fctx->list, fcs);
701         }
702
703         vma->vm_userfaultfd_ctx.ctx = ctx;
704         return 0;
705 }
706
707 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
708 {
709         struct userfaultfd_ctx *ctx = fctx->orig;
710         struct userfaultfd_wait_queue ewq;
711
712         msg_init(&ewq.msg);
713
714         ewq.msg.event = UFFD_EVENT_FORK;
715         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
716
717         userfaultfd_event_wait_completion(ctx, &ewq);
718 }
719
720 void dup_userfaultfd_complete(struct list_head *fcs)
721 {
722         struct userfaultfd_fork_ctx *fctx, *n;
723
724         list_for_each_entry_safe(fctx, n, fcs, list) {
725                 dup_fctx(fctx);
726                 list_del(&fctx->list);
727                 kfree(fctx);
728         }
729 }
730
731 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
732                              struct vm_userfaultfd_ctx *vm_ctx)
733 {
734         struct userfaultfd_ctx *ctx;
735
736         ctx = vma->vm_userfaultfd_ctx.ctx;
737
738         if (!ctx)
739                 return;
740
741         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
742                 vm_ctx->ctx = ctx;
743                 userfaultfd_ctx_get(ctx);
744                 down_write(&ctx->map_changing_lock);
745                 atomic_inc(&ctx->mmap_changing);
746                 up_write(&ctx->map_changing_lock);
747         } else {
748                 /* Drop uffd context if remap feature not enabled */
749                 vma_start_write(vma);
750                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
751                 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
752         }
753 }
754
755 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
756                                  unsigned long from, unsigned long to,
757                                  unsigned long len)
758 {
759         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
760         struct userfaultfd_wait_queue ewq;
761
762         if (!ctx)
763                 return;
764
765         if (to & ~PAGE_MASK) {
766                 userfaultfd_ctx_put(ctx);
767                 return;
768         }
769
770         msg_init(&ewq.msg);
771
772         ewq.msg.event = UFFD_EVENT_REMAP;
773         ewq.msg.arg.remap.from = from;
774         ewq.msg.arg.remap.to = to;
775         ewq.msg.arg.remap.len = len;
776
777         userfaultfd_event_wait_completion(ctx, &ewq);
778 }
779
780 bool userfaultfd_remove(struct vm_area_struct *vma,
781                         unsigned long start, unsigned long end)
782 {
783         struct mm_struct *mm = vma->vm_mm;
784         struct userfaultfd_ctx *ctx;
785         struct userfaultfd_wait_queue ewq;
786
787         ctx = vma->vm_userfaultfd_ctx.ctx;
788         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
789                 return true;
790
791         userfaultfd_ctx_get(ctx);
792         down_write(&ctx->map_changing_lock);
793         atomic_inc(&ctx->mmap_changing);
794         up_write(&ctx->map_changing_lock);
795         mmap_read_unlock(mm);
796
797         msg_init(&ewq.msg);
798
799         ewq.msg.event = UFFD_EVENT_REMOVE;
800         ewq.msg.arg.remove.start = start;
801         ewq.msg.arg.remove.end = end;
802
803         userfaultfd_event_wait_completion(ctx, &ewq);
804
805         return false;
806 }
807
808 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
809                           unsigned long start, unsigned long end)
810 {
811         struct userfaultfd_unmap_ctx *unmap_ctx;
812
813         list_for_each_entry(unmap_ctx, unmaps, list)
814                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
815                     unmap_ctx->end == end)
816                         return true;
817
818         return false;
819 }
820
821 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
822                            unsigned long end, struct list_head *unmaps)
823 {
824         struct userfaultfd_unmap_ctx *unmap_ctx;
825         struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
826
827         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
828             has_unmap_ctx(ctx, unmaps, start, end))
829                 return 0;
830
831         unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
832         if (!unmap_ctx)
833                 return -ENOMEM;
834
835         userfaultfd_ctx_get(ctx);
836         down_write(&ctx->map_changing_lock);
837         atomic_inc(&ctx->mmap_changing);
838         up_write(&ctx->map_changing_lock);
839         unmap_ctx->ctx = ctx;
840         unmap_ctx->start = start;
841         unmap_ctx->end = end;
842         list_add_tail(&unmap_ctx->list, unmaps);
843
844         return 0;
845 }
846
847 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
848 {
849         struct userfaultfd_unmap_ctx *ctx, *n;
850         struct userfaultfd_wait_queue ewq;
851
852         list_for_each_entry_safe(ctx, n, uf, list) {
853                 msg_init(&ewq.msg);
854
855                 ewq.msg.event = UFFD_EVENT_UNMAP;
856                 ewq.msg.arg.remove.start = ctx->start;
857                 ewq.msg.arg.remove.end = ctx->end;
858
859                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
860
861                 list_del(&ctx->list);
862                 kfree(ctx);
863         }
864 }
865
866 static int userfaultfd_release(struct inode *inode, struct file *file)
867 {
868         struct userfaultfd_ctx *ctx = file->private_data;
869         struct mm_struct *mm = ctx->mm;
870         struct vm_area_struct *vma, *prev;
871         /* len == 0 means wake all */
872         struct userfaultfd_wake_range range = { .len = 0, };
873         unsigned long new_flags;
874         VMA_ITERATOR(vmi, mm, 0);
875
876         WRITE_ONCE(ctx->released, true);
877
878         if (!mmget_not_zero(mm))
879                 goto wakeup;
880
881         /*
882          * Flush page faults out of all CPUs. NOTE: all page faults
883          * must be retried without returning VM_FAULT_SIGBUS if
884          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
885          * changes while handle_userfault released the mmap_lock. So
886          * it's critical that released is set to true (above), before
887          * taking the mmap_lock for writing.
888          */
889         mmap_write_lock(mm);
890         prev = NULL;
891         for_each_vma(vmi, vma) {
892                 cond_resched();
893                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
894                        !!(vma->vm_flags & __VM_UFFD_FLAGS));
895                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
896                         prev = vma;
897                         continue;
898                 }
899                 /* Reset ptes for the whole vma range if wr-protected */
900                 if (userfaultfd_wp(vma))
901                         uffd_wp_range(vma, vma->vm_start,
902                                       vma->vm_end - vma->vm_start, false);
903                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
904                 vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start,
905                                             vma->vm_end, new_flags,
906                                             NULL_VM_UFFD_CTX);
907
908                 vma_start_write(vma);
909                 userfaultfd_set_vm_flags(vma, new_flags);
910                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
911
912                 prev = vma;
913         }
914         mmap_write_unlock(mm);
915         mmput(mm);
916 wakeup:
917         /*
918          * After no new page faults can wait on this fault_*wqh, flush
919          * the last page faults that may have been already waiting on
920          * the fault_*wqh.
921          */
922         spin_lock_irq(&ctx->fault_pending_wqh.lock);
923         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
924         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
925         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
926
927         /* Flush pending events that may still wait on event_wqh */
928         wake_up_all(&ctx->event_wqh);
929
930         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
931         userfaultfd_ctx_put(ctx);
932         return 0;
933 }
934
935 /* fault_pending_wqh.lock must be hold by the caller */
936 static inline struct userfaultfd_wait_queue *find_userfault_in(
937                 wait_queue_head_t *wqh)
938 {
939         wait_queue_entry_t *wq;
940         struct userfaultfd_wait_queue *uwq;
941
942         lockdep_assert_held(&wqh->lock);
943
944         uwq = NULL;
945         if (!waitqueue_active(wqh))
946                 goto out;
947         /* walk in reverse to provide FIFO behavior to read userfaults */
948         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
949         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
950 out:
951         return uwq;
952 }
953
954 static inline struct userfaultfd_wait_queue *find_userfault(
955                 struct userfaultfd_ctx *ctx)
956 {
957         return find_userfault_in(&ctx->fault_pending_wqh);
958 }
959
960 static inline struct userfaultfd_wait_queue *find_userfault_evt(
961                 struct userfaultfd_ctx *ctx)
962 {
963         return find_userfault_in(&ctx->event_wqh);
964 }
965
966 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
967 {
968         struct userfaultfd_ctx *ctx = file->private_data;
969         __poll_t ret;
970
971         poll_wait(file, &ctx->fd_wqh, wait);
972
973         if (!userfaultfd_is_initialized(ctx))
974                 return EPOLLERR;
975
976         /*
977          * poll() never guarantees that read won't block.
978          * userfaults can be waken before they're read().
979          */
980         if (unlikely(!(file->f_flags & O_NONBLOCK)))
981                 return EPOLLERR;
982         /*
983          * lockless access to see if there are pending faults
984          * __pollwait last action is the add_wait_queue but
985          * the spin_unlock would allow the waitqueue_active to
986          * pass above the actual list_add inside
987          * add_wait_queue critical section. So use a full
988          * memory barrier to serialize the list_add write of
989          * add_wait_queue() with the waitqueue_active read
990          * below.
991          */
992         ret = 0;
993         smp_mb();
994         if (waitqueue_active(&ctx->fault_pending_wqh))
995                 ret = EPOLLIN;
996         else if (waitqueue_active(&ctx->event_wqh))
997                 ret = EPOLLIN;
998
999         return ret;
1000 }
1001
1002 static const struct file_operations userfaultfd_fops;
1003
1004 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1005                                   struct inode *inode,
1006                                   struct uffd_msg *msg)
1007 {
1008         int fd;
1009
1010         fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
1011                         O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1012         if (fd < 0)
1013                 return fd;
1014
1015         msg->arg.reserved.reserved1 = 0;
1016         msg->arg.fork.ufd = fd;
1017         return 0;
1018 }
1019
1020 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1021                                     struct uffd_msg *msg, struct inode *inode)
1022 {
1023         ssize_t ret;
1024         DECLARE_WAITQUEUE(wait, current);
1025         struct userfaultfd_wait_queue *uwq;
1026         /*
1027          * Handling fork event requires sleeping operations, so
1028          * we drop the event_wqh lock, then do these ops, then
1029          * lock it back and wake up the waiter. While the lock is
1030          * dropped the ewq may go away so we keep track of it
1031          * carefully.
1032          */
1033         LIST_HEAD(fork_event);
1034         struct userfaultfd_ctx *fork_nctx = NULL;
1035
1036         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1037         spin_lock_irq(&ctx->fd_wqh.lock);
1038         __add_wait_queue(&ctx->fd_wqh, &wait);
1039         for (;;) {
1040                 set_current_state(TASK_INTERRUPTIBLE);
1041                 spin_lock(&ctx->fault_pending_wqh.lock);
1042                 uwq = find_userfault(ctx);
1043                 if (uwq) {
1044                         /*
1045                          * Use a seqcount to repeat the lockless check
1046                          * in wake_userfault() to avoid missing
1047                          * wakeups because during the refile both
1048                          * waitqueue could become empty if this is the
1049                          * only userfault.
1050                          */
1051                         write_seqcount_begin(&ctx->refile_seq);
1052
1053                         /*
1054                          * The fault_pending_wqh.lock prevents the uwq
1055                          * to disappear from under us.
1056                          *
1057                          * Refile this userfault from
1058                          * fault_pending_wqh to fault_wqh, it's not
1059                          * pending anymore after we read it.
1060                          *
1061                          * Use list_del() by hand (as
1062                          * userfaultfd_wake_function also uses
1063                          * list_del_init() by hand) to be sure nobody
1064                          * changes __remove_wait_queue() to use
1065                          * list_del_init() in turn breaking the
1066                          * !list_empty_careful() check in
1067                          * handle_userfault(). The uwq->wq.head list
1068                          * must never be empty at any time during the
1069                          * refile, or the waitqueue could disappear
1070                          * from under us. The "wait_queue_head_t"
1071                          * parameter of __remove_wait_queue() is unused
1072                          * anyway.
1073                          */
1074                         list_del(&uwq->wq.entry);
1075                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1076
1077                         write_seqcount_end(&ctx->refile_seq);
1078
1079                         /* careful to always initialize msg if ret == 0 */
1080                         *msg = uwq->msg;
1081                         spin_unlock(&ctx->fault_pending_wqh.lock);
1082                         ret = 0;
1083                         break;
1084                 }
1085                 spin_unlock(&ctx->fault_pending_wqh.lock);
1086
1087                 spin_lock(&ctx->event_wqh.lock);
1088                 uwq = find_userfault_evt(ctx);
1089                 if (uwq) {
1090                         *msg = uwq->msg;
1091
1092                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1093                                 fork_nctx = (struct userfaultfd_ctx *)
1094                                         (unsigned long)
1095                                         uwq->msg.arg.reserved.reserved1;
1096                                 list_move(&uwq->wq.entry, &fork_event);
1097                                 /*
1098                                  * fork_nctx can be freed as soon as
1099                                  * we drop the lock, unless we take a
1100                                  * reference on it.
1101                                  */
1102                                 userfaultfd_ctx_get(fork_nctx);
1103                                 spin_unlock(&ctx->event_wqh.lock);
1104                                 ret = 0;
1105                                 break;
1106                         }
1107
1108                         userfaultfd_event_complete(ctx, uwq);
1109                         spin_unlock(&ctx->event_wqh.lock);
1110                         ret = 0;
1111                         break;
1112                 }
1113                 spin_unlock(&ctx->event_wqh.lock);
1114
1115                 if (signal_pending(current)) {
1116                         ret = -ERESTARTSYS;
1117                         break;
1118                 }
1119                 if (no_wait) {
1120                         ret = -EAGAIN;
1121                         break;
1122                 }
1123                 spin_unlock_irq(&ctx->fd_wqh.lock);
1124                 schedule();
1125                 spin_lock_irq(&ctx->fd_wqh.lock);
1126         }
1127         __remove_wait_queue(&ctx->fd_wqh, &wait);
1128         __set_current_state(TASK_RUNNING);
1129         spin_unlock_irq(&ctx->fd_wqh.lock);
1130
1131         if (!ret && msg->event == UFFD_EVENT_FORK) {
1132                 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1133                 spin_lock_irq(&ctx->event_wqh.lock);
1134                 if (!list_empty(&fork_event)) {
1135                         /*
1136                          * The fork thread didn't abort, so we can
1137                          * drop the temporary refcount.
1138                          */
1139                         userfaultfd_ctx_put(fork_nctx);
1140
1141                         uwq = list_first_entry(&fork_event,
1142                                                typeof(*uwq),
1143                                                wq.entry);
1144                         /*
1145                          * If fork_event list wasn't empty and in turn
1146                          * the event wasn't already released by fork
1147                          * (the event is allocated on fork kernel
1148                          * stack), put the event back to its place in
1149                          * the event_wq. fork_event head will be freed
1150                          * as soon as we return so the event cannot
1151                          * stay queued there no matter the current
1152                          * "ret" value.
1153                          */
1154                         list_del(&uwq->wq.entry);
1155                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1156
1157                         /*
1158                          * Leave the event in the waitqueue and report
1159                          * error to userland if we failed to resolve
1160                          * the userfault fork.
1161                          */
1162                         if (likely(!ret))
1163                                 userfaultfd_event_complete(ctx, uwq);
1164                 } else {
1165                         /*
1166                          * Here the fork thread aborted and the
1167                          * refcount from the fork thread on fork_nctx
1168                          * has already been released. We still hold
1169                          * the reference we took before releasing the
1170                          * lock above. If resolve_userfault_fork
1171                          * failed we've to drop it because the
1172                          * fork_nctx has to be freed in such case. If
1173                          * it succeeded we'll hold it because the new
1174                          * uffd references it.
1175                          */
1176                         if (ret)
1177                                 userfaultfd_ctx_put(fork_nctx);
1178                 }
1179                 spin_unlock_irq(&ctx->event_wqh.lock);
1180         }
1181
1182         return ret;
1183 }
1184
1185 static ssize_t userfaultfd_read_iter(struct kiocb *iocb, struct iov_iter *to)
1186 {
1187         struct file *file = iocb->ki_filp;
1188         struct userfaultfd_ctx *ctx = file->private_data;
1189         ssize_t _ret, ret = 0;
1190         struct uffd_msg msg;
1191         struct inode *inode = file_inode(file);
1192         bool no_wait;
1193
1194         if (!userfaultfd_is_initialized(ctx))
1195                 return -EINVAL;
1196
1197         no_wait = file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT;
1198         for (;;) {
1199                 if (iov_iter_count(to) < sizeof(msg))
1200                         return ret ? ret : -EINVAL;
1201                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1202                 if (_ret < 0)
1203                         return ret ? ret : _ret;
1204                 _ret = !copy_to_iter_full(&msg, sizeof(msg), to);
1205                 if (_ret)
1206                         return ret ? ret : -EFAULT;
1207                 ret += sizeof(msg);
1208                 /*
1209                  * Allow to read more than one fault at time but only
1210                  * block if waiting for the very first one.
1211                  */
1212                 no_wait = true;
1213         }
1214 }
1215
1216 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1217                              struct userfaultfd_wake_range *range)
1218 {
1219         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1220         /* wake all in the range and autoremove */
1221         if (waitqueue_active(&ctx->fault_pending_wqh))
1222                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1223                                      range);
1224         if (waitqueue_active(&ctx->fault_wqh))
1225                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1226         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1227 }
1228
1229 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1230                                            struct userfaultfd_wake_range *range)
1231 {
1232         unsigned seq;
1233         bool need_wakeup;
1234
1235         /*
1236          * To be sure waitqueue_active() is not reordered by the CPU
1237          * before the pagetable update, use an explicit SMP memory
1238          * barrier here. PT lock release or mmap_read_unlock(mm) still
1239          * have release semantics that can allow the
1240          * waitqueue_active() to be reordered before the pte update.
1241          */
1242         smp_mb();
1243
1244         /*
1245          * Use waitqueue_active because it's very frequent to
1246          * change the address space atomically even if there are no
1247          * userfaults yet. So we take the spinlock only when we're
1248          * sure we've userfaults to wake.
1249          */
1250         do {
1251                 seq = read_seqcount_begin(&ctx->refile_seq);
1252                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1253                         waitqueue_active(&ctx->fault_wqh);
1254                 cond_resched();
1255         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1256         if (need_wakeup)
1257                 __wake_userfault(ctx, range);
1258 }
1259
1260 static __always_inline int validate_unaligned_range(
1261         struct mm_struct *mm, __u64 start, __u64 len)
1262 {
1263         __u64 task_size = mm->task_size;
1264
1265         if (len & ~PAGE_MASK)
1266                 return -EINVAL;
1267         if (!len)
1268                 return -EINVAL;
1269         if (start < mmap_min_addr)
1270                 return -EINVAL;
1271         if (start >= task_size)
1272                 return -EINVAL;
1273         if (len > task_size - start)
1274                 return -EINVAL;
1275         if (start + len <= start)
1276                 return -EINVAL;
1277         return 0;
1278 }
1279
1280 static __always_inline int validate_range(struct mm_struct *mm,
1281                                           __u64 start, __u64 len)
1282 {
1283         if (start & ~PAGE_MASK)
1284                 return -EINVAL;
1285
1286         return validate_unaligned_range(mm, start, len);
1287 }
1288
1289 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1290                                 unsigned long arg)
1291 {
1292         struct mm_struct *mm = ctx->mm;
1293         struct vm_area_struct *vma, *prev, *cur;
1294         int ret;
1295         struct uffdio_register uffdio_register;
1296         struct uffdio_register __user *user_uffdio_register;
1297         unsigned long vm_flags, new_flags;
1298         bool found;
1299         bool basic_ioctls;
1300         unsigned long start, end, vma_end;
1301         struct vma_iterator vmi;
1302         bool wp_async = userfaultfd_wp_async_ctx(ctx);
1303
1304         user_uffdio_register = (struct uffdio_register __user *) arg;
1305
1306         ret = -EFAULT;
1307         if (copy_from_user(&uffdio_register, user_uffdio_register,
1308                            sizeof(uffdio_register)-sizeof(__u64)))
1309                 goto out;
1310
1311         ret = -EINVAL;
1312         if (!uffdio_register.mode)
1313                 goto out;
1314         if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1315                 goto out;
1316         vm_flags = 0;
1317         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1318                 vm_flags |= VM_UFFD_MISSING;
1319         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1320 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1321                 goto out;
1322 #endif
1323                 vm_flags |= VM_UFFD_WP;
1324         }
1325         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1326 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1327                 goto out;
1328 #endif
1329                 vm_flags |= VM_UFFD_MINOR;
1330         }
1331
1332         ret = validate_range(mm, uffdio_register.range.start,
1333                              uffdio_register.range.len);
1334         if (ret)
1335                 goto out;
1336
1337         start = uffdio_register.range.start;
1338         end = start + uffdio_register.range.len;
1339
1340         ret = -ENOMEM;
1341         if (!mmget_not_zero(mm))
1342                 goto out;
1343
1344         ret = -EINVAL;
1345         mmap_write_lock(mm);
1346         vma_iter_init(&vmi, mm, start);
1347         vma = vma_find(&vmi, end);
1348         if (!vma)
1349                 goto out_unlock;
1350
1351         /*
1352          * If the first vma contains huge pages, make sure start address
1353          * is aligned to huge page size.
1354          */
1355         if (is_vm_hugetlb_page(vma)) {
1356                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1357
1358                 if (start & (vma_hpagesize - 1))
1359                         goto out_unlock;
1360         }
1361
1362         /*
1363          * Search for not compatible vmas.
1364          */
1365         found = false;
1366         basic_ioctls = false;
1367         cur = vma;
1368         do {
1369                 cond_resched();
1370
1371                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1372                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1373
1374                 /* check not compatible vmas */
1375                 ret = -EINVAL;
1376                 if (!vma_can_userfault(cur, vm_flags, wp_async))
1377                         goto out_unlock;
1378
1379                 /*
1380                  * UFFDIO_COPY will fill file holes even without
1381                  * PROT_WRITE. This check enforces that if this is a
1382                  * MAP_SHARED, the process has write permission to the backing
1383                  * file. If VM_MAYWRITE is set it also enforces that on a
1384                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1385                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1386                  */
1387                 ret = -EPERM;
1388                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1389                         goto out_unlock;
1390
1391                 /*
1392                  * If this vma contains ending address, and huge pages
1393                  * check alignment.
1394                  */
1395                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1396                     end > cur->vm_start) {
1397                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1398
1399                         ret = -EINVAL;
1400
1401                         if (end & (vma_hpagesize - 1))
1402                                 goto out_unlock;
1403                 }
1404                 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1405                         goto out_unlock;
1406
1407                 /*
1408                  * Check that this vma isn't already owned by a
1409                  * different userfaultfd. We can't allow more than one
1410                  * userfaultfd to own a single vma simultaneously or we
1411                  * wouldn't know which one to deliver the userfaults to.
1412                  */
1413                 ret = -EBUSY;
1414                 if (cur->vm_userfaultfd_ctx.ctx &&
1415                     cur->vm_userfaultfd_ctx.ctx != ctx)
1416                         goto out_unlock;
1417
1418                 /*
1419                  * Note vmas containing huge pages
1420                  */
1421                 if (is_vm_hugetlb_page(cur))
1422                         basic_ioctls = true;
1423
1424                 found = true;
1425         } for_each_vma_range(vmi, cur, end);
1426         BUG_ON(!found);
1427
1428         vma_iter_set(&vmi, start);
1429         prev = vma_prev(&vmi);
1430         if (vma->vm_start < start)
1431                 prev = vma;
1432
1433         ret = 0;
1434         for_each_vma_range(vmi, vma, end) {
1435                 cond_resched();
1436
1437                 BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
1438                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1439                        vma->vm_userfaultfd_ctx.ctx != ctx);
1440                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1441
1442                 /*
1443                  * Nothing to do: this vma is already registered into this
1444                  * userfaultfd and with the right tracking mode too.
1445                  */
1446                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1447                     (vma->vm_flags & vm_flags) == vm_flags)
1448                         goto skip;
1449
1450                 if (vma->vm_start > start)
1451                         start = vma->vm_start;
1452                 vma_end = min(end, vma->vm_end);
1453
1454                 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1455                 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1456                                             new_flags,
1457                                             (struct vm_userfaultfd_ctx){ctx});
1458                 if (IS_ERR(vma)) {
1459                         ret = PTR_ERR(vma);
1460                         break;
1461                 }
1462
1463                 /*
1464                  * In the vma_merge() successful mprotect-like case 8:
1465                  * the next vma was merged into the current one and
1466                  * the current one has not been updated yet.
1467                  */
1468                 vma_start_write(vma);
1469                 userfaultfd_set_vm_flags(vma, new_flags);
1470                 vma->vm_userfaultfd_ctx.ctx = ctx;
1471
1472                 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1473                         hugetlb_unshare_all_pmds(vma);
1474
1475         skip:
1476                 prev = vma;
1477                 start = vma->vm_end;
1478         }
1479
1480 out_unlock:
1481         mmap_write_unlock(mm);
1482         mmput(mm);
1483         if (!ret) {
1484                 __u64 ioctls_out;
1485
1486                 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1487                     UFFD_API_RANGE_IOCTLS;
1488
1489                 /*
1490                  * Declare the WP ioctl only if the WP mode is
1491                  * specified and all checks passed with the range
1492                  */
1493                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1494                         ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1495
1496                 /* CONTINUE ioctl is only supported for MINOR ranges. */
1497                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1498                         ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1499
1500                 /*
1501                  * Now that we scanned all vmas we can already tell
1502                  * userland which ioctls methods are guaranteed to
1503                  * succeed on this range.
1504                  */
1505                 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1506                         ret = -EFAULT;
1507         }
1508 out:
1509         return ret;
1510 }
1511
1512 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1513                                   unsigned long arg)
1514 {
1515         struct mm_struct *mm = ctx->mm;
1516         struct vm_area_struct *vma, *prev, *cur;
1517         int ret;
1518         struct uffdio_range uffdio_unregister;
1519         unsigned long new_flags;
1520         bool found;
1521         unsigned long start, end, vma_end;
1522         const void __user *buf = (void __user *)arg;
1523         struct vma_iterator vmi;
1524         bool wp_async = userfaultfd_wp_async_ctx(ctx);
1525
1526         ret = -EFAULT;
1527         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1528                 goto out;
1529
1530         ret = validate_range(mm, uffdio_unregister.start,
1531                              uffdio_unregister.len);
1532         if (ret)
1533                 goto out;
1534
1535         start = uffdio_unregister.start;
1536         end = start + uffdio_unregister.len;
1537
1538         ret = -ENOMEM;
1539         if (!mmget_not_zero(mm))
1540                 goto out;
1541
1542         mmap_write_lock(mm);
1543         ret = -EINVAL;
1544         vma_iter_init(&vmi, mm, start);
1545         vma = vma_find(&vmi, end);
1546         if (!vma)
1547                 goto out_unlock;
1548
1549         /*
1550          * If the first vma contains huge pages, make sure start address
1551          * is aligned to huge page size.
1552          */
1553         if (is_vm_hugetlb_page(vma)) {
1554                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1555
1556                 if (start & (vma_hpagesize - 1))
1557                         goto out_unlock;
1558         }
1559
1560         /*
1561          * Search for not compatible vmas.
1562          */
1563         found = false;
1564         cur = vma;
1565         do {
1566                 cond_resched();
1567
1568                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1569                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1570
1571                 /*
1572                  * Check not compatible vmas, not strictly required
1573                  * here as not compatible vmas cannot have an
1574                  * userfaultfd_ctx registered on them, but this
1575                  * provides for more strict behavior to notice
1576                  * unregistration errors.
1577                  */
1578                 if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1579                         goto out_unlock;
1580
1581                 found = true;
1582         } for_each_vma_range(vmi, cur, end);
1583         BUG_ON(!found);
1584
1585         vma_iter_set(&vmi, start);
1586         prev = vma_prev(&vmi);
1587         if (vma->vm_start < start)
1588                 prev = vma;
1589
1590         ret = 0;
1591         for_each_vma_range(vmi, vma, end) {
1592                 cond_resched();
1593
1594                 BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1595
1596                 /*
1597                  * Nothing to do: this vma is already registered into this
1598                  * userfaultfd and with the right tracking mode too.
1599                  */
1600                 if (!vma->vm_userfaultfd_ctx.ctx)
1601                         goto skip;
1602
1603                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1604
1605                 if (vma->vm_start > start)
1606                         start = vma->vm_start;
1607                 vma_end = min(end, vma->vm_end);
1608
1609                 if (userfaultfd_missing(vma)) {
1610                         /*
1611                          * Wake any concurrent pending userfault while
1612                          * we unregister, so they will not hang
1613                          * permanently and it avoids userland to call
1614                          * UFFDIO_WAKE explicitly.
1615                          */
1616                         struct userfaultfd_wake_range range;
1617                         range.start = start;
1618                         range.len = vma_end - start;
1619                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1620                 }
1621
1622                 /* Reset ptes for the whole vma range if wr-protected */
1623                 if (userfaultfd_wp(vma))
1624                         uffd_wp_range(vma, start, vma_end - start, false);
1625
1626                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1627                 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1628                                             new_flags, NULL_VM_UFFD_CTX);
1629                 if (IS_ERR(vma)) {
1630                         ret = PTR_ERR(vma);
1631                         break;
1632                 }
1633
1634                 /*
1635                  * In the vma_merge() successful mprotect-like case 8:
1636                  * the next vma was merged into the current one and
1637                  * the current one has not been updated yet.
1638                  */
1639                 vma_start_write(vma);
1640                 userfaultfd_set_vm_flags(vma, new_flags);
1641                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1642
1643         skip:
1644                 prev = vma;
1645                 start = vma->vm_end;
1646         }
1647
1648 out_unlock:
1649         mmap_write_unlock(mm);
1650         mmput(mm);
1651 out:
1652         return ret;
1653 }
1654
1655 /*
1656  * userfaultfd_wake may be used in combination with the
1657  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1658  */
1659 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1660                             unsigned long arg)
1661 {
1662         int ret;
1663         struct uffdio_range uffdio_wake;
1664         struct userfaultfd_wake_range range;
1665         const void __user *buf = (void __user *)arg;
1666
1667         ret = -EFAULT;
1668         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1669                 goto out;
1670
1671         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1672         if (ret)
1673                 goto out;
1674
1675         range.start = uffdio_wake.start;
1676         range.len = uffdio_wake.len;
1677
1678         /*
1679          * len == 0 means wake all and we don't want to wake all here,
1680          * so check it again to be sure.
1681          */
1682         VM_BUG_ON(!range.len);
1683
1684         wake_userfault(ctx, &range);
1685         ret = 0;
1686
1687 out:
1688         return ret;
1689 }
1690
1691 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1692                             unsigned long arg)
1693 {
1694         __s64 ret;
1695         struct uffdio_copy uffdio_copy;
1696         struct uffdio_copy __user *user_uffdio_copy;
1697         struct userfaultfd_wake_range range;
1698         uffd_flags_t flags = 0;
1699
1700         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1701
1702         ret = -EAGAIN;
1703         if (atomic_read(&ctx->mmap_changing))
1704                 goto out;
1705
1706         ret = -EFAULT;
1707         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1708                            /* don't copy "copy" last field */
1709                            sizeof(uffdio_copy)-sizeof(__s64)))
1710                 goto out;
1711
1712         ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1713                                        uffdio_copy.len);
1714         if (ret)
1715                 goto out;
1716         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1717         if (ret)
1718                 goto out;
1719
1720         ret = -EINVAL;
1721         if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1722                 goto out;
1723         if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1724                 flags |= MFILL_ATOMIC_WP;
1725         if (mmget_not_zero(ctx->mm)) {
1726                 ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1727                                         uffdio_copy.len, flags);
1728                 mmput(ctx->mm);
1729         } else {
1730                 return -ESRCH;
1731         }
1732         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1733                 return -EFAULT;
1734         if (ret < 0)
1735                 goto out;
1736         BUG_ON(!ret);
1737         /* len == 0 would wake all */
1738         range.len = ret;
1739         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1740                 range.start = uffdio_copy.dst;
1741                 wake_userfault(ctx, &range);
1742         }
1743         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1744 out:
1745         return ret;
1746 }
1747
1748 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1749                                 unsigned long arg)
1750 {
1751         __s64 ret;
1752         struct uffdio_zeropage uffdio_zeropage;
1753         struct uffdio_zeropage __user *user_uffdio_zeropage;
1754         struct userfaultfd_wake_range range;
1755
1756         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1757
1758         ret = -EAGAIN;
1759         if (atomic_read(&ctx->mmap_changing))
1760                 goto out;
1761
1762         ret = -EFAULT;
1763         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1764                            /* don't copy "zeropage" last field */
1765                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1766                 goto out;
1767
1768         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1769                              uffdio_zeropage.range.len);
1770         if (ret)
1771                 goto out;
1772         ret = -EINVAL;
1773         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1774                 goto out;
1775
1776         if (mmget_not_zero(ctx->mm)) {
1777                 ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1778                                            uffdio_zeropage.range.len);
1779                 mmput(ctx->mm);
1780         } else {
1781                 return -ESRCH;
1782         }
1783         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1784                 return -EFAULT;
1785         if (ret < 0)
1786                 goto out;
1787         /* len == 0 would wake all */
1788         BUG_ON(!ret);
1789         range.len = ret;
1790         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1791                 range.start = uffdio_zeropage.range.start;
1792                 wake_userfault(ctx, &range);
1793         }
1794         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1795 out:
1796         return ret;
1797 }
1798
1799 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1800                                     unsigned long arg)
1801 {
1802         int ret;
1803         struct uffdio_writeprotect uffdio_wp;
1804         struct uffdio_writeprotect __user *user_uffdio_wp;
1805         struct userfaultfd_wake_range range;
1806         bool mode_wp, mode_dontwake;
1807
1808         if (atomic_read(&ctx->mmap_changing))
1809                 return -EAGAIN;
1810
1811         user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1812
1813         if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1814                            sizeof(struct uffdio_writeprotect)))
1815                 return -EFAULT;
1816
1817         ret = validate_range(ctx->mm, uffdio_wp.range.start,
1818                              uffdio_wp.range.len);
1819         if (ret)
1820                 return ret;
1821
1822         if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1823                                UFFDIO_WRITEPROTECT_MODE_WP))
1824                 return -EINVAL;
1825
1826         mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1827         mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1828
1829         if (mode_wp && mode_dontwake)
1830                 return -EINVAL;
1831
1832         if (mmget_not_zero(ctx->mm)) {
1833                 ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1834                                           uffdio_wp.range.len, mode_wp);
1835                 mmput(ctx->mm);
1836         } else {
1837                 return -ESRCH;
1838         }
1839
1840         if (ret)
1841                 return ret;
1842
1843         if (!mode_wp && !mode_dontwake) {
1844                 range.start = uffdio_wp.range.start;
1845                 range.len = uffdio_wp.range.len;
1846                 wake_userfault(ctx, &range);
1847         }
1848         return ret;
1849 }
1850
1851 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1852 {
1853         __s64 ret;
1854         struct uffdio_continue uffdio_continue;
1855         struct uffdio_continue __user *user_uffdio_continue;
1856         struct userfaultfd_wake_range range;
1857         uffd_flags_t flags = 0;
1858
1859         user_uffdio_continue = (struct uffdio_continue __user *)arg;
1860
1861         ret = -EAGAIN;
1862         if (atomic_read(&ctx->mmap_changing))
1863                 goto out;
1864
1865         ret = -EFAULT;
1866         if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1867                            /* don't copy the output fields */
1868                            sizeof(uffdio_continue) - (sizeof(__s64))))
1869                 goto out;
1870
1871         ret = validate_range(ctx->mm, uffdio_continue.range.start,
1872                              uffdio_continue.range.len);
1873         if (ret)
1874                 goto out;
1875
1876         ret = -EINVAL;
1877         if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1878                                      UFFDIO_CONTINUE_MODE_WP))
1879                 goto out;
1880         if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1881                 flags |= MFILL_ATOMIC_WP;
1882
1883         if (mmget_not_zero(ctx->mm)) {
1884                 ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1885                                             uffdio_continue.range.len, flags);
1886                 mmput(ctx->mm);
1887         } else {
1888                 return -ESRCH;
1889         }
1890
1891         if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1892                 return -EFAULT;
1893         if (ret < 0)
1894                 goto out;
1895
1896         /* len == 0 would wake all */
1897         BUG_ON(!ret);
1898         range.len = ret;
1899         if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1900                 range.start = uffdio_continue.range.start;
1901                 wake_userfault(ctx, &range);
1902         }
1903         ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1904
1905 out:
1906         return ret;
1907 }
1908
1909 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1910 {
1911         __s64 ret;
1912         struct uffdio_poison uffdio_poison;
1913         struct uffdio_poison __user *user_uffdio_poison;
1914         struct userfaultfd_wake_range range;
1915
1916         user_uffdio_poison = (struct uffdio_poison __user *)arg;
1917
1918         ret = -EAGAIN;
1919         if (atomic_read(&ctx->mmap_changing))
1920                 goto out;
1921
1922         ret = -EFAULT;
1923         if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1924                            /* don't copy the output fields */
1925                            sizeof(uffdio_poison) - (sizeof(__s64))))
1926                 goto out;
1927
1928         ret = validate_range(ctx->mm, uffdio_poison.range.start,
1929                              uffdio_poison.range.len);
1930         if (ret)
1931                 goto out;
1932
1933         ret = -EINVAL;
1934         if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1935                 goto out;
1936
1937         if (mmget_not_zero(ctx->mm)) {
1938                 ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1939                                           uffdio_poison.range.len, 0);
1940                 mmput(ctx->mm);
1941         } else {
1942                 return -ESRCH;
1943         }
1944
1945         if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1946                 return -EFAULT;
1947         if (ret < 0)
1948                 goto out;
1949
1950         /* len == 0 would wake all */
1951         BUG_ON(!ret);
1952         range.len = ret;
1953         if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1954                 range.start = uffdio_poison.range.start;
1955                 wake_userfault(ctx, &range);
1956         }
1957         ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1958
1959 out:
1960         return ret;
1961 }
1962
1963 bool userfaultfd_wp_async(struct vm_area_struct *vma)
1964 {
1965         return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1966 }
1967
1968 static inline unsigned int uffd_ctx_features(__u64 user_features)
1969 {
1970         /*
1971          * For the current set of features the bits just coincide. Set
1972          * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1973          */
1974         return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1975 }
1976
1977 static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1978                             unsigned long arg)
1979 {
1980         __s64 ret;
1981         struct uffdio_move uffdio_move;
1982         struct uffdio_move __user *user_uffdio_move;
1983         struct userfaultfd_wake_range range;
1984         struct mm_struct *mm = ctx->mm;
1985
1986         user_uffdio_move = (struct uffdio_move __user *) arg;
1987
1988         if (atomic_read(&ctx->mmap_changing))
1989                 return -EAGAIN;
1990
1991         if (copy_from_user(&uffdio_move, user_uffdio_move,
1992                            /* don't copy "move" last field */
1993                            sizeof(uffdio_move)-sizeof(__s64)))
1994                 return -EFAULT;
1995
1996         /* Do not allow cross-mm moves. */
1997         if (mm != current->mm)
1998                 return -EINVAL;
1999
2000         ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
2001         if (ret)
2002                 return ret;
2003
2004         ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
2005         if (ret)
2006                 return ret;
2007
2008         if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
2009                                   UFFDIO_MOVE_MODE_DONTWAKE))
2010                 return -EINVAL;
2011
2012         if (mmget_not_zero(mm)) {
2013                 ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
2014                                  uffdio_move.len, uffdio_move.mode);
2015                 mmput(mm);
2016         } else {
2017                 return -ESRCH;
2018         }
2019
2020         if (unlikely(put_user(ret, &user_uffdio_move->move)))
2021                 return -EFAULT;
2022         if (ret < 0)
2023                 goto out;
2024
2025         /* len == 0 would wake all */
2026         VM_WARN_ON(!ret);
2027         range.len = ret;
2028         if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
2029                 range.start = uffdio_move.dst;
2030                 wake_userfault(ctx, &range);
2031         }
2032         ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
2033
2034 out:
2035         return ret;
2036 }
2037
2038 /*
2039  * userland asks for a certain API version and we return which bits
2040  * and ioctl commands are implemented in this kernel for such API
2041  * version or -EINVAL if unknown.
2042  */
2043 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2044                            unsigned long arg)
2045 {
2046         struct uffdio_api uffdio_api;
2047         void __user *buf = (void __user *)arg;
2048         unsigned int ctx_features;
2049         int ret;
2050         __u64 features;
2051
2052         ret = -EFAULT;
2053         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2054                 goto out;
2055         features = uffdio_api.features;
2056         ret = -EINVAL;
2057         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2058                 goto err_out;
2059         ret = -EPERM;
2060         if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2061                 goto err_out;
2062
2063         /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
2064         if (features & UFFD_FEATURE_WP_ASYNC)
2065                 features |= UFFD_FEATURE_WP_UNPOPULATED;
2066
2067         /* report all available features and ioctls to userland */
2068         uffdio_api.features = UFFD_API_FEATURES;
2069 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2070         uffdio_api.features &=
2071                 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2072 #endif
2073 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2074         uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2075 #endif
2076 #ifndef CONFIG_PTE_MARKER_UFFD_WP
2077         uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2078         uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2079         uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
2080 #endif
2081         uffdio_api.ioctls = UFFD_API_IOCTLS;
2082         ret = -EFAULT;
2083         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2084                 goto out;
2085
2086         /* only enable the requested features for this uffd context */
2087         ctx_features = uffd_ctx_features(features);
2088         ret = -EINVAL;
2089         if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2090                 goto err_out;
2091
2092         ret = 0;
2093 out:
2094         return ret;
2095 err_out:
2096         memset(&uffdio_api, 0, sizeof(uffdio_api));
2097         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2098                 ret = -EFAULT;
2099         goto out;
2100 }
2101
2102 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2103                               unsigned long arg)
2104 {
2105         int ret = -EINVAL;
2106         struct userfaultfd_ctx *ctx = file->private_data;
2107
2108         if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2109                 return -EINVAL;
2110
2111         switch(cmd) {
2112         case UFFDIO_API:
2113                 ret = userfaultfd_api(ctx, arg);
2114                 break;
2115         case UFFDIO_REGISTER:
2116                 ret = userfaultfd_register(ctx, arg);
2117                 break;
2118         case UFFDIO_UNREGISTER:
2119                 ret = userfaultfd_unregister(ctx, arg);
2120                 break;
2121         case UFFDIO_WAKE:
2122                 ret = userfaultfd_wake(ctx, arg);
2123                 break;
2124         case UFFDIO_COPY:
2125                 ret = userfaultfd_copy(ctx, arg);
2126                 break;
2127         case UFFDIO_ZEROPAGE:
2128                 ret = userfaultfd_zeropage(ctx, arg);
2129                 break;
2130         case UFFDIO_MOVE:
2131                 ret = userfaultfd_move(ctx, arg);
2132                 break;
2133         case UFFDIO_WRITEPROTECT:
2134                 ret = userfaultfd_writeprotect(ctx, arg);
2135                 break;
2136         case UFFDIO_CONTINUE:
2137                 ret = userfaultfd_continue(ctx, arg);
2138                 break;
2139         case UFFDIO_POISON:
2140                 ret = userfaultfd_poison(ctx, arg);
2141                 break;
2142         }
2143         return ret;
2144 }
2145
2146 #ifdef CONFIG_PROC_FS
2147 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2148 {
2149         struct userfaultfd_ctx *ctx = f->private_data;
2150         wait_queue_entry_t *wq;
2151         unsigned long pending = 0, total = 0;
2152
2153         spin_lock_irq(&ctx->fault_pending_wqh.lock);
2154         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2155                 pending++;
2156                 total++;
2157         }
2158         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2159                 total++;
2160         }
2161         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2162
2163         /*
2164          * If more protocols will be added, there will be all shown
2165          * separated by a space. Like this:
2166          *      protocols: aa:... bb:...
2167          */
2168         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2169                    pending, total, UFFD_API, ctx->features,
2170                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2171 }
2172 #endif
2173
2174 static const struct file_operations userfaultfd_fops = {
2175 #ifdef CONFIG_PROC_FS
2176         .show_fdinfo    = userfaultfd_show_fdinfo,
2177 #endif
2178         .release        = userfaultfd_release,
2179         .poll           = userfaultfd_poll,
2180         .read_iter      = userfaultfd_read_iter,
2181         .unlocked_ioctl = userfaultfd_ioctl,
2182         .compat_ioctl   = compat_ptr_ioctl,
2183         .llseek         = noop_llseek,
2184 };
2185
2186 static void init_once_userfaultfd_ctx(void *mem)
2187 {
2188         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2189
2190         init_waitqueue_head(&ctx->fault_pending_wqh);
2191         init_waitqueue_head(&ctx->fault_wqh);
2192         init_waitqueue_head(&ctx->event_wqh);
2193         init_waitqueue_head(&ctx->fd_wqh);
2194         seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2195 }
2196
2197 static int new_userfaultfd(int flags)
2198 {
2199         struct userfaultfd_ctx *ctx;
2200         struct file *file;
2201         int fd;
2202
2203         BUG_ON(!current->mm);
2204
2205         /* Check the UFFD_* constants for consistency.  */
2206         BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2207         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2208         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2209
2210         if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2211                 return -EINVAL;
2212
2213         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2214         if (!ctx)
2215                 return -ENOMEM;
2216
2217         refcount_set(&ctx->refcount, 1);
2218         ctx->flags = flags;
2219         ctx->features = 0;
2220         ctx->released = false;
2221         init_rwsem(&ctx->map_changing_lock);
2222         atomic_set(&ctx->mmap_changing, 0);
2223         ctx->mm = current->mm;
2224
2225         fd = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
2226         if (fd < 0)
2227                 goto err_out;
2228
2229         /* Create a new inode so that the LSM can block the creation.  */
2230         file = anon_inode_create_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
2231                         O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2232         if (IS_ERR(file)) {
2233                 put_unused_fd(fd);
2234                 fd = PTR_ERR(file);
2235                 goto err_out;
2236         }
2237         /* prevent the mm struct to be freed */
2238         mmgrab(ctx->mm);
2239         file->f_mode |= FMODE_NOWAIT;
2240         fd_install(fd, file);
2241         return fd;
2242 err_out:
2243         kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2244         return fd;
2245 }
2246
2247 static inline bool userfaultfd_syscall_allowed(int flags)
2248 {
2249         /* Userspace-only page faults are always allowed */
2250         if (flags & UFFD_USER_MODE_ONLY)
2251                 return true;
2252
2253         /*
2254          * The user is requesting a userfaultfd which can handle kernel faults.
2255          * Privileged users are always allowed to do this.
2256          */
2257         if (capable(CAP_SYS_PTRACE))
2258                 return true;
2259
2260         /* Otherwise, access to kernel fault handling is sysctl controlled. */
2261         return sysctl_unprivileged_userfaultfd;
2262 }
2263
2264 SYSCALL_DEFINE1(userfaultfd, int, flags)
2265 {
2266         if (!userfaultfd_syscall_allowed(flags))
2267                 return -EPERM;
2268
2269         return new_userfaultfd(flags);
2270 }
2271
2272 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2273 {
2274         if (cmd != USERFAULTFD_IOC_NEW)
2275                 return -EINVAL;
2276
2277         return new_userfaultfd(flags);
2278 }
2279
2280 static const struct file_operations userfaultfd_dev_fops = {
2281         .unlocked_ioctl = userfaultfd_dev_ioctl,
2282         .compat_ioctl = userfaultfd_dev_ioctl,
2283         .owner = THIS_MODULE,
2284         .llseek = noop_llseek,
2285 };
2286
2287 static struct miscdevice userfaultfd_misc = {
2288         .minor = MISC_DYNAMIC_MINOR,
2289         .name = "userfaultfd",
2290         .fops = &userfaultfd_dev_fops
2291 };
2292
2293 static int __init userfaultfd_init(void)
2294 {
2295         int ret;
2296
2297         ret = misc_register(&userfaultfd_misc);
2298         if (ret)
2299                 return ret;
2300
2301         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2302                                                 sizeof(struct userfaultfd_ctx),
2303                                                 0,
2304                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2305                                                 init_once_userfaultfd_ctx);
2306 #ifdef CONFIG_SYSCTL
2307         register_sysctl_init("vm", vm_userfaultfd_table);
2308 #endif
2309         return 0;
2310 }
2311 __initcall(userfaultfd_init);