Merge tag 'auxdisplay-6.3' of https://github.com/ojeda/linux
[linux-2.6-microblaze.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    https://www.ecma.ch/
15  *    https://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 #include <linux/iversion.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
67
68 enum {
69         VDS_POS_PRIMARY_VOL_DESC,
70         VDS_POS_UNALLOC_SPACE_DESC,
71         VDS_POS_LOGICAL_VOL_DESC,
72         VDS_POS_IMP_USE_VOL_DESC,
73         VDS_POS_LENGTH
74 };
75
76 #define VSD_FIRST_SECTOR_OFFSET         32768
77 #define VSD_MAX_SECTOR_OFFSET           0x800000
78
79 /*
80  * Maximum number of Terminating Descriptor / Logical Volume Integrity
81  * Descriptor redirections. The chosen numbers are arbitrary - just that we
82  * hopefully don't limit any real use of rewritten inode on write-once media
83  * but avoid looping for too long on corrupted media.
84  */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87
88 enum { UDF_MAX_LINKS = 0xffff };
89 /*
90  * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
91  * more but because the file space is described by a linked list of extents,
92  * each of which can have at most 1GB, the creation and handling of extents
93  * gets unusably slow beyond certain point...
94  */
95 #define UDF_MAX_FILESIZE (1ULL << 42)
96
97 /* These are the "meat" - everything else is stuffing */
98 static int udf_fill_super(struct super_block *, void *, int);
99 static void udf_put_super(struct super_block *);
100 static int udf_sync_fs(struct super_block *, int);
101 static int udf_remount_fs(struct super_block *, int *, char *);
102 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
103 static void udf_open_lvid(struct super_block *);
104 static void udf_close_lvid(struct super_block *);
105 static unsigned int udf_count_free(struct super_block *);
106 static int udf_statfs(struct dentry *, struct kstatfs *);
107 static int udf_show_options(struct seq_file *, struct dentry *);
108
109 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
110 {
111         struct logicalVolIntegrityDesc *lvid;
112         unsigned int partnum;
113         unsigned int offset;
114
115         if (!UDF_SB(sb)->s_lvid_bh)
116                 return NULL;
117         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
118         partnum = le32_to_cpu(lvid->numOfPartitions);
119         /* The offset is to skip freeSpaceTable and sizeTable arrays */
120         offset = partnum * 2 * sizeof(uint32_t);
121         return (struct logicalVolIntegrityDescImpUse *)
122                                         (((uint8_t *)(lvid + 1)) + offset);
123 }
124
125 /* UDF filesystem type */
126 static struct dentry *udf_mount(struct file_system_type *fs_type,
127                       int flags, const char *dev_name, void *data)
128 {
129         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
130 }
131
132 static struct file_system_type udf_fstype = {
133         .owner          = THIS_MODULE,
134         .name           = "udf",
135         .mount          = udf_mount,
136         .kill_sb        = kill_block_super,
137         .fs_flags       = FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("udf");
140
141 static struct kmem_cache *udf_inode_cachep;
142
143 static struct inode *udf_alloc_inode(struct super_block *sb)
144 {
145         struct udf_inode_info *ei;
146         ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
147         if (!ei)
148                 return NULL;
149
150         ei->i_unique = 0;
151         ei->i_lenExtents = 0;
152         ei->i_lenStreams = 0;
153         ei->i_next_alloc_block = 0;
154         ei->i_next_alloc_goal = 0;
155         ei->i_strat4096 = 0;
156         ei->i_streamdir = 0;
157         ei->i_hidden = 0;
158         init_rwsem(&ei->i_data_sem);
159         ei->cached_extent.lstart = -1;
160         spin_lock_init(&ei->i_extent_cache_lock);
161         inode_set_iversion(&ei->vfs_inode, 1);
162
163         return &ei->vfs_inode;
164 }
165
166 static void udf_free_in_core_inode(struct inode *inode)
167 {
168         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
169 }
170
171 static void init_once(void *foo)
172 {
173         struct udf_inode_info *ei = foo;
174
175         ei->i_data = NULL;
176         inode_init_once(&ei->vfs_inode);
177 }
178
179 static int __init init_inodecache(void)
180 {
181         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
182                                              sizeof(struct udf_inode_info),
183                                              0, (SLAB_RECLAIM_ACCOUNT |
184                                                  SLAB_MEM_SPREAD |
185                                                  SLAB_ACCOUNT),
186                                              init_once);
187         if (!udf_inode_cachep)
188                 return -ENOMEM;
189         return 0;
190 }
191
192 static void destroy_inodecache(void)
193 {
194         /*
195          * Make sure all delayed rcu free inodes are flushed before we
196          * destroy cache.
197          */
198         rcu_barrier();
199         kmem_cache_destroy(udf_inode_cachep);
200 }
201
202 /* Superblock operations */
203 static const struct super_operations udf_sb_ops = {
204         .alloc_inode    = udf_alloc_inode,
205         .free_inode     = udf_free_in_core_inode,
206         .write_inode    = udf_write_inode,
207         .evict_inode    = udf_evict_inode,
208         .put_super      = udf_put_super,
209         .sync_fs        = udf_sync_fs,
210         .statfs         = udf_statfs,
211         .remount_fs     = udf_remount_fs,
212         .show_options   = udf_show_options,
213 };
214
215 struct udf_options {
216         unsigned char novrs;
217         unsigned int blocksize;
218         unsigned int session;
219         unsigned int lastblock;
220         unsigned int anchor;
221         unsigned int flags;
222         umode_t umask;
223         kgid_t gid;
224         kuid_t uid;
225         umode_t fmode;
226         umode_t dmode;
227         struct nls_table *nls_map;
228 };
229
230 static int __init init_udf_fs(void)
231 {
232         int err;
233
234         err = init_inodecache();
235         if (err)
236                 goto out1;
237         err = register_filesystem(&udf_fstype);
238         if (err)
239                 goto out;
240
241         return 0;
242
243 out:
244         destroy_inodecache();
245
246 out1:
247         return err;
248 }
249
250 static void __exit exit_udf_fs(void)
251 {
252         unregister_filesystem(&udf_fstype);
253         destroy_inodecache();
254 }
255
256 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
257 {
258         struct udf_sb_info *sbi = UDF_SB(sb);
259
260         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
261         if (!sbi->s_partmaps) {
262                 sbi->s_partitions = 0;
263                 return -ENOMEM;
264         }
265
266         sbi->s_partitions = count;
267         return 0;
268 }
269
270 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
271 {
272         int i;
273         int nr_groups = bitmap->s_nr_groups;
274
275         for (i = 0; i < nr_groups; i++)
276                 brelse(bitmap->s_block_bitmap[i]);
277
278         kvfree(bitmap);
279 }
280
281 static void udf_free_partition(struct udf_part_map *map)
282 {
283         int i;
284         struct udf_meta_data *mdata;
285
286         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
287                 iput(map->s_uspace.s_table);
288         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
289                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
290         if (map->s_partition_type == UDF_SPARABLE_MAP15)
291                 for (i = 0; i < 4; i++)
292                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
293         else if (map->s_partition_type == UDF_METADATA_MAP25) {
294                 mdata = &map->s_type_specific.s_metadata;
295                 iput(mdata->s_metadata_fe);
296                 mdata->s_metadata_fe = NULL;
297
298                 iput(mdata->s_mirror_fe);
299                 mdata->s_mirror_fe = NULL;
300
301                 iput(mdata->s_bitmap_fe);
302                 mdata->s_bitmap_fe = NULL;
303         }
304 }
305
306 static void udf_sb_free_partitions(struct super_block *sb)
307 {
308         struct udf_sb_info *sbi = UDF_SB(sb);
309         int i;
310
311         if (!sbi->s_partmaps)
312                 return;
313         for (i = 0; i < sbi->s_partitions; i++)
314                 udf_free_partition(&sbi->s_partmaps[i]);
315         kfree(sbi->s_partmaps);
316         sbi->s_partmaps = NULL;
317 }
318
319 static int udf_show_options(struct seq_file *seq, struct dentry *root)
320 {
321         struct super_block *sb = root->d_sb;
322         struct udf_sb_info *sbi = UDF_SB(sb);
323
324         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
325                 seq_puts(seq, ",nostrict");
326         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
327                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
328         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
329                 seq_puts(seq, ",unhide");
330         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
331                 seq_puts(seq, ",undelete");
332         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
333                 seq_puts(seq, ",noadinicb");
334         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
335                 seq_puts(seq, ",shortad");
336         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
337                 seq_puts(seq, ",uid=forget");
338         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
339                 seq_puts(seq, ",gid=forget");
340         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
341                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
342         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
343                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
344         if (sbi->s_umask != 0)
345                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
346         if (sbi->s_fmode != UDF_INVALID_MODE)
347                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
348         if (sbi->s_dmode != UDF_INVALID_MODE)
349                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
350         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
351                 seq_printf(seq, ",session=%d", sbi->s_session);
352         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
353                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
354         if (sbi->s_anchor != 0)
355                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
356         if (sbi->s_nls_map)
357                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
358         else
359                 seq_puts(seq, ",iocharset=utf8");
360
361         return 0;
362 }
363
364 /*
365  * udf_parse_options
366  *
367  * PURPOSE
368  *      Parse mount options.
369  *
370  * DESCRIPTION
371  *      The following mount options are supported:
372  *
373  *      gid=            Set the default group.
374  *      umask=          Set the default umask.
375  *      mode=           Set the default file permissions.
376  *      dmode=          Set the default directory permissions.
377  *      uid=            Set the default user.
378  *      bs=             Set the block size.
379  *      unhide          Show otherwise hidden files.
380  *      undelete        Show deleted files in lists.
381  *      adinicb         Embed data in the inode (default)
382  *      noadinicb       Don't embed data in the inode
383  *      shortad         Use short ad's
384  *      longad          Use long ad's (default)
385  *      nostrict        Unset strict conformance
386  *      iocharset=      Set the NLS character set
387  *
388  *      The remaining are for debugging and disaster recovery:
389  *
390  *      novrs           Skip volume sequence recognition
391  *
392  *      The following expect a offset from 0.
393  *
394  *      session=        Set the CDROM session (default= last session)
395  *      anchor=         Override standard anchor location. (default= 256)
396  *      volume=         Override the VolumeDesc location. (unused)
397  *      partition=      Override the PartitionDesc location. (unused)
398  *      lastblock=      Set the last block of the filesystem/
399  *
400  *      The following expect a offset from the partition root.
401  *
402  *      fileset=        Override the fileset block location. (unused)
403  *      rootdir=        Override the root directory location. (unused)
404  *              WARNING: overriding the rootdir to a non-directory may
405  *              yield highly unpredictable results.
406  *
407  * PRE-CONDITIONS
408  *      options         Pointer to mount options string.
409  *      uopts           Pointer to mount options variable.
410  *
411  * POST-CONDITIONS
412  *      <return>        1       Mount options parsed okay.
413  *      <return>        0       Error parsing mount options.
414  *
415  * HISTORY
416  *      July 1, 1997 - Andrew E. Mileski
417  *      Written, tested, and released.
418  */
419
420 enum {
421         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
422         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
423         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
424         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
425         Opt_rootdir, Opt_utf8, Opt_iocharset,
426         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
427         Opt_fmode, Opt_dmode
428 };
429
430 static const match_table_t tokens = {
431         {Opt_novrs,     "novrs"},
432         {Opt_nostrict,  "nostrict"},
433         {Opt_bs,        "bs=%u"},
434         {Opt_unhide,    "unhide"},
435         {Opt_undelete,  "undelete"},
436         {Opt_noadinicb, "noadinicb"},
437         {Opt_adinicb,   "adinicb"},
438         {Opt_shortad,   "shortad"},
439         {Opt_longad,    "longad"},
440         {Opt_uforget,   "uid=forget"},
441         {Opt_uignore,   "uid=ignore"},
442         {Opt_gforget,   "gid=forget"},
443         {Opt_gignore,   "gid=ignore"},
444         {Opt_gid,       "gid=%u"},
445         {Opt_uid,       "uid=%u"},
446         {Opt_umask,     "umask=%o"},
447         {Opt_session,   "session=%u"},
448         {Opt_lastblock, "lastblock=%u"},
449         {Opt_anchor,    "anchor=%u"},
450         {Opt_volume,    "volume=%u"},
451         {Opt_partition, "partition=%u"},
452         {Opt_fileset,   "fileset=%u"},
453         {Opt_rootdir,   "rootdir=%u"},
454         {Opt_utf8,      "utf8"},
455         {Opt_iocharset, "iocharset=%s"},
456         {Opt_fmode,     "mode=%o"},
457         {Opt_dmode,     "dmode=%o"},
458         {Opt_err,       NULL}
459 };
460
461 static int udf_parse_options(char *options, struct udf_options *uopt,
462                              bool remount)
463 {
464         char *p;
465         int option;
466         unsigned int uv;
467
468         uopt->novrs = 0;
469         uopt->session = 0xFFFFFFFF;
470         uopt->lastblock = 0;
471         uopt->anchor = 0;
472
473         if (!options)
474                 return 1;
475
476         while ((p = strsep(&options, ",")) != NULL) {
477                 substring_t args[MAX_OPT_ARGS];
478                 int token;
479                 unsigned n;
480                 if (!*p)
481                         continue;
482
483                 token = match_token(p, tokens, args);
484                 switch (token) {
485                 case Opt_novrs:
486                         uopt->novrs = 1;
487                         break;
488                 case Opt_bs:
489                         if (match_int(&args[0], &option))
490                                 return 0;
491                         n = option;
492                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
493                                 return 0;
494                         uopt->blocksize = n;
495                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
496                         break;
497                 case Opt_unhide:
498                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
499                         break;
500                 case Opt_undelete:
501                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
502                         break;
503                 case Opt_noadinicb:
504                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
505                         break;
506                 case Opt_adinicb:
507                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
508                         break;
509                 case Opt_shortad:
510                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
511                         break;
512                 case Opt_longad:
513                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
514                         break;
515                 case Opt_gid:
516                         if (match_uint(args, &uv))
517                                 return 0;
518                         uopt->gid = make_kgid(current_user_ns(), uv);
519                         if (!gid_valid(uopt->gid))
520                                 return 0;
521                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
522                         break;
523                 case Opt_uid:
524                         if (match_uint(args, &uv))
525                                 return 0;
526                         uopt->uid = make_kuid(current_user_ns(), uv);
527                         if (!uid_valid(uopt->uid))
528                                 return 0;
529                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
530                         break;
531                 case Opt_umask:
532                         if (match_octal(args, &option))
533                                 return 0;
534                         uopt->umask = option;
535                         break;
536                 case Opt_nostrict:
537                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
538                         break;
539                 case Opt_session:
540                         if (match_int(args, &option))
541                                 return 0;
542                         uopt->session = option;
543                         if (!remount)
544                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
545                         break;
546                 case Opt_lastblock:
547                         if (match_int(args, &option))
548                                 return 0;
549                         uopt->lastblock = option;
550                         if (!remount)
551                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
552                         break;
553                 case Opt_anchor:
554                         if (match_int(args, &option))
555                                 return 0;
556                         uopt->anchor = option;
557                         break;
558                 case Opt_volume:
559                 case Opt_partition:
560                 case Opt_fileset:
561                 case Opt_rootdir:
562                         /* Ignored (never implemented properly) */
563                         break;
564                 case Opt_utf8:
565                         if (!remount) {
566                                 unload_nls(uopt->nls_map);
567                                 uopt->nls_map = NULL;
568                         }
569                         break;
570                 case Opt_iocharset:
571                         if (!remount) {
572                                 unload_nls(uopt->nls_map);
573                                 uopt->nls_map = NULL;
574                         }
575                         /* When nls_map is not loaded then UTF-8 is used */
576                         if (!remount && strcmp(args[0].from, "utf8") != 0) {
577                                 uopt->nls_map = load_nls(args[0].from);
578                                 if (!uopt->nls_map) {
579                                         pr_err("iocharset %s not found\n",
580                                                 args[0].from);
581                                         return 0;
582                                 }
583                         }
584                         break;
585                 case Opt_uforget:
586                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
587                         break;
588                 case Opt_uignore:
589                 case Opt_gignore:
590                         /* These options are superseeded by uid=<number> */
591                         break;
592                 case Opt_gforget:
593                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
594                         break;
595                 case Opt_fmode:
596                         if (match_octal(args, &option))
597                                 return 0;
598                         uopt->fmode = option & 0777;
599                         break;
600                 case Opt_dmode:
601                         if (match_octal(args, &option))
602                                 return 0;
603                         uopt->dmode = option & 0777;
604                         break;
605                 default:
606                         pr_err("bad mount option \"%s\" or missing value\n", p);
607                         return 0;
608                 }
609         }
610         return 1;
611 }
612
613 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
614 {
615         struct udf_options uopt;
616         struct udf_sb_info *sbi = UDF_SB(sb);
617         int error = 0;
618
619         if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
620                 return -EACCES;
621
622         sync_filesystem(sb);
623
624         uopt.flags = sbi->s_flags;
625         uopt.uid   = sbi->s_uid;
626         uopt.gid   = sbi->s_gid;
627         uopt.umask = sbi->s_umask;
628         uopt.fmode = sbi->s_fmode;
629         uopt.dmode = sbi->s_dmode;
630         uopt.nls_map = NULL;
631
632         if (!udf_parse_options(options, &uopt, true))
633                 return -EINVAL;
634
635         write_lock(&sbi->s_cred_lock);
636         sbi->s_flags = uopt.flags;
637         sbi->s_uid   = uopt.uid;
638         sbi->s_gid   = uopt.gid;
639         sbi->s_umask = uopt.umask;
640         sbi->s_fmode = uopt.fmode;
641         sbi->s_dmode = uopt.dmode;
642         write_unlock(&sbi->s_cred_lock);
643
644         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
645                 goto out_unlock;
646
647         if (*flags & SB_RDONLY)
648                 udf_close_lvid(sb);
649         else
650                 udf_open_lvid(sb);
651
652 out_unlock:
653         return error;
654 }
655
656 /*
657  * Check VSD descriptor. Returns -1 in case we are at the end of volume
658  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
659  * we found one of NSR descriptors we are looking for.
660  */
661 static int identify_vsd(const struct volStructDesc *vsd)
662 {
663         int ret = 0;
664
665         if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
666                 switch (vsd->structType) {
667                 case 0:
668                         udf_debug("ISO9660 Boot Record found\n");
669                         break;
670                 case 1:
671                         udf_debug("ISO9660 Primary Volume Descriptor found\n");
672                         break;
673                 case 2:
674                         udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
675                         break;
676                 case 3:
677                         udf_debug("ISO9660 Volume Partition Descriptor found\n");
678                         break;
679                 case 255:
680                         udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
681                         break;
682                 default:
683                         udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
684                         break;
685                 }
686         } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
687                 ; /* ret = 0 */
688         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
689                 ret = 1;
690         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
691                 ret = 1;
692         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
693                 ; /* ret = 0 */
694         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
695                 ; /* ret = 0 */
696         else {
697                 /* TEA01 or invalid id : end of volume recognition area */
698                 ret = -1;
699         }
700
701         return ret;
702 }
703
704 /*
705  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
706  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
707  * @return   1 if NSR02 or NSR03 found,
708  *          -1 if first sector read error, 0 otherwise
709  */
710 static int udf_check_vsd(struct super_block *sb)
711 {
712         struct volStructDesc *vsd = NULL;
713         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
714         int sectorsize;
715         struct buffer_head *bh = NULL;
716         int nsr = 0;
717         struct udf_sb_info *sbi;
718         loff_t session_offset;
719
720         sbi = UDF_SB(sb);
721         if (sb->s_blocksize < sizeof(struct volStructDesc))
722                 sectorsize = sizeof(struct volStructDesc);
723         else
724                 sectorsize = sb->s_blocksize;
725
726         session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
727         sector += session_offset;
728
729         udf_debug("Starting at sector %u (%lu byte sectors)\n",
730                   (unsigned int)(sector >> sb->s_blocksize_bits),
731                   sb->s_blocksize);
732         /* Process the sequence (if applicable). The hard limit on the sector
733          * offset is arbitrary, hopefully large enough so that all valid UDF
734          * filesystems will be recognised. There is no mention of an upper
735          * bound to the size of the volume recognition area in the standard.
736          *  The limit will prevent the code to read all the sectors of a
737          * specially crafted image (like a bluray disc full of CD001 sectors),
738          * potentially causing minutes or even hours of uninterruptible I/O
739          * activity. This actually happened with uninitialised SSD partitions
740          * (all 0xFF) before the check for the limit and all valid IDs were
741          * added */
742         for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
743                 /* Read a block */
744                 bh = sb_bread(sb, sector >> sb->s_blocksize_bits);
745                 if (!bh)
746                         break;
747
748                 vsd = (struct volStructDesc *)(bh->b_data +
749                                               (sector & (sb->s_blocksize - 1)));
750                 nsr = identify_vsd(vsd);
751                 /* Found NSR or end? */
752                 if (nsr) {
753                         brelse(bh);
754                         break;
755                 }
756                 /*
757                  * Special handling for improperly formatted VRS (e.g., Win10)
758                  * where components are separated by 2048 bytes even though
759                  * sectors are 4K
760                  */
761                 if (sb->s_blocksize == 4096) {
762                         nsr = identify_vsd(vsd + 1);
763                         /* Ignore unknown IDs... */
764                         if (nsr < 0)
765                                 nsr = 0;
766                 }
767                 brelse(bh);
768         }
769
770         if (nsr > 0)
771                 return 1;
772         else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
773                 return -1;
774         else
775                 return 0;
776 }
777
778 static int udf_verify_domain_identifier(struct super_block *sb,
779                                         struct regid *ident, char *dname)
780 {
781         struct domainIdentSuffix *suffix;
782
783         if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
784                 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
785                 goto force_ro;
786         }
787         if (ident->flags & ENTITYID_FLAGS_DIRTY) {
788                 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
789                          dname);
790                 goto force_ro;
791         }
792         suffix = (struct domainIdentSuffix *)ident->identSuffix;
793         if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
794             (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
795                 if (!sb_rdonly(sb)) {
796                         udf_warn(sb, "Descriptor for %s marked write protected."
797                                  " Forcing read only mount.\n", dname);
798                 }
799                 goto force_ro;
800         }
801         return 0;
802
803 force_ro:
804         if (!sb_rdonly(sb))
805                 return -EACCES;
806         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
807         return 0;
808 }
809
810 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
811                             struct kernel_lb_addr *root)
812 {
813         int ret;
814
815         ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
816         if (ret < 0)
817                 return ret;
818
819         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
820         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
821
822         udf_debug("Rootdir at block=%u, partition=%u\n",
823                   root->logicalBlockNum, root->partitionReferenceNum);
824         return 0;
825 }
826
827 static int udf_find_fileset(struct super_block *sb,
828                             struct kernel_lb_addr *fileset,
829                             struct kernel_lb_addr *root)
830 {
831         struct buffer_head *bh;
832         uint16_t ident;
833         int ret;
834
835         if (fileset->logicalBlockNum == 0xFFFFFFFF &&
836             fileset->partitionReferenceNum == 0xFFFF)
837                 return -EINVAL;
838
839         bh = udf_read_ptagged(sb, fileset, 0, &ident);
840         if (!bh)
841                 return -EIO;
842         if (ident != TAG_IDENT_FSD) {
843                 brelse(bh);
844                 return -EINVAL;
845         }
846
847         udf_debug("Fileset at block=%u, partition=%u\n",
848                   fileset->logicalBlockNum, fileset->partitionReferenceNum);
849
850         UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
851         ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
852         brelse(bh);
853         return ret;
854 }
855
856 /*
857  * Load primary Volume Descriptor Sequence
858  *
859  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
860  * should be tried.
861  */
862 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
863 {
864         struct primaryVolDesc *pvoldesc;
865         uint8_t *outstr;
866         struct buffer_head *bh;
867         uint16_t ident;
868         int ret;
869         struct timestamp *ts;
870
871         outstr = kmalloc(128, GFP_NOFS);
872         if (!outstr)
873                 return -ENOMEM;
874
875         bh = udf_read_tagged(sb, block, block, &ident);
876         if (!bh) {
877                 ret = -EAGAIN;
878                 goto out2;
879         }
880
881         if (ident != TAG_IDENT_PVD) {
882                 ret = -EIO;
883                 goto out_bh;
884         }
885
886         pvoldesc = (struct primaryVolDesc *)bh->b_data;
887
888         udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
889                               pvoldesc->recordingDateAndTime);
890         ts = &pvoldesc->recordingDateAndTime;
891         udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
892                   le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
893                   ts->minute, le16_to_cpu(ts->typeAndTimezone));
894
895         ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
896         if (ret < 0) {
897                 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
898                 pr_warn("incorrect volume identification, setting to "
899                         "'InvalidName'\n");
900         } else {
901                 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
902         }
903         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
904
905         ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
906         if (ret < 0) {
907                 ret = 0;
908                 goto out_bh;
909         }
910         outstr[ret] = 0;
911         udf_debug("volSetIdent[] = '%s'\n", outstr);
912
913         ret = 0;
914 out_bh:
915         brelse(bh);
916 out2:
917         kfree(outstr);
918         return ret;
919 }
920
921 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
922                                         u32 meta_file_loc, u32 partition_ref)
923 {
924         struct kernel_lb_addr addr;
925         struct inode *metadata_fe;
926
927         addr.logicalBlockNum = meta_file_loc;
928         addr.partitionReferenceNum = partition_ref;
929
930         metadata_fe = udf_iget_special(sb, &addr);
931
932         if (IS_ERR(metadata_fe)) {
933                 udf_warn(sb, "metadata inode efe not found\n");
934                 return metadata_fe;
935         }
936         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
937                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
938                 iput(metadata_fe);
939                 return ERR_PTR(-EIO);
940         }
941
942         return metadata_fe;
943 }
944
945 static int udf_load_metadata_files(struct super_block *sb, int partition,
946                                    int type1_index)
947 {
948         struct udf_sb_info *sbi = UDF_SB(sb);
949         struct udf_part_map *map;
950         struct udf_meta_data *mdata;
951         struct kernel_lb_addr addr;
952         struct inode *fe;
953
954         map = &sbi->s_partmaps[partition];
955         mdata = &map->s_type_specific.s_metadata;
956         mdata->s_phys_partition_ref = type1_index;
957
958         /* metadata address */
959         udf_debug("Metadata file location: block = %u part = %u\n",
960                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
961
962         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
963                                          mdata->s_phys_partition_ref);
964         if (IS_ERR(fe)) {
965                 /* mirror file entry */
966                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
967                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
968
969                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
970                                                  mdata->s_phys_partition_ref);
971
972                 if (IS_ERR(fe)) {
973                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
974                         return PTR_ERR(fe);
975                 }
976                 mdata->s_mirror_fe = fe;
977         } else
978                 mdata->s_metadata_fe = fe;
979
980
981         /*
982          * bitmap file entry
983          * Note:
984          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
985         */
986         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
987                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
988                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
989
990                 udf_debug("Bitmap file location: block = %u part = %u\n",
991                           addr.logicalBlockNum, addr.partitionReferenceNum);
992
993                 fe = udf_iget_special(sb, &addr);
994                 if (IS_ERR(fe)) {
995                         if (sb_rdonly(sb))
996                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
997                         else {
998                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
999                                 return PTR_ERR(fe);
1000                         }
1001                 } else
1002                         mdata->s_bitmap_fe = fe;
1003         }
1004
1005         udf_debug("udf_load_metadata_files Ok\n");
1006         return 0;
1007 }
1008
1009 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1010 {
1011         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1012         return DIV_ROUND_UP(map->s_partition_len +
1013                             (sizeof(struct spaceBitmapDesc) << 3),
1014                             sb->s_blocksize * 8);
1015 }
1016
1017 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1018 {
1019         struct udf_bitmap *bitmap;
1020         int nr_groups = udf_compute_nr_groups(sb, index);
1021
1022         bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1023                           GFP_KERNEL);
1024         if (!bitmap)
1025                 return NULL;
1026
1027         bitmap->s_nr_groups = nr_groups;
1028         return bitmap;
1029 }
1030
1031 static int check_partition_desc(struct super_block *sb,
1032                                 struct partitionDesc *p,
1033                                 struct udf_part_map *map)
1034 {
1035         bool umap, utable, fmap, ftable;
1036         struct partitionHeaderDesc *phd;
1037
1038         switch (le32_to_cpu(p->accessType)) {
1039         case PD_ACCESS_TYPE_READ_ONLY:
1040         case PD_ACCESS_TYPE_WRITE_ONCE:
1041         case PD_ACCESS_TYPE_NONE:
1042                 goto force_ro;
1043         }
1044
1045         /* No Partition Header Descriptor? */
1046         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1047             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1048                 goto force_ro;
1049
1050         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1051         utable = phd->unallocSpaceTable.extLength;
1052         umap = phd->unallocSpaceBitmap.extLength;
1053         ftable = phd->freedSpaceTable.extLength;
1054         fmap = phd->freedSpaceBitmap.extLength;
1055
1056         /* No allocation info? */
1057         if (!utable && !umap && !ftable && !fmap)
1058                 goto force_ro;
1059
1060         /* We don't support blocks that require erasing before overwrite */
1061         if (ftable || fmap)
1062                 goto force_ro;
1063         /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1064         if (utable && umap)
1065                 goto force_ro;
1066
1067         if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1068             map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1069             map->s_partition_type == UDF_METADATA_MAP25)
1070                 goto force_ro;
1071
1072         return 0;
1073 force_ro:
1074         if (!sb_rdonly(sb))
1075                 return -EACCES;
1076         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1077         return 0;
1078 }
1079
1080 static int udf_fill_partdesc_info(struct super_block *sb,
1081                 struct partitionDesc *p, int p_index)
1082 {
1083         struct udf_part_map *map;
1084         struct udf_sb_info *sbi = UDF_SB(sb);
1085         struct partitionHeaderDesc *phd;
1086         int err;
1087
1088         map = &sbi->s_partmaps[p_index];
1089
1090         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1091         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1092
1093         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1094                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1095         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1096                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1097         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1098                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1099         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1100                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1101
1102         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1103                   p_index, map->s_partition_type,
1104                   map->s_partition_root, map->s_partition_len);
1105
1106         err = check_partition_desc(sb, p, map);
1107         if (err)
1108                 return err;
1109
1110         /*
1111          * Skip loading allocation info it we cannot ever write to the fs.
1112          * This is a correctness thing as we may have decided to force ro mount
1113          * to avoid allocation info we don't support.
1114          */
1115         if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1116                 return 0;
1117
1118         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1119         if (phd->unallocSpaceTable.extLength) {
1120                 struct kernel_lb_addr loc = {
1121                         .logicalBlockNum = le32_to_cpu(
1122                                 phd->unallocSpaceTable.extPosition),
1123                         .partitionReferenceNum = p_index,
1124                 };
1125                 struct inode *inode;
1126
1127                 inode = udf_iget_special(sb, &loc);
1128                 if (IS_ERR(inode)) {
1129                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1130                                   p_index);
1131                         return PTR_ERR(inode);
1132                 }
1133                 map->s_uspace.s_table = inode;
1134                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1135                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1136                           p_index, map->s_uspace.s_table->i_ino);
1137         }
1138
1139         if (phd->unallocSpaceBitmap.extLength) {
1140                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1141                 if (!bitmap)
1142                         return -ENOMEM;
1143                 map->s_uspace.s_bitmap = bitmap;
1144                 bitmap->s_extPosition = le32_to_cpu(
1145                                 phd->unallocSpaceBitmap.extPosition);
1146                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1147                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1148                           p_index, bitmap->s_extPosition);
1149         }
1150
1151         return 0;
1152 }
1153
1154 static void udf_find_vat_block(struct super_block *sb, int p_index,
1155                                int type1_index, sector_t start_block)
1156 {
1157         struct udf_sb_info *sbi = UDF_SB(sb);
1158         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1159         sector_t vat_block;
1160         struct kernel_lb_addr ino;
1161         struct inode *inode;
1162
1163         /*
1164          * VAT file entry is in the last recorded block. Some broken disks have
1165          * it a few blocks before so try a bit harder...
1166          */
1167         ino.partitionReferenceNum = type1_index;
1168         for (vat_block = start_block;
1169              vat_block >= map->s_partition_root &&
1170              vat_block >= start_block - 3; vat_block--) {
1171                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1172                 inode = udf_iget_special(sb, &ino);
1173                 if (!IS_ERR(inode)) {
1174                         sbi->s_vat_inode = inode;
1175                         break;
1176                 }
1177         }
1178 }
1179
1180 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1181 {
1182         struct udf_sb_info *sbi = UDF_SB(sb);
1183         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1184         struct buffer_head *bh = NULL;
1185         struct udf_inode_info *vati;
1186         struct virtualAllocationTable20 *vat20;
1187         sector_t blocks = sb_bdev_nr_blocks(sb);
1188
1189         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1190         if (!sbi->s_vat_inode &&
1191             sbi->s_last_block != blocks - 1) {
1192                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1193                           (unsigned long)sbi->s_last_block,
1194                           (unsigned long)blocks - 1);
1195                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1196         }
1197         if (!sbi->s_vat_inode)
1198                 return -EIO;
1199
1200         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1201                 map->s_type_specific.s_virtual.s_start_offset = 0;
1202                 map->s_type_specific.s_virtual.s_num_entries =
1203                         (sbi->s_vat_inode->i_size - 36) >> 2;
1204         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1205                 vati = UDF_I(sbi->s_vat_inode);
1206                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1207                         int err = 0;
1208
1209                         bh = udf_bread(sbi->s_vat_inode, 0, 0, &err);
1210                         if (!bh) {
1211                                 if (!err)
1212                                         err = -EFSCORRUPTED;
1213                                 return err;
1214                         }
1215                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1216                 } else {
1217                         vat20 = (struct virtualAllocationTable20 *)
1218                                                         vati->i_data;
1219                 }
1220
1221                 map->s_type_specific.s_virtual.s_start_offset =
1222                         le16_to_cpu(vat20->lengthHeader);
1223                 map->s_type_specific.s_virtual.s_num_entries =
1224                         (sbi->s_vat_inode->i_size -
1225                                 map->s_type_specific.s_virtual.
1226                                         s_start_offset) >> 2;
1227                 brelse(bh);
1228         }
1229         return 0;
1230 }
1231
1232 /*
1233  * Load partition descriptor block
1234  *
1235  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1236  * sequence.
1237  */
1238 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1239 {
1240         struct buffer_head *bh;
1241         struct partitionDesc *p;
1242         struct udf_part_map *map;
1243         struct udf_sb_info *sbi = UDF_SB(sb);
1244         int i, type1_idx;
1245         uint16_t partitionNumber;
1246         uint16_t ident;
1247         int ret;
1248
1249         bh = udf_read_tagged(sb, block, block, &ident);
1250         if (!bh)
1251                 return -EAGAIN;
1252         if (ident != TAG_IDENT_PD) {
1253                 ret = 0;
1254                 goto out_bh;
1255         }
1256
1257         p = (struct partitionDesc *)bh->b_data;
1258         partitionNumber = le16_to_cpu(p->partitionNumber);
1259
1260         /* First scan for TYPE1 and SPARABLE partitions */
1261         for (i = 0; i < sbi->s_partitions; i++) {
1262                 map = &sbi->s_partmaps[i];
1263                 udf_debug("Searching map: (%u == %u)\n",
1264                           map->s_partition_num, partitionNumber);
1265                 if (map->s_partition_num == partitionNumber &&
1266                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1267                      map->s_partition_type == UDF_SPARABLE_MAP15))
1268                         break;
1269         }
1270
1271         if (i >= sbi->s_partitions) {
1272                 udf_debug("Partition (%u) not found in partition map\n",
1273                           partitionNumber);
1274                 ret = 0;
1275                 goto out_bh;
1276         }
1277
1278         ret = udf_fill_partdesc_info(sb, p, i);
1279         if (ret < 0)
1280                 goto out_bh;
1281
1282         /*
1283          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1284          * PHYSICAL partitions are already set up
1285          */
1286         type1_idx = i;
1287         map = NULL; /* supress 'maybe used uninitialized' warning */
1288         for (i = 0; i < sbi->s_partitions; i++) {
1289                 map = &sbi->s_partmaps[i];
1290
1291                 if (map->s_partition_num == partitionNumber &&
1292                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1293                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1294                      map->s_partition_type == UDF_METADATA_MAP25))
1295                         break;
1296         }
1297
1298         if (i >= sbi->s_partitions) {
1299                 ret = 0;
1300                 goto out_bh;
1301         }
1302
1303         ret = udf_fill_partdesc_info(sb, p, i);
1304         if (ret < 0)
1305                 goto out_bh;
1306
1307         if (map->s_partition_type == UDF_METADATA_MAP25) {
1308                 ret = udf_load_metadata_files(sb, i, type1_idx);
1309                 if (ret < 0) {
1310                         udf_err(sb, "error loading MetaData partition map %d\n",
1311                                 i);
1312                         goto out_bh;
1313                 }
1314         } else {
1315                 /*
1316                  * If we have a partition with virtual map, we don't handle
1317                  * writing to it (we overwrite blocks instead of relocating
1318                  * them).
1319                  */
1320                 if (!sb_rdonly(sb)) {
1321                         ret = -EACCES;
1322                         goto out_bh;
1323                 }
1324                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1325                 ret = udf_load_vat(sb, i, type1_idx);
1326                 if (ret < 0)
1327                         goto out_bh;
1328         }
1329         ret = 0;
1330 out_bh:
1331         /* In case loading failed, we handle cleanup in udf_fill_super */
1332         brelse(bh);
1333         return ret;
1334 }
1335
1336 static int udf_load_sparable_map(struct super_block *sb,
1337                                  struct udf_part_map *map,
1338                                  struct sparablePartitionMap *spm)
1339 {
1340         uint32_t loc;
1341         uint16_t ident;
1342         struct sparingTable *st;
1343         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1344         int i;
1345         struct buffer_head *bh;
1346
1347         map->s_partition_type = UDF_SPARABLE_MAP15;
1348         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1349         if (!is_power_of_2(sdata->s_packet_len)) {
1350                 udf_err(sb, "error loading logical volume descriptor: "
1351                         "Invalid packet length %u\n",
1352                         (unsigned)sdata->s_packet_len);
1353                 return -EIO;
1354         }
1355         if (spm->numSparingTables > 4) {
1356                 udf_err(sb, "error loading logical volume descriptor: "
1357                         "Too many sparing tables (%d)\n",
1358                         (int)spm->numSparingTables);
1359                 return -EIO;
1360         }
1361         if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1362                 udf_err(sb, "error loading logical volume descriptor: "
1363                         "Too big sparing table size (%u)\n",
1364                         le32_to_cpu(spm->sizeSparingTable));
1365                 return -EIO;
1366         }
1367
1368         for (i = 0; i < spm->numSparingTables; i++) {
1369                 loc = le32_to_cpu(spm->locSparingTable[i]);
1370                 bh = udf_read_tagged(sb, loc, loc, &ident);
1371                 if (!bh)
1372                         continue;
1373
1374                 st = (struct sparingTable *)bh->b_data;
1375                 if (ident != 0 ||
1376                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1377                             strlen(UDF_ID_SPARING)) ||
1378                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1379                                                         sb->s_blocksize) {
1380                         brelse(bh);
1381                         continue;
1382                 }
1383
1384                 sdata->s_spar_map[i] = bh;
1385         }
1386         map->s_partition_func = udf_get_pblock_spar15;
1387         return 0;
1388 }
1389
1390 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1391                                struct kernel_lb_addr *fileset)
1392 {
1393         struct logicalVolDesc *lvd;
1394         int i, offset;
1395         uint8_t type;
1396         struct udf_sb_info *sbi = UDF_SB(sb);
1397         struct genericPartitionMap *gpm;
1398         uint16_t ident;
1399         struct buffer_head *bh;
1400         unsigned int table_len;
1401         int ret;
1402
1403         bh = udf_read_tagged(sb, block, block, &ident);
1404         if (!bh)
1405                 return -EAGAIN;
1406         BUG_ON(ident != TAG_IDENT_LVD);
1407         lvd = (struct logicalVolDesc *)bh->b_data;
1408         table_len = le32_to_cpu(lvd->mapTableLength);
1409         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1410                 udf_err(sb, "error loading logical volume descriptor: "
1411                         "Partition table too long (%u > %lu)\n", table_len,
1412                         sb->s_blocksize - sizeof(*lvd));
1413                 ret = -EIO;
1414                 goto out_bh;
1415         }
1416
1417         ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1418                                            "logical volume");
1419         if (ret)
1420                 goto out_bh;
1421         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1422         if (ret)
1423                 goto out_bh;
1424
1425         for (i = 0, offset = 0;
1426              i < sbi->s_partitions && offset < table_len;
1427              i++, offset += gpm->partitionMapLength) {
1428                 struct udf_part_map *map = &sbi->s_partmaps[i];
1429                 gpm = (struct genericPartitionMap *)
1430                                 &(lvd->partitionMaps[offset]);
1431                 type = gpm->partitionMapType;
1432                 if (type == 1) {
1433                         struct genericPartitionMap1 *gpm1 =
1434                                 (struct genericPartitionMap1 *)gpm;
1435                         map->s_partition_type = UDF_TYPE1_MAP15;
1436                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1437                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1438                         map->s_partition_func = NULL;
1439                 } else if (type == 2) {
1440                         struct udfPartitionMap2 *upm2 =
1441                                                 (struct udfPartitionMap2 *)gpm;
1442                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1443                                                 strlen(UDF_ID_VIRTUAL))) {
1444                                 u16 suf =
1445                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1446                                                         identSuffix)[0]);
1447                                 if (suf < 0x0200) {
1448                                         map->s_partition_type =
1449                                                         UDF_VIRTUAL_MAP15;
1450                                         map->s_partition_func =
1451                                                         udf_get_pblock_virt15;
1452                                 } else {
1453                                         map->s_partition_type =
1454                                                         UDF_VIRTUAL_MAP20;
1455                                         map->s_partition_func =
1456                                                         udf_get_pblock_virt20;
1457                                 }
1458                         } else if (!strncmp(upm2->partIdent.ident,
1459                                                 UDF_ID_SPARABLE,
1460                                                 strlen(UDF_ID_SPARABLE))) {
1461                                 ret = udf_load_sparable_map(sb, map,
1462                                         (struct sparablePartitionMap *)gpm);
1463                                 if (ret < 0)
1464                                         goto out_bh;
1465                         } else if (!strncmp(upm2->partIdent.ident,
1466                                                 UDF_ID_METADATA,
1467                                                 strlen(UDF_ID_METADATA))) {
1468                                 struct udf_meta_data *mdata =
1469                                         &map->s_type_specific.s_metadata;
1470                                 struct metadataPartitionMap *mdm =
1471                                                 (struct metadataPartitionMap *)
1472                                                 &(lvd->partitionMaps[offset]);
1473                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1474                                           i, type, UDF_ID_METADATA);
1475
1476                                 map->s_partition_type = UDF_METADATA_MAP25;
1477                                 map->s_partition_func = udf_get_pblock_meta25;
1478
1479                                 mdata->s_meta_file_loc   =
1480                                         le32_to_cpu(mdm->metadataFileLoc);
1481                                 mdata->s_mirror_file_loc =
1482                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1483                                 mdata->s_bitmap_file_loc =
1484                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1485                                 mdata->s_alloc_unit_size =
1486                                         le32_to_cpu(mdm->allocUnitSize);
1487                                 mdata->s_align_unit_size =
1488                                         le16_to_cpu(mdm->alignUnitSize);
1489                                 if (mdm->flags & 0x01)
1490                                         mdata->s_flags |= MF_DUPLICATE_MD;
1491
1492                                 udf_debug("Metadata Ident suffix=0x%x\n",
1493                                           le16_to_cpu(*(__le16 *)
1494                                                       mdm->partIdent.identSuffix));
1495                                 udf_debug("Metadata part num=%u\n",
1496                                           le16_to_cpu(mdm->partitionNum));
1497                                 udf_debug("Metadata part alloc unit size=%u\n",
1498                                           le32_to_cpu(mdm->allocUnitSize));
1499                                 udf_debug("Metadata file loc=%u\n",
1500                                           le32_to_cpu(mdm->metadataFileLoc));
1501                                 udf_debug("Mirror file loc=%u\n",
1502                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1503                                 udf_debug("Bitmap file loc=%u\n",
1504                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1505                                 udf_debug("Flags: %d %u\n",
1506                                           mdata->s_flags, mdm->flags);
1507                         } else {
1508                                 udf_debug("Unknown ident: %s\n",
1509                                           upm2->partIdent.ident);
1510                                 continue;
1511                         }
1512                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1513                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1514                 }
1515                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1516                           i, map->s_partition_num, type, map->s_volumeseqnum);
1517         }
1518
1519         if (fileset) {
1520                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1521
1522                 *fileset = lelb_to_cpu(la->extLocation);
1523                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1524                           fileset->logicalBlockNum,
1525                           fileset->partitionReferenceNum);
1526         }
1527         if (lvd->integritySeqExt.extLength)
1528                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1529         ret = 0;
1530
1531         if (!sbi->s_lvid_bh) {
1532                 /* We can't generate unique IDs without a valid LVID */
1533                 if (sb_rdonly(sb)) {
1534                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1535                 } else {
1536                         udf_warn(sb, "Damaged or missing LVID, forcing "
1537                                      "readonly mount\n");
1538                         ret = -EACCES;
1539                 }
1540         }
1541 out_bh:
1542         brelse(bh);
1543         return ret;
1544 }
1545
1546 /*
1547  * Find the prevailing Logical Volume Integrity Descriptor.
1548  */
1549 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1550 {
1551         struct buffer_head *bh, *final_bh;
1552         uint16_t ident;
1553         struct udf_sb_info *sbi = UDF_SB(sb);
1554         struct logicalVolIntegrityDesc *lvid;
1555         int indirections = 0;
1556         u32 parts, impuselen;
1557
1558         while (++indirections <= UDF_MAX_LVID_NESTING) {
1559                 final_bh = NULL;
1560                 while (loc.extLength > 0 &&
1561                         (bh = udf_read_tagged(sb, loc.extLocation,
1562                                         loc.extLocation, &ident))) {
1563                         if (ident != TAG_IDENT_LVID) {
1564                                 brelse(bh);
1565                                 break;
1566                         }
1567
1568                         brelse(final_bh);
1569                         final_bh = bh;
1570
1571                         loc.extLength -= sb->s_blocksize;
1572                         loc.extLocation++;
1573                 }
1574
1575                 if (!final_bh)
1576                         return;
1577
1578                 brelse(sbi->s_lvid_bh);
1579                 sbi->s_lvid_bh = final_bh;
1580
1581                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1582                 if (lvid->nextIntegrityExt.extLength == 0)
1583                         goto check;
1584
1585                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1586         }
1587
1588         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1589                 UDF_MAX_LVID_NESTING);
1590 out_err:
1591         brelse(sbi->s_lvid_bh);
1592         sbi->s_lvid_bh = NULL;
1593         return;
1594 check:
1595         parts = le32_to_cpu(lvid->numOfPartitions);
1596         impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1597         if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1598             sizeof(struct logicalVolIntegrityDesc) + impuselen +
1599             2 * parts * sizeof(u32) > sb->s_blocksize) {
1600                 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1601                          "ignoring.\n", parts, impuselen);
1602                 goto out_err;
1603         }
1604 }
1605
1606 /*
1607  * Step for reallocation of table of partition descriptor sequence numbers.
1608  * Must be power of 2.
1609  */
1610 #define PART_DESC_ALLOC_STEP 32
1611
1612 struct part_desc_seq_scan_data {
1613         struct udf_vds_record rec;
1614         u32 partnum;
1615 };
1616
1617 struct desc_seq_scan_data {
1618         struct udf_vds_record vds[VDS_POS_LENGTH];
1619         unsigned int size_part_descs;
1620         unsigned int num_part_descs;
1621         struct part_desc_seq_scan_data *part_descs_loc;
1622 };
1623
1624 static struct udf_vds_record *handle_partition_descriptor(
1625                                 struct buffer_head *bh,
1626                                 struct desc_seq_scan_data *data)
1627 {
1628         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1629         int partnum;
1630         int i;
1631
1632         partnum = le16_to_cpu(desc->partitionNumber);
1633         for (i = 0; i < data->num_part_descs; i++)
1634                 if (partnum == data->part_descs_loc[i].partnum)
1635                         return &(data->part_descs_loc[i].rec);
1636         if (data->num_part_descs >= data->size_part_descs) {
1637                 struct part_desc_seq_scan_data *new_loc;
1638                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1639
1640                 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1641                 if (!new_loc)
1642                         return ERR_PTR(-ENOMEM);
1643                 memcpy(new_loc, data->part_descs_loc,
1644                        data->size_part_descs * sizeof(*new_loc));
1645                 kfree(data->part_descs_loc);
1646                 data->part_descs_loc = new_loc;
1647                 data->size_part_descs = new_size;
1648         }
1649         return &(data->part_descs_loc[data->num_part_descs++].rec);
1650 }
1651
1652
1653 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1654                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1655 {
1656         switch (ident) {
1657         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1658                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1659         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1660                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1661         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1662                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1663         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1664                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1665         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1666                 return handle_partition_descriptor(bh, data);
1667         }
1668         return NULL;
1669 }
1670
1671 /*
1672  * Process a main/reserve volume descriptor sequence.
1673  *   @block             First block of first extent of the sequence.
1674  *   @lastblock         Lastblock of first extent of the sequence.
1675  *   @fileset           There we store extent containing root fileset
1676  *
1677  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1678  * sequence
1679  */
1680 static noinline int udf_process_sequence(
1681                 struct super_block *sb,
1682                 sector_t block, sector_t lastblock,
1683                 struct kernel_lb_addr *fileset)
1684 {
1685         struct buffer_head *bh = NULL;
1686         struct udf_vds_record *curr;
1687         struct generic_desc *gd;
1688         struct volDescPtr *vdp;
1689         bool done = false;
1690         uint32_t vdsn;
1691         uint16_t ident;
1692         int ret;
1693         unsigned int indirections = 0;
1694         struct desc_seq_scan_data data;
1695         unsigned int i;
1696
1697         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1698         data.size_part_descs = PART_DESC_ALLOC_STEP;
1699         data.num_part_descs = 0;
1700         data.part_descs_loc = kcalloc(data.size_part_descs,
1701                                       sizeof(*data.part_descs_loc),
1702                                       GFP_KERNEL);
1703         if (!data.part_descs_loc)
1704                 return -ENOMEM;
1705
1706         /*
1707          * Read the main descriptor sequence and find which descriptors
1708          * are in it.
1709          */
1710         for (; (!done && block <= lastblock); block++) {
1711                 bh = udf_read_tagged(sb, block, block, &ident);
1712                 if (!bh)
1713                         break;
1714
1715                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1716                 gd = (struct generic_desc *)bh->b_data;
1717                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1718                 switch (ident) {
1719                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1720                         if (++indirections > UDF_MAX_TD_NESTING) {
1721                                 udf_err(sb, "too many Volume Descriptor "
1722                                         "Pointers (max %u supported)\n",
1723                                         UDF_MAX_TD_NESTING);
1724                                 brelse(bh);
1725                                 ret = -EIO;
1726                                 goto out;
1727                         }
1728
1729                         vdp = (struct volDescPtr *)bh->b_data;
1730                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1731                         lastblock = le32_to_cpu(
1732                                 vdp->nextVolDescSeqExt.extLength) >>
1733                                 sb->s_blocksize_bits;
1734                         lastblock += block - 1;
1735                         /* For loop is going to increment 'block' again */
1736                         block--;
1737                         break;
1738                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1739                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1740                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1741                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1742                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1743                         curr = get_volume_descriptor_record(ident, bh, &data);
1744                         if (IS_ERR(curr)) {
1745                                 brelse(bh);
1746                                 ret = PTR_ERR(curr);
1747                                 goto out;
1748                         }
1749                         /* Descriptor we don't care about? */
1750                         if (!curr)
1751                                 break;
1752                         if (vdsn >= curr->volDescSeqNum) {
1753                                 curr->volDescSeqNum = vdsn;
1754                                 curr->block = block;
1755                         }
1756                         break;
1757                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1758                         done = true;
1759                         break;
1760                 }
1761                 brelse(bh);
1762         }
1763         /*
1764          * Now read interesting descriptors again and process them
1765          * in a suitable order
1766          */
1767         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1768                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1769                 ret = -EAGAIN;
1770                 goto out;
1771         }
1772         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1773         if (ret < 0)
1774                 goto out;
1775
1776         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1777                 ret = udf_load_logicalvol(sb,
1778                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1779                                 fileset);
1780                 if (ret < 0)
1781                         goto out;
1782         }
1783
1784         /* Now handle prevailing Partition Descriptors */
1785         for (i = 0; i < data.num_part_descs; i++) {
1786                 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1787                 if (ret < 0)
1788                         goto out;
1789         }
1790         ret = 0;
1791 out:
1792         kfree(data.part_descs_loc);
1793         return ret;
1794 }
1795
1796 /*
1797  * Load Volume Descriptor Sequence described by anchor in bh
1798  *
1799  * Returns <0 on error, 0 on success
1800  */
1801 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1802                              struct kernel_lb_addr *fileset)
1803 {
1804         struct anchorVolDescPtr *anchor;
1805         sector_t main_s, main_e, reserve_s, reserve_e;
1806         int ret;
1807
1808         anchor = (struct anchorVolDescPtr *)bh->b_data;
1809
1810         /* Locate the main sequence */
1811         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1812         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1813         main_e = main_e >> sb->s_blocksize_bits;
1814         main_e += main_s - 1;
1815
1816         /* Locate the reserve sequence */
1817         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1818         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1819         reserve_e = reserve_e >> sb->s_blocksize_bits;
1820         reserve_e += reserve_s - 1;
1821
1822         /* Process the main & reserve sequences */
1823         /* responsible for finding the PartitionDesc(s) */
1824         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1825         if (ret != -EAGAIN)
1826                 return ret;
1827         udf_sb_free_partitions(sb);
1828         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1829         if (ret < 0) {
1830                 udf_sb_free_partitions(sb);
1831                 /* No sequence was OK, return -EIO */
1832                 if (ret == -EAGAIN)
1833                         ret = -EIO;
1834         }
1835         return ret;
1836 }
1837
1838 /*
1839  * Check whether there is an anchor block in the given block and
1840  * load Volume Descriptor Sequence if so.
1841  *
1842  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1843  * block
1844  */
1845 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1846                                   struct kernel_lb_addr *fileset)
1847 {
1848         struct buffer_head *bh;
1849         uint16_t ident;
1850         int ret;
1851
1852         bh = udf_read_tagged(sb, block, block, &ident);
1853         if (!bh)
1854                 return -EAGAIN;
1855         if (ident != TAG_IDENT_AVDP) {
1856                 brelse(bh);
1857                 return -EAGAIN;
1858         }
1859         ret = udf_load_sequence(sb, bh, fileset);
1860         brelse(bh);
1861         return ret;
1862 }
1863
1864 /*
1865  * Search for an anchor volume descriptor pointer.
1866  *
1867  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1868  * of anchors.
1869  */
1870 static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock,
1871                             struct kernel_lb_addr *fileset)
1872 {
1873         udf_pblk_t last[6];
1874         int i;
1875         struct udf_sb_info *sbi = UDF_SB(sb);
1876         int last_count = 0;
1877         int ret;
1878
1879         /* First try user provided anchor */
1880         if (sbi->s_anchor) {
1881                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1882                 if (ret != -EAGAIN)
1883                         return ret;
1884         }
1885         /*
1886          * according to spec, anchor is in either:
1887          *     block 256
1888          *     lastblock-256
1889          *     lastblock
1890          *  however, if the disc isn't closed, it could be 512.
1891          */
1892         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1893         if (ret != -EAGAIN)
1894                 return ret;
1895         /*
1896          * The trouble is which block is the last one. Drives often misreport
1897          * this so we try various possibilities.
1898          */
1899         last[last_count++] = *lastblock;
1900         if (*lastblock >= 1)
1901                 last[last_count++] = *lastblock - 1;
1902         last[last_count++] = *lastblock + 1;
1903         if (*lastblock >= 2)
1904                 last[last_count++] = *lastblock - 2;
1905         if (*lastblock >= 150)
1906                 last[last_count++] = *lastblock - 150;
1907         if (*lastblock >= 152)
1908                 last[last_count++] = *lastblock - 152;
1909
1910         for (i = 0; i < last_count; i++) {
1911                 if (last[i] >= sb_bdev_nr_blocks(sb))
1912                         continue;
1913                 ret = udf_check_anchor_block(sb, last[i], fileset);
1914                 if (ret != -EAGAIN) {
1915                         if (!ret)
1916                                 *lastblock = last[i];
1917                         return ret;
1918                 }
1919                 if (last[i] < 256)
1920                         continue;
1921                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1922                 if (ret != -EAGAIN) {
1923                         if (!ret)
1924                                 *lastblock = last[i];
1925                         return ret;
1926                 }
1927         }
1928
1929         /* Finally try block 512 in case media is open */
1930         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1931 }
1932
1933 /*
1934  * Check Volume Structure Descriptor, find Anchor block and load Volume
1935  * Descriptor Sequence.
1936  *
1937  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1938  * block was not found.
1939  */
1940 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1941                         int silent, struct kernel_lb_addr *fileset)
1942 {
1943         struct udf_sb_info *sbi = UDF_SB(sb);
1944         int nsr = 0;
1945         int ret;
1946
1947         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1948                 if (!silent)
1949                         udf_warn(sb, "Bad block size\n");
1950                 return -EINVAL;
1951         }
1952         sbi->s_last_block = uopt->lastblock;
1953         if (!uopt->novrs) {
1954                 /* Check that it is NSR02 compliant */
1955                 nsr = udf_check_vsd(sb);
1956                 if (!nsr) {
1957                         if (!silent)
1958                                 udf_warn(sb, "No VRS found\n");
1959                         return -EINVAL;
1960                 }
1961                 if (nsr == -1)
1962                         udf_debug("Failed to read sector at offset %d. "
1963                                   "Assuming open disc. Skipping validity "
1964                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1965                 if (!sbi->s_last_block)
1966                         sbi->s_last_block = udf_get_last_block(sb);
1967         } else {
1968                 udf_debug("Validity check skipped because of novrs option\n");
1969         }
1970
1971         /* Look for anchor block and load Volume Descriptor Sequence */
1972         sbi->s_anchor = uopt->anchor;
1973         ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset);
1974         if (ret < 0) {
1975                 if (!silent && ret == -EAGAIN)
1976                         udf_warn(sb, "No anchor found\n");
1977                 return ret;
1978         }
1979         return 0;
1980 }
1981
1982 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
1983 {
1984         struct timespec64 ts;
1985
1986         ktime_get_real_ts64(&ts);
1987         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1988         lvid->descTag.descCRC = cpu_to_le16(
1989                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1990                         le16_to_cpu(lvid->descTag.descCRCLength)));
1991         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1992 }
1993
1994 static void udf_open_lvid(struct super_block *sb)
1995 {
1996         struct udf_sb_info *sbi = UDF_SB(sb);
1997         struct buffer_head *bh = sbi->s_lvid_bh;
1998         struct logicalVolIntegrityDesc *lvid;
1999         struct logicalVolIntegrityDescImpUse *lvidiu;
2000
2001         if (!bh)
2002                 return;
2003         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2004         lvidiu = udf_sb_lvidiu(sb);
2005         if (!lvidiu)
2006                 return;
2007
2008         mutex_lock(&sbi->s_alloc_mutex);
2009         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2010         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2011         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2012                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2013         else
2014                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2015
2016         udf_finalize_lvid(lvid);
2017         mark_buffer_dirty(bh);
2018         sbi->s_lvid_dirty = 0;
2019         mutex_unlock(&sbi->s_alloc_mutex);
2020         /* Make opening of filesystem visible on the media immediately */
2021         sync_dirty_buffer(bh);
2022 }
2023
2024 static void udf_close_lvid(struct super_block *sb)
2025 {
2026         struct udf_sb_info *sbi = UDF_SB(sb);
2027         struct buffer_head *bh = sbi->s_lvid_bh;
2028         struct logicalVolIntegrityDesc *lvid;
2029         struct logicalVolIntegrityDescImpUse *lvidiu;
2030
2031         if (!bh)
2032                 return;
2033         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2034         lvidiu = udf_sb_lvidiu(sb);
2035         if (!lvidiu)
2036                 return;
2037
2038         mutex_lock(&sbi->s_alloc_mutex);
2039         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2040         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2041         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2042                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2043         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2044                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2045         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2046                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2047         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2048                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2049
2050         /*
2051          * We set buffer uptodate unconditionally here to avoid spurious
2052          * warnings from mark_buffer_dirty() when previous EIO has marked
2053          * the buffer as !uptodate
2054          */
2055         set_buffer_uptodate(bh);
2056         udf_finalize_lvid(lvid);
2057         mark_buffer_dirty(bh);
2058         sbi->s_lvid_dirty = 0;
2059         mutex_unlock(&sbi->s_alloc_mutex);
2060         /* Make closing of filesystem visible on the media immediately */
2061         sync_dirty_buffer(bh);
2062 }
2063
2064 u64 lvid_get_unique_id(struct super_block *sb)
2065 {
2066         struct buffer_head *bh;
2067         struct udf_sb_info *sbi = UDF_SB(sb);
2068         struct logicalVolIntegrityDesc *lvid;
2069         struct logicalVolHeaderDesc *lvhd;
2070         u64 uniqueID;
2071         u64 ret;
2072
2073         bh = sbi->s_lvid_bh;
2074         if (!bh)
2075                 return 0;
2076
2077         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2078         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2079
2080         mutex_lock(&sbi->s_alloc_mutex);
2081         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2082         if (!(++uniqueID & 0xFFFFFFFF))
2083                 uniqueID += 16;
2084         lvhd->uniqueID = cpu_to_le64(uniqueID);
2085         udf_updated_lvid(sb);
2086         mutex_unlock(&sbi->s_alloc_mutex);
2087
2088         return ret;
2089 }
2090
2091 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2092 {
2093         int ret = -EINVAL;
2094         struct inode *inode = NULL;
2095         struct udf_options uopt;
2096         struct kernel_lb_addr rootdir, fileset;
2097         struct udf_sb_info *sbi;
2098         bool lvid_open = false;
2099
2100         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2101         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2102         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2103         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2104         uopt.umask = 0;
2105         uopt.fmode = UDF_INVALID_MODE;
2106         uopt.dmode = UDF_INVALID_MODE;
2107         uopt.nls_map = NULL;
2108
2109         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2110         if (!sbi)
2111                 return -ENOMEM;
2112
2113         sb->s_fs_info = sbi;
2114
2115         mutex_init(&sbi->s_alloc_mutex);
2116
2117         if (!udf_parse_options((char *)options, &uopt, false))
2118                 goto parse_options_failure;
2119
2120         fileset.logicalBlockNum = 0xFFFFFFFF;
2121         fileset.partitionReferenceNum = 0xFFFF;
2122
2123         sbi->s_flags = uopt.flags;
2124         sbi->s_uid = uopt.uid;
2125         sbi->s_gid = uopt.gid;
2126         sbi->s_umask = uopt.umask;
2127         sbi->s_fmode = uopt.fmode;
2128         sbi->s_dmode = uopt.dmode;
2129         sbi->s_nls_map = uopt.nls_map;
2130         rwlock_init(&sbi->s_cred_lock);
2131
2132         if (uopt.session == 0xFFFFFFFF)
2133                 sbi->s_session = udf_get_last_session(sb);
2134         else
2135                 sbi->s_session = uopt.session;
2136
2137         udf_debug("Multi-session=%d\n", sbi->s_session);
2138
2139         /* Fill in the rest of the superblock */
2140         sb->s_op = &udf_sb_ops;
2141         sb->s_export_op = &udf_export_ops;
2142
2143         sb->s_magic = UDF_SUPER_MAGIC;
2144         sb->s_time_gran = 1000;
2145
2146         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2147                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2148         } else {
2149                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2150                 while (uopt.blocksize <= 4096) {
2151                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2152                         if (ret < 0) {
2153                                 if (!silent && ret != -EACCES) {
2154                                         pr_notice("Scanning with blocksize %u failed\n",
2155                                                   uopt.blocksize);
2156                                 }
2157                                 brelse(sbi->s_lvid_bh);
2158                                 sbi->s_lvid_bh = NULL;
2159                                 /*
2160                                  * EACCES is special - we want to propagate to
2161                                  * upper layers that we cannot handle RW mount.
2162                                  */
2163                                 if (ret == -EACCES)
2164                                         break;
2165                         } else
2166                                 break;
2167
2168                         uopt.blocksize <<= 1;
2169                 }
2170         }
2171         if (ret < 0) {
2172                 if (ret == -EAGAIN) {
2173                         udf_warn(sb, "No partition found (1)\n");
2174                         ret = -EINVAL;
2175                 }
2176                 goto error_out;
2177         }
2178
2179         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2180
2181         if (sbi->s_lvid_bh) {
2182                 struct logicalVolIntegrityDescImpUse *lvidiu =
2183                                                         udf_sb_lvidiu(sb);
2184                 uint16_t minUDFReadRev;
2185                 uint16_t minUDFWriteRev;
2186
2187                 if (!lvidiu) {
2188                         ret = -EINVAL;
2189                         goto error_out;
2190                 }
2191                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2192                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2193                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2194                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2195                                 minUDFReadRev,
2196                                 UDF_MAX_READ_VERSION);
2197                         ret = -EINVAL;
2198                         goto error_out;
2199                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2200                         if (!sb_rdonly(sb)) {
2201                                 ret = -EACCES;
2202                                 goto error_out;
2203                         }
2204                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2205                 }
2206
2207                 sbi->s_udfrev = minUDFWriteRev;
2208
2209                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2210                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2211                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2212                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2213         }
2214
2215         if (!sbi->s_partitions) {
2216                 udf_warn(sb, "No partition found (2)\n");
2217                 ret = -EINVAL;
2218                 goto error_out;
2219         }
2220
2221         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2222                         UDF_PART_FLAG_READ_ONLY) {
2223                 if (!sb_rdonly(sb)) {
2224                         ret = -EACCES;
2225                         goto error_out;
2226                 }
2227                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2228         }
2229
2230         ret = udf_find_fileset(sb, &fileset, &rootdir);
2231         if (ret < 0) {
2232                 udf_warn(sb, "No fileset found\n");
2233                 goto error_out;
2234         }
2235
2236         if (!silent) {
2237                 struct timestamp ts;
2238                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2239                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2240                          sbi->s_volume_ident,
2241                          le16_to_cpu(ts.year), ts.month, ts.day,
2242                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2243         }
2244         if (!sb_rdonly(sb)) {
2245                 udf_open_lvid(sb);
2246                 lvid_open = true;
2247         }
2248
2249         /* Assign the root inode */
2250         /* assign inodes by physical block number */
2251         /* perhaps it's not extensible enough, but for now ... */
2252         inode = udf_iget(sb, &rootdir);
2253         if (IS_ERR(inode)) {
2254                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2255                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2256                 ret = PTR_ERR(inode);
2257                 goto error_out;
2258         }
2259
2260         /* Allocate a dentry for the root inode */
2261         sb->s_root = d_make_root(inode);
2262         if (!sb->s_root) {
2263                 udf_err(sb, "Couldn't allocate root dentry\n");
2264                 ret = -ENOMEM;
2265                 goto error_out;
2266         }
2267         sb->s_maxbytes = UDF_MAX_FILESIZE;
2268         sb->s_max_links = UDF_MAX_LINKS;
2269         return 0;
2270
2271 error_out:
2272         iput(sbi->s_vat_inode);
2273 parse_options_failure:
2274         unload_nls(uopt.nls_map);
2275         if (lvid_open)
2276                 udf_close_lvid(sb);
2277         brelse(sbi->s_lvid_bh);
2278         udf_sb_free_partitions(sb);
2279         kfree(sbi);
2280         sb->s_fs_info = NULL;
2281
2282         return ret;
2283 }
2284
2285 void _udf_err(struct super_block *sb, const char *function,
2286               const char *fmt, ...)
2287 {
2288         struct va_format vaf;
2289         va_list args;
2290
2291         va_start(args, fmt);
2292
2293         vaf.fmt = fmt;
2294         vaf.va = &args;
2295
2296         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2297
2298         va_end(args);
2299 }
2300
2301 void _udf_warn(struct super_block *sb, const char *function,
2302                const char *fmt, ...)
2303 {
2304         struct va_format vaf;
2305         va_list args;
2306
2307         va_start(args, fmt);
2308
2309         vaf.fmt = fmt;
2310         vaf.va = &args;
2311
2312         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2313
2314         va_end(args);
2315 }
2316
2317 static void udf_put_super(struct super_block *sb)
2318 {
2319         struct udf_sb_info *sbi;
2320
2321         sbi = UDF_SB(sb);
2322
2323         iput(sbi->s_vat_inode);
2324         unload_nls(sbi->s_nls_map);
2325         if (!sb_rdonly(sb))
2326                 udf_close_lvid(sb);
2327         brelse(sbi->s_lvid_bh);
2328         udf_sb_free_partitions(sb);
2329         mutex_destroy(&sbi->s_alloc_mutex);
2330         kfree(sb->s_fs_info);
2331         sb->s_fs_info = NULL;
2332 }
2333
2334 static int udf_sync_fs(struct super_block *sb, int wait)
2335 {
2336         struct udf_sb_info *sbi = UDF_SB(sb);
2337
2338         mutex_lock(&sbi->s_alloc_mutex);
2339         if (sbi->s_lvid_dirty) {
2340                 struct buffer_head *bh = sbi->s_lvid_bh;
2341                 struct logicalVolIntegrityDesc *lvid;
2342
2343                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2344                 udf_finalize_lvid(lvid);
2345
2346                 /*
2347                  * Blockdevice will be synced later so we don't have to submit
2348                  * the buffer for IO
2349                  */
2350                 mark_buffer_dirty(bh);
2351                 sbi->s_lvid_dirty = 0;
2352         }
2353         mutex_unlock(&sbi->s_alloc_mutex);
2354
2355         return 0;
2356 }
2357
2358 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2359 {
2360         struct super_block *sb = dentry->d_sb;
2361         struct udf_sb_info *sbi = UDF_SB(sb);
2362         struct logicalVolIntegrityDescImpUse *lvidiu;
2363         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2364
2365         lvidiu = udf_sb_lvidiu(sb);
2366         buf->f_type = UDF_SUPER_MAGIC;
2367         buf->f_bsize = sb->s_blocksize;
2368         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2369         buf->f_bfree = udf_count_free(sb);
2370         buf->f_bavail = buf->f_bfree;
2371         /*
2372          * Let's pretend each free block is also a free 'inode' since UDF does
2373          * not have separate preallocated table of inodes.
2374          */
2375         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2376                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2377                         + buf->f_bfree;
2378         buf->f_ffree = buf->f_bfree;
2379         buf->f_namelen = UDF_NAME_LEN;
2380         buf->f_fsid = u64_to_fsid(id);
2381
2382         return 0;
2383 }
2384
2385 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2386                                           struct udf_bitmap *bitmap)
2387 {
2388         struct buffer_head *bh = NULL;
2389         unsigned int accum = 0;
2390         int index;
2391         udf_pblk_t block = 0, newblock;
2392         struct kernel_lb_addr loc;
2393         uint32_t bytes;
2394         uint8_t *ptr;
2395         uint16_t ident;
2396         struct spaceBitmapDesc *bm;
2397
2398         loc.logicalBlockNum = bitmap->s_extPosition;
2399         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2400         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2401
2402         if (!bh) {
2403                 udf_err(sb, "udf_count_free failed\n");
2404                 goto out;
2405         } else if (ident != TAG_IDENT_SBD) {
2406                 brelse(bh);
2407                 udf_err(sb, "udf_count_free failed\n");
2408                 goto out;
2409         }
2410
2411         bm = (struct spaceBitmapDesc *)bh->b_data;
2412         bytes = le32_to_cpu(bm->numOfBytes);
2413         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2414         ptr = (uint8_t *)bh->b_data;
2415
2416         while (bytes > 0) {
2417                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2418                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2419                                         cur_bytes * 8);
2420                 bytes -= cur_bytes;
2421                 if (bytes) {
2422                         brelse(bh);
2423                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2424                         bh = sb_bread(sb, newblock);
2425                         if (!bh) {
2426                                 udf_debug("read failed\n");
2427                                 goto out;
2428                         }
2429                         index = 0;
2430                         ptr = (uint8_t *)bh->b_data;
2431                 }
2432         }
2433         brelse(bh);
2434 out:
2435         return accum;
2436 }
2437
2438 static unsigned int udf_count_free_table(struct super_block *sb,
2439                                          struct inode *table)
2440 {
2441         unsigned int accum = 0;
2442         uint32_t elen;
2443         struct kernel_lb_addr eloc;
2444         struct extent_position epos;
2445
2446         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2447         epos.block = UDF_I(table)->i_location;
2448         epos.offset = sizeof(struct unallocSpaceEntry);
2449         epos.bh = NULL;
2450
2451         while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2452                 accum += (elen >> table->i_sb->s_blocksize_bits);
2453
2454         brelse(epos.bh);
2455         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2456
2457         return accum;
2458 }
2459
2460 static unsigned int udf_count_free(struct super_block *sb)
2461 {
2462         unsigned int accum = 0;
2463         struct udf_sb_info *sbi = UDF_SB(sb);
2464         struct udf_part_map *map;
2465         unsigned int part = sbi->s_partition;
2466         int ptype = sbi->s_partmaps[part].s_partition_type;
2467
2468         if (ptype == UDF_METADATA_MAP25) {
2469                 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2470                                                         s_phys_partition_ref;
2471         } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2472                 /*
2473                  * Filesystems with VAT are append-only and we cannot write to
2474                  * them. Let's just report 0 here.
2475                  */
2476                 return 0;
2477         }
2478
2479         if (sbi->s_lvid_bh) {
2480                 struct logicalVolIntegrityDesc *lvid =
2481                         (struct logicalVolIntegrityDesc *)
2482                         sbi->s_lvid_bh->b_data;
2483                 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2484                         accum = le32_to_cpu(
2485                                         lvid->freeSpaceTable[part]);
2486                         if (accum == 0xFFFFFFFF)
2487                                 accum = 0;
2488                 }
2489         }
2490
2491         if (accum)
2492                 return accum;
2493
2494         map = &sbi->s_partmaps[part];
2495         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2496                 accum += udf_count_free_bitmap(sb,
2497                                                map->s_uspace.s_bitmap);
2498         }
2499         if (accum)
2500                 return accum;
2501
2502         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2503                 accum += udf_count_free_table(sb,
2504                                               map->s_uspace.s_table);
2505         }
2506         return accum;
2507 }
2508
2509 MODULE_AUTHOR("Ben Fennema");
2510 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2511 MODULE_LICENSE("GPL");
2512 module_init(init_udf_fs)
2513 module_exit(exit_udf_fs)