Merge branch 'for-5.12/intel-ish' into for-linus
[linux-2.6-microblaze.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    https://www.ecma.ch/
15  *    https://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68         VDS_POS_PRIMARY_VOL_DESC,
69         VDS_POS_UNALLOC_SPACE_DESC,
70         VDS_POS_LOGICAL_VOL_DESC,
71         VDS_POS_IMP_USE_VOL_DESC,
72         VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET         32768
76 #define VSD_MAX_SECTOR_OFFSET           0x800000
77
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static void udf_open_lvid(struct super_block *);
96 static void udf_close_lvid(struct super_block *);
97 static unsigned int udf_count_free(struct super_block *);
98 static int udf_statfs(struct dentry *, struct kstatfs *);
99 static int udf_show_options(struct seq_file *, struct dentry *);
100
101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
102 {
103         struct logicalVolIntegrityDesc *lvid;
104         unsigned int partnum;
105         unsigned int offset;
106
107         if (!UDF_SB(sb)->s_lvid_bh)
108                 return NULL;
109         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
110         partnum = le32_to_cpu(lvid->numOfPartitions);
111         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
112              offsetof(struct logicalVolIntegrityDesc, impUse)) /
113              (2 * sizeof(uint32_t)) < partnum) {
114                 udf_err(sb, "Logical volume integrity descriptor corrupted "
115                         "(numOfPartitions = %u)!\n", partnum);
116                 return NULL;
117         }
118         /* The offset is to skip freeSpaceTable and sizeTable arrays */
119         offset = partnum * 2 * sizeof(uint32_t);
120         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
121 }
122
123 /* UDF filesystem type */
124 static struct dentry *udf_mount(struct file_system_type *fs_type,
125                       int flags, const char *dev_name, void *data)
126 {
127         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
128 }
129
130 static struct file_system_type udf_fstype = {
131         .owner          = THIS_MODULE,
132         .name           = "udf",
133         .mount          = udf_mount,
134         .kill_sb        = kill_block_super,
135         .fs_flags       = FS_REQUIRES_DEV,
136 };
137 MODULE_ALIAS_FS("udf");
138
139 static struct kmem_cache *udf_inode_cachep;
140
141 static struct inode *udf_alloc_inode(struct super_block *sb)
142 {
143         struct udf_inode_info *ei;
144         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
145         if (!ei)
146                 return NULL;
147
148         ei->i_unique = 0;
149         ei->i_lenExtents = 0;
150         ei->i_lenStreams = 0;
151         ei->i_next_alloc_block = 0;
152         ei->i_next_alloc_goal = 0;
153         ei->i_strat4096 = 0;
154         ei->i_streamdir = 0;
155         init_rwsem(&ei->i_data_sem);
156         ei->cached_extent.lstart = -1;
157         spin_lock_init(&ei->i_extent_cache_lock);
158
159         return &ei->vfs_inode;
160 }
161
162 static void udf_free_in_core_inode(struct inode *inode)
163 {
164         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
165 }
166
167 static void init_once(void *foo)
168 {
169         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
170
171         ei->i_data = NULL;
172         inode_init_once(&ei->vfs_inode);
173 }
174
175 static int __init init_inodecache(void)
176 {
177         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
178                                              sizeof(struct udf_inode_info),
179                                              0, (SLAB_RECLAIM_ACCOUNT |
180                                                  SLAB_MEM_SPREAD |
181                                                  SLAB_ACCOUNT),
182                                              init_once);
183         if (!udf_inode_cachep)
184                 return -ENOMEM;
185         return 0;
186 }
187
188 static void destroy_inodecache(void)
189 {
190         /*
191          * Make sure all delayed rcu free inodes are flushed before we
192          * destroy cache.
193          */
194         rcu_barrier();
195         kmem_cache_destroy(udf_inode_cachep);
196 }
197
198 /* Superblock operations */
199 static const struct super_operations udf_sb_ops = {
200         .alloc_inode    = udf_alloc_inode,
201         .free_inode     = udf_free_in_core_inode,
202         .write_inode    = udf_write_inode,
203         .evict_inode    = udf_evict_inode,
204         .put_super      = udf_put_super,
205         .sync_fs        = udf_sync_fs,
206         .statfs         = udf_statfs,
207         .remount_fs     = udf_remount_fs,
208         .show_options   = udf_show_options,
209 };
210
211 struct udf_options {
212         unsigned char novrs;
213         unsigned int blocksize;
214         unsigned int session;
215         unsigned int lastblock;
216         unsigned int anchor;
217         unsigned int flags;
218         umode_t umask;
219         kgid_t gid;
220         kuid_t uid;
221         umode_t fmode;
222         umode_t dmode;
223         struct nls_table *nls_map;
224 };
225
226 static int __init init_udf_fs(void)
227 {
228         int err;
229
230         err = init_inodecache();
231         if (err)
232                 goto out1;
233         err = register_filesystem(&udf_fstype);
234         if (err)
235                 goto out;
236
237         return 0;
238
239 out:
240         destroy_inodecache();
241
242 out1:
243         return err;
244 }
245
246 static void __exit exit_udf_fs(void)
247 {
248         unregister_filesystem(&udf_fstype);
249         destroy_inodecache();
250 }
251
252 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
253 {
254         struct udf_sb_info *sbi = UDF_SB(sb);
255
256         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
257         if (!sbi->s_partmaps) {
258                 sbi->s_partitions = 0;
259                 return -ENOMEM;
260         }
261
262         sbi->s_partitions = count;
263         return 0;
264 }
265
266 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
267 {
268         int i;
269         int nr_groups = bitmap->s_nr_groups;
270
271         for (i = 0; i < nr_groups; i++)
272                 brelse(bitmap->s_block_bitmap[i]);
273
274         kvfree(bitmap);
275 }
276
277 static void udf_free_partition(struct udf_part_map *map)
278 {
279         int i;
280         struct udf_meta_data *mdata;
281
282         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
283                 iput(map->s_uspace.s_table);
284         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
285                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
286         if (map->s_partition_type == UDF_SPARABLE_MAP15)
287                 for (i = 0; i < 4; i++)
288                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
289         else if (map->s_partition_type == UDF_METADATA_MAP25) {
290                 mdata = &map->s_type_specific.s_metadata;
291                 iput(mdata->s_metadata_fe);
292                 mdata->s_metadata_fe = NULL;
293
294                 iput(mdata->s_mirror_fe);
295                 mdata->s_mirror_fe = NULL;
296
297                 iput(mdata->s_bitmap_fe);
298                 mdata->s_bitmap_fe = NULL;
299         }
300 }
301
302 static void udf_sb_free_partitions(struct super_block *sb)
303 {
304         struct udf_sb_info *sbi = UDF_SB(sb);
305         int i;
306
307         if (!sbi->s_partmaps)
308                 return;
309         for (i = 0; i < sbi->s_partitions; i++)
310                 udf_free_partition(&sbi->s_partmaps[i]);
311         kfree(sbi->s_partmaps);
312         sbi->s_partmaps = NULL;
313 }
314
315 static int udf_show_options(struct seq_file *seq, struct dentry *root)
316 {
317         struct super_block *sb = root->d_sb;
318         struct udf_sb_info *sbi = UDF_SB(sb);
319
320         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
321                 seq_puts(seq, ",nostrict");
322         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
323                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
324         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
325                 seq_puts(seq, ",unhide");
326         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
327                 seq_puts(seq, ",undelete");
328         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
329                 seq_puts(seq, ",noadinicb");
330         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
331                 seq_puts(seq, ",shortad");
332         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
333                 seq_puts(seq, ",uid=forget");
334         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
335                 seq_puts(seq, ",gid=forget");
336         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
337                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
338         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
339                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
340         if (sbi->s_umask != 0)
341                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
342         if (sbi->s_fmode != UDF_INVALID_MODE)
343                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
344         if (sbi->s_dmode != UDF_INVALID_MODE)
345                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
346         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
347                 seq_printf(seq, ",session=%d", sbi->s_session);
348         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
349                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
350         if (sbi->s_anchor != 0)
351                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
352         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
353                 seq_puts(seq, ",utf8");
354         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
355                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
356
357         return 0;
358 }
359
360 /*
361  * udf_parse_options
362  *
363  * PURPOSE
364  *      Parse mount options.
365  *
366  * DESCRIPTION
367  *      The following mount options are supported:
368  *
369  *      gid=            Set the default group.
370  *      umask=          Set the default umask.
371  *      mode=           Set the default file permissions.
372  *      dmode=          Set the default directory permissions.
373  *      uid=            Set the default user.
374  *      bs=             Set the block size.
375  *      unhide          Show otherwise hidden files.
376  *      undelete        Show deleted files in lists.
377  *      adinicb         Embed data in the inode (default)
378  *      noadinicb       Don't embed data in the inode
379  *      shortad         Use short ad's
380  *      longad          Use long ad's (default)
381  *      nostrict        Unset strict conformance
382  *      iocharset=      Set the NLS character set
383  *
384  *      The remaining are for debugging and disaster recovery:
385  *
386  *      novrs           Skip volume sequence recognition
387  *
388  *      The following expect a offset from 0.
389  *
390  *      session=        Set the CDROM session (default= last session)
391  *      anchor=         Override standard anchor location. (default= 256)
392  *      volume=         Override the VolumeDesc location. (unused)
393  *      partition=      Override the PartitionDesc location. (unused)
394  *      lastblock=      Set the last block of the filesystem/
395  *
396  *      The following expect a offset from the partition root.
397  *
398  *      fileset=        Override the fileset block location. (unused)
399  *      rootdir=        Override the root directory location. (unused)
400  *              WARNING: overriding the rootdir to a non-directory may
401  *              yield highly unpredictable results.
402  *
403  * PRE-CONDITIONS
404  *      options         Pointer to mount options string.
405  *      uopts           Pointer to mount options variable.
406  *
407  * POST-CONDITIONS
408  *      <return>        1       Mount options parsed okay.
409  *      <return>        0       Error parsing mount options.
410  *
411  * HISTORY
412  *      July 1, 1997 - Andrew E. Mileski
413  *      Written, tested, and released.
414  */
415
416 enum {
417         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
418         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
419         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
420         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
421         Opt_rootdir, Opt_utf8, Opt_iocharset,
422         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
423         Opt_fmode, Opt_dmode
424 };
425
426 static const match_table_t tokens = {
427         {Opt_novrs,     "novrs"},
428         {Opt_nostrict,  "nostrict"},
429         {Opt_bs,        "bs=%u"},
430         {Opt_unhide,    "unhide"},
431         {Opt_undelete,  "undelete"},
432         {Opt_noadinicb, "noadinicb"},
433         {Opt_adinicb,   "adinicb"},
434         {Opt_shortad,   "shortad"},
435         {Opt_longad,    "longad"},
436         {Opt_uforget,   "uid=forget"},
437         {Opt_uignore,   "uid=ignore"},
438         {Opt_gforget,   "gid=forget"},
439         {Opt_gignore,   "gid=ignore"},
440         {Opt_gid,       "gid=%u"},
441         {Opt_uid,       "uid=%u"},
442         {Opt_umask,     "umask=%o"},
443         {Opt_session,   "session=%u"},
444         {Opt_lastblock, "lastblock=%u"},
445         {Opt_anchor,    "anchor=%u"},
446         {Opt_volume,    "volume=%u"},
447         {Opt_partition, "partition=%u"},
448         {Opt_fileset,   "fileset=%u"},
449         {Opt_rootdir,   "rootdir=%u"},
450         {Opt_utf8,      "utf8"},
451         {Opt_iocharset, "iocharset=%s"},
452         {Opt_fmode,     "mode=%o"},
453         {Opt_dmode,     "dmode=%o"},
454         {Opt_err,       NULL}
455 };
456
457 static int udf_parse_options(char *options, struct udf_options *uopt,
458                              bool remount)
459 {
460         char *p;
461         int option;
462
463         uopt->novrs = 0;
464         uopt->session = 0xFFFFFFFF;
465         uopt->lastblock = 0;
466         uopt->anchor = 0;
467
468         if (!options)
469                 return 1;
470
471         while ((p = strsep(&options, ",")) != NULL) {
472                 substring_t args[MAX_OPT_ARGS];
473                 int token;
474                 unsigned n;
475                 if (!*p)
476                         continue;
477
478                 token = match_token(p, tokens, args);
479                 switch (token) {
480                 case Opt_novrs:
481                         uopt->novrs = 1;
482                         break;
483                 case Opt_bs:
484                         if (match_int(&args[0], &option))
485                                 return 0;
486                         n = option;
487                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
488                                 return 0;
489                         uopt->blocksize = n;
490                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
491                         break;
492                 case Opt_unhide:
493                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
494                         break;
495                 case Opt_undelete:
496                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
497                         break;
498                 case Opt_noadinicb:
499                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
500                         break;
501                 case Opt_adinicb:
502                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
503                         break;
504                 case Opt_shortad:
505                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
506                         break;
507                 case Opt_longad:
508                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
509                         break;
510                 case Opt_gid:
511                         if (match_int(args, &option))
512                                 return 0;
513                         uopt->gid = make_kgid(current_user_ns(), option);
514                         if (!gid_valid(uopt->gid))
515                                 return 0;
516                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
517                         break;
518                 case Opt_uid:
519                         if (match_int(args, &option))
520                                 return 0;
521                         uopt->uid = make_kuid(current_user_ns(), option);
522                         if (!uid_valid(uopt->uid))
523                                 return 0;
524                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
525                         break;
526                 case Opt_umask:
527                         if (match_octal(args, &option))
528                                 return 0;
529                         uopt->umask = option;
530                         break;
531                 case Opt_nostrict:
532                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
533                         break;
534                 case Opt_session:
535                         if (match_int(args, &option))
536                                 return 0;
537                         uopt->session = option;
538                         if (!remount)
539                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
540                         break;
541                 case Opt_lastblock:
542                         if (match_int(args, &option))
543                                 return 0;
544                         uopt->lastblock = option;
545                         if (!remount)
546                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
547                         break;
548                 case Opt_anchor:
549                         if (match_int(args, &option))
550                                 return 0;
551                         uopt->anchor = option;
552                         break;
553                 case Opt_volume:
554                 case Opt_partition:
555                 case Opt_fileset:
556                 case Opt_rootdir:
557                         /* Ignored (never implemented properly) */
558                         break;
559                 case Opt_utf8:
560                         uopt->flags |= (1 << UDF_FLAG_UTF8);
561                         break;
562                 case Opt_iocharset:
563                         if (!remount) {
564                                 if (uopt->nls_map)
565                                         unload_nls(uopt->nls_map);
566                                 /*
567                                  * load_nls() failure is handled later in
568                                  * udf_fill_super() after all options are
569                                  * parsed.
570                                  */
571                                 uopt->nls_map = load_nls(args[0].from);
572                                 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
573                         }
574                         break;
575                 case Opt_uforget:
576                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
577                         break;
578                 case Opt_uignore:
579                 case Opt_gignore:
580                         /* These options are superseeded by uid=<number> */
581                         break;
582                 case Opt_gforget:
583                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
584                         break;
585                 case Opt_fmode:
586                         if (match_octal(args, &option))
587                                 return 0;
588                         uopt->fmode = option & 0777;
589                         break;
590                 case Opt_dmode:
591                         if (match_octal(args, &option))
592                                 return 0;
593                         uopt->dmode = option & 0777;
594                         break;
595                 default:
596                         pr_err("bad mount option \"%s\" or missing value\n", p);
597                         return 0;
598                 }
599         }
600         return 1;
601 }
602
603 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
604 {
605         struct udf_options uopt;
606         struct udf_sb_info *sbi = UDF_SB(sb);
607         int error = 0;
608
609         if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
610                 return -EACCES;
611
612         sync_filesystem(sb);
613
614         uopt.flags = sbi->s_flags;
615         uopt.uid   = sbi->s_uid;
616         uopt.gid   = sbi->s_gid;
617         uopt.umask = sbi->s_umask;
618         uopt.fmode = sbi->s_fmode;
619         uopt.dmode = sbi->s_dmode;
620         uopt.nls_map = NULL;
621
622         if (!udf_parse_options(options, &uopt, true))
623                 return -EINVAL;
624
625         write_lock(&sbi->s_cred_lock);
626         sbi->s_flags = uopt.flags;
627         sbi->s_uid   = uopt.uid;
628         sbi->s_gid   = uopt.gid;
629         sbi->s_umask = uopt.umask;
630         sbi->s_fmode = uopt.fmode;
631         sbi->s_dmode = uopt.dmode;
632         write_unlock(&sbi->s_cred_lock);
633
634         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
635                 goto out_unlock;
636
637         if (*flags & SB_RDONLY)
638                 udf_close_lvid(sb);
639         else
640                 udf_open_lvid(sb);
641
642 out_unlock:
643         return error;
644 }
645
646 /*
647  * Check VSD descriptor. Returns -1 in case we are at the end of volume
648  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
649  * we found one of NSR descriptors we are looking for.
650  */
651 static int identify_vsd(const struct volStructDesc *vsd)
652 {
653         int ret = 0;
654
655         if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
656                 switch (vsd->structType) {
657                 case 0:
658                         udf_debug("ISO9660 Boot Record found\n");
659                         break;
660                 case 1:
661                         udf_debug("ISO9660 Primary Volume Descriptor found\n");
662                         break;
663                 case 2:
664                         udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
665                         break;
666                 case 3:
667                         udf_debug("ISO9660 Volume Partition Descriptor found\n");
668                         break;
669                 case 255:
670                         udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
671                         break;
672                 default:
673                         udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
674                         break;
675                 }
676         } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
677                 ; /* ret = 0 */
678         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
679                 ret = 1;
680         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
681                 ret = 1;
682         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
683                 ; /* ret = 0 */
684         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
685                 ; /* ret = 0 */
686         else {
687                 /* TEA01 or invalid id : end of volume recognition area */
688                 ret = -1;
689         }
690
691         return ret;
692 }
693
694 /*
695  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
696  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
697  * @return   1 if NSR02 or NSR03 found,
698  *          -1 if first sector read error, 0 otherwise
699  */
700 static int udf_check_vsd(struct super_block *sb)
701 {
702         struct volStructDesc *vsd = NULL;
703         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
704         int sectorsize;
705         struct buffer_head *bh = NULL;
706         int nsr = 0;
707         struct udf_sb_info *sbi;
708         loff_t session_offset;
709
710         sbi = UDF_SB(sb);
711         if (sb->s_blocksize < sizeof(struct volStructDesc))
712                 sectorsize = sizeof(struct volStructDesc);
713         else
714                 sectorsize = sb->s_blocksize;
715
716         session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
717         sector += session_offset;
718
719         udf_debug("Starting at sector %u (%lu byte sectors)\n",
720                   (unsigned int)(sector >> sb->s_blocksize_bits),
721                   sb->s_blocksize);
722         /* Process the sequence (if applicable). The hard limit on the sector
723          * offset is arbitrary, hopefully large enough so that all valid UDF
724          * filesystems will be recognised. There is no mention of an upper
725          * bound to the size of the volume recognition area in the standard.
726          *  The limit will prevent the code to read all the sectors of a
727          * specially crafted image (like a bluray disc full of CD001 sectors),
728          * potentially causing minutes or even hours of uninterruptible I/O
729          * activity. This actually happened with uninitialised SSD partitions
730          * (all 0xFF) before the check for the limit and all valid IDs were
731          * added */
732         for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
733                 /* Read a block */
734                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
735                 if (!bh)
736                         break;
737
738                 vsd = (struct volStructDesc *)(bh->b_data +
739                                               (sector & (sb->s_blocksize - 1)));
740                 nsr = identify_vsd(vsd);
741                 /* Found NSR or end? */
742                 if (nsr) {
743                         brelse(bh);
744                         break;
745                 }
746                 /*
747                  * Special handling for improperly formatted VRS (e.g., Win10)
748                  * where components are separated by 2048 bytes even though
749                  * sectors are 4K
750                  */
751                 if (sb->s_blocksize == 4096) {
752                         nsr = identify_vsd(vsd + 1);
753                         /* Ignore unknown IDs... */
754                         if (nsr < 0)
755                                 nsr = 0;
756                 }
757                 brelse(bh);
758         }
759
760         if (nsr > 0)
761                 return 1;
762         else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
763                 return -1;
764         else
765                 return 0;
766 }
767
768 static int udf_verify_domain_identifier(struct super_block *sb,
769                                         struct regid *ident, char *dname)
770 {
771         struct domainIdentSuffix *suffix;
772
773         if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
774                 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
775                 goto force_ro;
776         }
777         if (ident->flags & ENTITYID_FLAGS_DIRTY) {
778                 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
779                          dname);
780                 goto force_ro;
781         }
782         suffix = (struct domainIdentSuffix *)ident->identSuffix;
783         if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
784             (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
785                 if (!sb_rdonly(sb)) {
786                         udf_warn(sb, "Descriptor for %s marked write protected."
787                                  " Forcing read only mount.\n", dname);
788                 }
789                 goto force_ro;
790         }
791         return 0;
792
793 force_ro:
794         if (!sb_rdonly(sb))
795                 return -EACCES;
796         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
797         return 0;
798 }
799
800 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
801                             struct kernel_lb_addr *root)
802 {
803         int ret;
804
805         ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
806         if (ret < 0)
807                 return ret;
808
809         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
810         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
811
812         udf_debug("Rootdir at block=%u, partition=%u\n",
813                   root->logicalBlockNum, root->partitionReferenceNum);
814         return 0;
815 }
816
817 static int udf_find_fileset(struct super_block *sb,
818                             struct kernel_lb_addr *fileset,
819                             struct kernel_lb_addr *root)
820 {
821         struct buffer_head *bh = NULL;
822         uint16_t ident;
823         int ret;
824
825         if (fileset->logicalBlockNum == 0xFFFFFFFF &&
826             fileset->partitionReferenceNum == 0xFFFF)
827                 return -EINVAL;
828
829         bh = udf_read_ptagged(sb, fileset, 0, &ident);
830         if (!bh)
831                 return -EIO;
832         if (ident != TAG_IDENT_FSD) {
833                 brelse(bh);
834                 return -EINVAL;
835         }
836
837         udf_debug("Fileset at block=%u, partition=%u\n",
838                   fileset->logicalBlockNum, fileset->partitionReferenceNum);
839
840         UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
841         ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
842         brelse(bh);
843         return ret;
844 }
845
846 /*
847  * Load primary Volume Descriptor Sequence
848  *
849  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
850  * should be tried.
851  */
852 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
853 {
854         struct primaryVolDesc *pvoldesc;
855         uint8_t *outstr;
856         struct buffer_head *bh;
857         uint16_t ident;
858         int ret;
859         struct timestamp *ts;
860
861         outstr = kmalloc(128, GFP_NOFS);
862         if (!outstr)
863                 return -ENOMEM;
864
865         bh = udf_read_tagged(sb, block, block, &ident);
866         if (!bh) {
867                 ret = -EAGAIN;
868                 goto out2;
869         }
870
871         if (ident != TAG_IDENT_PVD) {
872                 ret = -EIO;
873                 goto out_bh;
874         }
875
876         pvoldesc = (struct primaryVolDesc *)bh->b_data;
877
878         udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
879                               pvoldesc->recordingDateAndTime);
880         ts = &pvoldesc->recordingDateAndTime;
881         udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
882                   le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
883                   ts->minute, le16_to_cpu(ts->typeAndTimezone));
884
885         ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
886         if (ret < 0) {
887                 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
888                 pr_warn("incorrect volume identification, setting to "
889                         "'InvalidName'\n");
890         } else {
891                 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
892         }
893         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
894
895         ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
896         if (ret < 0) {
897                 ret = 0;
898                 goto out_bh;
899         }
900         outstr[ret] = 0;
901         udf_debug("volSetIdent[] = '%s'\n", outstr);
902
903         ret = 0;
904 out_bh:
905         brelse(bh);
906 out2:
907         kfree(outstr);
908         return ret;
909 }
910
911 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
912                                         u32 meta_file_loc, u32 partition_ref)
913 {
914         struct kernel_lb_addr addr;
915         struct inode *metadata_fe;
916
917         addr.logicalBlockNum = meta_file_loc;
918         addr.partitionReferenceNum = partition_ref;
919
920         metadata_fe = udf_iget_special(sb, &addr);
921
922         if (IS_ERR(metadata_fe)) {
923                 udf_warn(sb, "metadata inode efe not found\n");
924                 return metadata_fe;
925         }
926         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
927                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
928                 iput(metadata_fe);
929                 return ERR_PTR(-EIO);
930         }
931
932         return metadata_fe;
933 }
934
935 static int udf_load_metadata_files(struct super_block *sb, int partition,
936                                    int type1_index)
937 {
938         struct udf_sb_info *sbi = UDF_SB(sb);
939         struct udf_part_map *map;
940         struct udf_meta_data *mdata;
941         struct kernel_lb_addr addr;
942         struct inode *fe;
943
944         map = &sbi->s_partmaps[partition];
945         mdata = &map->s_type_specific.s_metadata;
946         mdata->s_phys_partition_ref = type1_index;
947
948         /* metadata address */
949         udf_debug("Metadata file location: block = %u part = %u\n",
950                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
951
952         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
953                                          mdata->s_phys_partition_ref);
954         if (IS_ERR(fe)) {
955                 /* mirror file entry */
956                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
957                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
958
959                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
960                                                  mdata->s_phys_partition_ref);
961
962                 if (IS_ERR(fe)) {
963                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
964                         return PTR_ERR(fe);
965                 }
966                 mdata->s_mirror_fe = fe;
967         } else
968                 mdata->s_metadata_fe = fe;
969
970
971         /*
972          * bitmap file entry
973          * Note:
974          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
975         */
976         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
977                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
978                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
979
980                 udf_debug("Bitmap file location: block = %u part = %u\n",
981                           addr.logicalBlockNum, addr.partitionReferenceNum);
982
983                 fe = udf_iget_special(sb, &addr);
984                 if (IS_ERR(fe)) {
985                         if (sb_rdonly(sb))
986                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
987                         else {
988                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
989                                 return PTR_ERR(fe);
990                         }
991                 } else
992                         mdata->s_bitmap_fe = fe;
993         }
994
995         udf_debug("udf_load_metadata_files Ok\n");
996         return 0;
997 }
998
999 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1000 {
1001         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1002         return DIV_ROUND_UP(map->s_partition_len +
1003                             (sizeof(struct spaceBitmapDesc) << 3),
1004                             sb->s_blocksize * 8);
1005 }
1006
1007 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1008 {
1009         struct udf_bitmap *bitmap;
1010         int nr_groups = udf_compute_nr_groups(sb, index);
1011
1012         bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1013                           GFP_KERNEL);
1014         if (!bitmap)
1015                 return NULL;
1016
1017         bitmap->s_nr_groups = nr_groups;
1018         return bitmap;
1019 }
1020
1021 static int check_partition_desc(struct super_block *sb,
1022                                 struct partitionDesc *p,
1023                                 struct udf_part_map *map)
1024 {
1025         bool umap, utable, fmap, ftable;
1026         struct partitionHeaderDesc *phd;
1027
1028         switch (le32_to_cpu(p->accessType)) {
1029         case PD_ACCESS_TYPE_READ_ONLY:
1030         case PD_ACCESS_TYPE_WRITE_ONCE:
1031         case PD_ACCESS_TYPE_NONE:
1032                 goto force_ro;
1033         }
1034
1035         /* No Partition Header Descriptor? */
1036         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1037             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1038                 goto force_ro;
1039
1040         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1041         utable = phd->unallocSpaceTable.extLength;
1042         umap = phd->unallocSpaceBitmap.extLength;
1043         ftable = phd->freedSpaceTable.extLength;
1044         fmap = phd->freedSpaceBitmap.extLength;
1045
1046         /* No allocation info? */
1047         if (!utable && !umap && !ftable && !fmap)
1048                 goto force_ro;
1049
1050         /* We don't support blocks that require erasing before overwrite */
1051         if (ftable || fmap)
1052                 goto force_ro;
1053         /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1054         if (utable && umap)
1055                 goto force_ro;
1056
1057         if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1058             map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1059             map->s_partition_type == UDF_METADATA_MAP25)
1060                 goto force_ro;
1061
1062         return 0;
1063 force_ro:
1064         if (!sb_rdonly(sb))
1065                 return -EACCES;
1066         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1067         return 0;
1068 }
1069
1070 static int udf_fill_partdesc_info(struct super_block *sb,
1071                 struct partitionDesc *p, int p_index)
1072 {
1073         struct udf_part_map *map;
1074         struct udf_sb_info *sbi = UDF_SB(sb);
1075         struct partitionHeaderDesc *phd;
1076         int err;
1077
1078         map = &sbi->s_partmaps[p_index];
1079
1080         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1081         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1082
1083         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1084                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1085         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1086                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1087         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1088                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1089         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1090                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1091
1092         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1093                   p_index, map->s_partition_type,
1094                   map->s_partition_root, map->s_partition_len);
1095
1096         err = check_partition_desc(sb, p, map);
1097         if (err)
1098                 return err;
1099
1100         /*
1101          * Skip loading allocation info it we cannot ever write to the fs.
1102          * This is a correctness thing as we may have decided to force ro mount
1103          * to avoid allocation info we don't support.
1104          */
1105         if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1106                 return 0;
1107
1108         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1109         if (phd->unallocSpaceTable.extLength) {
1110                 struct kernel_lb_addr loc = {
1111                         .logicalBlockNum = le32_to_cpu(
1112                                 phd->unallocSpaceTable.extPosition),
1113                         .partitionReferenceNum = p_index,
1114                 };
1115                 struct inode *inode;
1116
1117                 inode = udf_iget_special(sb, &loc);
1118                 if (IS_ERR(inode)) {
1119                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1120                                   p_index);
1121                         return PTR_ERR(inode);
1122                 }
1123                 map->s_uspace.s_table = inode;
1124                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1125                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1126                           p_index, map->s_uspace.s_table->i_ino);
1127         }
1128
1129         if (phd->unallocSpaceBitmap.extLength) {
1130                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1131                 if (!bitmap)
1132                         return -ENOMEM;
1133                 map->s_uspace.s_bitmap = bitmap;
1134                 bitmap->s_extPosition = le32_to_cpu(
1135                                 phd->unallocSpaceBitmap.extPosition);
1136                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1137                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1138                           p_index, bitmap->s_extPosition);
1139         }
1140
1141         return 0;
1142 }
1143
1144 static void udf_find_vat_block(struct super_block *sb, int p_index,
1145                                int type1_index, sector_t start_block)
1146 {
1147         struct udf_sb_info *sbi = UDF_SB(sb);
1148         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1149         sector_t vat_block;
1150         struct kernel_lb_addr ino;
1151         struct inode *inode;
1152
1153         /*
1154          * VAT file entry is in the last recorded block. Some broken disks have
1155          * it a few blocks before so try a bit harder...
1156          */
1157         ino.partitionReferenceNum = type1_index;
1158         for (vat_block = start_block;
1159              vat_block >= map->s_partition_root &&
1160              vat_block >= start_block - 3; vat_block--) {
1161                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1162                 inode = udf_iget_special(sb, &ino);
1163                 if (!IS_ERR(inode)) {
1164                         sbi->s_vat_inode = inode;
1165                         break;
1166                 }
1167         }
1168 }
1169
1170 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1171 {
1172         struct udf_sb_info *sbi = UDF_SB(sb);
1173         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1174         struct buffer_head *bh = NULL;
1175         struct udf_inode_info *vati;
1176         uint32_t pos;
1177         struct virtualAllocationTable20 *vat20;
1178         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1179                           sb->s_blocksize_bits;
1180
1181         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1182         if (!sbi->s_vat_inode &&
1183             sbi->s_last_block != blocks - 1) {
1184                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1185                           (unsigned long)sbi->s_last_block,
1186                           (unsigned long)blocks - 1);
1187                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1188         }
1189         if (!sbi->s_vat_inode)
1190                 return -EIO;
1191
1192         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1193                 map->s_type_specific.s_virtual.s_start_offset = 0;
1194                 map->s_type_specific.s_virtual.s_num_entries =
1195                         (sbi->s_vat_inode->i_size - 36) >> 2;
1196         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1197                 vati = UDF_I(sbi->s_vat_inode);
1198                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1199                         pos = udf_block_map(sbi->s_vat_inode, 0);
1200                         bh = sb_bread(sb, pos);
1201                         if (!bh)
1202                                 return -EIO;
1203                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1204                 } else {
1205                         vat20 = (struct virtualAllocationTable20 *)
1206                                                         vati->i_data;
1207                 }
1208
1209                 map->s_type_specific.s_virtual.s_start_offset =
1210                         le16_to_cpu(vat20->lengthHeader);
1211                 map->s_type_specific.s_virtual.s_num_entries =
1212                         (sbi->s_vat_inode->i_size -
1213                                 map->s_type_specific.s_virtual.
1214                                         s_start_offset) >> 2;
1215                 brelse(bh);
1216         }
1217         return 0;
1218 }
1219
1220 /*
1221  * Load partition descriptor block
1222  *
1223  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1224  * sequence.
1225  */
1226 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1227 {
1228         struct buffer_head *bh;
1229         struct partitionDesc *p;
1230         struct udf_part_map *map;
1231         struct udf_sb_info *sbi = UDF_SB(sb);
1232         int i, type1_idx;
1233         uint16_t partitionNumber;
1234         uint16_t ident;
1235         int ret;
1236
1237         bh = udf_read_tagged(sb, block, block, &ident);
1238         if (!bh)
1239                 return -EAGAIN;
1240         if (ident != TAG_IDENT_PD) {
1241                 ret = 0;
1242                 goto out_bh;
1243         }
1244
1245         p = (struct partitionDesc *)bh->b_data;
1246         partitionNumber = le16_to_cpu(p->partitionNumber);
1247
1248         /* First scan for TYPE1 and SPARABLE partitions */
1249         for (i = 0; i < sbi->s_partitions; i++) {
1250                 map = &sbi->s_partmaps[i];
1251                 udf_debug("Searching map: (%u == %u)\n",
1252                           map->s_partition_num, partitionNumber);
1253                 if (map->s_partition_num == partitionNumber &&
1254                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1255                      map->s_partition_type == UDF_SPARABLE_MAP15))
1256                         break;
1257         }
1258
1259         if (i >= sbi->s_partitions) {
1260                 udf_debug("Partition (%u) not found in partition map\n",
1261                           partitionNumber);
1262                 ret = 0;
1263                 goto out_bh;
1264         }
1265
1266         ret = udf_fill_partdesc_info(sb, p, i);
1267         if (ret < 0)
1268                 goto out_bh;
1269
1270         /*
1271          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1272          * PHYSICAL partitions are already set up
1273          */
1274         type1_idx = i;
1275         map = NULL; /* supress 'maybe used uninitialized' warning */
1276         for (i = 0; i < sbi->s_partitions; i++) {
1277                 map = &sbi->s_partmaps[i];
1278
1279                 if (map->s_partition_num == partitionNumber &&
1280                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1281                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1282                      map->s_partition_type == UDF_METADATA_MAP25))
1283                         break;
1284         }
1285
1286         if (i >= sbi->s_partitions) {
1287                 ret = 0;
1288                 goto out_bh;
1289         }
1290
1291         ret = udf_fill_partdesc_info(sb, p, i);
1292         if (ret < 0)
1293                 goto out_bh;
1294
1295         if (map->s_partition_type == UDF_METADATA_MAP25) {
1296                 ret = udf_load_metadata_files(sb, i, type1_idx);
1297                 if (ret < 0) {
1298                         udf_err(sb, "error loading MetaData partition map %d\n",
1299                                 i);
1300                         goto out_bh;
1301                 }
1302         } else {
1303                 /*
1304                  * If we have a partition with virtual map, we don't handle
1305                  * writing to it (we overwrite blocks instead of relocating
1306                  * them).
1307                  */
1308                 if (!sb_rdonly(sb)) {
1309                         ret = -EACCES;
1310                         goto out_bh;
1311                 }
1312                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1313                 ret = udf_load_vat(sb, i, type1_idx);
1314                 if (ret < 0)
1315                         goto out_bh;
1316         }
1317         ret = 0;
1318 out_bh:
1319         /* In case loading failed, we handle cleanup in udf_fill_super */
1320         brelse(bh);
1321         return ret;
1322 }
1323
1324 static int udf_load_sparable_map(struct super_block *sb,
1325                                  struct udf_part_map *map,
1326                                  struct sparablePartitionMap *spm)
1327 {
1328         uint32_t loc;
1329         uint16_t ident;
1330         struct sparingTable *st;
1331         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1332         int i;
1333         struct buffer_head *bh;
1334
1335         map->s_partition_type = UDF_SPARABLE_MAP15;
1336         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1337         if (!is_power_of_2(sdata->s_packet_len)) {
1338                 udf_err(sb, "error loading logical volume descriptor: "
1339                         "Invalid packet length %u\n",
1340                         (unsigned)sdata->s_packet_len);
1341                 return -EIO;
1342         }
1343         if (spm->numSparingTables > 4) {
1344                 udf_err(sb, "error loading logical volume descriptor: "
1345                         "Too many sparing tables (%d)\n",
1346                         (int)spm->numSparingTables);
1347                 return -EIO;
1348         }
1349         if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1350                 udf_err(sb, "error loading logical volume descriptor: "
1351                         "Too big sparing table size (%u)\n",
1352                         le32_to_cpu(spm->sizeSparingTable));
1353                 return -EIO;
1354         }
1355
1356         for (i = 0; i < spm->numSparingTables; i++) {
1357                 loc = le32_to_cpu(spm->locSparingTable[i]);
1358                 bh = udf_read_tagged(sb, loc, loc, &ident);
1359                 if (!bh)
1360                         continue;
1361
1362                 st = (struct sparingTable *)bh->b_data;
1363                 if (ident != 0 ||
1364                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1365                             strlen(UDF_ID_SPARING)) ||
1366                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1367                                                         sb->s_blocksize) {
1368                         brelse(bh);
1369                         continue;
1370                 }
1371
1372                 sdata->s_spar_map[i] = bh;
1373         }
1374         map->s_partition_func = udf_get_pblock_spar15;
1375         return 0;
1376 }
1377
1378 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1379                                struct kernel_lb_addr *fileset)
1380 {
1381         struct logicalVolDesc *lvd;
1382         int i, offset;
1383         uint8_t type;
1384         struct udf_sb_info *sbi = UDF_SB(sb);
1385         struct genericPartitionMap *gpm;
1386         uint16_t ident;
1387         struct buffer_head *bh;
1388         unsigned int table_len;
1389         int ret;
1390
1391         bh = udf_read_tagged(sb, block, block, &ident);
1392         if (!bh)
1393                 return -EAGAIN;
1394         BUG_ON(ident != TAG_IDENT_LVD);
1395         lvd = (struct logicalVolDesc *)bh->b_data;
1396         table_len = le32_to_cpu(lvd->mapTableLength);
1397         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1398                 udf_err(sb, "error loading logical volume descriptor: "
1399                         "Partition table too long (%u > %lu)\n", table_len,
1400                         sb->s_blocksize - sizeof(*lvd));
1401                 ret = -EIO;
1402                 goto out_bh;
1403         }
1404
1405         ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1406                                            "logical volume");
1407         if (ret)
1408                 goto out_bh;
1409         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1410         if (ret)
1411                 goto out_bh;
1412
1413         for (i = 0, offset = 0;
1414              i < sbi->s_partitions && offset < table_len;
1415              i++, offset += gpm->partitionMapLength) {
1416                 struct udf_part_map *map = &sbi->s_partmaps[i];
1417                 gpm = (struct genericPartitionMap *)
1418                                 &(lvd->partitionMaps[offset]);
1419                 type = gpm->partitionMapType;
1420                 if (type == 1) {
1421                         struct genericPartitionMap1 *gpm1 =
1422                                 (struct genericPartitionMap1 *)gpm;
1423                         map->s_partition_type = UDF_TYPE1_MAP15;
1424                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1425                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1426                         map->s_partition_func = NULL;
1427                 } else if (type == 2) {
1428                         struct udfPartitionMap2 *upm2 =
1429                                                 (struct udfPartitionMap2 *)gpm;
1430                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1431                                                 strlen(UDF_ID_VIRTUAL))) {
1432                                 u16 suf =
1433                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1434                                                         identSuffix)[0]);
1435                                 if (suf < 0x0200) {
1436                                         map->s_partition_type =
1437                                                         UDF_VIRTUAL_MAP15;
1438                                         map->s_partition_func =
1439                                                         udf_get_pblock_virt15;
1440                                 } else {
1441                                         map->s_partition_type =
1442                                                         UDF_VIRTUAL_MAP20;
1443                                         map->s_partition_func =
1444                                                         udf_get_pblock_virt20;
1445                                 }
1446                         } else if (!strncmp(upm2->partIdent.ident,
1447                                                 UDF_ID_SPARABLE,
1448                                                 strlen(UDF_ID_SPARABLE))) {
1449                                 ret = udf_load_sparable_map(sb, map,
1450                                         (struct sparablePartitionMap *)gpm);
1451                                 if (ret < 0)
1452                                         goto out_bh;
1453                         } else if (!strncmp(upm2->partIdent.ident,
1454                                                 UDF_ID_METADATA,
1455                                                 strlen(UDF_ID_METADATA))) {
1456                                 struct udf_meta_data *mdata =
1457                                         &map->s_type_specific.s_metadata;
1458                                 struct metadataPartitionMap *mdm =
1459                                                 (struct metadataPartitionMap *)
1460                                                 &(lvd->partitionMaps[offset]);
1461                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1462                                           i, type, UDF_ID_METADATA);
1463
1464                                 map->s_partition_type = UDF_METADATA_MAP25;
1465                                 map->s_partition_func = udf_get_pblock_meta25;
1466
1467                                 mdata->s_meta_file_loc   =
1468                                         le32_to_cpu(mdm->metadataFileLoc);
1469                                 mdata->s_mirror_file_loc =
1470                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1471                                 mdata->s_bitmap_file_loc =
1472                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1473                                 mdata->s_alloc_unit_size =
1474                                         le32_to_cpu(mdm->allocUnitSize);
1475                                 mdata->s_align_unit_size =
1476                                         le16_to_cpu(mdm->alignUnitSize);
1477                                 if (mdm->flags & 0x01)
1478                                         mdata->s_flags |= MF_DUPLICATE_MD;
1479
1480                                 udf_debug("Metadata Ident suffix=0x%x\n",
1481                                           le16_to_cpu(*(__le16 *)
1482                                                       mdm->partIdent.identSuffix));
1483                                 udf_debug("Metadata part num=%u\n",
1484                                           le16_to_cpu(mdm->partitionNum));
1485                                 udf_debug("Metadata part alloc unit size=%u\n",
1486                                           le32_to_cpu(mdm->allocUnitSize));
1487                                 udf_debug("Metadata file loc=%u\n",
1488                                           le32_to_cpu(mdm->metadataFileLoc));
1489                                 udf_debug("Mirror file loc=%u\n",
1490                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1491                                 udf_debug("Bitmap file loc=%u\n",
1492                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1493                                 udf_debug("Flags: %d %u\n",
1494                                           mdata->s_flags, mdm->flags);
1495                         } else {
1496                                 udf_debug("Unknown ident: %s\n",
1497                                           upm2->partIdent.ident);
1498                                 continue;
1499                         }
1500                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1501                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1502                 }
1503                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1504                           i, map->s_partition_num, type, map->s_volumeseqnum);
1505         }
1506
1507         if (fileset) {
1508                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1509
1510                 *fileset = lelb_to_cpu(la->extLocation);
1511                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1512                           fileset->logicalBlockNum,
1513                           fileset->partitionReferenceNum);
1514         }
1515         if (lvd->integritySeqExt.extLength)
1516                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1517         ret = 0;
1518
1519         if (!sbi->s_lvid_bh) {
1520                 /* We can't generate unique IDs without a valid LVID */
1521                 if (sb_rdonly(sb)) {
1522                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1523                 } else {
1524                         udf_warn(sb, "Damaged or missing LVID, forcing "
1525                                      "readonly mount\n");
1526                         ret = -EACCES;
1527                 }
1528         }
1529 out_bh:
1530         brelse(bh);
1531         return ret;
1532 }
1533
1534 /*
1535  * Find the prevailing Logical Volume Integrity Descriptor.
1536  */
1537 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1538 {
1539         struct buffer_head *bh, *final_bh;
1540         uint16_t ident;
1541         struct udf_sb_info *sbi = UDF_SB(sb);
1542         struct logicalVolIntegrityDesc *lvid;
1543         int indirections = 0;
1544
1545         while (++indirections <= UDF_MAX_LVID_NESTING) {
1546                 final_bh = NULL;
1547                 while (loc.extLength > 0 &&
1548                         (bh = udf_read_tagged(sb, loc.extLocation,
1549                                         loc.extLocation, &ident))) {
1550                         if (ident != TAG_IDENT_LVID) {
1551                                 brelse(bh);
1552                                 break;
1553                         }
1554
1555                         brelse(final_bh);
1556                         final_bh = bh;
1557
1558                         loc.extLength -= sb->s_blocksize;
1559                         loc.extLocation++;
1560                 }
1561
1562                 if (!final_bh)
1563                         return;
1564
1565                 brelse(sbi->s_lvid_bh);
1566                 sbi->s_lvid_bh = final_bh;
1567
1568                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1569                 if (lvid->nextIntegrityExt.extLength == 0)
1570                         return;
1571
1572                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1573         }
1574
1575         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1576                 UDF_MAX_LVID_NESTING);
1577         brelse(sbi->s_lvid_bh);
1578         sbi->s_lvid_bh = NULL;
1579 }
1580
1581 /*
1582  * Step for reallocation of table of partition descriptor sequence numbers.
1583  * Must be power of 2.
1584  */
1585 #define PART_DESC_ALLOC_STEP 32
1586
1587 struct part_desc_seq_scan_data {
1588         struct udf_vds_record rec;
1589         u32 partnum;
1590 };
1591
1592 struct desc_seq_scan_data {
1593         struct udf_vds_record vds[VDS_POS_LENGTH];
1594         unsigned int size_part_descs;
1595         unsigned int num_part_descs;
1596         struct part_desc_seq_scan_data *part_descs_loc;
1597 };
1598
1599 static struct udf_vds_record *handle_partition_descriptor(
1600                                 struct buffer_head *bh,
1601                                 struct desc_seq_scan_data *data)
1602 {
1603         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1604         int partnum;
1605         int i;
1606
1607         partnum = le16_to_cpu(desc->partitionNumber);
1608         for (i = 0; i < data->num_part_descs; i++)
1609                 if (partnum == data->part_descs_loc[i].partnum)
1610                         return &(data->part_descs_loc[i].rec);
1611         if (data->num_part_descs >= data->size_part_descs) {
1612                 struct part_desc_seq_scan_data *new_loc;
1613                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1614
1615                 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1616                 if (!new_loc)
1617                         return ERR_PTR(-ENOMEM);
1618                 memcpy(new_loc, data->part_descs_loc,
1619                        data->size_part_descs * sizeof(*new_loc));
1620                 kfree(data->part_descs_loc);
1621                 data->part_descs_loc = new_loc;
1622                 data->size_part_descs = new_size;
1623         }
1624         return &(data->part_descs_loc[data->num_part_descs++].rec);
1625 }
1626
1627
1628 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1629                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1630 {
1631         switch (ident) {
1632         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1633                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1634         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1635                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1636         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1637                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1638         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1639                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1640         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1641                 return handle_partition_descriptor(bh, data);
1642         }
1643         return NULL;
1644 }
1645
1646 /*
1647  * Process a main/reserve volume descriptor sequence.
1648  *   @block             First block of first extent of the sequence.
1649  *   @lastblock         Lastblock of first extent of the sequence.
1650  *   @fileset           There we store extent containing root fileset
1651  *
1652  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1653  * sequence
1654  */
1655 static noinline int udf_process_sequence(
1656                 struct super_block *sb,
1657                 sector_t block, sector_t lastblock,
1658                 struct kernel_lb_addr *fileset)
1659 {
1660         struct buffer_head *bh = NULL;
1661         struct udf_vds_record *curr;
1662         struct generic_desc *gd;
1663         struct volDescPtr *vdp;
1664         bool done = false;
1665         uint32_t vdsn;
1666         uint16_t ident;
1667         int ret;
1668         unsigned int indirections = 0;
1669         struct desc_seq_scan_data data;
1670         unsigned int i;
1671
1672         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1673         data.size_part_descs = PART_DESC_ALLOC_STEP;
1674         data.num_part_descs = 0;
1675         data.part_descs_loc = kcalloc(data.size_part_descs,
1676                                       sizeof(*data.part_descs_loc),
1677                                       GFP_KERNEL);
1678         if (!data.part_descs_loc)
1679                 return -ENOMEM;
1680
1681         /*
1682          * Read the main descriptor sequence and find which descriptors
1683          * are in it.
1684          */
1685         for (; (!done && block <= lastblock); block++) {
1686                 bh = udf_read_tagged(sb, block, block, &ident);
1687                 if (!bh)
1688                         break;
1689
1690                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1691                 gd = (struct generic_desc *)bh->b_data;
1692                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1693                 switch (ident) {
1694                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1695                         if (++indirections > UDF_MAX_TD_NESTING) {
1696                                 udf_err(sb, "too many Volume Descriptor "
1697                                         "Pointers (max %u supported)\n",
1698                                         UDF_MAX_TD_NESTING);
1699                                 brelse(bh);
1700                                 ret = -EIO;
1701                                 goto out;
1702                         }
1703
1704                         vdp = (struct volDescPtr *)bh->b_data;
1705                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1706                         lastblock = le32_to_cpu(
1707                                 vdp->nextVolDescSeqExt.extLength) >>
1708                                 sb->s_blocksize_bits;
1709                         lastblock += block - 1;
1710                         /* For loop is going to increment 'block' again */
1711                         block--;
1712                         break;
1713                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1714                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1715                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1716                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1717                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1718                         curr = get_volume_descriptor_record(ident, bh, &data);
1719                         if (IS_ERR(curr)) {
1720                                 brelse(bh);
1721                                 ret = PTR_ERR(curr);
1722                                 goto out;
1723                         }
1724                         /* Descriptor we don't care about? */
1725                         if (!curr)
1726                                 break;
1727                         if (vdsn >= curr->volDescSeqNum) {
1728                                 curr->volDescSeqNum = vdsn;
1729                                 curr->block = block;
1730                         }
1731                         break;
1732                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1733                         done = true;
1734                         break;
1735                 }
1736                 brelse(bh);
1737         }
1738         /*
1739          * Now read interesting descriptors again and process them
1740          * in a suitable order
1741          */
1742         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1743                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1744                 ret = -EAGAIN;
1745                 goto out;
1746         }
1747         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1748         if (ret < 0)
1749                 goto out;
1750
1751         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1752                 ret = udf_load_logicalvol(sb,
1753                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1754                                 fileset);
1755                 if (ret < 0)
1756                         goto out;
1757         }
1758
1759         /* Now handle prevailing Partition Descriptors */
1760         for (i = 0; i < data.num_part_descs; i++) {
1761                 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1762                 if (ret < 0)
1763                         goto out;
1764         }
1765         ret = 0;
1766 out:
1767         kfree(data.part_descs_loc);
1768         return ret;
1769 }
1770
1771 /*
1772  * Load Volume Descriptor Sequence described by anchor in bh
1773  *
1774  * Returns <0 on error, 0 on success
1775  */
1776 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1777                              struct kernel_lb_addr *fileset)
1778 {
1779         struct anchorVolDescPtr *anchor;
1780         sector_t main_s, main_e, reserve_s, reserve_e;
1781         int ret;
1782
1783         anchor = (struct anchorVolDescPtr *)bh->b_data;
1784
1785         /* Locate the main sequence */
1786         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1787         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1788         main_e = main_e >> sb->s_blocksize_bits;
1789         main_e += main_s - 1;
1790
1791         /* Locate the reserve sequence */
1792         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1793         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1794         reserve_e = reserve_e >> sb->s_blocksize_bits;
1795         reserve_e += reserve_s - 1;
1796
1797         /* Process the main & reserve sequences */
1798         /* responsible for finding the PartitionDesc(s) */
1799         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1800         if (ret != -EAGAIN)
1801                 return ret;
1802         udf_sb_free_partitions(sb);
1803         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1804         if (ret < 0) {
1805                 udf_sb_free_partitions(sb);
1806                 /* No sequence was OK, return -EIO */
1807                 if (ret == -EAGAIN)
1808                         ret = -EIO;
1809         }
1810         return ret;
1811 }
1812
1813 /*
1814  * Check whether there is an anchor block in the given block and
1815  * load Volume Descriptor Sequence if so.
1816  *
1817  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1818  * block
1819  */
1820 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1821                                   struct kernel_lb_addr *fileset)
1822 {
1823         struct buffer_head *bh;
1824         uint16_t ident;
1825         int ret;
1826
1827         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1828             udf_fixed_to_variable(block) >=
1829             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1830                 return -EAGAIN;
1831
1832         bh = udf_read_tagged(sb, block, block, &ident);
1833         if (!bh)
1834                 return -EAGAIN;
1835         if (ident != TAG_IDENT_AVDP) {
1836                 brelse(bh);
1837                 return -EAGAIN;
1838         }
1839         ret = udf_load_sequence(sb, bh, fileset);
1840         brelse(bh);
1841         return ret;
1842 }
1843
1844 /*
1845  * Search for an anchor volume descriptor pointer.
1846  *
1847  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1848  * of anchors.
1849  */
1850 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1851                             struct kernel_lb_addr *fileset)
1852 {
1853         sector_t last[6];
1854         int i;
1855         struct udf_sb_info *sbi = UDF_SB(sb);
1856         int last_count = 0;
1857         int ret;
1858
1859         /* First try user provided anchor */
1860         if (sbi->s_anchor) {
1861                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1862                 if (ret != -EAGAIN)
1863                         return ret;
1864         }
1865         /*
1866          * according to spec, anchor is in either:
1867          *     block 256
1868          *     lastblock-256
1869          *     lastblock
1870          *  however, if the disc isn't closed, it could be 512.
1871          */
1872         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1873         if (ret != -EAGAIN)
1874                 return ret;
1875         /*
1876          * The trouble is which block is the last one. Drives often misreport
1877          * this so we try various possibilities.
1878          */
1879         last[last_count++] = *lastblock;
1880         if (*lastblock >= 1)
1881                 last[last_count++] = *lastblock - 1;
1882         last[last_count++] = *lastblock + 1;
1883         if (*lastblock >= 2)
1884                 last[last_count++] = *lastblock - 2;
1885         if (*lastblock >= 150)
1886                 last[last_count++] = *lastblock - 150;
1887         if (*lastblock >= 152)
1888                 last[last_count++] = *lastblock - 152;
1889
1890         for (i = 0; i < last_count; i++) {
1891                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1892                                 sb->s_blocksize_bits)
1893                         continue;
1894                 ret = udf_check_anchor_block(sb, last[i], fileset);
1895                 if (ret != -EAGAIN) {
1896                         if (!ret)
1897                                 *lastblock = last[i];
1898                         return ret;
1899                 }
1900                 if (last[i] < 256)
1901                         continue;
1902                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1903                 if (ret != -EAGAIN) {
1904                         if (!ret)
1905                                 *lastblock = last[i];
1906                         return ret;
1907                 }
1908         }
1909
1910         /* Finally try block 512 in case media is open */
1911         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1912 }
1913
1914 /*
1915  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1916  * area specified by it. The function expects sbi->s_lastblock to be the last
1917  * block on the media.
1918  *
1919  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1920  * was not found.
1921  */
1922 static int udf_find_anchor(struct super_block *sb,
1923                            struct kernel_lb_addr *fileset)
1924 {
1925         struct udf_sb_info *sbi = UDF_SB(sb);
1926         sector_t lastblock = sbi->s_last_block;
1927         int ret;
1928
1929         ret = udf_scan_anchors(sb, &lastblock, fileset);
1930         if (ret != -EAGAIN)
1931                 goto out;
1932
1933         /* No anchor found? Try VARCONV conversion of block numbers */
1934         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1935         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1936         /* Firstly, we try to not convert number of the last block */
1937         ret = udf_scan_anchors(sb, &lastblock, fileset);
1938         if (ret != -EAGAIN)
1939                 goto out;
1940
1941         lastblock = sbi->s_last_block;
1942         /* Secondly, we try with converted number of the last block */
1943         ret = udf_scan_anchors(sb, &lastblock, fileset);
1944         if (ret < 0) {
1945                 /* VARCONV didn't help. Clear it. */
1946                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1947         }
1948 out:
1949         if (ret == 0)
1950                 sbi->s_last_block = lastblock;
1951         return ret;
1952 }
1953
1954 /*
1955  * Check Volume Structure Descriptor, find Anchor block and load Volume
1956  * Descriptor Sequence.
1957  *
1958  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1959  * block was not found.
1960  */
1961 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1962                         int silent, struct kernel_lb_addr *fileset)
1963 {
1964         struct udf_sb_info *sbi = UDF_SB(sb);
1965         int nsr = 0;
1966         int ret;
1967
1968         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1969                 if (!silent)
1970                         udf_warn(sb, "Bad block size\n");
1971                 return -EINVAL;
1972         }
1973         sbi->s_last_block = uopt->lastblock;
1974         if (!uopt->novrs) {
1975                 /* Check that it is NSR02 compliant */
1976                 nsr = udf_check_vsd(sb);
1977                 if (!nsr) {
1978                         if (!silent)
1979                                 udf_warn(sb, "No VRS found\n");
1980                         return -EINVAL;
1981                 }
1982                 if (nsr == -1)
1983                         udf_debug("Failed to read sector at offset %d. "
1984                                   "Assuming open disc. Skipping validity "
1985                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1986                 if (!sbi->s_last_block)
1987                         sbi->s_last_block = udf_get_last_block(sb);
1988         } else {
1989                 udf_debug("Validity check skipped because of novrs option\n");
1990         }
1991
1992         /* Look for anchor block and load Volume Descriptor Sequence */
1993         sbi->s_anchor = uopt->anchor;
1994         ret = udf_find_anchor(sb, fileset);
1995         if (ret < 0) {
1996                 if (!silent && ret == -EAGAIN)
1997                         udf_warn(sb, "No anchor found\n");
1998                 return ret;
1999         }
2000         return 0;
2001 }
2002
2003 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2004 {
2005         struct timespec64 ts;
2006
2007         ktime_get_real_ts64(&ts);
2008         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2009         lvid->descTag.descCRC = cpu_to_le16(
2010                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2011                         le16_to_cpu(lvid->descTag.descCRCLength)));
2012         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2013 }
2014
2015 static void udf_open_lvid(struct super_block *sb)
2016 {
2017         struct udf_sb_info *sbi = UDF_SB(sb);
2018         struct buffer_head *bh = sbi->s_lvid_bh;
2019         struct logicalVolIntegrityDesc *lvid;
2020         struct logicalVolIntegrityDescImpUse *lvidiu;
2021
2022         if (!bh)
2023                 return;
2024         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2025         lvidiu = udf_sb_lvidiu(sb);
2026         if (!lvidiu)
2027                 return;
2028
2029         mutex_lock(&sbi->s_alloc_mutex);
2030         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2031         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2032         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2033                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2034         else
2035                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2036
2037         udf_finalize_lvid(lvid);
2038         mark_buffer_dirty(bh);
2039         sbi->s_lvid_dirty = 0;
2040         mutex_unlock(&sbi->s_alloc_mutex);
2041         /* Make opening of filesystem visible on the media immediately */
2042         sync_dirty_buffer(bh);
2043 }
2044
2045 static void udf_close_lvid(struct super_block *sb)
2046 {
2047         struct udf_sb_info *sbi = UDF_SB(sb);
2048         struct buffer_head *bh = sbi->s_lvid_bh;
2049         struct logicalVolIntegrityDesc *lvid;
2050         struct logicalVolIntegrityDescImpUse *lvidiu;
2051
2052         if (!bh)
2053                 return;
2054         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2055         lvidiu = udf_sb_lvidiu(sb);
2056         if (!lvidiu)
2057                 return;
2058
2059         mutex_lock(&sbi->s_alloc_mutex);
2060         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2061         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2062         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2063                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2064         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2065                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2066         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2067                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2068         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2069                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2070
2071         /*
2072          * We set buffer uptodate unconditionally here to avoid spurious
2073          * warnings from mark_buffer_dirty() when previous EIO has marked
2074          * the buffer as !uptodate
2075          */
2076         set_buffer_uptodate(bh);
2077         udf_finalize_lvid(lvid);
2078         mark_buffer_dirty(bh);
2079         sbi->s_lvid_dirty = 0;
2080         mutex_unlock(&sbi->s_alloc_mutex);
2081         /* Make closing of filesystem visible on the media immediately */
2082         sync_dirty_buffer(bh);
2083 }
2084
2085 u64 lvid_get_unique_id(struct super_block *sb)
2086 {
2087         struct buffer_head *bh;
2088         struct udf_sb_info *sbi = UDF_SB(sb);
2089         struct logicalVolIntegrityDesc *lvid;
2090         struct logicalVolHeaderDesc *lvhd;
2091         u64 uniqueID;
2092         u64 ret;
2093
2094         bh = sbi->s_lvid_bh;
2095         if (!bh)
2096                 return 0;
2097
2098         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2099         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2100
2101         mutex_lock(&sbi->s_alloc_mutex);
2102         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2103         if (!(++uniqueID & 0xFFFFFFFF))
2104                 uniqueID += 16;
2105         lvhd->uniqueID = cpu_to_le64(uniqueID);
2106         udf_updated_lvid(sb);
2107         mutex_unlock(&sbi->s_alloc_mutex);
2108
2109         return ret;
2110 }
2111
2112 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2113 {
2114         int ret = -EINVAL;
2115         struct inode *inode = NULL;
2116         struct udf_options uopt;
2117         struct kernel_lb_addr rootdir, fileset;
2118         struct udf_sb_info *sbi;
2119         bool lvid_open = false;
2120
2121         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2122         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2123         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2124         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2125         uopt.umask = 0;
2126         uopt.fmode = UDF_INVALID_MODE;
2127         uopt.dmode = UDF_INVALID_MODE;
2128         uopt.nls_map = NULL;
2129
2130         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2131         if (!sbi)
2132                 return -ENOMEM;
2133
2134         sb->s_fs_info = sbi;
2135
2136         mutex_init(&sbi->s_alloc_mutex);
2137
2138         if (!udf_parse_options((char *)options, &uopt, false))
2139                 goto parse_options_failure;
2140
2141         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2142             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2143                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2144                 goto parse_options_failure;
2145         }
2146         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2147                 uopt.nls_map = load_nls_default();
2148                 if (!uopt.nls_map)
2149                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2150                 else
2151                         udf_debug("Using default NLS map\n");
2152         }
2153         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2154                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2155
2156         fileset.logicalBlockNum = 0xFFFFFFFF;
2157         fileset.partitionReferenceNum = 0xFFFF;
2158
2159         sbi->s_flags = uopt.flags;
2160         sbi->s_uid = uopt.uid;
2161         sbi->s_gid = uopt.gid;
2162         sbi->s_umask = uopt.umask;
2163         sbi->s_fmode = uopt.fmode;
2164         sbi->s_dmode = uopt.dmode;
2165         sbi->s_nls_map = uopt.nls_map;
2166         rwlock_init(&sbi->s_cred_lock);
2167
2168         if (uopt.session == 0xFFFFFFFF)
2169                 sbi->s_session = udf_get_last_session(sb);
2170         else
2171                 sbi->s_session = uopt.session;
2172
2173         udf_debug("Multi-session=%d\n", sbi->s_session);
2174
2175         /* Fill in the rest of the superblock */
2176         sb->s_op = &udf_sb_ops;
2177         sb->s_export_op = &udf_export_ops;
2178
2179         sb->s_magic = UDF_SUPER_MAGIC;
2180         sb->s_time_gran = 1000;
2181
2182         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2183                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2184         } else {
2185                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2186                 while (uopt.blocksize <= 4096) {
2187                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2188                         if (ret < 0) {
2189                                 if (!silent && ret != -EACCES) {
2190                                         pr_notice("Scanning with blocksize %u failed\n",
2191                                                   uopt.blocksize);
2192                                 }
2193                                 brelse(sbi->s_lvid_bh);
2194                                 sbi->s_lvid_bh = NULL;
2195                                 /*
2196                                  * EACCES is special - we want to propagate to
2197                                  * upper layers that we cannot handle RW mount.
2198                                  */
2199                                 if (ret == -EACCES)
2200                                         break;
2201                         } else
2202                                 break;
2203
2204                         uopt.blocksize <<= 1;
2205                 }
2206         }
2207         if (ret < 0) {
2208                 if (ret == -EAGAIN) {
2209                         udf_warn(sb, "No partition found (1)\n");
2210                         ret = -EINVAL;
2211                 }
2212                 goto error_out;
2213         }
2214
2215         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2216
2217         if (sbi->s_lvid_bh) {
2218                 struct logicalVolIntegrityDescImpUse *lvidiu =
2219                                                         udf_sb_lvidiu(sb);
2220                 uint16_t minUDFReadRev;
2221                 uint16_t minUDFWriteRev;
2222
2223                 if (!lvidiu) {
2224                         ret = -EINVAL;
2225                         goto error_out;
2226                 }
2227                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2228                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2229                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2230                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2231                                 minUDFReadRev,
2232                                 UDF_MAX_READ_VERSION);
2233                         ret = -EINVAL;
2234                         goto error_out;
2235                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2236                         if (!sb_rdonly(sb)) {
2237                                 ret = -EACCES;
2238                                 goto error_out;
2239                         }
2240                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2241                 }
2242
2243                 sbi->s_udfrev = minUDFWriteRev;
2244
2245                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2246                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2247                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2248                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2249         }
2250
2251         if (!sbi->s_partitions) {
2252                 udf_warn(sb, "No partition found (2)\n");
2253                 ret = -EINVAL;
2254                 goto error_out;
2255         }
2256
2257         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2258                         UDF_PART_FLAG_READ_ONLY) {
2259                 if (!sb_rdonly(sb)) {
2260                         ret = -EACCES;
2261                         goto error_out;
2262                 }
2263                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2264         }
2265
2266         ret = udf_find_fileset(sb, &fileset, &rootdir);
2267         if (ret < 0) {
2268                 udf_warn(sb, "No fileset found\n");
2269                 goto error_out;
2270         }
2271
2272         if (!silent) {
2273                 struct timestamp ts;
2274                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2275                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2276                          sbi->s_volume_ident,
2277                          le16_to_cpu(ts.year), ts.month, ts.day,
2278                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2279         }
2280         if (!sb_rdonly(sb)) {
2281                 udf_open_lvid(sb);
2282                 lvid_open = true;
2283         }
2284
2285         /* Assign the root inode */
2286         /* assign inodes by physical block number */
2287         /* perhaps it's not extensible enough, but for now ... */
2288         inode = udf_iget(sb, &rootdir);
2289         if (IS_ERR(inode)) {
2290                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2291                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2292                 ret = PTR_ERR(inode);
2293                 goto error_out;
2294         }
2295
2296         /* Allocate a dentry for the root inode */
2297         sb->s_root = d_make_root(inode);
2298         if (!sb->s_root) {
2299                 udf_err(sb, "Couldn't allocate root dentry\n");
2300                 ret = -ENOMEM;
2301                 goto error_out;
2302         }
2303         sb->s_maxbytes = MAX_LFS_FILESIZE;
2304         sb->s_max_links = UDF_MAX_LINKS;
2305         return 0;
2306
2307 error_out:
2308         iput(sbi->s_vat_inode);
2309 parse_options_failure:
2310         if (uopt.nls_map)
2311                 unload_nls(uopt.nls_map);
2312         if (lvid_open)
2313                 udf_close_lvid(sb);
2314         brelse(sbi->s_lvid_bh);
2315         udf_sb_free_partitions(sb);
2316         kfree(sbi);
2317         sb->s_fs_info = NULL;
2318
2319         return ret;
2320 }
2321
2322 void _udf_err(struct super_block *sb, const char *function,
2323               const char *fmt, ...)
2324 {
2325         struct va_format vaf;
2326         va_list args;
2327
2328         va_start(args, fmt);
2329
2330         vaf.fmt = fmt;
2331         vaf.va = &args;
2332
2333         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2334
2335         va_end(args);
2336 }
2337
2338 void _udf_warn(struct super_block *sb, const char *function,
2339                const char *fmt, ...)
2340 {
2341         struct va_format vaf;
2342         va_list args;
2343
2344         va_start(args, fmt);
2345
2346         vaf.fmt = fmt;
2347         vaf.va = &args;
2348
2349         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2350
2351         va_end(args);
2352 }
2353
2354 static void udf_put_super(struct super_block *sb)
2355 {
2356         struct udf_sb_info *sbi;
2357
2358         sbi = UDF_SB(sb);
2359
2360         iput(sbi->s_vat_inode);
2361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2362                 unload_nls(sbi->s_nls_map);
2363         if (!sb_rdonly(sb))
2364                 udf_close_lvid(sb);
2365         brelse(sbi->s_lvid_bh);
2366         udf_sb_free_partitions(sb);
2367         mutex_destroy(&sbi->s_alloc_mutex);
2368         kfree(sb->s_fs_info);
2369         sb->s_fs_info = NULL;
2370 }
2371
2372 static int udf_sync_fs(struct super_block *sb, int wait)
2373 {
2374         struct udf_sb_info *sbi = UDF_SB(sb);
2375
2376         mutex_lock(&sbi->s_alloc_mutex);
2377         if (sbi->s_lvid_dirty) {
2378                 struct buffer_head *bh = sbi->s_lvid_bh;
2379                 struct logicalVolIntegrityDesc *lvid;
2380
2381                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2382                 udf_finalize_lvid(lvid);
2383
2384                 /*
2385                  * Blockdevice will be synced later so we don't have to submit
2386                  * the buffer for IO
2387                  */
2388                 mark_buffer_dirty(bh);
2389                 sbi->s_lvid_dirty = 0;
2390         }
2391         mutex_unlock(&sbi->s_alloc_mutex);
2392
2393         return 0;
2394 }
2395
2396 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2397 {
2398         struct super_block *sb = dentry->d_sb;
2399         struct udf_sb_info *sbi = UDF_SB(sb);
2400         struct logicalVolIntegrityDescImpUse *lvidiu;
2401         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2402
2403         lvidiu = udf_sb_lvidiu(sb);
2404         buf->f_type = UDF_SUPER_MAGIC;
2405         buf->f_bsize = sb->s_blocksize;
2406         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2407         buf->f_bfree = udf_count_free(sb);
2408         buf->f_bavail = buf->f_bfree;
2409         /*
2410          * Let's pretend each free block is also a free 'inode' since UDF does
2411          * not have separate preallocated table of inodes.
2412          */
2413         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2414                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2415                         + buf->f_bfree;
2416         buf->f_ffree = buf->f_bfree;
2417         buf->f_namelen = UDF_NAME_LEN;
2418         buf->f_fsid = u64_to_fsid(id);
2419
2420         return 0;
2421 }
2422
2423 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2424                                           struct udf_bitmap *bitmap)
2425 {
2426         struct buffer_head *bh = NULL;
2427         unsigned int accum = 0;
2428         int index;
2429         udf_pblk_t block = 0, newblock;
2430         struct kernel_lb_addr loc;
2431         uint32_t bytes;
2432         uint8_t *ptr;
2433         uint16_t ident;
2434         struct spaceBitmapDesc *bm;
2435
2436         loc.logicalBlockNum = bitmap->s_extPosition;
2437         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2438         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2439
2440         if (!bh) {
2441                 udf_err(sb, "udf_count_free failed\n");
2442                 goto out;
2443         } else if (ident != TAG_IDENT_SBD) {
2444                 brelse(bh);
2445                 udf_err(sb, "udf_count_free failed\n");
2446                 goto out;
2447         }
2448
2449         bm = (struct spaceBitmapDesc *)bh->b_data;
2450         bytes = le32_to_cpu(bm->numOfBytes);
2451         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2452         ptr = (uint8_t *)bh->b_data;
2453
2454         while (bytes > 0) {
2455                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2456                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2457                                         cur_bytes * 8);
2458                 bytes -= cur_bytes;
2459                 if (bytes) {
2460                         brelse(bh);
2461                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2462                         bh = udf_tread(sb, newblock);
2463                         if (!bh) {
2464                                 udf_debug("read failed\n");
2465                                 goto out;
2466                         }
2467                         index = 0;
2468                         ptr = (uint8_t *)bh->b_data;
2469                 }
2470         }
2471         brelse(bh);
2472 out:
2473         return accum;
2474 }
2475
2476 static unsigned int udf_count_free_table(struct super_block *sb,
2477                                          struct inode *table)
2478 {
2479         unsigned int accum = 0;
2480         uint32_t elen;
2481         struct kernel_lb_addr eloc;
2482         int8_t etype;
2483         struct extent_position epos;
2484
2485         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2486         epos.block = UDF_I(table)->i_location;
2487         epos.offset = sizeof(struct unallocSpaceEntry);
2488         epos.bh = NULL;
2489
2490         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2491                 accum += (elen >> table->i_sb->s_blocksize_bits);
2492
2493         brelse(epos.bh);
2494         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2495
2496         return accum;
2497 }
2498
2499 static unsigned int udf_count_free(struct super_block *sb)
2500 {
2501         unsigned int accum = 0;
2502         struct udf_sb_info *sbi = UDF_SB(sb);
2503         struct udf_part_map *map;
2504         unsigned int part = sbi->s_partition;
2505         int ptype = sbi->s_partmaps[part].s_partition_type;
2506
2507         if (ptype == UDF_METADATA_MAP25) {
2508                 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2509                                                         s_phys_partition_ref;
2510         } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2511                 /*
2512                  * Filesystems with VAT are append-only and we cannot write to
2513                  * them. Let's just report 0 here.
2514                  */
2515                 return 0;
2516         }
2517
2518         if (sbi->s_lvid_bh) {
2519                 struct logicalVolIntegrityDesc *lvid =
2520                         (struct logicalVolIntegrityDesc *)
2521                         sbi->s_lvid_bh->b_data;
2522                 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2523                         accum = le32_to_cpu(
2524                                         lvid->freeSpaceTable[part]);
2525                         if (accum == 0xFFFFFFFF)
2526                                 accum = 0;
2527                 }
2528         }
2529
2530         if (accum)
2531                 return accum;
2532
2533         map = &sbi->s_partmaps[part];
2534         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2535                 accum += udf_count_free_bitmap(sb,
2536                                                map->s_uspace.s_bitmap);
2537         }
2538         if (accum)
2539                 return accum;
2540
2541         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2542                 accum += udf_count_free_table(sb,
2543                                               map->s_uspace.s_table);
2544         }
2545         return accum;
2546 }
2547
2548 MODULE_AUTHOR("Ben Fennema");
2549 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2550 MODULE_LICENSE("GPL");
2551 module_init(init_udf_fs)
2552 module_exit(exit_udf_fs)