Merge branch 'pm-cpuidle'
[linux-2.6-microblaze.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30
31 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36         UFFD_STATE_WAIT_API,
37         UFFD_STATE_RUNNING,
38 };
39
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  *
44  * Locking order:
45  *      fd_wqh.lock
46  *              fault_pending_wqh.lock
47  *                      fault_wqh.lock
48  *              event_wqh.lock
49  *
50  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52  * also taken in IRQ context.
53  */
54 struct userfaultfd_ctx {
55         /* waitqueue head for the pending (i.e. not read) userfaults */
56         wait_queue_head_t fault_pending_wqh;
57         /* waitqueue head for the userfaults */
58         wait_queue_head_t fault_wqh;
59         /* waitqueue head for the pseudo fd to wakeup poll/read */
60         wait_queue_head_t fd_wqh;
61         /* waitqueue head for events */
62         wait_queue_head_t event_wqh;
63         /* a refile sequence protected by fault_pending_wqh lock */
64         struct seqcount refile_seq;
65         /* pseudo fd refcounting */
66         refcount_t refcount;
67         /* userfaultfd syscall flags */
68         unsigned int flags;
69         /* features requested from the userspace */
70         unsigned int features;
71         /* state machine */
72         enum userfaultfd_state state;
73         /* released */
74         bool released;
75         /* memory mappings are changing because of non-cooperative event */
76         bool mmap_changing;
77         /* mm with one ore more vmas attached to this userfaultfd_ctx */
78         struct mm_struct *mm;
79 };
80
81 struct userfaultfd_fork_ctx {
82         struct userfaultfd_ctx *orig;
83         struct userfaultfd_ctx *new;
84         struct list_head list;
85 };
86
87 struct userfaultfd_unmap_ctx {
88         struct userfaultfd_ctx *ctx;
89         unsigned long start;
90         unsigned long end;
91         struct list_head list;
92 };
93
94 struct userfaultfd_wait_queue {
95         struct uffd_msg msg;
96         wait_queue_entry_t wq;
97         struct userfaultfd_ctx *ctx;
98         bool waken;
99 };
100
101 struct userfaultfd_wake_range {
102         unsigned long start;
103         unsigned long len;
104 };
105
106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107                                      int wake_flags, void *key)
108 {
109         struct userfaultfd_wake_range *range = key;
110         int ret;
111         struct userfaultfd_wait_queue *uwq;
112         unsigned long start, len;
113
114         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115         ret = 0;
116         /* len == 0 means wake all */
117         start = range->start;
118         len = range->len;
119         if (len && (start > uwq->msg.arg.pagefault.address ||
120                     start + len <= uwq->msg.arg.pagefault.address))
121                 goto out;
122         WRITE_ONCE(uwq->waken, true);
123         /*
124          * The Program-Order guarantees provided by the scheduler
125          * ensure uwq->waken is visible before the task is woken.
126          */
127         ret = wake_up_state(wq->private, mode);
128         if (ret) {
129                 /*
130                  * Wake only once, autoremove behavior.
131                  *
132                  * After the effect of list_del_init is visible to the other
133                  * CPUs, the waitqueue may disappear from under us, see the
134                  * !list_empty_careful() in handle_userfault().
135                  *
136                  * try_to_wake_up() has an implicit smp_mb(), and the
137                  * wq->private is read before calling the extern function
138                  * "wake_up_state" (which in turns calls try_to_wake_up).
139                  */
140                 list_del_init(&wq->entry);
141         }
142 out:
143         return ret;
144 }
145
146 /**
147  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148  * context.
149  * @ctx: [in] Pointer to the userfaultfd context.
150  */
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
152 {
153         refcount_inc(&ctx->refcount);
154 }
155
156 /**
157  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
158  * context.
159  * @ctx: [in] Pointer to userfaultfd context.
160  *
161  * The userfaultfd context reference must have been previously acquired either
162  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
163  */
164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
165 {
166         if (refcount_dec_and_test(&ctx->refcount)) {
167                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
171                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
173                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
175                 mmdrop(ctx->mm);
176                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
177         }
178 }
179
180 static inline void msg_init(struct uffd_msg *msg)
181 {
182         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
183         /*
184          * Must use memset to zero out the paddings or kernel data is
185          * leaked to userland.
186          */
187         memset(msg, 0, sizeof(struct uffd_msg));
188 }
189
190 static inline struct uffd_msg userfault_msg(unsigned long address,
191                                             unsigned int flags,
192                                             unsigned long reason,
193                                             unsigned int features)
194 {
195         struct uffd_msg msg;
196         msg_init(&msg);
197         msg.event = UFFD_EVENT_PAGEFAULT;
198         msg.arg.pagefault.address = address;
199         if (flags & FAULT_FLAG_WRITE)
200                 /*
201                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203                  * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204                  * was a read fault, otherwise if set it means it's
205                  * a write fault.
206                  */
207                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
208         if (reason & VM_UFFD_WP)
209                 /*
210                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212                  * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213                  * a missing fault, otherwise if set it means it's a
214                  * write protect fault.
215                  */
216                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
217         if (features & UFFD_FEATURE_THREAD_ID)
218                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
219         return msg;
220 }
221
222 #ifdef CONFIG_HUGETLB_PAGE
223 /*
224  * Same functionality as userfaultfd_must_wait below with modifications for
225  * hugepmd ranges.
226  */
227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
228                                          struct vm_area_struct *vma,
229                                          unsigned long address,
230                                          unsigned long flags,
231                                          unsigned long reason)
232 {
233         struct mm_struct *mm = ctx->mm;
234         pte_t *ptep, pte;
235         bool ret = true;
236
237         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
238
239         ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
240
241         if (!ptep)
242                 goto out;
243
244         ret = false;
245         pte = huge_ptep_get(ptep);
246
247         /*
248          * Lockless access: we're in a wait_event so it's ok if it
249          * changes under us.
250          */
251         if (huge_pte_none(pte))
252                 ret = true;
253         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
254                 ret = true;
255 out:
256         return ret;
257 }
258 #else
259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
260                                          struct vm_area_struct *vma,
261                                          unsigned long address,
262                                          unsigned long flags,
263                                          unsigned long reason)
264 {
265         return false;   /* should never get here */
266 }
267 #endif /* CONFIG_HUGETLB_PAGE */
268
269 /*
270  * Verify the pagetables are still not ok after having reigstered into
271  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272  * userfault that has already been resolved, if userfaultfd_read and
273  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274  * threads.
275  */
276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277                                          unsigned long address,
278                                          unsigned long flags,
279                                          unsigned long reason)
280 {
281         struct mm_struct *mm = ctx->mm;
282         pgd_t *pgd;
283         p4d_t *p4d;
284         pud_t *pud;
285         pmd_t *pmd, _pmd;
286         pte_t *pte;
287         bool ret = true;
288
289         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
290
291         pgd = pgd_offset(mm, address);
292         if (!pgd_present(*pgd))
293                 goto out;
294         p4d = p4d_offset(pgd, address);
295         if (!p4d_present(*p4d))
296                 goto out;
297         pud = pud_offset(p4d, address);
298         if (!pud_present(*pud))
299                 goto out;
300         pmd = pmd_offset(pud, address);
301         /*
302          * READ_ONCE must function as a barrier with narrower scope
303          * and it must be equivalent to:
304          *      _pmd = *pmd; barrier();
305          *
306          * This is to deal with the instability (as in
307          * pmd_trans_unstable) of the pmd.
308          */
309         _pmd = READ_ONCE(*pmd);
310         if (pmd_none(_pmd))
311                 goto out;
312
313         ret = false;
314         if (!pmd_present(_pmd))
315                 goto out;
316
317         if (pmd_trans_huge(_pmd))
318                 goto out;
319
320         /*
321          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
322          * and use the standard pte_offset_map() instead of parsing _pmd.
323          */
324         pte = pte_offset_map(pmd, address);
325         /*
326          * Lockless access: we're in a wait_event so it's ok if it
327          * changes under us.
328          */
329         if (pte_none(*pte))
330                 ret = true;
331         pte_unmap(pte);
332
333 out:
334         return ret;
335 }
336
337 /* Should pair with userfaultfd_signal_pending() */
338 static inline long userfaultfd_get_blocking_state(unsigned int flags)
339 {
340         if (flags & FAULT_FLAG_INTERRUPTIBLE)
341                 return TASK_INTERRUPTIBLE;
342
343         if (flags & FAULT_FLAG_KILLABLE)
344                 return TASK_KILLABLE;
345
346         return TASK_UNINTERRUPTIBLE;
347 }
348
349 /* Should pair with userfaultfd_get_blocking_state() */
350 static inline bool userfaultfd_signal_pending(unsigned int flags)
351 {
352         if (flags & FAULT_FLAG_INTERRUPTIBLE)
353                 return signal_pending(current);
354
355         if (flags & FAULT_FLAG_KILLABLE)
356                 return fatal_signal_pending(current);
357
358         return false;
359 }
360
361 /*
362  * The locking rules involved in returning VM_FAULT_RETRY depending on
363  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
364  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
365  * recommendation in __lock_page_or_retry is not an understatement.
366  *
367  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
368  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
369  * not set.
370  *
371  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
372  * set, VM_FAULT_RETRY can still be returned if and only if there are
373  * fatal_signal_pending()s, and the mmap_sem must be released before
374  * returning it.
375  */
376 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
377 {
378         struct mm_struct *mm = vmf->vma->vm_mm;
379         struct userfaultfd_ctx *ctx;
380         struct userfaultfd_wait_queue uwq;
381         vm_fault_t ret = VM_FAULT_SIGBUS;
382         bool must_wait;
383         long blocking_state;
384
385         /*
386          * We don't do userfault handling for the final child pid update.
387          *
388          * We also don't do userfault handling during
389          * coredumping. hugetlbfs has the special
390          * follow_hugetlb_page() to skip missing pages in the
391          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
392          * the no_page_table() helper in follow_page_mask(), but the
393          * shmem_vm_ops->fault method is invoked even during
394          * coredumping without mmap_sem and it ends up here.
395          */
396         if (current->flags & (PF_EXITING|PF_DUMPCORE))
397                 goto out;
398
399         /*
400          * Coredumping runs without mmap_sem so we can only check that
401          * the mmap_sem is held, if PF_DUMPCORE was not set.
402          */
403         WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
404
405         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
406         if (!ctx)
407                 goto out;
408
409         BUG_ON(ctx->mm != mm);
410
411         VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
412         VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
413
414         if (ctx->features & UFFD_FEATURE_SIGBUS)
415                 goto out;
416
417         /*
418          * If it's already released don't get it. This avoids to loop
419          * in __get_user_pages if userfaultfd_release waits on the
420          * caller of handle_userfault to release the mmap_sem.
421          */
422         if (unlikely(READ_ONCE(ctx->released))) {
423                 /*
424                  * Don't return VM_FAULT_SIGBUS in this case, so a non
425                  * cooperative manager can close the uffd after the
426                  * last UFFDIO_COPY, without risking to trigger an
427                  * involuntary SIGBUS if the process was starting the
428                  * userfaultfd while the userfaultfd was still armed
429                  * (but after the last UFFDIO_COPY). If the uffd
430                  * wasn't already closed when the userfault reached
431                  * this point, that would normally be solved by
432                  * userfaultfd_must_wait returning 'false'.
433                  *
434                  * If we were to return VM_FAULT_SIGBUS here, the non
435                  * cooperative manager would be instead forced to
436                  * always call UFFDIO_UNREGISTER before it can safely
437                  * close the uffd.
438                  */
439                 ret = VM_FAULT_NOPAGE;
440                 goto out;
441         }
442
443         /*
444          * Check that we can return VM_FAULT_RETRY.
445          *
446          * NOTE: it should become possible to return VM_FAULT_RETRY
447          * even if FAULT_FLAG_TRIED is set without leading to gup()
448          * -EBUSY failures, if the userfaultfd is to be extended for
449          * VM_UFFD_WP tracking and we intend to arm the userfault
450          * without first stopping userland access to the memory. For
451          * VM_UFFD_MISSING userfaults this is enough for now.
452          */
453         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
454                 /*
455                  * Validate the invariant that nowait must allow retry
456                  * to be sure not to return SIGBUS erroneously on
457                  * nowait invocations.
458                  */
459                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
460 #ifdef CONFIG_DEBUG_VM
461                 if (printk_ratelimit()) {
462                         printk(KERN_WARNING
463                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
464                                vmf->flags);
465                         dump_stack();
466                 }
467 #endif
468                 goto out;
469         }
470
471         /*
472          * Handle nowait, not much to do other than tell it to retry
473          * and wait.
474          */
475         ret = VM_FAULT_RETRY;
476         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
477                 goto out;
478
479         /* take the reference before dropping the mmap_sem */
480         userfaultfd_ctx_get(ctx);
481
482         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
483         uwq.wq.private = current;
484         uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
485                         ctx->features);
486         uwq.ctx = ctx;
487         uwq.waken = false;
488
489         blocking_state = userfaultfd_get_blocking_state(vmf->flags);
490
491         spin_lock_irq(&ctx->fault_pending_wqh.lock);
492         /*
493          * After the __add_wait_queue the uwq is visible to userland
494          * through poll/read().
495          */
496         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
497         /*
498          * The smp_mb() after __set_current_state prevents the reads
499          * following the spin_unlock to happen before the list_add in
500          * __add_wait_queue.
501          */
502         set_current_state(blocking_state);
503         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
504
505         if (!is_vm_hugetlb_page(vmf->vma))
506                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
507                                                   reason);
508         else
509                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
510                                                        vmf->address,
511                                                        vmf->flags, reason);
512         up_read(&mm->mmap_sem);
513
514         if (likely(must_wait && !READ_ONCE(ctx->released) &&
515                    !userfaultfd_signal_pending(vmf->flags))) {
516                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
517                 schedule();
518                 ret |= VM_FAULT_MAJOR;
519
520                 /*
521                  * False wakeups can orginate even from rwsem before
522                  * up_read() however userfaults will wait either for a
523                  * targeted wakeup on the specific uwq waitqueue from
524                  * wake_userfault() or for signals or for uffd
525                  * release.
526                  */
527                 while (!READ_ONCE(uwq.waken)) {
528                         /*
529                          * This needs the full smp_store_mb()
530                          * guarantee as the state write must be
531                          * visible to other CPUs before reading
532                          * uwq.waken from other CPUs.
533                          */
534                         set_current_state(blocking_state);
535                         if (READ_ONCE(uwq.waken) ||
536                             READ_ONCE(ctx->released) ||
537                             userfaultfd_signal_pending(vmf->flags))
538                                 break;
539                         schedule();
540                 }
541         }
542
543         __set_current_state(TASK_RUNNING);
544
545         /*
546          * Here we race with the list_del; list_add in
547          * userfaultfd_ctx_read(), however because we don't ever run
548          * list_del_init() to refile across the two lists, the prev
549          * and next pointers will never point to self. list_add also
550          * would never let any of the two pointers to point to
551          * self. So list_empty_careful won't risk to see both pointers
552          * pointing to self at any time during the list refile. The
553          * only case where list_del_init() is called is the full
554          * removal in the wake function and there we don't re-list_add
555          * and it's fine not to block on the spinlock. The uwq on this
556          * kernel stack can be released after the list_del_init.
557          */
558         if (!list_empty_careful(&uwq.wq.entry)) {
559                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
560                 /*
561                  * No need of list_del_init(), the uwq on the stack
562                  * will be freed shortly anyway.
563                  */
564                 list_del(&uwq.wq.entry);
565                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
566         }
567
568         /*
569          * ctx may go away after this if the userfault pseudo fd is
570          * already released.
571          */
572         userfaultfd_ctx_put(ctx);
573
574 out:
575         return ret;
576 }
577
578 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
579                                               struct userfaultfd_wait_queue *ewq)
580 {
581         struct userfaultfd_ctx *release_new_ctx;
582
583         if (WARN_ON_ONCE(current->flags & PF_EXITING))
584                 goto out;
585
586         ewq->ctx = ctx;
587         init_waitqueue_entry(&ewq->wq, current);
588         release_new_ctx = NULL;
589
590         spin_lock_irq(&ctx->event_wqh.lock);
591         /*
592          * After the __add_wait_queue the uwq is visible to userland
593          * through poll/read().
594          */
595         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
596         for (;;) {
597                 set_current_state(TASK_KILLABLE);
598                 if (ewq->msg.event == 0)
599                         break;
600                 if (READ_ONCE(ctx->released) ||
601                     fatal_signal_pending(current)) {
602                         /*
603                          * &ewq->wq may be queued in fork_event, but
604                          * __remove_wait_queue ignores the head
605                          * parameter. It would be a problem if it
606                          * didn't.
607                          */
608                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
609                         if (ewq->msg.event == UFFD_EVENT_FORK) {
610                                 struct userfaultfd_ctx *new;
611
612                                 new = (struct userfaultfd_ctx *)
613                                         (unsigned long)
614                                         ewq->msg.arg.reserved.reserved1;
615                                 release_new_ctx = new;
616                         }
617                         break;
618                 }
619
620                 spin_unlock_irq(&ctx->event_wqh.lock);
621
622                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
623                 schedule();
624
625                 spin_lock_irq(&ctx->event_wqh.lock);
626         }
627         __set_current_state(TASK_RUNNING);
628         spin_unlock_irq(&ctx->event_wqh.lock);
629
630         if (release_new_ctx) {
631                 struct vm_area_struct *vma;
632                 struct mm_struct *mm = release_new_ctx->mm;
633
634                 /* the various vma->vm_userfaultfd_ctx still points to it */
635                 down_write(&mm->mmap_sem);
636                 /* no task can run (and in turn coredump) yet */
637                 VM_WARN_ON(!mmget_still_valid(mm));
638                 for (vma = mm->mmap; vma; vma = vma->vm_next)
639                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
640                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
641                                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
642                         }
643                 up_write(&mm->mmap_sem);
644
645                 userfaultfd_ctx_put(release_new_ctx);
646         }
647
648         /*
649          * ctx may go away after this if the userfault pseudo fd is
650          * already released.
651          */
652 out:
653         WRITE_ONCE(ctx->mmap_changing, false);
654         userfaultfd_ctx_put(ctx);
655 }
656
657 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
658                                        struct userfaultfd_wait_queue *ewq)
659 {
660         ewq->msg.event = 0;
661         wake_up_locked(&ctx->event_wqh);
662         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
663 }
664
665 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
666 {
667         struct userfaultfd_ctx *ctx = NULL, *octx;
668         struct userfaultfd_fork_ctx *fctx;
669
670         octx = vma->vm_userfaultfd_ctx.ctx;
671         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
672                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
673                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
674                 return 0;
675         }
676
677         list_for_each_entry(fctx, fcs, list)
678                 if (fctx->orig == octx) {
679                         ctx = fctx->new;
680                         break;
681                 }
682
683         if (!ctx) {
684                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
685                 if (!fctx)
686                         return -ENOMEM;
687
688                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
689                 if (!ctx) {
690                         kfree(fctx);
691                         return -ENOMEM;
692                 }
693
694                 refcount_set(&ctx->refcount, 1);
695                 ctx->flags = octx->flags;
696                 ctx->state = UFFD_STATE_RUNNING;
697                 ctx->features = octx->features;
698                 ctx->released = false;
699                 ctx->mmap_changing = false;
700                 ctx->mm = vma->vm_mm;
701                 mmgrab(ctx->mm);
702
703                 userfaultfd_ctx_get(octx);
704                 WRITE_ONCE(octx->mmap_changing, true);
705                 fctx->orig = octx;
706                 fctx->new = ctx;
707                 list_add_tail(&fctx->list, fcs);
708         }
709
710         vma->vm_userfaultfd_ctx.ctx = ctx;
711         return 0;
712 }
713
714 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
715 {
716         struct userfaultfd_ctx *ctx = fctx->orig;
717         struct userfaultfd_wait_queue ewq;
718
719         msg_init(&ewq.msg);
720
721         ewq.msg.event = UFFD_EVENT_FORK;
722         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
723
724         userfaultfd_event_wait_completion(ctx, &ewq);
725 }
726
727 void dup_userfaultfd_complete(struct list_head *fcs)
728 {
729         struct userfaultfd_fork_ctx *fctx, *n;
730
731         list_for_each_entry_safe(fctx, n, fcs, list) {
732                 dup_fctx(fctx);
733                 list_del(&fctx->list);
734                 kfree(fctx);
735         }
736 }
737
738 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
739                              struct vm_userfaultfd_ctx *vm_ctx)
740 {
741         struct userfaultfd_ctx *ctx;
742
743         ctx = vma->vm_userfaultfd_ctx.ctx;
744
745         if (!ctx)
746                 return;
747
748         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
749                 vm_ctx->ctx = ctx;
750                 userfaultfd_ctx_get(ctx);
751                 WRITE_ONCE(ctx->mmap_changing, true);
752         } else {
753                 /* Drop uffd context if remap feature not enabled */
754                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
755                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
756         }
757 }
758
759 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
760                                  unsigned long from, unsigned long to,
761                                  unsigned long len)
762 {
763         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
764         struct userfaultfd_wait_queue ewq;
765
766         if (!ctx)
767                 return;
768
769         if (to & ~PAGE_MASK) {
770                 userfaultfd_ctx_put(ctx);
771                 return;
772         }
773
774         msg_init(&ewq.msg);
775
776         ewq.msg.event = UFFD_EVENT_REMAP;
777         ewq.msg.arg.remap.from = from;
778         ewq.msg.arg.remap.to = to;
779         ewq.msg.arg.remap.len = len;
780
781         userfaultfd_event_wait_completion(ctx, &ewq);
782 }
783
784 bool userfaultfd_remove(struct vm_area_struct *vma,
785                         unsigned long start, unsigned long end)
786 {
787         struct mm_struct *mm = vma->vm_mm;
788         struct userfaultfd_ctx *ctx;
789         struct userfaultfd_wait_queue ewq;
790
791         ctx = vma->vm_userfaultfd_ctx.ctx;
792         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
793                 return true;
794
795         userfaultfd_ctx_get(ctx);
796         WRITE_ONCE(ctx->mmap_changing, true);
797         up_read(&mm->mmap_sem);
798
799         msg_init(&ewq.msg);
800
801         ewq.msg.event = UFFD_EVENT_REMOVE;
802         ewq.msg.arg.remove.start = start;
803         ewq.msg.arg.remove.end = end;
804
805         userfaultfd_event_wait_completion(ctx, &ewq);
806
807         return false;
808 }
809
810 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
811                           unsigned long start, unsigned long end)
812 {
813         struct userfaultfd_unmap_ctx *unmap_ctx;
814
815         list_for_each_entry(unmap_ctx, unmaps, list)
816                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
817                     unmap_ctx->end == end)
818                         return true;
819
820         return false;
821 }
822
823 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
824                            unsigned long start, unsigned long end,
825                            struct list_head *unmaps)
826 {
827         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
828                 struct userfaultfd_unmap_ctx *unmap_ctx;
829                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
830
831                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
832                     has_unmap_ctx(ctx, unmaps, start, end))
833                         continue;
834
835                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
836                 if (!unmap_ctx)
837                         return -ENOMEM;
838
839                 userfaultfd_ctx_get(ctx);
840                 WRITE_ONCE(ctx->mmap_changing, true);
841                 unmap_ctx->ctx = ctx;
842                 unmap_ctx->start = start;
843                 unmap_ctx->end = end;
844                 list_add_tail(&unmap_ctx->list, unmaps);
845         }
846
847         return 0;
848 }
849
850 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
851 {
852         struct userfaultfd_unmap_ctx *ctx, *n;
853         struct userfaultfd_wait_queue ewq;
854
855         list_for_each_entry_safe(ctx, n, uf, list) {
856                 msg_init(&ewq.msg);
857
858                 ewq.msg.event = UFFD_EVENT_UNMAP;
859                 ewq.msg.arg.remove.start = ctx->start;
860                 ewq.msg.arg.remove.end = ctx->end;
861
862                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
863
864                 list_del(&ctx->list);
865                 kfree(ctx);
866         }
867 }
868
869 static int userfaultfd_release(struct inode *inode, struct file *file)
870 {
871         struct userfaultfd_ctx *ctx = file->private_data;
872         struct mm_struct *mm = ctx->mm;
873         struct vm_area_struct *vma, *prev;
874         /* len == 0 means wake all */
875         struct userfaultfd_wake_range range = { .len = 0, };
876         unsigned long new_flags;
877         bool still_valid;
878
879         WRITE_ONCE(ctx->released, true);
880
881         if (!mmget_not_zero(mm))
882                 goto wakeup;
883
884         /*
885          * Flush page faults out of all CPUs. NOTE: all page faults
886          * must be retried without returning VM_FAULT_SIGBUS if
887          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
888          * changes while handle_userfault released the mmap_sem. So
889          * it's critical that released is set to true (above), before
890          * taking the mmap_sem for writing.
891          */
892         down_write(&mm->mmap_sem);
893         still_valid = mmget_still_valid(mm);
894         prev = NULL;
895         for (vma = mm->mmap; vma; vma = vma->vm_next) {
896                 cond_resched();
897                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
898                        !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
899                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
900                         prev = vma;
901                         continue;
902                 }
903                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
904                 if (still_valid) {
905                         prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
906                                          new_flags, vma->anon_vma,
907                                          vma->vm_file, vma->vm_pgoff,
908                                          vma_policy(vma),
909                                          NULL_VM_UFFD_CTX);
910                         if (prev)
911                                 vma = prev;
912                         else
913                                 prev = vma;
914                 }
915                 vma->vm_flags = new_flags;
916                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
917         }
918         up_write(&mm->mmap_sem);
919         mmput(mm);
920 wakeup:
921         /*
922          * After no new page faults can wait on this fault_*wqh, flush
923          * the last page faults that may have been already waiting on
924          * the fault_*wqh.
925          */
926         spin_lock_irq(&ctx->fault_pending_wqh.lock);
927         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
928         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
929         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
930
931         /* Flush pending events that may still wait on event_wqh */
932         wake_up_all(&ctx->event_wqh);
933
934         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
935         userfaultfd_ctx_put(ctx);
936         return 0;
937 }
938
939 /* fault_pending_wqh.lock must be hold by the caller */
940 static inline struct userfaultfd_wait_queue *find_userfault_in(
941                 wait_queue_head_t *wqh)
942 {
943         wait_queue_entry_t *wq;
944         struct userfaultfd_wait_queue *uwq;
945
946         lockdep_assert_held(&wqh->lock);
947
948         uwq = NULL;
949         if (!waitqueue_active(wqh))
950                 goto out;
951         /* walk in reverse to provide FIFO behavior to read userfaults */
952         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
953         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
954 out:
955         return uwq;
956 }
957
958 static inline struct userfaultfd_wait_queue *find_userfault(
959                 struct userfaultfd_ctx *ctx)
960 {
961         return find_userfault_in(&ctx->fault_pending_wqh);
962 }
963
964 static inline struct userfaultfd_wait_queue *find_userfault_evt(
965                 struct userfaultfd_ctx *ctx)
966 {
967         return find_userfault_in(&ctx->event_wqh);
968 }
969
970 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
971 {
972         struct userfaultfd_ctx *ctx = file->private_data;
973         __poll_t ret;
974
975         poll_wait(file, &ctx->fd_wqh, wait);
976
977         switch (ctx->state) {
978         case UFFD_STATE_WAIT_API:
979                 return EPOLLERR;
980         case UFFD_STATE_RUNNING:
981                 /*
982                  * poll() never guarantees that read won't block.
983                  * userfaults can be waken before they're read().
984                  */
985                 if (unlikely(!(file->f_flags & O_NONBLOCK)))
986                         return EPOLLERR;
987                 /*
988                  * lockless access to see if there are pending faults
989                  * __pollwait last action is the add_wait_queue but
990                  * the spin_unlock would allow the waitqueue_active to
991                  * pass above the actual list_add inside
992                  * add_wait_queue critical section. So use a full
993                  * memory barrier to serialize the list_add write of
994                  * add_wait_queue() with the waitqueue_active read
995                  * below.
996                  */
997                 ret = 0;
998                 smp_mb();
999                 if (waitqueue_active(&ctx->fault_pending_wqh))
1000                         ret = EPOLLIN;
1001                 else if (waitqueue_active(&ctx->event_wqh))
1002                         ret = EPOLLIN;
1003
1004                 return ret;
1005         default:
1006                 WARN_ON_ONCE(1);
1007                 return EPOLLERR;
1008         }
1009 }
1010
1011 static const struct file_operations userfaultfd_fops;
1012
1013 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1014                                   struct userfaultfd_ctx *new,
1015                                   struct uffd_msg *msg)
1016 {
1017         int fd;
1018
1019         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1020                               O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1021         if (fd < 0)
1022                 return fd;
1023
1024         msg->arg.reserved.reserved1 = 0;
1025         msg->arg.fork.ufd = fd;
1026         return 0;
1027 }
1028
1029 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1030                                     struct uffd_msg *msg)
1031 {
1032         ssize_t ret;
1033         DECLARE_WAITQUEUE(wait, current);
1034         struct userfaultfd_wait_queue *uwq;
1035         /*
1036          * Handling fork event requires sleeping operations, so
1037          * we drop the event_wqh lock, then do these ops, then
1038          * lock it back and wake up the waiter. While the lock is
1039          * dropped the ewq may go away so we keep track of it
1040          * carefully.
1041          */
1042         LIST_HEAD(fork_event);
1043         struct userfaultfd_ctx *fork_nctx = NULL;
1044
1045         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1046         spin_lock_irq(&ctx->fd_wqh.lock);
1047         __add_wait_queue(&ctx->fd_wqh, &wait);
1048         for (;;) {
1049                 set_current_state(TASK_INTERRUPTIBLE);
1050                 spin_lock(&ctx->fault_pending_wqh.lock);
1051                 uwq = find_userfault(ctx);
1052                 if (uwq) {
1053                         /*
1054                          * Use a seqcount to repeat the lockless check
1055                          * in wake_userfault() to avoid missing
1056                          * wakeups because during the refile both
1057                          * waitqueue could become empty if this is the
1058                          * only userfault.
1059                          */
1060                         write_seqcount_begin(&ctx->refile_seq);
1061
1062                         /*
1063                          * The fault_pending_wqh.lock prevents the uwq
1064                          * to disappear from under us.
1065                          *
1066                          * Refile this userfault from
1067                          * fault_pending_wqh to fault_wqh, it's not
1068                          * pending anymore after we read it.
1069                          *
1070                          * Use list_del() by hand (as
1071                          * userfaultfd_wake_function also uses
1072                          * list_del_init() by hand) to be sure nobody
1073                          * changes __remove_wait_queue() to use
1074                          * list_del_init() in turn breaking the
1075                          * !list_empty_careful() check in
1076                          * handle_userfault(). The uwq->wq.head list
1077                          * must never be empty at any time during the
1078                          * refile, or the waitqueue could disappear
1079                          * from under us. The "wait_queue_head_t"
1080                          * parameter of __remove_wait_queue() is unused
1081                          * anyway.
1082                          */
1083                         list_del(&uwq->wq.entry);
1084                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1085
1086                         write_seqcount_end(&ctx->refile_seq);
1087
1088                         /* careful to always initialize msg if ret == 0 */
1089                         *msg = uwq->msg;
1090                         spin_unlock(&ctx->fault_pending_wqh.lock);
1091                         ret = 0;
1092                         break;
1093                 }
1094                 spin_unlock(&ctx->fault_pending_wqh.lock);
1095
1096                 spin_lock(&ctx->event_wqh.lock);
1097                 uwq = find_userfault_evt(ctx);
1098                 if (uwq) {
1099                         *msg = uwq->msg;
1100
1101                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1102                                 fork_nctx = (struct userfaultfd_ctx *)
1103                                         (unsigned long)
1104                                         uwq->msg.arg.reserved.reserved1;
1105                                 list_move(&uwq->wq.entry, &fork_event);
1106                                 /*
1107                                  * fork_nctx can be freed as soon as
1108                                  * we drop the lock, unless we take a
1109                                  * reference on it.
1110                                  */
1111                                 userfaultfd_ctx_get(fork_nctx);
1112                                 spin_unlock(&ctx->event_wqh.lock);
1113                                 ret = 0;
1114                                 break;
1115                         }
1116
1117                         userfaultfd_event_complete(ctx, uwq);
1118                         spin_unlock(&ctx->event_wqh.lock);
1119                         ret = 0;
1120                         break;
1121                 }
1122                 spin_unlock(&ctx->event_wqh.lock);
1123
1124                 if (signal_pending(current)) {
1125                         ret = -ERESTARTSYS;
1126                         break;
1127                 }
1128                 if (no_wait) {
1129                         ret = -EAGAIN;
1130                         break;
1131                 }
1132                 spin_unlock_irq(&ctx->fd_wqh.lock);
1133                 schedule();
1134                 spin_lock_irq(&ctx->fd_wqh.lock);
1135         }
1136         __remove_wait_queue(&ctx->fd_wqh, &wait);
1137         __set_current_state(TASK_RUNNING);
1138         spin_unlock_irq(&ctx->fd_wqh.lock);
1139
1140         if (!ret && msg->event == UFFD_EVENT_FORK) {
1141                 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1142                 spin_lock_irq(&ctx->event_wqh.lock);
1143                 if (!list_empty(&fork_event)) {
1144                         /*
1145                          * The fork thread didn't abort, so we can
1146                          * drop the temporary refcount.
1147                          */
1148                         userfaultfd_ctx_put(fork_nctx);
1149
1150                         uwq = list_first_entry(&fork_event,
1151                                                typeof(*uwq),
1152                                                wq.entry);
1153                         /*
1154                          * If fork_event list wasn't empty and in turn
1155                          * the event wasn't already released by fork
1156                          * (the event is allocated on fork kernel
1157                          * stack), put the event back to its place in
1158                          * the event_wq. fork_event head will be freed
1159                          * as soon as we return so the event cannot
1160                          * stay queued there no matter the current
1161                          * "ret" value.
1162                          */
1163                         list_del(&uwq->wq.entry);
1164                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1165
1166                         /*
1167                          * Leave the event in the waitqueue and report
1168                          * error to userland if we failed to resolve
1169                          * the userfault fork.
1170                          */
1171                         if (likely(!ret))
1172                                 userfaultfd_event_complete(ctx, uwq);
1173                 } else {
1174                         /*
1175                          * Here the fork thread aborted and the
1176                          * refcount from the fork thread on fork_nctx
1177                          * has already been released. We still hold
1178                          * the reference we took before releasing the
1179                          * lock above. If resolve_userfault_fork
1180                          * failed we've to drop it because the
1181                          * fork_nctx has to be freed in such case. If
1182                          * it succeeded we'll hold it because the new
1183                          * uffd references it.
1184                          */
1185                         if (ret)
1186                                 userfaultfd_ctx_put(fork_nctx);
1187                 }
1188                 spin_unlock_irq(&ctx->event_wqh.lock);
1189         }
1190
1191         return ret;
1192 }
1193
1194 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1195                                 size_t count, loff_t *ppos)
1196 {
1197         struct userfaultfd_ctx *ctx = file->private_data;
1198         ssize_t _ret, ret = 0;
1199         struct uffd_msg msg;
1200         int no_wait = file->f_flags & O_NONBLOCK;
1201
1202         if (ctx->state == UFFD_STATE_WAIT_API)
1203                 return -EINVAL;
1204
1205         for (;;) {
1206                 if (count < sizeof(msg))
1207                         return ret ? ret : -EINVAL;
1208                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1209                 if (_ret < 0)
1210                         return ret ? ret : _ret;
1211                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1212                         return ret ? ret : -EFAULT;
1213                 ret += sizeof(msg);
1214                 buf += sizeof(msg);
1215                 count -= sizeof(msg);
1216                 /*
1217                  * Allow to read more than one fault at time but only
1218                  * block if waiting for the very first one.
1219                  */
1220                 no_wait = O_NONBLOCK;
1221         }
1222 }
1223
1224 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1225                              struct userfaultfd_wake_range *range)
1226 {
1227         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1228         /* wake all in the range and autoremove */
1229         if (waitqueue_active(&ctx->fault_pending_wqh))
1230                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1231                                      range);
1232         if (waitqueue_active(&ctx->fault_wqh))
1233                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1234         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1235 }
1236
1237 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1238                                            struct userfaultfd_wake_range *range)
1239 {
1240         unsigned seq;
1241         bool need_wakeup;
1242
1243         /*
1244          * To be sure waitqueue_active() is not reordered by the CPU
1245          * before the pagetable update, use an explicit SMP memory
1246          * barrier here. PT lock release or up_read(mmap_sem) still
1247          * have release semantics that can allow the
1248          * waitqueue_active() to be reordered before the pte update.
1249          */
1250         smp_mb();
1251
1252         /*
1253          * Use waitqueue_active because it's very frequent to
1254          * change the address space atomically even if there are no
1255          * userfaults yet. So we take the spinlock only when we're
1256          * sure we've userfaults to wake.
1257          */
1258         do {
1259                 seq = read_seqcount_begin(&ctx->refile_seq);
1260                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1261                         waitqueue_active(&ctx->fault_wqh);
1262                 cond_resched();
1263         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1264         if (need_wakeup)
1265                 __wake_userfault(ctx, range);
1266 }
1267
1268 static __always_inline int validate_range(struct mm_struct *mm,
1269                                           __u64 *start, __u64 len)
1270 {
1271         __u64 task_size = mm->task_size;
1272
1273         *start = untagged_addr(*start);
1274
1275         if (*start & ~PAGE_MASK)
1276                 return -EINVAL;
1277         if (len & ~PAGE_MASK)
1278                 return -EINVAL;
1279         if (!len)
1280                 return -EINVAL;
1281         if (*start < mmap_min_addr)
1282                 return -EINVAL;
1283         if (*start >= task_size)
1284                 return -EINVAL;
1285         if (len > task_size - *start)
1286                 return -EINVAL;
1287         return 0;
1288 }
1289
1290 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1291 {
1292         return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1293                 vma_is_shmem(vma);
1294 }
1295
1296 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1297                                 unsigned long arg)
1298 {
1299         struct mm_struct *mm = ctx->mm;
1300         struct vm_area_struct *vma, *prev, *cur;
1301         int ret;
1302         struct uffdio_register uffdio_register;
1303         struct uffdio_register __user *user_uffdio_register;
1304         unsigned long vm_flags, new_flags;
1305         bool found;
1306         bool basic_ioctls;
1307         unsigned long start, end, vma_end;
1308
1309         user_uffdio_register = (struct uffdio_register __user *) arg;
1310
1311         ret = -EFAULT;
1312         if (copy_from_user(&uffdio_register, user_uffdio_register,
1313                            sizeof(uffdio_register)-sizeof(__u64)))
1314                 goto out;
1315
1316         ret = -EINVAL;
1317         if (!uffdio_register.mode)
1318                 goto out;
1319         if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1320                                      UFFDIO_REGISTER_MODE_WP))
1321                 goto out;
1322         vm_flags = 0;
1323         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1324                 vm_flags |= VM_UFFD_MISSING;
1325         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1326                 vm_flags |= VM_UFFD_WP;
1327                 /*
1328                  * FIXME: remove the below error constraint by
1329                  * implementing the wprotect tracking mode.
1330                  */
1331                 ret = -EINVAL;
1332                 goto out;
1333         }
1334
1335         ret = validate_range(mm, &uffdio_register.range.start,
1336                              uffdio_register.range.len);
1337         if (ret)
1338                 goto out;
1339
1340         start = uffdio_register.range.start;
1341         end = start + uffdio_register.range.len;
1342
1343         ret = -ENOMEM;
1344         if (!mmget_not_zero(mm))
1345                 goto out;
1346
1347         down_write(&mm->mmap_sem);
1348         if (!mmget_still_valid(mm))
1349                 goto out_unlock;
1350         vma = find_vma_prev(mm, start, &prev);
1351         if (!vma)
1352                 goto out_unlock;
1353
1354         /* check that there's at least one vma in the range */
1355         ret = -EINVAL;
1356         if (vma->vm_start >= end)
1357                 goto out_unlock;
1358
1359         /*
1360          * If the first vma contains huge pages, make sure start address
1361          * is aligned to huge page size.
1362          */
1363         if (is_vm_hugetlb_page(vma)) {
1364                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1365
1366                 if (start & (vma_hpagesize - 1))
1367                         goto out_unlock;
1368         }
1369
1370         /*
1371          * Search for not compatible vmas.
1372          */
1373         found = false;
1374         basic_ioctls = false;
1375         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1376                 cond_resched();
1377
1378                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1379                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1380
1381                 /* check not compatible vmas */
1382                 ret = -EINVAL;
1383                 if (!vma_can_userfault(cur))
1384                         goto out_unlock;
1385
1386                 /*
1387                  * UFFDIO_COPY will fill file holes even without
1388                  * PROT_WRITE. This check enforces that if this is a
1389                  * MAP_SHARED, the process has write permission to the backing
1390                  * file. If VM_MAYWRITE is set it also enforces that on a
1391                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1392                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1393                  */
1394                 ret = -EPERM;
1395                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1396                         goto out_unlock;
1397
1398                 /*
1399                  * If this vma contains ending address, and huge pages
1400                  * check alignment.
1401                  */
1402                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1403                     end > cur->vm_start) {
1404                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1405
1406                         ret = -EINVAL;
1407
1408                         if (end & (vma_hpagesize - 1))
1409                                 goto out_unlock;
1410                 }
1411
1412                 /*
1413                  * Check that this vma isn't already owned by a
1414                  * different userfaultfd. We can't allow more than one
1415                  * userfaultfd to own a single vma simultaneously or we
1416                  * wouldn't know which one to deliver the userfaults to.
1417                  */
1418                 ret = -EBUSY;
1419                 if (cur->vm_userfaultfd_ctx.ctx &&
1420                     cur->vm_userfaultfd_ctx.ctx != ctx)
1421                         goto out_unlock;
1422
1423                 /*
1424                  * Note vmas containing huge pages
1425                  */
1426                 if (is_vm_hugetlb_page(cur))
1427                         basic_ioctls = true;
1428
1429                 found = true;
1430         }
1431         BUG_ON(!found);
1432
1433         if (vma->vm_start < start)
1434                 prev = vma;
1435
1436         ret = 0;
1437         do {
1438                 cond_resched();
1439
1440                 BUG_ON(!vma_can_userfault(vma));
1441                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1442                        vma->vm_userfaultfd_ctx.ctx != ctx);
1443                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1444
1445                 /*
1446                  * Nothing to do: this vma is already registered into this
1447                  * userfaultfd and with the right tracking mode too.
1448                  */
1449                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1450                     (vma->vm_flags & vm_flags) == vm_flags)
1451                         goto skip;
1452
1453                 if (vma->vm_start > start)
1454                         start = vma->vm_start;
1455                 vma_end = min(end, vma->vm_end);
1456
1457                 new_flags = (vma->vm_flags &
1458                              ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
1459                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1460                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1461                                  vma_policy(vma),
1462                                  ((struct vm_userfaultfd_ctx){ ctx }));
1463                 if (prev) {
1464                         vma = prev;
1465                         goto next;
1466                 }
1467                 if (vma->vm_start < start) {
1468                         ret = split_vma(mm, vma, start, 1);
1469                         if (ret)
1470                                 break;
1471                 }
1472                 if (vma->vm_end > end) {
1473                         ret = split_vma(mm, vma, end, 0);
1474                         if (ret)
1475                                 break;
1476                 }
1477         next:
1478                 /*
1479                  * In the vma_merge() successful mprotect-like case 8:
1480                  * the next vma was merged into the current one and
1481                  * the current one has not been updated yet.
1482                  */
1483                 vma->vm_flags = new_flags;
1484                 vma->vm_userfaultfd_ctx.ctx = ctx;
1485
1486         skip:
1487                 prev = vma;
1488                 start = vma->vm_end;
1489                 vma = vma->vm_next;
1490         } while (vma && vma->vm_start < end);
1491 out_unlock:
1492         up_write(&mm->mmap_sem);
1493         mmput(mm);
1494         if (!ret) {
1495                 /*
1496                  * Now that we scanned all vmas we can already tell
1497                  * userland which ioctls methods are guaranteed to
1498                  * succeed on this range.
1499                  */
1500                 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1501                              UFFD_API_RANGE_IOCTLS,
1502                              &user_uffdio_register->ioctls))
1503                         ret = -EFAULT;
1504         }
1505 out:
1506         return ret;
1507 }
1508
1509 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1510                                   unsigned long arg)
1511 {
1512         struct mm_struct *mm = ctx->mm;
1513         struct vm_area_struct *vma, *prev, *cur;
1514         int ret;
1515         struct uffdio_range uffdio_unregister;
1516         unsigned long new_flags;
1517         bool found;
1518         unsigned long start, end, vma_end;
1519         const void __user *buf = (void __user *)arg;
1520
1521         ret = -EFAULT;
1522         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1523                 goto out;
1524
1525         ret = validate_range(mm, &uffdio_unregister.start,
1526                              uffdio_unregister.len);
1527         if (ret)
1528                 goto out;
1529
1530         start = uffdio_unregister.start;
1531         end = start + uffdio_unregister.len;
1532
1533         ret = -ENOMEM;
1534         if (!mmget_not_zero(mm))
1535                 goto out;
1536
1537         down_write(&mm->mmap_sem);
1538         if (!mmget_still_valid(mm))
1539                 goto out_unlock;
1540         vma = find_vma_prev(mm, start, &prev);
1541         if (!vma)
1542                 goto out_unlock;
1543
1544         /* check that there's at least one vma in the range */
1545         ret = -EINVAL;
1546         if (vma->vm_start >= end)
1547                 goto out_unlock;
1548
1549         /*
1550          * If the first vma contains huge pages, make sure start address
1551          * is aligned to huge page size.
1552          */
1553         if (is_vm_hugetlb_page(vma)) {
1554                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1555
1556                 if (start & (vma_hpagesize - 1))
1557                         goto out_unlock;
1558         }
1559
1560         /*
1561          * Search for not compatible vmas.
1562          */
1563         found = false;
1564         ret = -EINVAL;
1565         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1566                 cond_resched();
1567
1568                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1569                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1570
1571                 /*
1572                  * Check not compatible vmas, not strictly required
1573                  * here as not compatible vmas cannot have an
1574                  * userfaultfd_ctx registered on them, but this
1575                  * provides for more strict behavior to notice
1576                  * unregistration errors.
1577                  */
1578                 if (!vma_can_userfault(cur))
1579                         goto out_unlock;
1580
1581                 found = true;
1582         }
1583         BUG_ON(!found);
1584
1585         if (vma->vm_start < start)
1586                 prev = vma;
1587
1588         ret = 0;
1589         do {
1590                 cond_resched();
1591
1592                 BUG_ON(!vma_can_userfault(vma));
1593
1594                 /*
1595                  * Nothing to do: this vma is already registered into this
1596                  * userfaultfd and with the right tracking mode too.
1597                  */
1598                 if (!vma->vm_userfaultfd_ctx.ctx)
1599                         goto skip;
1600
1601                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1602
1603                 if (vma->vm_start > start)
1604                         start = vma->vm_start;
1605                 vma_end = min(end, vma->vm_end);
1606
1607                 if (userfaultfd_missing(vma)) {
1608                         /*
1609                          * Wake any concurrent pending userfault while
1610                          * we unregister, so they will not hang
1611                          * permanently and it avoids userland to call
1612                          * UFFDIO_WAKE explicitly.
1613                          */
1614                         struct userfaultfd_wake_range range;
1615                         range.start = start;
1616                         range.len = vma_end - start;
1617                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1618                 }
1619
1620                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1621                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1622                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1623                                  vma_policy(vma),
1624                                  NULL_VM_UFFD_CTX);
1625                 if (prev) {
1626                         vma = prev;
1627                         goto next;
1628                 }
1629                 if (vma->vm_start < start) {
1630                         ret = split_vma(mm, vma, start, 1);
1631                         if (ret)
1632                                 break;
1633                 }
1634                 if (vma->vm_end > end) {
1635                         ret = split_vma(mm, vma, end, 0);
1636                         if (ret)
1637                                 break;
1638                 }
1639         next:
1640                 /*
1641                  * In the vma_merge() successful mprotect-like case 8:
1642                  * the next vma was merged into the current one and
1643                  * the current one has not been updated yet.
1644                  */
1645                 vma->vm_flags = new_flags;
1646                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1647
1648         skip:
1649                 prev = vma;
1650                 start = vma->vm_end;
1651                 vma = vma->vm_next;
1652         } while (vma && vma->vm_start < end);
1653 out_unlock:
1654         up_write(&mm->mmap_sem);
1655         mmput(mm);
1656 out:
1657         return ret;
1658 }
1659
1660 /*
1661  * userfaultfd_wake may be used in combination with the
1662  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1663  */
1664 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1665                             unsigned long arg)
1666 {
1667         int ret;
1668         struct uffdio_range uffdio_wake;
1669         struct userfaultfd_wake_range range;
1670         const void __user *buf = (void __user *)arg;
1671
1672         ret = -EFAULT;
1673         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1674                 goto out;
1675
1676         ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1677         if (ret)
1678                 goto out;
1679
1680         range.start = uffdio_wake.start;
1681         range.len = uffdio_wake.len;
1682
1683         /*
1684          * len == 0 means wake all and we don't want to wake all here,
1685          * so check it again to be sure.
1686          */
1687         VM_BUG_ON(!range.len);
1688
1689         wake_userfault(ctx, &range);
1690         ret = 0;
1691
1692 out:
1693         return ret;
1694 }
1695
1696 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1697                             unsigned long arg)
1698 {
1699         __s64 ret;
1700         struct uffdio_copy uffdio_copy;
1701         struct uffdio_copy __user *user_uffdio_copy;
1702         struct userfaultfd_wake_range range;
1703
1704         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1705
1706         ret = -EAGAIN;
1707         if (READ_ONCE(ctx->mmap_changing))
1708                 goto out;
1709
1710         ret = -EFAULT;
1711         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1712                            /* don't copy "copy" last field */
1713                            sizeof(uffdio_copy)-sizeof(__s64)))
1714                 goto out;
1715
1716         ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1717         if (ret)
1718                 goto out;
1719         /*
1720          * double check for wraparound just in case. copy_from_user()
1721          * will later check uffdio_copy.src + uffdio_copy.len to fit
1722          * in the userland range.
1723          */
1724         ret = -EINVAL;
1725         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1726                 goto out;
1727         if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1728                 goto out;
1729         if (mmget_not_zero(ctx->mm)) {
1730                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1731                                    uffdio_copy.len, &ctx->mmap_changing);
1732                 mmput(ctx->mm);
1733         } else {
1734                 return -ESRCH;
1735         }
1736         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1737                 return -EFAULT;
1738         if (ret < 0)
1739                 goto out;
1740         BUG_ON(!ret);
1741         /* len == 0 would wake all */
1742         range.len = ret;
1743         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1744                 range.start = uffdio_copy.dst;
1745                 wake_userfault(ctx, &range);
1746         }
1747         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1748 out:
1749         return ret;
1750 }
1751
1752 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1753                                 unsigned long arg)
1754 {
1755         __s64 ret;
1756         struct uffdio_zeropage uffdio_zeropage;
1757         struct uffdio_zeropage __user *user_uffdio_zeropage;
1758         struct userfaultfd_wake_range range;
1759
1760         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1761
1762         ret = -EAGAIN;
1763         if (READ_ONCE(ctx->mmap_changing))
1764                 goto out;
1765
1766         ret = -EFAULT;
1767         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1768                            /* don't copy "zeropage" last field */
1769                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1770                 goto out;
1771
1772         ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1773                              uffdio_zeropage.range.len);
1774         if (ret)
1775                 goto out;
1776         ret = -EINVAL;
1777         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1778                 goto out;
1779
1780         if (mmget_not_zero(ctx->mm)) {
1781                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1782                                      uffdio_zeropage.range.len,
1783                                      &ctx->mmap_changing);
1784                 mmput(ctx->mm);
1785         } else {
1786                 return -ESRCH;
1787         }
1788         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1789                 return -EFAULT;
1790         if (ret < 0)
1791                 goto out;
1792         /* len == 0 would wake all */
1793         BUG_ON(!ret);
1794         range.len = ret;
1795         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1796                 range.start = uffdio_zeropage.range.start;
1797                 wake_userfault(ctx, &range);
1798         }
1799         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1800 out:
1801         return ret;
1802 }
1803
1804 static inline unsigned int uffd_ctx_features(__u64 user_features)
1805 {
1806         /*
1807          * For the current set of features the bits just coincide
1808          */
1809         return (unsigned int)user_features;
1810 }
1811
1812 /*
1813  * userland asks for a certain API version and we return which bits
1814  * and ioctl commands are implemented in this kernel for such API
1815  * version or -EINVAL if unknown.
1816  */
1817 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1818                            unsigned long arg)
1819 {
1820         struct uffdio_api uffdio_api;
1821         void __user *buf = (void __user *)arg;
1822         int ret;
1823         __u64 features;
1824
1825         ret = -EINVAL;
1826         if (ctx->state != UFFD_STATE_WAIT_API)
1827                 goto out;
1828         ret = -EFAULT;
1829         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1830                 goto out;
1831         features = uffdio_api.features;
1832         ret = -EINVAL;
1833         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1834                 goto err_out;
1835         ret = -EPERM;
1836         if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1837                 goto err_out;
1838         /* report all available features and ioctls to userland */
1839         uffdio_api.features = UFFD_API_FEATURES;
1840         uffdio_api.ioctls = UFFD_API_IOCTLS;
1841         ret = -EFAULT;
1842         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1843                 goto out;
1844         ctx->state = UFFD_STATE_RUNNING;
1845         /* only enable the requested features for this uffd context */
1846         ctx->features = uffd_ctx_features(features);
1847         ret = 0;
1848 out:
1849         return ret;
1850 err_out:
1851         memset(&uffdio_api, 0, sizeof(uffdio_api));
1852         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1853                 ret = -EFAULT;
1854         goto out;
1855 }
1856
1857 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1858                               unsigned long arg)
1859 {
1860         int ret = -EINVAL;
1861         struct userfaultfd_ctx *ctx = file->private_data;
1862
1863         if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1864                 return -EINVAL;
1865
1866         switch(cmd) {
1867         case UFFDIO_API:
1868                 ret = userfaultfd_api(ctx, arg);
1869                 break;
1870         case UFFDIO_REGISTER:
1871                 ret = userfaultfd_register(ctx, arg);
1872                 break;
1873         case UFFDIO_UNREGISTER:
1874                 ret = userfaultfd_unregister(ctx, arg);
1875                 break;
1876         case UFFDIO_WAKE:
1877                 ret = userfaultfd_wake(ctx, arg);
1878                 break;
1879         case UFFDIO_COPY:
1880                 ret = userfaultfd_copy(ctx, arg);
1881                 break;
1882         case UFFDIO_ZEROPAGE:
1883                 ret = userfaultfd_zeropage(ctx, arg);
1884                 break;
1885         }
1886         return ret;
1887 }
1888
1889 #ifdef CONFIG_PROC_FS
1890 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1891 {
1892         struct userfaultfd_ctx *ctx = f->private_data;
1893         wait_queue_entry_t *wq;
1894         unsigned long pending = 0, total = 0;
1895
1896         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1897         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1898                 pending++;
1899                 total++;
1900         }
1901         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1902                 total++;
1903         }
1904         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1905
1906         /*
1907          * If more protocols will be added, there will be all shown
1908          * separated by a space. Like this:
1909          *      protocols: aa:... bb:...
1910          */
1911         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1912                    pending, total, UFFD_API, ctx->features,
1913                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1914 }
1915 #endif
1916
1917 static const struct file_operations userfaultfd_fops = {
1918 #ifdef CONFIG_PROC_FS
1919         .show_fdinfo    = userfaultfd_show_fdinfo,
1920 #endif
1921         .release        = userfaultfd_release,
1922         .poll           = userfaultfd_poll,
1923         .read           = userfaultfd_read,
1924         .unlocked_ioctl = userfaultfd_ioctl,
1925         .compat_ioctl   = compat_ptr_ioctl,
1926         .llseek         = noop_llseek,
1927 };
1928
1929 static void init_once_userfaultfd_ctx(void *mem)
1930 {
1931         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1932
1933         init_waitqueue_head(&ctx->fault_pending_wqh);
1934         init_waitqueue_head(&ctx->fault_wqh);
1935         init_waitqueue_head(&ctx->event_wqh);
1936         init_waitqueue_head(&ctx->fd_wqh);
1937         seqcount_init(&ctx->refile_seq);
1938 }
1939
1940 SYSCALL_DEFINE1(userfaultfd, int, flags)
1941 {
1942         struct userfaultfd_ctx *ctx;
1943         int fd;
1944
1945         if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1946                 return -EPERM;
1947
1948         BUG_ON(!current->mm);
1949
1950         /* Check the UFFD_* constants for consistency.  */
1951         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1952         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1953
1954         if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1955                 return -EINVAL;
1956
1957         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1958         if (!ctx)
1959                 return -ENOMEM;
1960
1961         refcount_set(&ctx->refcount, 1);
1962         ctx->flags = flags;
1963         ctx->features = 0;
1964         ctx->state = UFFD_STATE_WAIT_API;
1965         ctx->released = false;
1966         ctx->mmap_changing = false;
1967         ctx->mm = current->mm;
1968         /* prevent the mm struct to be freed */
1969         mmgrab(ctx->mm);
1970
1971         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1972                               O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1973         if (fd < 0) {
1974                 mmdrop(ctx->mm);
1975                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1976         }
1977         return fd;
1978 }
1979
1980 static int __init userfaultfd_init(void)
1981 {
1982         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1983                                                 sizeof(struct userfaultfd_ctx),
1984                                                 0,
1985                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1986                                                 init_once_userfaultfd_ctx);
1987         return 0;
1988 }
1989 __initcall(userfaultfd_init);