Merge tag 'x86-mm-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-2.6-microblaze.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33
34 int sysctl_unprivileged_userfaultfd __read_mostly;
35
36 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
37
38 /*
39  * Start with fault_pending_wqh and fault_wqh so they're more likely
40  * to be in the same cacheline.
41  *
42  * Locking order:
43  *      fd_wqh.lock
44  *              fault_pending_wqh.lock
45  *                      fault_wqh.lock
46  *              event_wqh.lock
47  *
48  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
49  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
50  * also taken in IRQ context.
51  */
52 struct userfaultfd_ctx {
53         /* waitqueue head for the pending (i.e. not read) userfaults */
54         wait_queue_head_t fault_pending_wqh;
55         /* waitqueue head for the userfaults */
56         wait_queue_head_t fault_wqh;
57         /* waitqueue head for the pseudo fd to wakeup poll/read */
58         wait_queue_head_t fd_wqh;
59         /* waitqueue head for events */
60         wait_queue_head_t event_wqh;
61         /* a refile sequence protected by fault_pending_wqh lock */
62         seqcount_spinlock_t refile_seq;
63         /* pseudo fd refcounting */
64         refcount_t refcount;
65         /* userfaultfd syscall flags */
66         unsigned int flags;
67         /* features requested from the userspace */
68         unsigned int features;
69         /* released */
70         bool released;
71         /* memory mappings are changing because of non-cooperative event */
72         atomic_t mmap_changing;
73         /* mm with one ore more vmas attached to this userfaultfd_ctx */
74         struct mm_struct *mm;
75 };
76
77 struct userfaultfd_fork_ctx {
78         struct userfaultfd_ctx *orig;
79         struct userfaultfd_ctx *new;
80         struct list_head list;
81 };
82
83 struct userfaultfd_unmap_ctx {
84         struct userfaultfd_ctx *ctx;
85         unsigned long start;
86         unsigned long end;
87         struct list_head list;
88 };
89
90 struct userfaultfd_wait_queue {
91         struct uffd_msg msg;
92         wait_queue_entry_t wq;
93         struct userfaultfd_ctx *ctx;
94         bool waken;
95 };
96
97 struct userfaultfd_wake_range {
98         unsigned long start;
99         unsigned long len;
100 };
101
102 /* internal indication that UFFD_API ioctl was successfully executed */
103 #define UFFD_FEATURE_INITIALIZED                (1u << 31)
104
105 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
106 {
107         return ctx->features & UFFD_FEATURE_INITIALIZED;
108 }
109
110 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
111                                      int wake_flags, void *key)
112 {
113         struct userfaultfd_wake_range *range = key;
114         int ret;
115         struct userfaultfd_wait_queue *uwq;
116         unsigned long start, len;
117
118         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
119         ret = 0;
120         /* len == 0 means wake all */
121         start = range->start;
122         len = range->len;
123         if (len && (start > uwq->msg.arg.pagefault.address ||
124                     start + len <= uwq->msg.arg.pagefault.address))
125                 goto out;
126         WRITE_ONCE(uwq->waken, true);
127         /*
128          * The Program-Order guarantees provided by the scheduler
129          * ensure uwq->waken is visible before the task is woken.
130          */
131         ret = wake_up_state(wq->private, mode);
132         if (ret) {
133                 /*
134                  * Wake only once, autoremove behavior.
135                  *
136                  * After the effect of list_del_init is visible to the other
137                  * CPUs, the waitqueue may disappear from under us, see the
138                  * !list_empty_careful() in handle_userfault().
139                  *
140                  * try_to_wake_up() has an implicit smp_mb(), and the
141                  * wq->private is read before calling the extern function
142                  * "wake_up_state" (which in turns calls try_to_wake_up).
143                  */
144                 list_del_init(&wq->entry);
145         }
146 out:
147         return ret;
148 }
149
150 /**
151  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
152  * context.
153  * @ctx: [in] Pointer to the userfaultfd context.
154  */
155 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
156 {
157         refcount_inc(&ctx->refcount);
158 }
159
160 /**
161  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
162  * context.
163  * @ctx: [in] Pointer to userfaultfd context.
164  *
165  * The userfaultfd context reference must have been previously acquired either
166  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
167  */
168 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
169 {
170         if (refcount_dec_and_test(&ctx->refcount)) {
171                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
172                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
173                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
174                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
175                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
176                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
177                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
178                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
179                 mmdrop(ctx->mm);
180                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
181         }
182 }
183
184 static inline void msg_init(struct uffd_msg *msg)
185 {
186         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
187         /*
188          * Must use memset to zero out the paddings or kernel data is
189          * leaked to userland.
190          */
191         memset(msg, 0, sizeof(struct uffd_msg));
192 }
193
194 static inline struct uffd_msg userfault_msg(unsigned long address,
195                                             unsigned int flags,
196                                             unsigned long reason,
197                                             unsigned int features)
198 {
199         struct uffd_msg msg;
200         msg_init(&msg);
201         msg.event = UFFD_EVENT_PAGEFAULT;
202
203         if (!(features & UFFD_FEATURE_EXACT_ADDRESS))
204                 address &= PAGE_MASK;
205         msg.arg.pagefault.address = address;
206         /*
207          * These flags indicate why the userfault occurred:
208          * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
209          * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
210          * - Neither of these flags being set indicates a MISSING fault.
211          *
212          * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
213          * fault. Otherwise, it was a read fault.
214          */
215         if (flags & FAULT_FLAG_WRITE)
216                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
217         if (reason & VM_UFFD_WP)
218                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
219         if (reason & VM_UFFD_MINOR)
220                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
221         if (features & UFFD_FEATURE_THREAD_ID)
222                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
223         return msg;
224 }
225
226 #ifdef CONFIG_HUGETLB_PAGE
227 /*
228  * Same functionality as userfaultfd_must_wait below with modifications for
229  * hugepmd ranges.
230  */
231 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
232                                          struct vm_area_struct *vma,
233                                          unsigned long address,
234                                          unsigned long flags,
235                                          unsigned long reason)
236 {
237         struct mm_struct *mm = ctx->mm;
238         pte_t *ptep, pte;
239         bool ret = true;
240
241         mmap_assert_locked(mm);
242
243         ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
244
245         if (!ptep)
246                 goto out;
247
248         ret = false;
249         pte = huge_ptep_get(ptep);
250
251         /*
252          * Lockless access: we're in a wait_event so it's ok if it
253          * changes under us.  PTE markers should be handled the same as none
254          * ptes here.
255          */
256         if (huge_pte_none_mostly(pte))
257                 ret = true;
258         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
259                 ret = true;
260 out:
261         return ret;
262 }
263 #else
264 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
265                                          struct vm_area_struct *vma,
266                                          unsigned long address,
267                                          unsigned long flags,
268                                          unsigned long reason)
269 {
270         return false;   /* should never get here */
271 }
272 #endif /* CONFIG_HUGETLB_PAGE */
273
274 /*
275  * Verify the pagetables are still not ok after having reigstered into
276  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
277  * userfault that has already been resolved, if userfaultfd_read and
278  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
279  * threads.
280  */
281 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
282                                          unsigned long address,
283                                          unsigned long flags,
284                                          unsigned long reason)
285 {
286         struct mm_struct *mm = ctx->mm;
287         pgd_t *pgd;
288         p4d_t *p4d;
289         pud_t *pud;
290         pmd_t *pmd, _pmd;
291         pte_t *pte;
292         bool ret = true;
293
294         mmap_assert_locked(mm);
295
296         pgd = pgd_offset(mm, address);
297         if (!pgd_present(*pgd))
298                 goto out;
299         p4d = p4d_offset(pgd, address);
300         if (!p4d_present(*p4d))
301                 goto out;
302         pud = pud_offset(p4d, address);
303         if (!pud_present(*pud))
304                 goto out;
305         pmd = pmd_offset(pud, address);
306         /*
307          * READ_ONCE must function as a barrier with narrower scope
308          * and it must be equivalent to:
309          *      _pmd = *pmd; barrier();
310          *
311          * This is to deal with the instability (as in
312          * pmd_trans_unstable) of the pmd.
313          */
314         _pmd = READ_ONCE(*pmd);
315         if (pmd_none(_pmd))
316                 goto out;
317
318         ret = false;
319         if (!pmd_present(_pmd))
320                 goto out;
321
322         if (pmd_trans_huge(_pmd)) {
323                 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
324                         ret = true;
325                 goto out;
326         }
327
328         /*
329          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
330          * and use the standard pte_offset_map() instead of parsing _pmd.
331          */
332         pte = pte_offset_map(pmd, address);
333         /*
334          * Lockless access: we're in a wait_event so it's ok if it
335          * changes under us.  PTE markers should be handled the same as none
336          * ptes here.
337          */
338         if (pte_none_mostly(*pte))
339                 ret = true;
340         if (!pte_write(*pte) && (reason & VM_UFFD_WP))
341                 ret = true;
342         pte_unmap(pte);
343
344 out:
345         return ret;
346 }
347
348 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
349 {
350         if (flags & FAULT_FLAG_INTERRUPTIBLE)
351                 return TASK_INTERRUPTIBLE;
352
353         if (flags & FAULT_FLAG_KILLABLE)
354                 return TASK_KILLABLE;
355
356         return TASK_UNINTERRUPTIBLE;
357 }
358
359 /*
360  * The locking rules involved in returning VM_FAULT_RETRY depending on
361  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
362  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
363  * recommendation in __lock_page_or_retry is not an understatement.
364  *
365  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
366  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
367  * not set.
368  *
369  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
370  * set, VM_FAULT_RETRY can still be returned if and only if there are
371  * fatal_signal_pending()s, and the mmap_lock must be released before
372  * returning it.
373  */
374 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
375 {
376         struct mm_struct *mm = vmf->vma->vm_mm;
377         struct userfaultfd_ctx *ctx;
378         struct userfaultfd_wait_queue uwq;
379         vm_fault_t ret = VM_FAULT_SIGBUS;
380         bool must_wait;
381         unsigned int blocking_state;
382
383         /*
384          * We don't do userfault handling for the final child pid update.
385          *
386          * We also don't do userfault handling during
387          * coredumping. hugetlbfs has the special
388          * follow_hugetlb_page() to skip missing pages in the
389          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
390          * the no_page_table() helper in follow_page_mask(), but the
391          * shmem_vm_ops->fault method is invoked even during
392          * coredumping without mmap_lock and it ends up here.
393          */
394         if (current->flags & (PF_EXITING|PF_DUMPCORE))
395                 goto out;
396
397         /*
398          * Coredumping runs without mmap_lock so we can only check that
399          * the mmap_lock is held, if PF_DUMPCORE was not set.
400          */
401         mmap_assert_locked(mm);
402
403         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
404         if (!ctx)
405                 goto out;
406
407         BUG_ON(ctx->mm != mm);
408
409         /* Any unrecognized flag is a bug. */
410         VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
411         /* 0 or > 1 flags set is a bug; we expect exactly 1. */
412         VM_BUG_ON(!reason || (reason & (reason - 1)));
413
414         if (ctx->features & UFFD_FEATURE_SIGBUS)
415                 goto out;
416         if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
417             ctx->flags & UFFD_USER_MODE_ONLY) {
418                 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
419                         "sysctl knob to 1 if kernel faults must be handled "
420                         "without obtaining CAP_SYS_PTRACE capability\n");
421                 goto out;
422         }
423
424         /*
425          * If it's already released don't get it. This avoids to loop
426          * in __get_user_pages if userfaultfd_release waits on the
427          * caller of handle_userfault to release the mmap_lock.
428          */
429         if (unlikely(READ_ONCE(ctx->released))) {
430                 /*
431                  * Don't return VM_FAULT_SIGBUS in this case, so a non
432                  * cooperative manager can close the uffd after the
433                  * last UFFDIO_COPY, without risking to trigger an
434                  * involuntary SIGBUS if the process was starting the
435                  * userfaultfd while the userfaultfd was still armed
436                  * (but after the last UFFDIO_COPY). If the uffd
437                  * wasn't already closed when the userfault reached
438                  * this point, that would normally be solved by
439                  * userfaultfd_must_wait returning 'false'.
440                  *
441                  * If we were to return VM_FAULT_SIGBUS here, the non
442                  * cooperative manager would be instead forced to
443                  * always call UFFDIO_UNREGISTER before it can safely
444                  * close the uffd.
445                  */
446                 ret = VM_FAULT_NOPAGE;
447                 goto out;
448         }
449
450         /*
451          * Check that we can return VM_FAULT_RETRY.
452          *
453          * NOTE: it should become possible to return VM_FAULT_RETRY
454          * even if FAULT_FLAG_TRIED is set without leading to gup()
455          * -EBUSY failures, if the userfaultfd is to be extended for
456          * VM_UFFD_WP tracking and we intend to arm the userfault
457          * without first stopping userland access to the memory. For
458          * VM_UFFD_MISSING userfaults this is enough for now.
459          */
460         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
461                 /*
462                  * Validate the invariant that nowait must allow retry
463                  * to be sure not to return SIGBUS erroneously on
464                  * nowait invocations.
465                  */
466                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
467 #ifdef CONFIG_DEBUG_VM
468                 if (printk_ratelimit()) {
469                         printk(KERN_WARNING
470                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
471                                vmf->flags);
472                         dump_stack();
473                 }
474 #endif
475                 goto out;
476         }
477
478         /*
479          * Handle nowait, not much to do other than tell it to retry
480          * and wait.
481          */
482         ret = VM_FAULT_RETRY;
483         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
484                 goto out;
485
486         /* take the reference before dropping the mmap_lock */
487         userfaultfd_ctx_get(ctx);
488
489         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
490         uwq.wq.private = current;
491         uwq.msg = userfault_msg(vmf->real_address, vmf->flags, reason,
492                         ctx->features);
493         uwq.ctx = ctx;
494         uwq.waken = false;
495
496         blocking_state = userfaultfd_get_blocking_state(vmf->flags);
497
498         spin_lock_irq(&ctx->fault_pending_wqh.lock);
499         /*
500          * After the __add_wait_queue the uwq is visible to userland
501          * through poll/read().
502          */
503         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
504         /*
505          * The smp_mb() after __set_current_state prevents the reads
506          * following the spin_unlock to happen before the list_add in
507          * __add_wait_queue.
508          */
509         set_current_state(blocking_state);
510         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
511
512         if (!is_vm_hugetlb_page(vmf->vma))
513                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
514                                                   reason);
515         else
516                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
517                                                        vmf->address,
518                                                        vmf->flags, reason);
519         mmap_read_unlock(mm);
520
521         if (likely(must_wait && !READ_ONCE(ctx->released))) {
522                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
523                 schedule();
524         }
525
526         __set_current_state(TASK_RUNNING);
527
528         /*
529          * Here we race with the list_del; list_add in
530          * userfaultfd_ctx_read(), however because we don't ever run
531          * list_del_init() to refile across the two lists, the prev
532          * and next pointers will never point to self. list_add also
533          * would never let any of the two pointers to point to
534          * self. So list_empty_careful won't risk to see both pointers
535          * pointing to self at any time during the list refile. The
536          * only case where list_del_init() is called is the full
537          * removal in the wake function and there we don't re-list_add
538          * and it's fine not to block on the spinlock. The uwq on this
539          * kernel stack can be released after the list_del_init.
540          */
541         if (!list_empty_careful(&uwq.wq.entry)) {
542                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
543                 /*
544                  * No need of list_del_init(), the uwq on the stack
545                  * will be freed shortly anyway.
546                  */
547                 list_del(&uwq.wq.entry);
548                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
549         }
550
551         /*
552          * ctx may go away after this if the userfault pseudo fd is
553          * already released.
554          */
555         userfaultfd_ctx_put(ctx);
556
557 out:
558         return ret;
559 }
560
561 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
562                                               struct userfaultfd_wait_queue *ewq)
563 {
564         struct userfaultfd_ctx *release_new_ctx;
565
566         if (WARN_ON_ONCE(current->flags & PF_EXITING))
567                 goto out;
568
569         ewq->ctx = ctx;
570         init_waitqueue_entry(&ewq->wq, current);
571         release_new_ctx = NULL;
572
573         spin_lock_irq(&ctx->event_wqh.lock);
574         /*
575          * After the __add_wait_queue the uwq is visible to userland
576          * through poll/read().
577          */
578         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
579         for (;;) {
580                 set_current_state(TASK_KILLABLE);
581                 if (ewq->msg.event == 0)
582                         break;
583                 if (READ_ONCE(ctx->released) ||
584                     fatal_signal_pending(current)) {
585                         /*
586                          * &ewq->wq may be queued in fork_event, but
587                          * __remove_wait_queue ignores the head
588                          * parameter. It would be a problem if it
589                          * didn't.
590                          */
591                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
592                         if (ewq->msg.event == UFFD_EVENT_FORK) {
593                                 struct userfaultfd_ctx *new;
594
595                                 new = (struct userfaultfd_ctx *)
596                                         (unsigned long)
597                                         ewq->msg.arg.reserved.reserved1;
598                                 release_new_ctx = new;
599                         }
600                         break;
601                 }
602
603                 spin_unlock_irq(&ctx->event_wqh.lock);
604
605                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
606                 schedule();
607
608                 spin_lock_irq(&ctx->event_wqh.lock);
609         }
610         __set_current_state(TASK_RUNNING);
611         spin_unlock_irq(&ctx->event_wqh.lock);
612
613         if (release_new_ctx) {
614                 struct vm_area_struct *vma;
615                 struct mm_struct *mm = release_new_ctx->mm;
616
617                 /* the various vma->vm_userfaultfd_ctx still points to it */
618                 mmap_write_lock(mm);
619                 for (vma = mm->mmap; vma; vma = vma->vm_next)
620                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
621                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
622                                 vma->vm_flags &= ~__VM_UFFD_FLAGS;
623                         }
624                 mmap_write_unlock(mm);
625
626                 userfaultfd_ctx_put(release_new_ctx);
627         }
628
629         /*
630          * ctx may go away after this if the userfault pseudo fd is
631          * already released.
632          */
633 out:
634         atomic_dec(&ctx->mmap_changing);
635         VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
636         userfaultfd_ctx_put(ctx);
637 }
638
639 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
640                                        struct userfaultfd_wait_queue *ewq)
641 {
642         ewq->msg.event = 0;
643         wake_up_locked(&ctx->event_wqh);
644         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
645 }
646
647 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
648 {
649         struct userfaultfd_ctx *ctx = NULL, *octx;
650         struct userfaultfd_fork_ctx *fctx;
651
652         octx = vma->vm_userfaultfd_ctx.ctx;
653         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
654                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
655                 vma->vm_flags &= ~__VM_UFFD_FLAGS;
656                 return 0;
657         }
658
659         list_for_each_entry(fctx, fcs, list)
660                 if (fctx->orig == octx) {
661                         ctx = fctx->new;
662                         break;
663                 }
664
665         if (!ctx) {
666                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
667                 if (!fctx)
668                         return -ENOMEM;
669
670                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
671                 if (!ctx) {
672                         kfree(fctx);
673                         return -ENOMEM;
674                 }
675
676                 refcount_set(&ctx->refcount, 1);
677                 ctx->flags = octx->flags;
678                 ctx->features = octx->features;
679                 ctx->released = false;
680                 atomic_set(&ctx->mmap_changing, 0);
681                 ctx->mm = vma->vm_mm;
682                 mmgrab(ctx->mm);
683
684                 userfaultfd_ctx_get(octx);
685                 atomic_inc(&octx->mmap_changing);
686                 fctx->orig = octx;
687                 fctx->new = ctx;
688                 list_add_tail(&fctx->list, fcs);
689         }
690
691         vma->vm_userfaultfd_ctx.ctx = ctx;
692         return 0;
693 }
694
695 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
696 {
697         struct userfaultfd_ctx *ctx = fctx->orig;
698         struct userfaultfd_wait_queue ewq;
699
700         msg_init(&ewq.msg);
701
702         ewq.msg.event = UFFD_EVENT_FORK;
703         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
704
705         userfaultfd_event_wait_completion(ctx, &ewq);
706 }
707
708 void dup_userfaultfd_complete(struct list_head *fcs)
709 {
710         struct userfaultfd_fork_ctx *fctx, *n;
711
712         list_for_each_entry_safe(fctx, n, fcs, list) {
713                 dup_fctx(fctx);
714                 list_del(&fctx->list);
715                 kfree(fctx);
716         }
717 }
718
719 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
720                              struct vm_userfaultfd_ctx *vm_ctx)
721 {
722         struct userfaultfd_ctx *ctx;
723
724         ctx = vma->vm_userfaultfd_ctx.ctx;
725
726         if (!ctx)
727                 return;
728
729         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
730                 vm_ctx->ctx = ctx;
731                 userfaultfd_ctx_get(ctx);
732                 atomic_inc(&ctx->mmap_changing);
733         } else {
734                 /* Drop uffd context if remap feature not enabled */
735                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
736                 vma->vm_flags &= ~__VM_UFFD_FLAGS;
737         }
738 }
739
740 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
741                                  unsigned long from, unsigned long to,
742                                  unsigned long len)
743 {
744         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
745         struct userfaultfd_wait_queue ewq;
746
747         if (!ctx)
748                 return;
749
750         if (to & ~PAGE_MASK) {
751                 userfaultfd_ctx_put(ctx);
752                 return;
753         }
754
755         msg_init(&ewq.msg);
756
757         ewq.msg.event = UFFD_EVENT_REMAP;
758         ewq.msg.arg.remap.from = from;
759         ewq.msg.arg.remap.to = to;
760         ewq.msg.arg.remap.len = len;
761
762         userfaultfd_event_wait_completion(ctx, &ewq);
763 }
764
765 bool userfaultfd_remove(struct vm_area_struct *vma,
766                         unsigned long start, unsigned long end)
767 {
768         struct mm_struct *mm = vma->vm_mm;
769         struct userfaultfd_ctx *ctx;
770         struct userfaultfd_wait_queue ewq;
771
772         ctx = vma->vm_userfaultfd_ctx.ctx;
773         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
774                 return true;
775
776         userfaultfd_ctx_get(ctx);
777         atomic_inc(&ctx->mmap_changing);
778         mmap_read_unlock(mm);
779
780         msg_init(&ewq.msg);
781
782         ewq.msg.event = UFFD_EVENT_REMOVE;
783         ewq.msg.arg.remove.start = start;
784         ewq.msg.arg.remove.end = end;
785
786         userfaultfd_event_wait_completion(ctx, &ewq);
787
788         return false;
789 }
790
791 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
792                           unsigned long start, unsigned long end)
793 {
794         struct userfaultfd_unmap_ctx *unmap_ctx;
795
796         list_for_each_entry(unmap_ctx, unmaps, list)
797                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
798                     unmap_ctx->end == end)
799                         return true;
800
801         return false;
802 }
803
804 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
805                            unsigned long start, unsigned long end,
806                            struct list_head *unmaps)
807 {
808         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
809                 struct userfaultfd_unmap_ctx *unmap_ctx;
810                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
811
812                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
813                     has_unmap_ctx(ctx, unmaps, start, end))
814                         continue;
815
816                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
817                 if (!unmap_ctx)
818                         return -ENOMEM;
819
820                 userfaultfd_ctx_get(ctx);
821                 atomic_inc(&ctx->mmap_changing);
822                 unmap_ctx->ctx = ctx;
823                 unmap_ctx->start = start;
824                 unmap_ctx->end = end;
825                 list_add_tail(&unmap_ctx->list, unmaps);
826         }
827
828         return 0;
829 }
830
831 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
832 {
833         struct userfaultfd_unmap_ctx *ctx, *n;
834         struct userfaultfd_wait_queue ewq;
835
836         list_for_each_entry_safe(ctx, n, uf, list) {
837                 msg_init(&ewq.msg);
838
839                 ewq.msg.event = UFFD_EVENT_UNMAP;
840                 ewq.msg.arg.remove.start = ctx->start;
841                 ewq.msg.arg.remove.end = ctx->end;
842
843                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
844
845                 list_del(&ctx->list);
846                 kfree(ctx);
847         }
848 }
849
850 static int userfaultfd_release(struct inode *inode, struct file *file)
851 {
852         struct userfaultfd_ctx *ctx = file->private_data;
853         struct mm_struct *mm = ctx->mm;
854         struct vm_area_struct *vma, *prev;
855         /* len == 0 means wake all */
856         struct userfaultfd_wake_range range = { .len = 0, };
857         unsigned long new_flags;
858
859         WRITE_ONCE(ctx->released, true);
860
861         if (!mmget_not_zero(mm))
862                 goto wakeup;
863
864         /*
865          * Flush page faults out of all CPUs. NOTE: all page faults
866          * must be retried without returning VM_FAULT_SIGBUS if
867          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
868          * changes while handle_userfault released the mmap_lock. So
869          * it's critical that released is set to true (above), before
870          * taking the mmap_lock for writing.
871          */
872         mmap_write_lock(mm);
873         prev = NULL;
874         for (vma = mm->mmap; vma; vma = vma->vm_next) {
875                 cond_resched();
876                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
877                        !!(vma->vm_flags & __VM_UFFD_FLAGS));
878                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
879                         prev = vma;
880                         continue;
881                 }
882                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
883                 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
884                                  new_flags, vma->anon_vma,
885                                  vma->vm_file, vma->vm_pgoff,
886                                  vma_policy(vma),
887                                  NULL_VM_UFFD_CTX, anon_vma_name(vma));
888                 if (prev)
889                         vma = prev;
890                 else
891                         prev = vma;
892                 vma->vm_flags = new_flags;
893                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
894         }
895         mmap_write_unlock(mm);
896         mmput(mm);
897 wakeup:
898         /*
899          * After no new page faults can wait on this fault_*wqh, flush
900          * the last page faults that may have been already waiting on
901          * the fault_*wqh.
902          */
903         spin_lock_irq(&ctx->fault_pending_wqh.lock);
904         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
905         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
906         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
907
908         /* Flush pending events that may still wait on event_wqh */
909         wake_up_all(&ctx->event_wqh);
910
911         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
912         userfaultfd_ctx_put(ctx);
913         return 0;
914 }
915
916 /* fault_pending_wqh.lock must be hold by the caller */
917 static inline struct userfaultfd_wait_queue *find_userfault_in(
918                 wait_queue_head_t *wqh)
919 {
920         wait_queue_entry_t *wq;
921         struct userfaultfd_wait_queue *uwq;
922
923         lockdep_assert_held(&wqh->lock);
924
925         uwq = NULL;
926         if (!waitqueue_active(wqh))
927                 goto out;
928         /* walk in reverse to provide FIFO behavior to read userfaults */
929         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
930         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
931 out:
932         return uwq;
933 }
934
935 static inline struct userfaultfd_wait_queue *find_userfault(
936                 struct userfaultfd_ctx *ctx)
937 {
938         return find_userfault_in(&ctx->fault_pending_wqh);
939 }
940
941 static inline struct userfaultfd_wait_queue *find_userfault_evt(
942                 struct userfaultfd_ctx *ctx)
943 {
944         return find_userfault_in(&ctx->event_wqh);
945 }
946
947 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
948 {
949         struct userfaultfd_ctx *ctx = file->private_data;
950         __poll_t ret;
951
952         poll_wait(file, &ctx->fd_wqh, wait);
953
954         if (!userfaultfd_is_initialized(ctx))
955                 return EPOLLERR;
956
957         /*
958          * poll() never guarantees that read won't block.
959          * userfaults can be waken before they're read().
960          */
961         if (unlikely(!(file->f_flags & O_NONBLOCK)))
962                 return EPOLLERR;
963         /*
964          * lockless access to see if there are pending faults
965          * __pollwait last action is the add_wait_queue but
966          * the spin_unlock would allow the waitqueue_active to
967          * pass above the actual list_add inside
968          * add_wait_queue critical section. So use a full
969          * memory barrier to serialize the list_add write of
970          * add_wait_queue() with the waitqueue_active read
971          * below.
972          */
973         ret = 0;
974         smp_mb();
975         if (waitqueue_active(&ctx->fault_pending_wqh))
976                 ret = EPOLLIN;
977         else if (waitqueue_active(&ctx->event_wqh))
978                 ret = EPOLLIN;
979
980         return ret;
981 }
982
983 static const struct file_operations userfaultfd_fops;
984
985 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
986                                   struct inode *inode,
987                                   struct uffd_msg *msg)
988 {
989         int fd;
990
991         fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
992                         O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
993         if (fd < 0)
994                 return fd;
995
996         msg->arg.reserved.reserved1 = 0;
997         msg->arg.fork.ufd = fd;
998         return 0;
999 }
1000
1001 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1002                                     struct uffd_msg *msg, struct inode *inode)
1003 {
1004         ssize_t ret;
1005         DECLARE_WAITQUEUE(wait, current);
1006         struct userfaultfd_wait_queue *uwq;
1007         /*
1008          * Handling fork event requires sleeping operations, so
1009          * we drop the event_wqh lock, then do these ops, then
1010          * lock it back and wake up the waiter. While the lock is
1011          * dropped the ewq may go away so we keep track of it
1012          * carefully.
1013          */
1014         LIST_HEAD(fork_event);
1015         struct userfaultfd_ctx *fork_nctx = NULL;
1016
1017         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1018         spin_lock_irq(&ctx->fd_wqh.lock);
1019         __add_wait_queue(&ctx->fd_wqh, &wait);
1020         for (;;) {
1021                 set_current_state(TASK_INTERRUPTIBLE);
1022                 spin_lock(&ctx->fault_pending_wqh.lock);
1023                 uwq = find_userfault(ctx);
1024                 if (uwq) {
1025                         /*
1026                          * Use a seqcount to repeat the lockless check
1027                          * in wake_userfault() to avoid missing
1028                          * wakeups because during the refile both
1029                          * waitqueue could become empty if this is the
1030                          * only userfault.
1031                          */
1032                         write_seqcount_begin(&ctx->refile_seq);
1033
1034                         /*
1035                          * The fault_pending_wqh.lock prevents the uwq
1036                          * to disappear from under us.
1037                          *
1038                          * Refile this userfault from
1039                          * fault_pending_wqh to fault_wqh, it's not
1040                          * pending anymore after we read it.
1041                          *
1042                          * Use list_del() by hand (as
1043                          * userfaultfd_wake_function also uses
1044                          * list_del_init() by hand) to be sure nobody
1045                          * changes __remove_wait_queue() to use
1046                          * list_del_init() in turn breaking the
1047                          * !list_empty_careful() check in
1048                          * handle_userfault(). The uwq->wq.head list
1049                          * must never be empty at any time during the
1050                          * refile, or the waitqueue could disappear
1051                          * from under us. The "wait_queue_head_t"
1052                          * parameter of __remove_wait_queue() is unused
1053                          * anyway.
1054                          */
1055                         list_del(&uwq->wq.entry);
1056                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1057
1058                         write_seqcount_end(&ctx->refile_seq);
1059
1060                         /* careful to always initialize msg if ret == 0 */
1061                         *msg = uwq->msg;
1062                         spin_unlock(&ctx->fault_pending_wqh.lock);
1063                         ret = 0;
1064                         break;
1065                 }
1066                 spin_unlock(&ctx->fault_pending_wqh.lock);
1067
1068                 spin_lock(&ctx->event_wqh.lock);
1069                 uwq = find_userfault_evt(ctx);
1070                 if (uwq) {
1071                         *msg = uwq->msg;
1072
1073                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1074                                 fork_nctx = (struct userfaultfd_ctx *)
1075                                         (unsigned long)
1076                                         uwq->msg.arg.reserved.reserved1;
1077                                 list_move(&uwq->wq.entry, &fork_event);
1078                                 /*
1079                                  * fork_nctx can be freed as soon as
1080                                  * we drop the lock, unless we take a
1081                                  * reference on it.
1082                                  */
1083                                 userfaultfd_ctx_get(fork_nctx);
1084                                 spin_unlock(&ctx->event_wqh.lock);
1085                                 ret = 0;
1086                                 break;
1087                         }
1088
1089                         userfaultfd_event_complete(ctx, uwq);
1090                         spin_unlock(&ctx->event_wqh.lock);
1091                         ret = 0;
1092                         break;
1093                 }
1094                 spin_unlock(&ctx->event_wqh.lock);
1095
1096                 if (signal_pending(current)) {
1097                         ret = -ERESTARTSYS;
1098                         break;
1099                 }
1100                 if (no_wait) {
1101                         ret = -EAGAIN;
1102                         break;
1103                 }
1104                 spin_unlock_irq(&ctx->fd_wqh.lock);
1105                 schedule();
1106                 spin_lock_irq(&ctx->fd_wqh.lock);
1107         }
1108         __remove_wait_queue(&ctx->fd_wqh, &wait);
1109         __set_current_state(TASK_RUNNING);
1110         spin_unlock_irq(&ctx->fd_wqh.lock);
1111
1112         if (!ret && msg->event == UFFD_EVENT_FORK) {
1113                 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1114                 spin_lock_irq(&ctx->event_wqh.lock);
1115                 if (!list_empty(&fork_event)) {
1116                         /*
1117                          * The fork thread didn't abort, so we can
1118                          * drop the temporary refcount.
1119                          */
1120                         userfaultfd_ctx_put(fork_nctx);
1121
1122                         uwq = list_first_entry(&fork_event,
1123                                                typeof(*uwq),
1124                                                wq.entry);
1125                         /*
1126                          * If fork_event list wasn't empty and in turn
1127                          * the event wasn't already released by fork
1128                          * (the event is allocated on fork kernel
1129                          * stack), put the event back to its place in
1130                          * the event_wq. fork_event head will be freed
1131                          * as soon as we return so the event cannot
1132                          * stay queued there no matter the current
1133                          * "ret" value.
1134                          */
1135                         list_del(&uwq->wq.entry);
1136                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1137
1138                         /*
1139                          * Leave the event in the waitqueue and report
1140                          * error to userland if we failed to resolve
1141                          * the userfault fork.
1142                          */
1143                         if (likely(!ret))
1144                                 userfaultfd_event_complete(ctx, uwq);
1145                 } else {
1146                         /*
1147                          * Here the fork thread aborted and the
1148                          * refcount from the fork thread on fork_nctx
1149                          * has already been released. We still hold
1150                          * the reference we took before releasing the
1151                          * lock above. If resolve_userfault_fork
1152                          * failed we've to drop it because the
1153                          * fork_nctx has to be freed in such case. If
1154                          * it succeeded we'll hold it because the new
1155                          * uffd references it.
1156                          */
1157                         if (ret)
1158                                 userfaultfd_ctx_put(fork_nctx);
1159                 }
1160                 spin_unlock_irq(&ctx->event_wqh.lock);
1161         }
1162
1163         return ret;
1164 }
1165
1166 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1167                                 size_t count, loff_t *ppos)
1168 {
1169         struct userfaultfd_ctx *ctx = file->private_data;
1170         ssize_t _ret, ret = 0;
1171         struct uffd_msg msg;
1172         int no_wait = file->f_flags & O_NONBLOCK;
1173         struct inode *inode = file_inode(file);
1174
1175         if (!userfaultfd_is_initialized(ctx))
1176                 return -EINVAL;
1177
1178         for (;;) {
1179                 if (count < sizeof(msg))
1180                         return ret ? ret : -EINVAL;
1181                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1182                 if (_ret < 0)
1183                         return ret ? ret : _ret;
1184                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1185                         return ret ? ret : -EFAULT;
1186                 ret += sizeof(msg);
1187                 buf += sizeof(msg);
1188                 count -= sizeof(msg);
1189                 /*
1190                  * Allow to read more than one fault at time but only
1191                  * block if waiting for the very first one.
1192                  */
1193                 no_wait = O_NONBLOCK;
1194         }
1195 }
1196
1197 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1198                              struct userfaultfd_wake_range *range)
1199 {
1200         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1201         /* wake all in the range and autoremove */
1202         if (waitqueue_active(&ctx->fault_pending_wqh))
1203                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1204                                      range);
1205         if (waitqueue_active(&ctx->fault_wqh))
1206                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1207         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1208 }
1209
1210 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1211                                            struct userfaultfd_wake_range *range)
1212 {
1213         unsigned seq;
1214         bool need_wakeup;
1215
1216         /*
1217          * To be sure waitqueue_active() is not reordered by the CPU
1218          * before the pagetable update, use an explicit SMP memory
1219          * barrier here. PT lock release or mmap_read_unlock(mm) still
1220          * have release semantics that can allow the
1221          * waitqueue_active() to be reordered before the pte update.
1222          */
1223         smp_mb();
1224
1225         /*
1226          * Use waitqueue_active because it's very frequent to
1227          * change the address space atomically even if there are no
1228          * userfaults yet. So we take the spinlock only when we're
1229          * sure we've userfaults to wake.
1230          */
1231         do {
1232                 seq = read_seqcount_begin(&ctx->refile_seq);
1233                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1234                         waitqueue_active(&ctx->fault_wqh);
1235                 cond_resched();
1236         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1237         if (need_wakeup)
1238                 __wake_userfault(ctx, range);
1239 }
1240
1241 static __always_inline int validate_range(struct mm_struct *mm,
1242                                           __u64 start, __u64 len)
1243 {
1244         __u64 task_size = mm->task_size;
1245
1246         if (start & ~PAGE_MASK)
1247                 return -EINVAL;
1248         if (len & ~PAGE_MASK)
1249                 return -EINVAL;
1250         if (!len)
1251                 return -EINVAL;
1252         if (start < mmap_min_addr)
1253                 return -EINVAL;
1254         if (start >= task_size)
1255                 return -EINVAL;
1256         if (len > task_size - start)
1257                 return -EINVAL;
1258         return 0;
1259 }
1260
1261 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1262                                 unsigned long arg)
1263 {
1264         struct mm_struct *mm = ctx->mm;
1265         struct vm_area_struct *vma, *prev, *cur;
1266         int ret;
1267         struct uffdio_register uffdio_register;
1268         struct uffdio_register __user *user_uffdio_register;
1269         unsigned long vm_flags, new_flags;
1270         bool found;
1271         bool basic_ioctls;
1272         unsigned long start, end, vma_end;
1273
1274         user_uffdio_register = (struct uffdio_register __user *) arg;
1275
1276         ret = -EFAULT;
1277         if (copy_from_user(&uffdio_register, user_uffdio_register,
1278                            sizeof(uffdio_register)-sizeof(__u64)))
1279                 goto out;
1280
1281         ret = -EINVAL;
1282         if (!uffdio_register.mode)
1283                 goto out;
1284         if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1285                 goto out;
1286         vm_flags = 0;
1287         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1288                 vm_flags |= VM_UFFD_MISSING;
1289         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1290 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1291                 goto out;
1292 #endif
1293                 vm_flags |= VM_UFFD_WP;
1294         }
1295         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1296 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1297                 goto out;
1298 #endif
1299                 vm_flags |= VM_UFFD_MINOR;
1300         }
1301
1302         ret = validate_range(mm, uffdio_register.range.start,
1303                              uffdio_register.range.len);
1304         if (ret)
1305                 goto out;
1306
1307         start = uffdio_register.range.start;
1308         end = start + uffdio_register.range.len;
1309
1310         ret = -ENOMEM;
1311         if (!mmget_not_zero(mm))
1312                 goto out;
1313
1314         mmap_write_lock(mm);
1315         vma = find_vma_prev(mm, start, &prev);
1316         if (!vma)
1317                 goto out_unlock;
1318
1319         /* check that there's at least one vma in the range */
1320         ret = -EINVAL;
1321         if (vma->vm_start >= end)
1322                 goto out_unlock;
1323
1324         /*
1325          * If the first vma contains huge pages, make sure start address
1326          * is aligned to huge page size.
1327          */
1328         if (is_vm_hugetlb_page(vma)) {
1329                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1330
1331                 if (start & (vma_hpagesize - 1))
1332                         goto out_unlock;
1333         }
1334
1335         /*
1336          * Search for not compatible vmas.
1337          */
1338         found = false;
1339         basic_ioctls = false;
1340         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1341                 cond_resched();
1342
1343                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1344                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1345
1346                 /* check not compatible vmas */
1347                 ret = -EINVAL;
1348                 if (!vma_can_userfault(cur, vm_flags))
1349                         goto out_unlock;
1350
1351                 /*
1352                  * UFFDIO_COPY will fill file holes even without
1353                  * PROT_WRITE. This check enforces that if this is a
1354                  * MAP_SHARED, the process has write permission to the backing
1355                  * file. If VM_MAYWRITE is set it also enforces that on a
1356                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1357                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1358                  */
1359                 ret = -EPERM;
1360                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1361                         goto out_unlock;
1362
1363                 /*
1364                  * If this vma contains ending address, and huge pages
1365                  * check alignment.
1366                  */
1367                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1368                     end > cur->vm_start) {
1369                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1370
1371                         ret = -EINVAL;
1372
1373                         if (end & (vma_hpagesize - 1))
1374                                 goto out_unlock;
1375                 }
1376                 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1377                         goto out_unlock;
1378
1379                 /*
1380                  * Check that this vma isn't already owned by a
1381                  * different userfaultfd. We can't allow more than one
1382                  * userfaultfd to own a single vma simultaneously or we
1383                  * wouldn't know which one to deliver the userfaults to.
1384                  */
1385                 ret = -EBUSY;
1386                 if (cur->vm_userfaultfd_ctx.ctx &&
1387                     cur->vm_userfaultfd_ctx.ctx != ctx)
1388                         goto out_unlock;
1389
1390                 /*
1391                  * Note vmas containing huge pages
1392                  */
1393                 if (is_vm_hugetlb_page(cur))
1394                         basic_ioctls = true;
1395
1396                 found = true;
1397         }
1398         BUG_ON(!found);
1399
1400         if (vma->vm_start < start)
1401                 prev = vma;
1402
1403         ret = 0;
1404         do {
1405                 cond_resched();
1406
1407                 BUG_ON(!vma_can_userfault(vma, vm_flags));
1408                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1409                        vma->vm_userfaultfd_ctx.ctx != ctx);
1410                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1411
1412                 /*
1413                  * Nothing to do: this vma is already registered into this
1414                  * userfaultfd and with the right tracking mode too.
1415                  */
1416                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1417                     (vma->vm_flags & vm_flags) == vm_flags)
1418                         goto skip;
1419
1420                 if (vma->vm_start > start)
1421                         start = vma->vm_start;
1422                 vma_end = min(end, vma->vm_end);
1423
1424                 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1425                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1426                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1427                                  vma_policy(vma),
1428                                  ((struct vm_userfaultfd_ctx){ ctx }),
1429                                  anon_vma_name(vma));
1430                 if (prev) {
1431                         vma = prev;
1432                         goto next;
1433                 }
1434                 if (vma->vm_start < start) {
1435                         ret = split_vma(mm, vma, start, 1);
1436                         if (ret)
1437                                 break;
1438                 }
1439                 if (vma->vm_end > end) {
1440                         ret = split_vma(mm, vma, end, 0);
1441                         if (ret)
1442                                 break;
1443                 }
1444         next:
1445                 /*
1446                  * In the vma_merge() successful mprotect-like case 8:
1447                  * the next vma was merged into the current one and
1448                  * the current one has not been updated yet.
1449                  */
1450                 vma->vm_flags = new_flags;
1451                 vma->vm_userfaultfd_ctx.ctx = ctx;
1452
1453                 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1454                         hugetlb_unshare_all_pmds(vma);
1455
1456         skip:
1457                 prev = vma;
1458                 start = vma->vm_end;
1459                 vma = vma->vm_next;
1460         } while (vma && vma->vm_start < end);
1461 out_unlock:
1462         mmap_write_unlock(mm);
1463         mmput(mm);
1464         if (!ret) {
1465                 __u64 ioctls_out;
1466
1467                 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1468                     UFFD_API_RANGE_IOCTLS;
1469
1470                 /*
1471                  * Declare the WP ioctl only if the WP mode is
1472                  * specified and all checks passed with the range
1473                  */
1474                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1475                         ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1476
1477                 /* CONTINUE ioctl is only supported for MINOR ranges. */
1478                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1479                         ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1480
1481                 /*
1482                  * Now that we scanned all vmas we can already tell
1483                  * userland which ioctls methods are guaranteed to
1484                  * succeed on this range.
1485                  */
1486                 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1487                         ret = -EFAULT;
1488         }
1489 out:
1490         return ret;
1491 }
1492
1493 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1494                                   unsigned long arg)
1495 {
1496         struct mm_struct *mm = ctx->mm;
1497         struct vm_area_struct *vma, *prev, *cur;
1498         int ret;
1499         struct uffdio_range uffdio_unregister;
1500         unsigned long new_flags;
1501         bool found;
1502         unsigned long start, end, vma_end;
1503         const void __user *buf = (void __user *)arg;
1504
1505         ret = -EFAULT;
1506         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1507                 goto out;
1508
1509         ret = validate_range(mm, uffdio_unregister.start,
1510                              uffdio_unregister.len);
1511         if (ret)
1512                 goto out;
1513
1514         start = uffdio_unregister.start;
1515         end = start + uffdio_unregister.len;
1516
1517         ret = -ENOMEM;
1518         if (!mmget_not_zero(mm))
1519                 goto out;
1520
1521         mmap_write_lock(mm);
1522         vma = find_vma_prev(mm, start, &prev);
1523         if (!vma)
1524                 goto out_unlock;
1525
1526         /* check that there's at least one vma in the range */
1527         ret = -EINVAL;
1528         if (vma->vm_start >= end)
1529                 goto out_unlock;
1530
1531         /*
1532          * If the first vma contains huge pages, make sure start address
1533          * is aligned to huge page size.
1534          */
1535         if (is_vm_hugetlb_page(vma)) {
1536                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1537
1538                 if (start & (vma_hpagesize - 1))
1539                         goto out_unlock;
1540         }
1541
1542         /*
1543          * Search for not compatible vmas.
1544          */
1545         found = false;
1546         ret = -EINVAL;
1547         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1548                 cond_resched();
1549
1550                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1551                        !!(cur->vm_flags & __VM_UFFD_FLAGS));
1552
1553                 /*
1554                  * Check not compatible vmas, not strictly required
1555                  * here as not compatible vmas cannot have an
1556                  * userfaultfd_ctx registered on them, but this
1557                  * provides for more strict behavior to notice
1558                  * unregistration errors.
1559                  */
1560                 if (!vma_can_userfault(cur, cur->vm_flags))
1561                         goto out_unlock;
1562
1563                 found = true;
1564         }
1565         BUG_ON(!found);
1566
1567         if (vma->vm_start < start)
1568                 prev = vma;
1569
1570         ret = 0;
1571         do {
1572                 cond_resched();
1573
1574                 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1575
1576                 /*
1577                  * Nothing to do: this vma is already registered into this
1578                  * userfaultfd and with the right tracking mode too.
1579                  */
1580                 if (!vma->vm_userfaultfd_ctx.ctx)
1581                         goto skip;
1582
1583                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1584
1585                 if (vma->vm_start > start)
1586                         start = vma->vm_start;
1587                 vma_end = min(end, vma->vm_end);
1588
1589                 if (userfaultfd_missing(vma)) {
1590                         /*
1591                          * Wake any concurrent pending userfault while
1592                          * we unregister, so they will not hang
1593                          * permanently and it avoids userland to call
1594                          * UFFDIO_WAKE explicitly.
1595                          */
1596                         struct userfaultfd_wake_range range;
1597                         range.start = start;
1598                         range.len = vma_end - start;
1599                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1600                 }
1601
1602                 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1603                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1604                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1605                                  vma_policy(vma),
1606                                  NULL_VM_UFFD_CTX, anon_vma_name(vma));
1607                 if (prev) {
1608                         vma = prev;
1609                         goto next;
1610                 }
1611                 if (vma->vm_start < start) {
1612                         ret = split_vma(mm, vma, start, 1);
1613                         if (ret)
1614                                 break;
1615                 }
1616                 if (vma->vm_end > end) {
1617                         ret = split_vma(mm, vma, end, 0);
1618                         if (ret)
1619                                 break;
1620                 }
1621         next:
1622                 /*
1623                  * In the vma_merge() successful mprotect-like case 8:
1624                  * the next vma was merged into the current one and
1625                  * the current one has not been updated yet.
1626                  */
1627                 vma->vm_flags = new_flags;
1628                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1629
1630         skip:
1631                 prev = vma;
1632                 start = vma->vm_end;
1633                 vma = vma->vm_next;
1634         } while (vma && vma->vm_start < end);
1635 out_unlock:
1636         mmap_write_unlock(mm);
1637         mmput(mm);
1638 out:
1639         return ret;
1640 }
1641
1642 /*
1643  * userfaultfd_wake may be used in combination with the
1644  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1645  */
1646 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1647                             unsigned long arg)
1648 {
1649         int ret;
1650         struct uffdio_range uffdio_wake;
1651         struct userfaultfd_wake_range range;
1652         const void __user *buf = (void __user *)arg;
1653
1654         ret = -EFAULT;
1655         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1656                 goto out;
1657
1658         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1659         if (ret)
1660                 goto out;
1661
1662         range.start = uffdio_wake.start;
1663         range.len = uffdio_wake.len;
1664
1665         /*
1666          * len == 0 means wake all and we don't want to wake all here,
1667          * so check it again to be sure.
1668          */
1669         VM_BUG_ON(!range.len);
1670
1671         wake_userfault(ctx, &range);
1672         ret = 0;
1673
1674 out:
1675         return ret;
1676 }
1677
1678 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1679                             unsigned long arg)
1680 {
1681         __s64 ret;
1682         struct uffdio_copy uffdio_copy;
1683         struct uffdio_copy __user *user_uffdio_copy;
1684         struct userfaultfd_wake_range range;
1685
1686         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1687
1688         ret = -EAGAIN;
1689         if (atomic_read(&ctx->mmap_changing))
1690                 goto out;
1691
1692         ret = -EFAULT;
1693         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1694                            /* don't copy "copy" last field */
1695                            sizeof(uffdio_copy)-sizeof(__s64)))
1696                 goto out;
1697
1698         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1699         if (ret)
1700                 goto out;
1701         /*
1702          * double check for wraparound just in case. copy_from_user()
1703          * will later check uffdio_copy.src + uffdio_copy.len to fit
1704          * in the userland range.
1705          */
1706         ret = -EINVAL;
1707         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1708                 goto out;
1709         if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1710                 goto out;
1711         if (mmget_not_zero(ctx->mm)) {
1712                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1713                                    uffdio_copy.len, &ctx->mmap_changing,
1714                                    uffdio_copy.mode);
1715                 mmput(ctx->mm);
1716         } else {
1717                 return -ESRCH;
1718         }
1719         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1720                 return -EFAULT;
1721         if (ret < 0)
1722                 goto out;
1723         BUG_ON(!ret);
1724         /* len == 0 would wake all */
1725         range.len = ret;
1726         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1727                 range.start = uffdio_copy.dst;
1728                 wake_userfault(ctx, &range);
1729         }
1730         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1731 out:
1732         return ret;
1733 }
1734
1735 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1736                                 unsigned long arg)
1737 {
1738         __s64 ret;
1739         struct uffdio_zeropage uffdio_zeropage;
1740         struct uffdio_zeropage __user *user_uffdio_zeropage;
1741         struct userfaultfd_wake_range range;
1742
1743         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1744
1745         ret = -EAGAIN;
1746         if (atomic_read(&ctx->mmap_changing))
1747                 goto out;
1748
1749         ret = -EFAULT;
1750         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1751                            /* don't copy "zeropage" last field */
1752                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1753                 goto out;
1754
1755         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1756                              uffdio_zeropage.range.len);
1757         if (ret)
1758                 goto out;
1759         ret = -EINVAL;
1760         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1761                 goto out;
1762
1763         if (mmget_not_zero(ctx->mm)) {
1764                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1765                                      uffdio_zeropage.range.len,
1766                                      &ctx->mmap_changing);
1767                 mmput(ctx->mm);
1768         } else {
1769                 return -ESRCH;
1770         }
1771         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1772                 return -EFAULT;
1773         if (ret < 0)
1774                 goto out;
1775         /* len == 0 would wake all */
1776         BUG_ON(!ret);
1777         range.len = ret;
1778         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1779                 range.start = uffdio_zeropage.range.start;
1780                 wake_userfault(ctx, &range);
1781         }
1782         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1783 out:
1784         return ret;
1785 }
1786
1787 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1788                                     unsigned long arg)
1789 {
1790         int ret;
1791         struct uffdio_writeprotect uffdio_wp;
1792         struct uffdio_writeprotect __user *user_uffdio_wp;
1793         struct userfaultfd_wake_range range;
1794         bool mode_wp, mode_dontwake;
1795
1796         if (atomic_read(&ctx->mmap_changing))
1797                 return -EAGAIN;
1798
1799         user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1800
1801         if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1802                            sizeof(struct uffdio_writeprotect)))
1803                 return -EFAULT;
1804
1805         ret = validate_range(ctx->mm, uffdio_wp.range.start,
1806                              uffdio_wp.range.len);
1807         if (ret)
1808                 return ret;
1809
1810         if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1811                                UFFDIO_WRITEPROTECT_MODE_WP))
1812                 return -EINVAL;
1813
1814         mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1815         mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1816
1817         if (mode_wp && mode_dontwake)
1818                 return -EINVAL;
1819
1820         if (mmget_not_zero(ctx->mm)) {
1821                 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1822                                           uffdio_wp.range.len, mode_wp,
1823                                           &ctx->mmap_changing);
1824                 mmput(ctx->mm);
1825         } else {
1826                 return -ESRCH;
1827         }
1828
1829         if (ret)
1830                 return ret;
1831
1832         if (!mode_wp && !mode_dontwake) {
1833                 range.start = uffdio_wp.range.start;
1834                 range.len = uffdio_wp.range.len;
1835                 wake_userfault(ctx, &range);
1836         }
1837         return ret;
1838 }
1839
1840 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1841 {
1842         __s64 ret;
1843         struct uffdio_continue uffdio_continue;
1844         struct uffdio_continue __user *user_uffdio_continue;
1845         struct userfaultfd_wake_range range;
1846
1847         user_uffdio_continue = (struct uffdio_continue __user *)arg;
1848
1849         ret = -EAGAIN;
1850         if (atomic_read(&ctx->mmap_changing))
1851                 goto out;
1852
1853         ret = -EFAULT;
1854         if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1855                            /* don't copy the output fields */
1856                            sizeof(uffdio_continue) - (sizeof(__s64))))
1857                 goto out;
1858
1859         ret = validate_range(ctx->mm, uffdio_continue.range.start,
1860                              uffdio_continue.range.len);
1861         if (ret)
1862                 goto out;
1863
1864         ret = -EINVAL;
1865         /* double check for wraparound just in case. */
1866         if (uffdio_continue.range.start + uffdio_continue.range.len <=
1867             uffdio_continue.range.start) {
1868                 goto out;
1869         }
1870         if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1871                 goto out;
1872
1873         if (mmget_not_zero(ctx->mm)) {
1874                 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1875                                      uffdio_continue.range.len,
1876                                      &ctx->mmap_changing);
1877                 mmput(ctx->mm);
1878         } else {
1879                 return -ESRCH;
1880         }
1881
1882         if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1883                 return -EFAULT;
1884         if (ret < 0)
1885                 goto out;
1886
1887         /* len == 0 would wake all */
1888         BUG_ON(!ret);
1889         range.len = ret;
1890         if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1891                 range.start = uffdio_continue.range.start;
1892                 wake_userfault(ctx, &range);
1893         }
1894         ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1895
1896 out:
1897         return ret;
1898 }
1899
1900 static inline unsigned int uffd_ctx_features(__u64 user_features)
1901 {
1902         /*
1903          * For the current set of features the bits just coincide. Set
1904          * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1905          */
1906         return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1907 }
1908
1909 /*
1910  * userland asks for a certain API version and we return which bits
1911  * and ioctl commands are implemented in this kernel for such API
1912  * version or -EINVAL if unknown.
1913  */
1914 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1915                            unsigned long arg)
1916 {
1917         struct uffdio_api uffdio_api;
1918         void __user *buf = (void __user *)arg;
1919         unsigned int ctx_features;
1920         int ret;
1921         __u64 features;
1922
1923         ret = -EFAULT;
1924         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1925                 goto out;
1926         features = uffdio_api.features;
1927         ret = -EINVAL;
1928         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1929                 goto err_out;
1930         ret = -EPERM;
1931         if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1932                 goto err_out;
1933         /* report all available features and ioctls to userland */
1934         uffdio_api.features = UFFD_API_FEATURES;
1935 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1936         uffdio_api.features &=
1937                 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1938 #endif
1939 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1940         uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1941 #endif
1942 #ifndef CONFIG_PTE_MARKER_UFFD_WP
1943         uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
1944 #endif
1945         uffdio_api.ioctls = UFFD_API_IOCTLS;
1946         ret = -EFAULT;
1947         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1948                 goto out;
1949
1950         /* only enable the requested features for this uffd context */
1951         ctx_features = uffd_ctx_features(features);
1952         ret = -EINVAL;
1953         if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1954                 goto err_out;
1955
1956         ret = 0;
1957 out:
1958         return ret;
1959 err_out:
1960         memset(&uffdio_api, 0, sizeof(uffdio_api));
1961         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1962                 ret = -EFAULT;
1963         goto out;
1964 }
1965
1966 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1967                               unsigned long arg)
1968 {
1969         int ret = -EINVAL;
1970         struct userfaultfd_ctx *ctx = file->private_data;
1971
1972         if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1973                 return -EINVAL;
1974
1975         switch(cmd) {
1976         case UFFDIO_API:
1977                 ret = userfaultfd_api(ctx, arg);
1978                 break;
1979         case UFFDIO_REGISTER:
1980                 ret = userfaultfd_register(ctx, arg);
1981                 break;
1982         case UFFDIO_UNREGISTER:
1983                 ret = userfaultfd_unregister(ctx, arg);
1984                 break;
1985         case UFFDIO_WAKE:
1986                 ret = userfaultfd_wake(ctx, arg);
1987                 break;
1988         case UFFDIO_COPY:
1989                 ret = userfaultfd_copy(ctx, arg);
1990                 break;
1991         case UFFDIO_ZEROPAGE:
1992                 ret = userfaultfd_zeropage(ctx, arg);
1993                 break;
1994         case UFFDIO_WRITEPROTECT:
1995                 ret = userfaultfd_writeprotect(ctx, arg);
1996                 break;
1997         case UFFDIO_CONTINUE:
1998                 ret = userfaultfd_continue(ctx, arg);
1999                 break;
2000         }
2001         return ret;
2002 }
2003
2004 #ifdef CONFIG_PROC_FS
2005 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2006 {
2007         struct userfaultfd_ctx *ctx = f->private_data;
2008         wait_queue_entry_t *wq;
2009         unsigned long pending = 0, total = 0;
2010
2011         spin_lock_irq(&ctx->fault_pending_wqh.lock);
2012         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2013                 pending++;
2014                 total++;
2015         }
2016         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2017                 total++;
2018         }
2019         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2020
2021         /*
2022          * If more protocols will be added, there will be all shown
2023          * separated by a space. Like this:
2024          *      protocols: aa:... bb:...
2025          */
2026         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2027                    pending, total, UFFD_API, ctx->features,
2028                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2029 }
2030 #endif
2031
2032 static const struct file_operations userfaultfd_fops = {
2033 #ifdef CONFIG_PROC_FS
2034         .show_fdinfo    = userfaultfd_show_fdinfo,
2035 #endif
2036         .release        = userfaultfd_release,
2037         .poll           = userfaultfd_poll,
2038         .read           = userfaultfd_read,
2039         .unlocked_ioctl = userfaultfd_ioctl,
2040         .compat_ioctl   = compat_ptr_ioctl,
2041         .llseek         = noop_llseek,
2042 };
2043
2044 static void init_once_userfaultfd_ctx(void *mem)
2045 {
2046         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2047
2048         init_waitqueue_head(&ctx->fault_pending_wqh);
2049         init_waitqueue_head(&ctx->fault_wqh);
2050         init_waitqueue_head(&ctx->event_wqh);
2051         init_waitqueue_head(&ctx->fd_wqh);
2052         seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2053 }
2054
2055 SYSCALL_DEFINE1(userfaultfd, int, flags)
2056 {
2057         struct userfaultfd_ctx *ctx;
2058         int fd;
2059
2060         if (!sysctl_unprivileged_userfaultfd &&
2061             (flags & UFFD_USER_MODE_ONLY) == 0 &&
2062             !capable(CAP_SYS_PTRACE)) {
2063                 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2064                         "sysctl knob to 1 if kernel faults must be handled "
2065                         "without obtaining CAP_SYS_PTRACE capability\n");
2066                 return -EPERM;
2067         }
2068
2069         BUG_ON(!current->mm);
2070
2071         /* Check the UFFD_* constants for consistency.  */
2072         BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2073         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2074         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2075
2076         if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2077                 return -EINVAL;
2078
2079         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2080         if (!ctx)
2081                 return -ENOMEM;
2082
2083         refcount_set(&ctx->refcount, 1);
2084         ctx->flags = flags;
2085         ctx->features = 0;
2086         ctx->released = false;
2087         atomic_set(&ctx->mmap_changing, 0);
2088         ctx->mm = current->mm;
2089         /* prevent the mm struct to be freed */
2090         mmgrab(ctx->mm);
2091
2092         fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2093                         O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2094         if (fd < 0) {
2095                 mmdrop(ctx->mm);
2096                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2097         }
2098         return fd;
2099 }
2100
2101 static int __init userfaultfd_init(void)
2102 {
2103         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2104                                                 sizeof(struct userfaultfd_ctx),
2105                                                 0,
2106                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2107                                                 init_once_userfaultfd_ctx);
2108         return 0;
2109 }
2110 __initcall(userfaultfd_init);