cifs: add SMB3 change notification support
[linux-2.6-microblaze.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68         VDS_POS_PRIMARY_VOL_DESC,
69         VDS_POS_UNALLOC_SPACE_DESC,
70         VDS_POS_LOGICAL_VOL_DESC,
71         VDS_POS_IMP_USE_VOL_DESC,
72         VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET         32768
76 #define VSD_MAX_SECTOR_OFFSET           0x800000
77
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static void udf_open_lvid(struct super_block *);
96 static void udf_close_lvid(struct super_block *);
97 static unsigned int udf_count_free(struct super_block *);
98 static int udf_statfs(struct dentry *, struct kstatfs *);
99 static int udf_show_options(struct seq_file *, struct dentry *);
100
101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
102 {
103         struct logicalVolIntegrityDesc *lvid;
104         unsigned int partnum;
105         unsigned int offset;
106
107         if (!UDF_SB(sb)->s_lvid_bh)
108                 return NULL;
109         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
110         partnum = le32_to_cpu(lvid->numOfPartitions);
111         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
112              offsetof(struct logicalVolIntegrityDesc, impUse)) /
113              (2 * sizeof(uint32_t)) < partnum) {
114                 udf_err(sb, "Logical volume integrity descriptor corrupted "
115                         "(numOfPartitions = %u)!\n", partnum);
116                 return NULL;
117         }
118         /* The offset is to skip freeSpaceTable and sizeTable arrays */
119         offset = partnum * 2 * sizeof(uint32_t);
120         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
121 }
122
123 /* UDF filesystem type */
124 static struct dentry *udf_mount(struct file_system_type *fs_type,
125                       int flags, const char *dev_name, void *data)
126 {
127         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
128 }
129
130 static struct file_system_type udf_fstype = {
131         .owner          = THIS_MODULE,
132         .name           = "udf",
133         .mount          = udf_mount,
134         .kill_sb        = kill_block_super,
135         .fs_flags       = FS_REQUIRES_DEV,
136 };
137 MODULE_ALIAS_FS("udf");
138
139 static struct kmem_cache *udf_inode_cachep;
140
141 static struct inode *udf_alloc_inode(struct super_block *sb)
142 {
143         struct udf_inode_info *ei;
144         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
145         if (!ei)
146                 return NULL;
147
148         ei->i_unique = 0;
149         ei->i_lenExtents = 0;
150         ei->i_lenStreams = 0;
151         ei->i_next_alloc_block = 0;
152         ei->i_next_alloc_goal = 0;
153         ei->i_strat4096 = 0;
154         ei->i_streamdir = 0;
155         init_rwsem(&ei->i_data_sem);
156         ei->cached_extent.lstart = -1;
157         spin_lock_init(&ei->i_extent_cache_lock);
158
159         return &ei->vfs_inode;
160 }
161
162 static void udf_free_in_core_inode(struct inode *inode)
163 {
164         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
165 }
166
167 static void init_once(void *foo)
168 {
169         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
170
171         ei->i_ext.i_data = NULL;
172         inode_init_once(&ei->vfs_inode);
173 }
174
175 static int __init init_inodecache(void)
176 {
177         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
178                                              sizeof(struct udf_inode_info),
179                                              0, (SLAB_RECLAIM_ACCOUNT |
180                                                  SLAB_MEM_SPREAD |
181                                                  SLAB_ACCOUNT),
182                                              init_once);
183         if (!udf_inode_cachep)
184                 return -ENOMEM;
185         return 0;
186 }
187
188 static void destroy_inodecache(void)
189 {
190         /*
191          * Make sure all delayed rcu free inodes are flushed before we
192          * destroy cache.
193          */
194         rcu_barrier();
195         kmem_cache_destroy(udf_inode_cachep);
196 }
197
198 /* Superblock operations */
199 static const struct super_operations udf_sb_ops = {
200         .alloc_inode    = udf_alloc_inode,
201         .free_inode     = udf_free_in_core_inode,
202         .write_inode    = udf_write_inode,
203         .evict_inode    = udf_evict_inode,
204         .put_super      = udf_put_super,
205         .sync_fs        = udf_sync_fs,
206         .statfs         = udf_statfs,
207         .remount_fs     = udf_remount_fs,
208         .show_options   = udf_show_options,
209 };
210
211 struct udf_options {
212         unsigned char novrs;
213         unsigned int blocksize;
214         unsigned int session;
215         unsigned int lastblock;
216         unsigned int anchor;
217         unsigned int flags;
218         umode_t umask;
219         kgid_t gid;
220         kuid_t uid;
221         umode_t fmode;
222         umode_t dmode;
223         struct nls_table *nls_map;
224 };
225
226 static int __init init_udf_fs(void)
227 {
228         int err;
229
230         err = init_inodecache();
231         if (err)
232                 goto out1;
233         err = register_filesystem(&udf_fstype);
234         if (err)
235                 goto out;
236
237         return 0;
238
239 out:
240         destroy_inodecache();
241
242 out1:
243         return err;
244 }
245
246 static void __exit exit_udf_fs(void)
247 {
248         unregister_filesystem(&udf_fstype);
249         destroy_inodecache();
250 }
251
252 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
253 {
254         struct udf_sb_info *sbi = UDF_SB(sb);
255
256         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
257         if (!sbi->s_partmaps) {
258                 sbi->s_partitions = 0;
259                 return -ENOMEM;
260         }
261
262         sbi->s_partitions = count;
263         return 0;
264 }
265
266 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
267 {
268         int i;
269         int nr_groups = bitmap->s_nr_groups;
270
271         for (i = 0; i < nr_groups; i++)
272                 brelse(bitmap->s_block_bitmap[i]);
273
274         kvfree(bitmap);
275 }
276
277 static void udf_free_partition(struct udf_part_map *map)
278 {
279         int i;
280         struct udf_meta_data *mdata;
281
282         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
283                 iput(map->s_uspace.s_table);
284         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
285                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
286         if (map->s_partition_type == UDF_SPARABLE_MAP15)
287                 for (i = 0; i < 4; i++)
288                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
289         else if (map->s_partition_type == UDF_METADATA_MAP25) {
290                 mdata = &map->s_type_specific.s_metadata;
291                 iput(mdata->s_metadata_fe);
292                 mdata->s_metadata_fe = NULL;
293
294                 iput(mdata->s_mirror_fe);
295                 mdata->s_mirror_fe = NULL;
296
297                 iput(mdata->s_bitmap_fe);
298                 mdata->s_bitmap_fe = NULL;
299         }
300 }
301
302 static void udf_sb_free_partitions(struct super_block *sb)
303 {
304         struct udf_sb_info *sbi = UDF_SB(sb);
305         int i;
306
307         if (!sbi->s_partmaps)
308                 return;
309         for (i = 0; i < sbi->s_partitions; i++)
310                 udf_free_partition(&sbi->s_partmaps[i]);
311         kfree(sbi->s_partmaps);
312         sbi->s_partmaps = NULL;
313 }
314
315 static int udf_show_options(struct seq_file *seq, struct dentry *root)
316 {
317         struct super_block *sb = root->d_sb;
318         struct udf_sb_info *sbi = UDF_SB(sb);
319
320         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
321                 seq_puts(seq, ",nostrict");
322         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
323                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
324         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
325                 seq_puts(seq, ",unhide");
326         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
327                 seq_puts(seq, ",undelete");
328         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
329                 seq_puts(seq, ",noadinicb");
330         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
331                 seq_puts(seq, ",shortad");
332         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
333                 seq_puts(seq, ",uid=forget");
334         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
335                 seq_puts(seq, ",gid=forget");
336         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
337                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
338         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
339                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
340         if (sbi->s_umask != 0)
341                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
342         if (sbi->s_fmode != UDF_INVALID_MODE)
343                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
344         if (sbi->s_dmode != UDF_INVALID_MODE)
345                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
346         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
347                 seq_printf(seq, ",session=%d", sbi->s_session);
348         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
349                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
350         if (sbi->s_anchor != 0)
351                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
352         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
353                 seq_puts(seq, ",utf8");
354         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
355                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
356
357         return 0;
358 }
359
360 /*
361  * udf_parse_options
362  *
363  * PURPOSE
364  *      Parse mount options.
365  *
366  * DESCRIPTION
367  *      The following mount options are supported:
368  *
369  *      gid=            Set the default group.
370  *      umask=          Set the default umask.
371  *      mode=           Set the default file permissions.
372  *      dmode=          Set the default directory permissions.
373  *      uid=            Set the default user.
374  *      bs=             Set the block size.
375  *      unhide          Show otherwise hidden files.
376  *      undelete        Show deleted files in lists.
377  *      adinicb         Embed data in the inode (default)
378  *      noadinicb       Don't embed data in the inode
379  *      shortad         Use short ad's
380  *      longad          Use long ad's (default)
381  *      nostrict        Unset strict conformance
382  *      iocharset=      Set the NLS character set
383  *
384  *      The remaining are for debugging and disaster recovery:
385  *
386  *      novrs           Skip volume sequence recognition
387  *
388  *      The following expect a offset from 0.
389  *
390  *      session=        Set the CDROM session (default= last session)
391  *      anchor=         Override standard anchor location. (default= 256)
392  *      volume=         Override the VolumeDesc location. (unused)
393  *      partition=      Override the PartitionDesc location. (unused)
394  *      lastblock=      Set the last block of the filesystem/
395  *
396  *      The following expect a offset from the partition root.
397  *
398  *      fileset=        Override the fileset block location. (unused)
399  *      rootdir=        Override the root directory location. (unused)
400  *              WARNING: overriding the rootdir to a non-directory may
401  *              yield highly unpredictable results.
402  *
403  * PRE-CONDITIONS
404  *      options         Pointer to mount options string.
405  *      uopts           Pointer to mount options variable.
406  *
407  * POST-CONDITIONS
408  *      <return>        1       Mount options parsed okay.
409  *      <return>        0       Error parsing mount options.
410  *
411  * HISTORY
412  *      July 1, 1997 - Andrew E. Mileski
413  *      Written, tested, and released.
414  */
415
416 enum {
417         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
418         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
419         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
420         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
421         Opt_rootdir, Opt_utf8, Opt_iocharset,
422         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
423         Opt_fmode, Opt_dmode
424 };
425
426 static const match_table_t tokens = {
427         {Opt_novrs,     "novrs"},
428         {Opt_nostrict,  "nostrict"},
429         {Opt_bs,        "bs=%u"},
430         {Opt_unhide,    "unhide"},
431         {Opt_undelete,  "undelete"},
432         {Opt_noadinicb, "noadinicb"},
433         {Opt_adinicb,   "adinicb"},
434         {Opt_shortad,   "shortad"},
435         {Opt_longad,    "longad"},
436         {Opt_uforget,   "uid=forget"},
437         {Opt_uignore,   "uid=ignore"},
438         {Opt_gforget,   "gid=forget"},
439         {Opt_gignore,   "gid=ignore"},
440         {Opt_gid,       "gid=%u"},
441         {Opt_uid,       "uid=%u"},
442         {Opt_umask,     "umask=%o"},
443         {Opt_session,   "session=%u"},
444         {Opt_lastblock, "lastblock=%u"},
445         {Opt_anchor,    "anchor=%u"},
446         {Opt_volume,    "volume=%u"},
447         {Opt_partition, "partition=%u"},
448         {Opt_fileset,   "fileset=%u"},
449         {Opt_rootdir,   "rootdir=%u"},
450         {Opt_utf8,      "utf8"},
451         {Opt_iocharset, "iocharset=%s"},
452         {Opt_fmode,     "mode=%o"},
453         {Opt_dmode,     "dmode=%o"},
454         {Opt_err,       NULL}
455 };
456
457 static int udf_parse_options(char *options, struct udf_options *uopt,
458                              bool remount)
459 {
460         char *p;
461         int option;
462
463         uopt->novrs = 0;
464         uopt->session = 0xFFFFFFFF;
465         uopt->lastblock = 0;
466         uopt->anchor = 0;
467
468         if (!options)
469                 return 1;
470
471         while ((p = strsep(&options, ",")) != NULL) {
472                 substring_t args[MAX_OPT_ARGS];
473                 int token;
474                 unsigned n;
475                 if (!*p)
476                         continue;
477
478                 token = match_token(p, tokens, args);
479                 switch (token) {
480                 case Opt_novrs:
481                         uopt->novrs = 1;
482                         break;
483                 case Opt_bs:
484                         if (match_int(&args[0], &option))
485                                 return 0;
486                         n = option;
487                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
488                                 return 0;
489                         uopt->blocksize = n;
490                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
491                         break;
492                 case Opt_unhide:
493                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
494                         break;
495                 case Opt_undelete:
496                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
497                         break;
498                 case Opt_noadinicb:
499                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
500                         break;
501                 case Opt_adinicb:
502                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
503                         break;
504                 case Opt_shortad:
505                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
506                         break;
507                 case Opt_longad:
508                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
509                         break;
510                 case Opt_gid:
511                         if (match_int(args, &option))
512                                 return 0;
513                         uopt->gid = make_kgid(current_user_ns(), option);
514                         if (!gid_valid(uopt->gid))
515                                 return 0;
516                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
517                         break;
518                 case Opt_uid:
519                         if (match_int(args, &option))
520                                 return 0;
521                         uopt->uid = make_kuid(current_user_ns(), option);
522                         if (!uid_valid(uopt->uid))
523                                 return 0;
524                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
525                         break;
526                 case Opt_umask:
527                         if (match_octal(args, &option))
528                                 return 0;
529                         uopt->umask = option;
530                         break;
531                 case Opt_nostrict:
532                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
533                         break;
534                 case Opt_session:
535                         if (match_int(args, &option))
536                                 return 0;
537                         uopt->session = option;
538                         if (!remount)
539                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
540                         break;
541                 case Opt_lastblock:
542                         if (match_int(args, &option))
543                                 return 0;
544                         uopt->lastblock = option;
545                         if (!remount)
546                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
547                         break;
548                 case Opt_anchor:
549                         if (match_int(args, &option))
550                                 return 0;
551                         uopt->anchor = option;
552                         break;
553                 case Opt_volume:
554                 case Opt_partition:
555                 case Opt_fileset:
556                 case Opt_rootdir:
557                         /* Ignored (never implemented properly) */
558                         break;
559                 case Opt_utf8:
560                         uopt->flags |= (1 << UDF_FLAG_UTF8);
561                         break;
562                 case Opt_iocharset:
563                         if (!remount) {
564                                 if (uopt->nls_map)
565                                         unload_nls(uopt->nls_map);
566                                 /*
567                                  * load_nls() failure is handled later in
568                                  * udf_fill_super() after all options are
569                                  * parsed.
570                                  */
571                                 uopt->nls_map = load_nls(args[0].from);
572                                 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
573                         }
574                         break;
575                 case Opt_uforget:
576                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
577                         break;
578                 case Opt_uignore:
579                 case Opt_gignore:
580                         /* These options are superseeded by uid=<number> */
581                         break;
582                 case Opt_gforget:
583                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
584                         break;
585                 case Opt_fmode:
586                         if (match_octal(args, &option))
587                                 return 0;
588                         uopt->fmode = option & 0777;
589                         break;
590                 case Opt_dmode:
591                         if (match_octal(args, &option))
592                                 return 0;
593                         uopt->dmode = option & 0777;
594                         break;
595                 default:
596                         pr_err("bad mount option \"%s\" or missing value\n", p);
597                         return 0;
598                 }
599         }
600         return 1;
601 }
602
603 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
604 {
605         struct udf_options uopt;
606         struct udf_sb_info *sbi = UDF_SB(sb);
607         int error = 0;
608
609         if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
610                 return -EACCES;
611
612         sync_filesystem(sb);
613
614         uopt.flags = sbi->s_flags;
615         uopt.uid   = sbi->s_uid;
616         uopt.gid   = sbi->s_gid;
617         uopt.umask = sbi->s_umask;
618         uopt.fmode = sbi->s_fmode;
619         uopt.dmode = sbi->s_dmode;
620         uopt.nls_map = NULL;
621
622         if (!udf_parse_options(options, &uopt, true))
623                 return -EINVAL;
624
625         write_lock(&sbi->s_cred_lock);
626         sbi->s_flags = uopt.flags;
627         sbi->s_uid   = uopt.uid;
628         sbi->s_gid   = uopt.gid;
629         sbi->s_umask = uopt.umask;
630         sbi->s_fmode = uopt.fmode;
631         sbi->s_dmode = uopt.dmode;
632         write_unlock(&sbi->s_cred_lock);
633
634         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
635                 goto out_unlock;
636
637         if (*flags & SB_RDONLY)
638                 udf_close_lvid(sb);
639         else
640                 udf_open_lvid(sb);
641
642 out_unlock:
643         return error;
644 }
645
646 /*
647  * Check VSD descriptor. Returns -1 in case we are at the end of volume
648  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
649  * we found one of NSR descriptors we are looking for.
650  */
651 static int identify_vsd(const struct volStructDesc *vsd)
652 {
653         int ret = 0;
654
655         if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
656                 switch (vsd->structType) {
657                 case 0:
658                         udf_debug("ISO9660 Boot Record found\n");
659                         break;
660                 case 1:
661                         udf_debug("ISO9660 Primary Volume Descriptor found\n");
662                         break;
663                 case 2:
664                         udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
665                         break;
666                 case 3:
667                         udf_debug("ISO9660 Volume Partition Descriptor found\n");
668                         break;
669                 case 255:
670                         udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
671                         break;
672                 default:
673                         udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
674                         break;
675                 }
676         } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
677                 ; /* ret = 0 */
678         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
679                 ret = 1;
680         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
681                 ret = 1;
682         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
683                 ; /* ret = 0 */
684         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
685                 ; /* ret = 0 */
686         else {
687                 /* TEA01 or invalid id : end of volume recognition area */
688                 ret = -1;
689         }
690
691         return ret;
692 }
693
694 /*
695  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
696  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
697  * @return   1 if NSR02 or NSR03 found,
698  *          -1 if first sector read error, 0 otherwise
699  */
700 static int udf_check_vsd(struct super_block *sb)
701 {
702         struct volStructDesc *vsd = NULL;
703         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
704         int sectorsize;
705         struct buffer_head *bh = NULL;
706         int nsr = 0;
707         struct udf_sb_info *sbi;
708
709         sbi = UDF_SB(sb);
710         if (sb->s_blocksize < sizeof(struct volStructDesc))
711                 sectorsize = sizeof(struct volStructDesc);
712         else
713                 sectorsize = sb->s_blocksize;
714
715         sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
716
717         udf_debug("Starting at sector %u (%lu byte sectors)\n",
718                   (unsigned int)(sector >> sb->s_blocksize_bits),
719                   sb->s_blocksize);
720         /* Process the sequence (if applicable). The hard limit on the sector
721          * offset is arbitrary, hopefully large enough so that all valid UDF
722          * filesystems will be recognised. There is no mention of an upper
723          * bound to the size of the volume recognition area in the standard.
724          *  The limit will prevent the code to read all the sectors of a
725          * specially crafted image (like a bluray disc full of CD001 sectors),
726          * potentially causing minutes or even hours of uninterruptible I/O
727          * activity. This actually happened with uninitialised SSD partitions
728          * (all 0xFF) before the check for the limit and all valid IDs were
729          * added */
730         for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
731                 /* Read a block */
732                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
733                 if (!bh)
734                         break;
735
736                 vsd = (struct volStructDesc *)(bh->b_data +
737                                               (sector & (sb->s_blocksize - 1)));
738                 nsr = identify_vsd(vsd);
739                 /* Found NSR or end? */
740                 if (nsr) {
741                         brelse(bh);
742                         break;
743                 }
744                 /*
745                  * Special handling for improperly formatted VRS (e.g., Win10)
746                  * where components are separated by 2048 bytes even though
747                  * sectors are 4K
748                  */
749                 if (sb->s_blocksize == 4096) {
750                         nsr = identify_vsd(vsd + 1);
751                         /* Ignore unknown IDs... */
752                         if (nsr < 0)
753                                 nsr = 0;
754                 }
755                 brelse(bh);
756         }
757
758         if (nsr > 0)
759                 return 1;
760         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
761                         VSD_FIRST_SECTOR_OFFSET)
762                 return -1;
763         else
764                 return 0;
765 }
766
767 static int udf_verify_domain_identifier(struct super_block *sb,
768                                         struct regid *ident, char *dname)
769 {
770         struct domainIdentSuffix *suffix;
771
772         if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
773                 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
774                 goto force_ro;
775         }
776         if (ident->flags & ENTITYID_FLAGS_DIRTY) {
777                 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
778                          dname);
779                 goto force_ro;
780         }
781         suffix = (struct domainIdentSuffix *)ident->identSuffix;
782         if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
783             (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
784                 if (!sb_rdonly(sb)) {
785                         udf_warn(sb, "Descriptor for %s marked write protected."
786                                  " Forcing read only mount.\n", dname);
787                 }
788                 goto force_ro;
789         }
790         return 0;
791
792 force_ro:
793         if (!sb_rdonly(sb))
794                 return -EACCES;
795         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
796         return 0;
797 }
798
799 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
800                             struct kernel_lb_addr *root)
801 {
802         int ret;
803
804         ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
805         if (ret < 0)
806                 return ret;
807
808         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
809         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
810
811         udf_debug("Rootdir at block=%u, partition=%u\n",
812                   root->logicalBlockNum, root->partitionReferenceNum);
813         return 0;
814 }
815
816 static int udf_find_fileset(struct super_block *sb,
817                             struct kernel_lb_addr *fileset,
818                             struct kernel_lb_addr *root)
819 {
820         struct buffer_head *bh = NULL;
821         uint16_t ident;
822         int ret;
823
824         if (fileset->logicalBlockNum == 0xFFFFFFFF &&
825             fileset->partitionReferenceNum == 0xFFFF)
826                 return -EINVAL;
827
828         bh = udf_read_ptagged(sb, fileset, 0, &ident);
829         if (!bh)
830                 return -EIO;
831         if (ident != TAG_IDENT_FSD) {
832                 brelse(bh);
833                 return -EINVAL;
834         }
835
836         udf_debug("Fileset at block=%u, partition=%u\n",
837                   fileset->logicalBlockNum, fileset->partitionReferenceNum);
838
839         UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
840         ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
841         brelse(bh);
842         return ret;
843 }
844
845 /*
846  * Load primary Volume Descriptor Sequence
847  *
848  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
849  * should be tried.
850  */
851 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
852 {
853         struct primaryVolDesc *pvoldesc;
854         uint8_t *outstr;
855         struct buffer_head *bh;
856         uint16_t ident;
857         int ret = -ENOMEM;
858         struct timestamp *ts;
859
860         outstr = kmalloc(128, GFP_NOFS);
861         if (!outstr)
862                 return -ENOMEM;
863
864         bh = udf_read_tagged(sb, block, block, &ident);
865         if (!bh) {
866                 ret = -EAGAIN;
867                 goto out2;
868         }
869
870         if (ident != TAG_IDENT_PVD) {
871                 ret = -EIO;
872                 goto out_bh;
873         }
874
875         pvoldesc = (struct primaryVolDesc *)bh->b_data;
876
877         udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
878                               pvoldesc->recordingDateAndTime);
879         ts = &pvoldesc->recordingDateAndTime;
880         udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
881                   le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
882                   ts->minute, le16_to_cpu(ts->typeAndTimezone));
883
884         ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
885         if (ret < 0) {
886                 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
887                 pr_warn("incorrect volume identification, setting to "
888                         "'InvalidName'\n");
889         } else {
890                 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
891         }
892         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
893
894         ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
895         if (ret < 0) {
896                 ret = 0;
897                 goto out_bh;
898         }
899         outstr[ret] = 0;
900         udf_debug("volSetIdent[] = '%s'\n", outstr);
901
902         ret = 0;
903 out_bh:
904         brelse(bh);
905 out2:
906         kfree(outstr);
907         return ret;
908 }
909
910 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
911                                         u32 meta_file_loc, u32 partition_ref)
912 {
913         struct kernel_lb_addr addr;
914         struct inode *metadata_fe;
915
916         addr.logicalBlockNum = meta_file_loc;
917         addr.partitionReferenceNum = partition_ref;
918
919         metadata_fe = udf_iget_special(sb, &addr);
920
921         if (IS_ERR(metadata_fe)) {
922                 udf_warn(sb, "metadata inode efe not found\n");
923                 return metadata_fe;
924         }
925         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
926                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
927                 iput(metadata_fe);
928                 return ERR_PTR(-EIO);
929         }
930
931         return metadata_fe;
932 }
933
934 static int udf_load_metadata_files(struct super_block *sb, int partition,
935                                    int type1_index)
936 {
937         struct udf_sb_info *sbi = UDF_SB(sb);
938         struct udf_part_map *map;
939         struct udf_meta_data *mdata;
940         struct kernel_lb_addr addr;
941         struct inode *fe;
942
943         map = &sbi->s_partmaps[partition];
944         mdata = &map->s_type_specific.s_metadata;
945         mdata->s_phys_partition_ref = type1_index;
946
947         /* metadata address */
948         udf_debug("Metadata file location: block = %u part = %u\n",
949                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
950
951         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
952                                          mdata->s_phys_partition_ref);
953         if (IS_ERR(fe)) {
954                 /* mirror file entry */
955                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
956                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
957
958                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
959                                                  mdata->s_phys_partition_ref);
960
961                 if (IS_ERR(fe)) {
962                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
963                         return PTR_ERR(fe);
964                 }
965                 mdata->s_mirror_fe = fe;
966         } else
967                 mdata->s_metadata_fe = fe;
968
969
970         /*
971          * bitmap file entry
972          * Note:
973          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
974         */
975         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
976                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
977                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
978
979                 udf_debug("Bitmap file location: block = %u part = %u\n",
980                           addr.logicalBlockNum, addr.partitionReferenceNum);
981
982                 fe = udf_iget_special(sb, &addr);
983                 if (IS_ERR(fe)) {
984                         if (sb_rdonly(sb))
985                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
986                         else {
987                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
988                                 return PTR_ERR(fe);
989                         }
990                 } else
991                         mdata->s_bitmap_fe = fe;
992         }
993
994         udf_debug("udf_load_metadata_files Ok\n");
995         return 0;
996 }
997
998 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
999 {
1000         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1001         return DIV_ROUND_UP(map->s_partition_len +
1002                             (sizeof(struct spaceBitmapDesc) << 3),
1003                             sb->s_blocksize * 8);
1004 }
1005
1006 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1007 {
1008         struct udf_bitmap *bitmap;
1009         int nr_groups;
1010         int size;
1011
1012         nr_groups = udf_compute_nr_groups(sb, index);
1013         size = sizeof(struct udf_bitmap) +
1014                 (sizeof(struct buffer_head *) * nr_groups);
1015
1016         if (size <= PAGE_SIZE)
1017                 bitmap = kzalloc(size, GFP_KERNEL);
1018         else
1019                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1020
1021         if (!bitmap)
1022                 return NULL;
1023
1024         bitmap->s_nr_groups = nr_groups;
1025         return bitmap;
1026 }
1027
1028 static int check_partition_desc(struct super_block *sb,
1029                                 struct partitionDesc *p,
1030                                 struct udf_part_map *map)
1031 {
1032         bool umap, utable, fmap, ftable;
1033         struct partitionHeaderDesc *phd;
1034
1035         switch (le32_to_cpu(p->accessType)) {
1036         case PD_ACCESS_TYPE_READ_ONLY:
1037         case PD_ACCESS_TYPE_WRITE_ONCE:
1038         case PD_ACCESS_TYPE_NONE:
1039                 goto force_ro;
1040         }
1041
1042         /* No Partition Header Descriptor? */
1043         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1044             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1045                 goto force_ro;
1046
1047         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1048         utable = phd->unallocSpaceTable.extLength;
1049         umap = phd->unallocSpaceBitmap.extLength;
1050         ftable = phd->freedSpaceTable.extLength;
1051         fmap = phd->freedSpaceBitmap.extLength;
1052
1053         /* No allocation info? */
1054         if (!utable && !umap && !ftable && !fmap)
1055                 goto force_ro;
1056
1057         /* We don't support blocks that require erasing before overwrite */
1058         if (ftable || fmap)
1059                 goto force_ro;
1060         /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1061         if (utable && umap)
1062                 goto force_ro;
1063
1064         if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1065             map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1066             map->s_partition_type == UDF_METADATA_MAP25)
1067                 goto force_ro;
1068
1069         return 0;
1070 force_ro:
1071         if (!sb_rdonly(sb))
1072                 return -EACCES;
1073         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1074         return 0;
1075 }
1076
1077 static int udf_fill_partdesc_info(struct super_block *sb,
1078                 struct partitionDesc *p, int p_index)
1079 {
1080         struct udf_part_map *map;
1081         struct udf_sb_info *sbi = UDF_SB(sb);
1082         struct partitionHeaderDesc *phd;
1083         int err;
1084
1085         map = &sbi->s_partmaps[p_index];
1086
1087         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1088         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1089
1090         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1091                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1092         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1093                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1094         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1095                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1096         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1097                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1098
1099         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1100                   p_index, map->s_partition_type,
1101                   map->s_partition_root, map->s_partition_len);
1102
1103         err = check_partition_desc(sb, p, map);
1104         if (err)
1105                 return err;
1106
1107         /*
1108          * Skip loading allocation info it we cannot ever write to the fs.
1109          * This is a correctness thing as we may have decided to force ro mount
1110          * to avoid allocation info we don't support.
1111          */
1112         if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1113                 return 0;
1114
1115         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1116         if (phd->unallocSpaceTable.extLength) {
1117                 struct kernel_lb_addr loc = {
1118                         .logicalBlockNum = le32_to_cpu(
1119                                 phd->unallocSpaceTable.extPosition),
1120                         .partitionReferenceNum = p_index,
1121                 };
1122                 struct inode *inode;
1123
1124                 inode = udf_iget_special(sb, &loc);
1125                 if (IS_ERR(inode)) {
1126                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1127                                   p_index);
1128                         return PTR_ERR(inode);
1129                 }
1130                 map->s_uspace.s_table = inode;
1131                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1132                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1133                           p_index, map->s_uspace.s_table->i_ino);
1134         }
1135
1136         if (phd->unallocSpaceBitmap.extLength) {
1137                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1138                 if (!bitmap)
1139                         return -ENOMEM;
1140                 map->s_uspace.s_bitmap = bitmap;
1141                 bitmap->s_extPosition = le32_to_cpu(
1142                                 phd->unallocSpaceBitmap.extPosition);
1143                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1144                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1145                           p_index, bitmap->s_extPosition);
1146         }
1147
1148         return 0;
1149 }
1150
1151 static void udf_find_vat_block(struct super_block *sb, int p_index,
1152                                int type1_index, sector_t start_block)
1153 {
1154         struct udf_sb_info *sbi = UDF_SB(sb);
1155         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1156         sector_t vat_block;
1157         struct kernel_lb_addr ino;
1158         struct inode *inode;
1159
1160         /*
1161          * VAT file entry is in the last recorded block. Some broken disks have
1162          * it a few blocks before so try a bit harder...
1163          */
1164         ino.partitionReferenceNum = type1_index;
1165         for (vat_block = start_block;
1166              vat_block >= map->s_partition_root &&
1167              vat_block >= start_block - 3; vat_block--) {
1168                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1169                 inode = udf_iget_special(sb, &ino);
1170                 if (!IS_ERR(inode)) {
1171                         sbi->s_vat_inode = inode;
1172                         break;
1173                 }
1174         }
1175 }
1176
1177 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1178 {
1179         struct udf_sb_info *sbi = UDF_SB(sb);
1180         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1181         struct buffer_head *bh = NULL;
1182         struct udf_inode_info *vati;
1183         uint32_t pos;
1184         struct virtualAllocationTable20 *vat20;
1185         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1186                           sb->s_blocksize_bits;
1187
1188         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1189         if (!sbi->s_vat_inode &&
1190             sbi->s_last_block != blocks - 1) {
1191                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1192                           (unsigned long)sbi->s_last_block,
1193                           (unsigned long)blocks - 1);
1194                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1195         }
1196         if (!sbi->s_vat_inode)
1197                 return -EIO;
1198
1199         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1200                 map->s_type_specific.s_virtual.s_start_offset = 0;
1201                 map->s_type_specific.s_virtual.s_num_entries =
1202                         (sbi->s_vat_inode->i_size - 36) >> 2;
1203         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1204                 vati = UDF_I(sbi->s_vat_inode);
1205                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1206                         pos = udf_block_map(sbi->s_vat_inode, 0);
1207                         bh = sb_bread(sb, pos);
1208                         if (!bh)
1209                                 return -EIO;
1210                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1211                 } else {
1212                         vat20 = (struct virtualAllocationTable20 *)
1213                                                         vati->i_ext.i_data;
1214                 }
1215
1216                 map->s_type_specific.s_virtual.s_start_offset =
1217                         le16_to_cpu(vat20->lengthHeader);
1218                 map->s_type_specific.s_virtual.s_num_entries =
1219                         (sbi->s_vat_inode->i_size -
1220                                 map->s_type_specific.s_virtual.
1221                                         s_start_offset) >> 2;
1222                 brelse(bh);
1223         }
1224         return 0;
1225 }
1226
1227 /*
1228  * Load partition descriptor block
1229  *
1230  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1231  * sequence.
1232  */
1233 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1234 {
1235         struct buffer_head *bh;
1236         struct partitionDesc *p;
1237         struct udf_part_map *map;
1238         struct udf_sb_info *sbi = UDF_SB(sb);
1239         int i, type1_idx;
1240         uint16_t partitionNumber;
1241         uint16_t ident;
1242         int ret;
1243
1244         bh = udf_read_tagged(sb, block, block, &ident);
1245         if (!bh)
1246                 return -EAGAIN;
1247         if (ident != TAG_IDENT_PD) {
1248                 ret = 0;
1249                 goto out_bh;
1250         }
1251
1252         p = (struct partitionDesc *)bh->b_data;
1253         partitionNumber = le16_to_cpu(p->partitionNumber);
1254
1255         /* First scan for TYPE1 and SPARABLE partitions */
1256         for (i = 0; i < sbi->s_partitions; i++) {
1257                 map = &sbi->s_partmaps[i];
1258                 udf_debug("Searching map: (%u == %u)\n",
1259                           map->s_partition_num, partitionNumber);
1260                 if (map->s_partition_num == partitionNumber &&
1261                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1262                      map->s_partition_type == UDF_SPARABLE_MAP15))
1263                         break;
1264         }
1265
1266         if (i >= sbi->s_partitions) {
1267                 udf_debug("Partition (%u) not found in partition map\n",
1268                           partitionNumber);
1269                 ret = 0;
1270                 goto out_bh;
1271         }
1272
1273         ret = udf_fill_partdesc_info(sb, p, i);
1274         if (ret < 0)
1275                 goto out_bh;
1276
1277         /*
1278          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1279          * PHYSICAL partitions are already set up
1280          */
1281         type1_idx = i;
1282         map = NULL; /* supress 'maybe used uninitialized' warning */
1283         for (i = 0; i < sbi->s_partitions; i++) {
1284                 map = &sbi->s_partmaps[i];
1285
1286                 if (map->s_partition_num == partitionNumber &&
1287                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1288                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1289                      map->s_partition_type == UDF_METADATA_MAP25))
1290                         break;
1291         }
1292
1293         if (i >= sbi->s_partitions) {
1294                 ret = 0;
1295                 goto out_bh;
1296         }
1297
1298         ret = udf_fill_partdesc_info(sb, p, i);
1299         if (ret < 0)
1300                 goto out_bh;
1301
1302         if (map->s_partition_type == UDF_METADATA_MAP25) {
1303                 ret = udf_load_metadata_files(sb, i, type1_idx);
1304                 if (ret < 0) {
1305                         udf_err(sb, "error loading MetaData partition map %d\n",
1306                                 i);
1307                         goto out_bh;
1308                 }
1309         } else {
1310                 /*
1311                  * If we have a partition with virtual map, we don't handle
1312                  * writing to it (we overwrite blocks instead of relocating
1313                  * them).
1314                  */
1315                 if (!sb_rdonly(sb)) {
1316                         ret = -EACCES;
1317                         goto out_bh;
1318                 }
1319                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1320                 ret = udf_load_vat(sb, i, type1_idx);
1321                 if (ret < 0)
1322                         goto out_bh;
1323         }
1324         ret = 0;
1325 out_bh:
1326         /* In case loading failed, we handle cleanup in udf_fill_super */
1327         brelse(bh);
1328         return ret;
1329 }
1330
1331 static int udf_load_sparable_map(struct super_block *sb,
1332                                  struct udf_part_map *map,
1333                                  struct sparablePartitionMap *spm)
1334 {
1335         uint32_t loc;
1336         uint16_t ident;
1337         struct sparingTable *st;
1338         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1339         int i;
1340         struct buffer_head *bh;
1341
1342         map->s_partition_type = UDF_SPARABLE_MAP15;
1343         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1344         if (!is_power_of_2(sdata->s_packet_len)) {
1345                 udf_err(sb, "error loading logical volume descriptor: "
1346                         "Invalid packet length %u\n",
1347                         (unsigned)sdata->s_packet_len);
1348                 return -EIO;
1349         }
1350         if (spm->numSparingTables > 4) {
1351                 udf_err(sb, "error loading logical volume descriptor: "
1352                         "Too many sparing tables (%d)\n",
1353                         (int)spm->numSparingTables);
1354                 return -EIO;
1355         }
1356
1357         for (i = 0; i < spm->numSparingTables; i++) {
1358                 loc = le32_to_cpu(spm->locSparingTable[i]);
1359                 bh = udf_read_tagged(sb, loc, loc, &ident);
1360                 if (!bh)
1361                         continue;
1362
1363                 st = (struct sparingTable *)bh->b_data;
1364                 if (ident != 0 ||
1365                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366                             strlen(UDF_ID_SPARING)) ||
1367                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1368                                                         sb->s_blocksize) {
1369                         brelse(bh);
1370                         continue;
1371                 }
1372
1373                 sdata->s_spar_map[i] = bh;
1374         }
1375         map->s_partition_func = udf_get_pblock_spar15;
1376         return 0;
1377 }
1378
1379 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380                                struct kernel_lb_addr *fileset)
1381 {
1382         struct logicalVolDesc *lvd;
1383         int i, offset;
1384         uint8_t type;
1385         struct udf_sb_info *sbi = UDF_SB(sb);
1386         struct genericPartitionMap *gpm;
1387         uint16_t ident;
1388         struct buffer_head *bh;
1389         unsigned int table_len;
1390         int ret;
1391
1392         bh = udf_read_tagged(sb, block, block, &ident);
1393         if (!bh)
1394                 return -EAGAIN;
1395         BUG_ON(ident != TAG_IDENT_LVD);
1396         lvd = (struct logicalVolDesc *)bh->b_data;
1397         table_len = le32_to_cpu(lvd->mapTableLength);
1398         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399                 udf_err(sb, "error loading logical volume descriptor: "
1400                         "Partition table too long (%u > %lu)\n", table_len,
1401                         sb->s_blocksize - sizeof(*lvd));
1402                 ret = -EIO;
1403                 goto out_bh;
1404         }
1405
1406         ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1407                                            "logical volume");
1408         if (ret)
1409                 goto out_bh;
1410         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1411         if (ret)
1412                 goto out_bh;
1413
1414         for (i = 0, offset = 0;
1415              i < sbi->s_partitions && offset < table_len;
1416              i++, offset += gpm->partitionMapLength) {
1417                 struct udf_part_map *map = &sbi->s_partmaps[i];
1418                 gpm = (struct genericPartitionMap *)
1419                                 &(lvd->partitionMaps[offset]);
1420                 type = gpm->partitionMapType;
1421                 if (type == 1) {
1422                         struct genericPartitionMap1 *gpm1 =
1423                                 (struct genericPartitionMap1 *)gpm;
1424                         map->s_partition_type = UDF_TYPE1_MAP15;
1425                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1426                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1427                         map->s_partition_func = NULL;
1428                 } else if (type == 2) {
1429                         struct udfPartitionMap2 *upm2 =
1430                                                 (struct udfPartitionMap2 *)gpm;
1431                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1432                                                 strlen(UDF_ID_VIRTUAL))) {
1433                                 u16 suf =
1434                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1435                                                         identSuffix)[0]);
1436                                 if (suf < 0x0200) {
1437                                         map->s_partition_type =
1438                                                         UDF_VIRTUAL_MAP15;
1439                                         map->s_partition_func =
1440                                                         udf_get_pblock_virt15;
1441                                 } else {
1442                                         map->s_partition_type =
1443                                                         UDF_VIRTUAL_MAP20;
1444                                         map->s_partition_func =
1445                                                         udf_get_pblock_virt20;
1446                                 }
1447                         } else if (!strncmp(upm2->partIdent.ident,
1448                                                 UDF_ID_SPARABLE,
1449                                                 strlen(UDF_ID_SPARABLE))) {
1450                                 ret = udf_load_sparable_map(sb, map,
1451                                         (struct sparablePartitionMap *)gpm);
1452                                 if (ret < 0)
1453                                         goto out_bh;
1454                         } else if (!strncmp(upm2->partIdent.ident,
1455                                                 UDF_ID_METADATA,
1456                                                 strlen(UDF_ID_METADATA))) {
1457                                 struct udf_meta_data *mdata =
1458                                         &map->s_type_specific.s_metadata;
1459                                 struct metadataPartitionMap *mdm =
1460                                                 (struct metadataPartitionMap *)
1461                                                 &(lvd->partitionMaps[offset]);
1462                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1463                                           i, type, UDF_ID_METADATA);
1464
1465                                 map->s_partition_type = UDF_METADATA_MAP25;
1466                                 map->s_partition_func = udf_get_pblock_meta25;
1467
1468                                 mdata->s_meta_file_loc   =
1469                                         le32_to_cpu(mdm->metadataFileLoc);
1470                                 mdata->s_mirror_file_loc =
1471                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1472                                 mdata->s_bitmap_file_loc =
1473                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1474                                 mdata->s_alloc_unit_size =
1475                                         le32_to_cpu(mdm->allocUnitSize);
1476                                 mdata->s_align_unit_size =
1477                                         le16_to_cpu(mdm->alignUnitSize);
1478                                 if (mdm->flags & 0x01)
1479                                         mdata->s_flags |= MF_DUPLICATE_MD;
1480
1481                                 udf_debug("Metadata Ident suffix=0x%x\n",
1482                                           le16_to_cpu(*(__le16 *)
1483                                                       mdm->partIdent.identSuffix));
1484                                 udf_debug("Metadata part num=%u\n",
1485                                           le16_to_cpu(mdm->partitionNum));
1486                                 udf_debug("Metadata part alloc unit size=%u\n",
1487                                           le32_to_cpu(mdm->allocUnitSize));
1488                                 udf_debug("Metadata file loc=%u\n",
1489                                           le32_to_cpu(mdm->metadataFileLoc));
1490                                 udf_debug("Mirror file loc=%u\n",
1491                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1492                                 udf_debug("Bitmap file loc=%u\n",
1493                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1494                                 udf_debug("Flags: %d %u\n",
1495                                           mdata->s_flags, mdm->flags);
1496                         } else {
1497                                 udf_debug("Unknown ident: %s\n",
1498                                           upm2->partIdent.ident);
1499                                 continue;
1500                         }
1501                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1502                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1503                 }
1504                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1505                           i, map->s_partition_num, type, map->s_volumeseqnum);
1506         }
1507
1508         if (fileset) {
1509                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1510
1511                 *fileset = lelb_to_cpu(la->extLocation);
1512                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1513                           fileset->logicalBlockNum,
1514                           fileset->partitionReferenceNum);
1515         }
1516         if (lvd->integritySeqExt.extLength)
1517                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1518         ret = 0;
1519
1520         if (!sbi->s_lvid_bh) {
1521                 /* We can't generate unique IDs without a valid LVID */
1522                 if (sb_rdonly(sb)) {
1523                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1524                 } else {
1525                         udf_warn(sb, "Damaged or missing LVID, forcing "
1526                                      "readonly mount\n");
1527                         ret = -EACCES;
1528                 }
1529         }
1530 out_bh:
1531         brelse(bh);
1532         return ret;
1533 }
1534
1535 /*
1536  * Find the prevailing Logical Volume Integrity Descriptor.
1537  */
1538 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1539 {
1540         struct buffer_head *bh, *final_bh;
1541         uint16_t ident;
1542         struct udf_sb_info *sbi = UDF_SB(sb);
1543         struct logicalVolIntegrityDesc *lvid;
1544         int indirections = 0;
1545
1546         while (++indirections <= UDF_MAX_LVID_NESTING) {
1547                 final_bh = NULL;
1548                 while (loc.extLength > 0 &&
1549                         (bh = udf_read_tagged(sb, loc.extLocation,
1550                                         loc.extLocation, &ident))) {
1551                         if (ident != TAG_IDENT_LVID) {
1552                                 brelse(bh);
1553                                 break;
1554                         }
1555
1556                         brelse(final_bh);
1557                         final_bh = bh;
1558
1559                         loc.extLength -= sb->s_blocksize;
1560                         loc.extLocation++;
1561                 }
1562
1563                 if (!final_bh)
1564                         return;
1565
1566                 brelse(sbi->s_lvid_bh);
1567                 sbi->s_lvid_bh = final_bh;
1568
1569                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1570                 if (lvid->nextIntegrityExt.extLength == 0)
1571                         return;
1572
1573                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1574         }
1575
1576         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1577                 UDF_MAX_LVID_NESTING);
1578         brelse(sbi->s_lvid_bh);
1579         sbi->s_lvid_bh = NULL;
1580 }
1581
1582 /*
1583  * Step for reallocation of table of partition descriptor sequence numbers.
1584  * Must be power of 2.
1585  */
1586 #define PART_DESC_ALLOC_STEP 32
1587
1588 struct part_desc_seq_scan_data {
1589         struct udf_vds_record rec;
1590         u32 partnum;
1591 };
1592
1593 struct desc_seq_scan_data {
1594         struct udf_vds_record vds[VDS_POS_LENGTH];
1595         unsigned int size_part_descs;
1596         unsigned int num_part_descs;
1597         struct part_desc_seq_scan_data *part_descs_loc;
1598 };
1599
1600 static struct udf_vds_record *handle_partition_descriptor(
1601                                 struct buffer_head *bh,
1602                                 struct desc_seq_scan_data *data)
1603 {
1604         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1605         int partnum;
1606         int i;
1607
1608         partnum = le16_to_cpu(desc->partitionNumber);
1609         for (i = 0; i < data->num_part_descs; i++)
1610                 if (partnum == data->part_descs_loc[i].partnum)
1611                         return &(data->part_descs_loc[i].rec);
1612         if (data->num_part_descs >= data->size_part_descs) {
1613                 struct part_desc_seq_scan_data *new_loc;
1614                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1615
1616                 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1617                 if (!new_loc)
1618                         return ERR_PTR(-ENOMEM);
1619                 memcpy(new_loc, data->part_descs_loc,
1620                        data->size_part_descs * sizeof(*new_loc));
1621                 kfree(data->part_descs_loc);
1622                 data->part_descs_loc = new_loc;
1623                 data->size_part_descs = new_size;
1624         }
1625         return &(data->part_descs_loc[data->num_part_descs++].rec);
1626 }
1627
1628
1629 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1630                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1631 {
1632         switch (ident) {
1633         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1634                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1635         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1636                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1637         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1638                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1639         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1640                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1641         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1642                 return handle_partition_descriptor(bh, data);
1643         }
1644         return NULL;
1645 }
1646
1647 /*
1648  * Process a main/reserve volume descriptor sequence.
1649  *   @block             First block of first extent of the sequence.
1650  *   @lastblock         Lastblock of first extent of the sequence.
1651  *   @fileset           There we store extent containing root fileset
1652  *
1653  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1654  * sequence
1655  */
1656 static noinline int udf_process_sequence(
1657                 struct super_block *sb,
1658                 sector_t block, sector_t lastblock,
1659                 struct kernel_lb_addr *fileset)
1660 {
1661         struct buffer_head *bh = NULL;
1662         struct udf_vds_record *curr;
1663         struct generic_desc *gd;
1664         struct volDescPtr *vdp;
1665         bool done = false;
1666         uint32_t vdsn;
1667         uint16_t ident;
1668         int ret;
1669         unsigned int indirections = 0;
1670         struct desc_seq_scan_data data;
1671         unsigned int i;
1672
1673         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1674         data.size_part_descs = PART_DESC_ALLOC_STEP;
1675         data.num_part_descs = 0;
1676         data.part_descs_loc = kcalloc(data.size_part_descs,
1677                                       sizeof(*data.part_descs_loc),
1678                                       GFP_KERNEL);
1679         if (!data.part_descs_loc)
1680                 return -ENOMEM;
1681
1682         /*
1683          * Read the main descriptor sequence and find which descriptors
1684          * are in it.
1685          */
1686         for (; (!done && block <= lastblock); block++) {
1687                 bh = udf_read_tagged(sb, block, block, &ident);
1688                 if (!bh)
1689                         break;
1690
1691                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1692                 gd = (struct generic_desc *)bh->b_data;
1693                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1694                 switch (ident) {
1695                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1696                         if (++indirections > UDF_MAX_TD_NESTING) {
1697                                 udf_err(sb, "too many Volume Descriptor "
1698                                         "Pointers (max %u supported)\n",
1699                                         UDF_MAX_TD_NESTING);
1700                                 brelse(bh);
1701                                 return -EIO;
1702                         }
1703
1704                         vdp = (struct volDescPtr *)bh->b_data;
1705                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1706                         lastblock = le32_to_cpu(
1707                                 vdp->nextVolDescSeqExt.extLength) >>
1708                                 sb->s_blocksize_bits;
1709                         lastblock += block - 1;
1710                         /* For loop is going to increment 'block' again */
1711                         block--;
1712                         break;
1713                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1714                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1715                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1716                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1717                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1718                         curr = get_volume_descriptor_record(ident, bh, &data);
1719                         if (IS_ERR(curr)) {
1720                                 brelse(bh);
1721                                 return PTR_ERR(curr);
1722                         }
1723                         /* Descriptor we don't care about? */
1724                         if (!curr)
1725                                 break;
1726                         if (vdsn >= curr->volDescSeqNum) {
1727                                 curr->volDescSeqNum = vdsn;
1728                                 curr->block = block;
1729                         }
1730                         break;
1731                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1732                         done = true;
1733                         break;
1734                 }
1735                 brelse(bh);
1736         }
1737         /*
1738          * Now read interesting descriptors again and process them
1739          * in a suitable order
1740          */
1741         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1742                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1743                 return -EAGAIN;
1744         }
1745         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1746         if (ret < 0)
1747                 return ret;
1748
1749         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1750                 ret = udf_load_logicalvol(sb,
1751                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1752                                 fileset);
1753                 if (ret < 0)
1754                         return ret;
1755         }
1756
1757         /* Now handle prevailing Partition Descriptors */
1758         for (i = 0; i < data.num_part_descs; i++) {
1759                 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1760                 if (ret < 0)
1761                         return ret;
1762         }
1763
1764         return 0;
1765 }
1766
1767 /*
1768  * Load Volume Descriptor Sequence described by anchor in bh
1769  *
1770  * Returns <0 on error, 0 on success
1771  */
1772 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1773                              struct kernel_lb_addr *fileset)
1774 {
1775         struct anchorVolDescPtr *anchor;
1776         sector_t main_s, main_e, reserve_s, reserve_e;
1777         int ret;
1778
1779         anchor = (struct anchorVolDescPtr *)bh->b_data;
1780
1781         /* Locate the main sequence */
1782         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1783         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1784         main_e = main_e >> sb->s_blocksize_bits;
1785         main_e += main_s - 1;
1786
1787         /* Locate the reserve sequence */
1788         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1789         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1790         reserve_e = reserve_e >> sb->s_blocksize_bits;
1791         reserve_e += reserve_s - 1;
1792
1793         /* Process the main & reserve sequences */
1794         /* responsible for finding the PartitionDesc(s) */
1795         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1796         if (ret != -EAGAIN)
1797                 return ret;
1798         udf_sb_free_partitions(sb);
1799         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1800         if (ret < 0) {
1801                 udf_sb_free_partitions(sb);
1802                 /* No sequence was OK, return -EIO */
1803                 if (ret == -EAGAIN)
1804                         ret = -EIO;
1805         }
1806         return ret;
1807 }
1808
1809 /*
1810  * Check whether there is an anchor block in the given block and
1811  * load Volume Descriptor Sequence if so.
1812  *
1813  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1814  * block
1815  */
1816 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1817                                   struct kernel_lb_addr *fileset)
1818 {
1819         struct buffer_head *bh;
1820         uint16_t ident;
1821         int ret;
1822
1823         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1824             udf_fixed_to_variable(block) >=
1825             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1826                 return -EAGAIN;
1827
1828         bh = udf_read_tagged(sb, block, block, &ident);
1829         if (!bh)
1830                 return -EAGAIN;
1831         if (ident != TAG_IDENT_AVDP) {
1832                 brelse(bh);
1833                 return -EAGAIN;
1834         }
1835         ret = udf_load_sequence(sb, bh, fileset);
1836         brelse(bh);
1837         return ret;
1838 }
1839
1840 /*
1841  * Search for an anchor volume descriptor pointer.
1842  *
1843  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1844  * of anchors.
1845  */
1846 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1847                             struct kernel_lb_addr *fileset)
1848 {
1849         sector_t last[6];
1850         int i;
1851         struct udf_sb_info *sbi = UDF_SB(sb);
1852         int last_count = 0;
1853         int ret;
1854
1855         /* First try user provided anchor */
1856         if (sbi->s_anchor) {
1857                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1858                 if (ret != -EAGAIN)
1859                         return ret;
1860         }
1861         /*
1862          * according to spec, anchor is in either:
1863          *     block 256
1864          *     lastblock-256
1865          *     lastblock
1866          *  however, if the disc isn't closed, it could be 512.
1867          */
1868         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1869         if (ret != -EAGAIN)
1870                 return ret;
1871         /*
1872          * The trouble is which block is the last one. Drives often misreport
1873          * this so we try various possibilities.
1874          */
1875         last[last_count++] = *lastblock;
1876         if (*lastblock >= 1)
1877                 last[last_count++] = *lastblock - 1;
1878         last[last_count++] = *lastblock + 1;
1879         if (*lastblock >= 2)
1880                 last[last_count++] = *lastblock - 2;
1881         if (*lastblock >= 150)
1882                 last[last_count++] = *lastblock - 150;
1883         if (*lastblock >= 152)
1884                 last[last_count++] = *lastblock - 152;
1885
1886         for (i = 0; i < last_count; i++) {
1887                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1888                                 sb->s_blocksize_bits)
1889                         continue;
1890                 ret = udf_check_anchor_block(sb, last[i], fileset);
1891                 if (ret != -EAGAIN) {
1892                         if (!ret)
1893                                 *lastblock = last[i];
1894                         return ret;
1895                 }
1896                 if (last[i] < 256)
1897                         continue;
1898                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1899                 if (ret != -EAGAIN) {
1900                         if (!ret)
1901                                 *lastblock = last[i];
1902                         return ret;
1903                 }
1904         }
1905
1906         /* Finally try block 512 in case media is open */
1907         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1908 }
1909
1910 /*
1911  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1912  * area specified by it. The function expects sbi->s_lastblock to be the last
1913  * block on the media.
1914  *
1915  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1916  * was not found.
1917  */
1918 static int udf_find_anchor(struct super_block *sb,
1919                            struct kernel_lb_addr *fileset)
1920 {
1921         struct udf_sb_info *sbi = UDF_SB(sb);
1922         sector_t lastblock = sbi->s_last_block;
1923         int ret;
1924
1925         ret = udf_scan_anchors(sb, &lastblock, fileset);
1926         if (ret != -EAGAIN)
1927                 goto out;
1928
1929         /* No anchor found? Try VARCONV conversion of block numbers */
1930         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1931         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1932         /* Firstly, we try to not convert number of the last block */
1933         ret = udf_scan_anchors(sb, &lastblock, fileset);
1934         if (ret != -EAGAIN)
1935                 goto out;
1936
1937         lastblock = sbi->s_last_block;
1938         /* Secondly, we try with converted number of the last block */
1939         ret = udf_scan_anchors(sb, &lastblock, fileset);
1940         if (ret < 0) {
1941                 /* VARCONV didn't help. Clear it. */
1942                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1943         }
1944 out:
1945         if (ret == 0)
1946                 sbi->s_last_block = lastblock;
1947         return ret;
1948 }
1949
1950 /*
1951  * Check Volume Structure Descriptor, find Anchor block and load Volume
1952  * Descriptor Sequence.
1953  *
1954  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1955  * block was not found.
1956  */
1957 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1958                         int silent, struct kernel_lb_addr *fileset)
1959 {
1960         struct udf_sb_info *sbi = UDF_SB(sb);
1961         int nsr = 0;
1962         int ret;
1963
1964         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1965                 if (!silent)
1966                         udf_warn(sb, "Bad block size\n");
1967                 return -EINVAL;
1968         }
1969         sbi->s_last_block = uopt->lastblock;
1970         if (!uopt->novrs) {
1971                 /* Check that it is NSR02 compliant */
1972                 nsr = udf_check_vsd(sb);
1973                 if (!nsr) {
1974                         if (!silent)
1975                                 udf_warn(sb, "No VRS found\n");
1976                         return -EINVAL;
1977                 }
1978                 if (nsr == -1)
1979                         udf_debug("Failed to read sector at offset %d. "
1980                                   "Assuming open disc. Skipping validity "
1981                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1982                 if (!sbi->s_last_block)
1983                         sbi->s_last_block = udf_get_last_block(sb);
1984         } else {
1985                 udf_debug("Validity check skipped because of novrs option\n");
1986         }
1987
1988         /* Look for anchor block and load Volume Descriptor Sequence */
1989         sbi->s_anchor = uopt->anchor;
1990         ret = udf_find_anchor(sb, fileset);
1991         if (ret < 0) {
1992                 if (!silent && ret == -EAGAIN)
1993                         udf_warn(sb, "No anchor found\n");
1994                 return ret;
1995         }
1996         return 0;
1997 }
1998
1999 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2000 {
2001         struct timespec64 ts;
2002
2003         ktime_get_real_ts64(&ts);
2004         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2005         lvid->descTag.descCRC = cpu_to_le16(
2006                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2007                         le16_to_cpu(lvid->descTag.descCRCLength)));
2008         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2009 }
2010
2011 static void udf_open_lvid(struct super_block *sb)
2012 {
2013         struct udf_sb_info *sbi = UDF_SB(sb);
2014         struct buffer_head *bh = sbi->s_lvid_bh;
2015         struct logicalVolIntegrityDesc *lvid;
2016         struct logicalVolIntegrityDescImpUse *lvidiu;
2017
2018         if (!bh)
2019                 return;
2020         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2021         lvidiu = udf_sb_lvidiu(sb);
2022         if (!lvidiu)
2023                 return;
2024
2025         mutex_lock(&sbi->s_alloc_mutex);
2026         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2027         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2028         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2029                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2030         else
2031                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2032
2033         udf_finalize_lvid(lvid);
2034         mark_buffer_dirty(bh);
2035         sbi->s_lvid_dirty = 0;
2036         mutex_unlock(&sbi->s_alloc_mutex);
2037         /* Make opening of filesystem visible on the media immediately */
2038         sync_dirty_buffer(bh);
2039 }
2040
2041 static void udf_close_lvid(struct super_block *sb)
2042 {
2043         struct udf_sb_info *sbi = UDF_SB(sb);
2044         struct buffer_head *bh = sbi->s_lvid_bh;
2045         struct logicalVolIntegrityDesc *lvid;
2046         struct logicalVolIntegrityDescImpUse *lvidiu;
2047
2048         if (!bh)
2049                 return;
2050         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2051         lvidiu = udf_sb_lvidiu(sb);
2052         if (!lvidiu)
2053                 return;
2054
2055         mutex_lock(&sbi->s_alloc_mutex);
2056         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2057         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2058         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2059                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2060         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2061                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2062         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2063                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2064         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2065                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2066
2067         /*
2068          * We set buffer uptodate unconditionally here to avoid spurious
2069          * warnings from mark_buffer_dirty() when previous EIO has marked
2070          * the buffer as !uptodate
2071          */
2072         set_buffer_uptodate(bh);
2073         udf_finalize_lvid(lvid);
2074         mark_buffer_dirty(bh);
2075         sbi->s_lvid_dirty = 0;
2076         mutex_unlock(&sbi->s_alloc_mutex);
2077         /* Make closing of filesystem visible on the media immediately */
2078         sync_dirty_buffer(bh);
2079 }
2080
2081 u64 lvid_get_unique_id(struct super_block *sb)
2082 {
2083         struct buffer_head *bh;
2084         struct udf_sb_info *sbi = UDF_SB(sb);
2085         struct logicalVolIntegrityDesc *lvid;
2086         struct logicalVolHeaderDesc *lvhd;
2087         u64 uniqueID;
2088         u64 ret;
2089
2090         bh = sbi->s_lvid_bh;
2091         if (!bh)
2092                 return 0;
2093
2094         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2095         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2096
2097         mutex_lock(&sbi->s_alloc_mutex);
2098         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2099         if (!(++uniqueID & 0xFFFFFFFF))
2100                 uniqueID += 16;
2101         lvhd->uniqueID = cpu_to_le64(uniqueID);
2102         udf_updated_lvid(sb);
2103         mutex_unlock(&sbi->s_alloc_mutex);
2104
2105         return ret;
2106 }
2107
2108 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2109 {
2110         int ret = -EINVAL;
2111         struct inode *inode = NULL;
2112         struct udf_options uopt;
2113         struct kernel_lb_addr rootdir, fileset;
2114         struct udf_sb_info *sbi;
2115         bool lvid_open = false;
2116
2117         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2118         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2119         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2120         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2121         uopt.umask = 0;
2122         uopt.fmode = UDF_INVALID_MODE;
2123         uopt.dmode = UDF_INVALID_MODE;
2124         uopt.nls_map = NULL;
2125
2126         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2127         if (!sbi)
2128                 return -ENOMEM;
2129
2130         sb->s_fs_info = sbi;
2131
2132         mutex_init(&sbi->s_alloc_mutex);
2133
2134         if (!udf_parse_options((char *)options, &uopt, false))
2135                 goto parse_options_failure;
2136
2137         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2138             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2139                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2140                 goto parse_options_failure;
2141         }
2142         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2143                 uopt.nls_map = load_nls_default();
2144                 if (!uopt.nls_map)
2145                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2146                 else
2147                         udf_debug("Using default NLS map\n");
2148         }
2149         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2150                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2151
2152         fileset.logicalBlockNum = 0xFFFFFFFF;
2153         fileset.partitionReferenceNum = 0xFFFF;
2154
2155         sbi->s_flags = uopt.flags;
2156         sbi->s_uid = uopt.uid;
2157         sbi->s_gid = uopt.gid;
2158         sbi->s_umask = uopt.umask;
2159         sbi->s_fmode = uopt.fmode;
2160         sbi->s_dmode = uopt.dmode;
2161         sbi->s_nls_map = uopt.nls_map;
2162         rwlock_init(&sbi->s_cred_lock);
2163
2164         if (uopt.session == 0xFFFFFFFF)
2165                 sbi->s_session = udf_get_last_session(sb);
2166         else
2167                 sbi->s_session = uopt.session;
2168
2169         udf_debug("Multi-session=%d\n", sbi->s_session);
2170
2171         /* Fill in the rest of the superblock */
2172         sb->s_op = &udf_sb_ops;
2173         sb->s_export_op = &udf_export_ops;
2174
2175         sb->s_magic = UDF_SUPER_MAGIC;
2176         sb->s_time_gran = 1000;
2177
2178         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2179                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2180         } else {
2181                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2182                 while (uopt.blocksize <= 4096) {
2183                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2184                         if (ret < 0) {
2185                                 if (!silent && ret != -EACCES) {
2186                                         pr_notice("Scanning with blocksize %u failed\n",
2187                                                   uopt.blocksize);
2188                                 }
2189                                 brelse(sbi->s_lvid_bh);
2190                                 sbi->s_lvid_bh = NULL;
2191                                 /*
2192                                  * EACCES is special - we want to propagate to
2193                                  * upper layers that we cannot handle RW mount.
2194                                  */
2195                                 if (ret == -EACCES)
2196                                         break;
2197                         } else
2198                                 break;
2199
2200                         uopt.blocksize <<= 1;
2201                 }
2202         }
2203         if (ret < 0) {
2204                 if (ret == -EAGAIN) {
2205                         udf_warn(sb, "No partition found (1)\n");
2206                         ret = -EINVAL;
2207                 }
2208                 goto error_out;
2209         }
2210
2211         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2212
2213         if (sbi->s_lvid_bh) {
2214                 struct logicalVolIntegrityDescImpUse *lvidiu =
2215                                                         udf_sb_lvidiu(sb);
2216                 uint16_t minUDFReadRev;
2217                 uint16_t minUDFWriteRev;
2218
2219                 if (!lvidiu) {
2220                         ret = -EINVAL;
2221                         goto error_out;
2222                 }
2223                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2224                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2225                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2226                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2227                                 minUDFReadRev,
2228                                 UDF_MAX_READ_VERSION);
2229                         ret = -EINVAL;
2230                         goto error_out;
2231                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2232                         if (!sb_rdonly(sb)) {
2233                                 ret = -EACCES;
2234                                 goto error_out;
2235                         }
2236                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2237                 }
2238
2239                 sbi->s_udfrev = minUDFWriteRev;
2240
2241                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2242                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2243                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2244                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2245         }
2246
2247         if (!sbi->s_partitions) {
2248                 udf_warn(sb, "No partition found (2)\n");
2249                 ret = -EINVAL;
2250                 goto error_out;
2251         }
2252
2253         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2254                         UDF_PART_FLAG_READ_ONLY) {
2255                 if (!sb_rdonly(sb)) {
2256                         ret = -EACCES;
2257                         goto error_out;
2258                 }
2259                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2260         }
2261
2262         ret = udf_find_fileset(sb, &fileset, &rootdir);
2263         if (ret < 0) {
2264                 udf_warn(sb, "No fileset found\n");
2265                 goto error_out;
2266         }
2267
2268         if (!silent) {
2269                 struct timestamp ts;
2270                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2271                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2272                          sbi->s_volume_ident,
2273                          le16_to_cpu(ts.year), ts.month, ts.day,
2274                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2275         }
2276         if (!sb_rdonly(sb)) {
2277                 udf_open_lvid(sb);
2278                 lvid_open = true;
2279         }
2280
2281         /* Assign the root inode */
2282         /* assign inodes by physical block number */
2283         /* perhaps it's not extensible enough, but for now ... */
2284         inode = udf_iget(sb, &rootdir);
2285         if (IS_ERR(inode)) {
2286                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2287                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2288                 ret = PTR_ERR(inode);
2289                 goto error_out;
2290         }
2291
2292         /* Allocate a dentry for the root inode */
2293         sb->s_root = d_make_root(inode);
2294         if (!sb->s_root) {
2295                 udf_err(sb, "Couldn't allocate root dentry\n");
2296                 ret = -ENOMEM;
2297                 goto error_out;
2298         }
2299         sb->s_maxbytes = MAX_LFS_FILESIZE;
2300         sb->s_max_links = UDF_MAX_LINKS;
2301         return 0;
2302
2303 error_out:
2304         iput(sbi->s_vat_inode);
2305 parse_options_failure:
2306         if (uopt.nls_map)
2307                 unload_nls(uopt.nls_map);
2308         if (lvid_open)
2309                 udf_close_lvid(sb);
2310         brelse(sbi->s_lvid_bh);
2311         udf_sb_free_partitions(sb);
2312         kfree(sbi);
2313         sb->s_fs_info = NULL;
2314
2315         return ret;
2316 }
2317
2318 void _udf_err(struct super_block *sb, const char *function,
2319               const char *fmt, ...)
2320 {
2321         struct va_format vaf;
2322         va_list args;
2323
2324         va_start(args, fmt);
2325
2326         vaf.fmt = fmt;
2327         vaf.va = &args;
2328
2329         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2330
2331         va_end(args);
2332 }
2333
2334 void _udf_warn(struct super_block *sb, const char *function,
2335                const char *fmt, ...)
2336 {
2337         struct va_format vaf;
2338         va_list args;
2339
2340         va_start(args, fmt);
2341
2342         vaf.fmt = fmt;
2343         vaf.va = &args;
2344
2345         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2346
2347         va_end(args);
2348 }
2349
2350 static void udf_put_super(struct super_block *sb)
2351 {
2352         struct udf_sb_info *sbi;
2353
2354         sbi = UDF_SB(sb);
2355
2356         iput(sbi->s_vat_inode);
2357         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2358                 unload_nls(sbi->s_nls_map);
2359         if (!sb_rdonly(sb))
2360                 udf_close_lvid(sb);
2361         brelse(sbi->s_lvid_bh);
2362         udf_sb_free_partitions(sb);
2363         mutex_destroy(&sbi->s_alloc_mutex);
2364         kfree(sb->s_fs_info);
2365         sb->s_fs_info = NULL;
2366 }
2367
2368 static int udf_sync_fs(struct super_block *sb, int wait)
2369 {
2370         struct udf_sb_info *sbi = UDF_SB(sb);
2371
2372         mutex_lock(&sbi->s_alloc_mutex);
2373         if (sbi->s_lvid_dirty) {
2374                 struct buffer_head *bh = sbi->s_lvid_bh;
2375                 struct logicalVolIntegrityDesc *lvid;
2376
2377                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2378                 udf_finalize_lvid(lvid);
2379
2380                 /*
2381                  * Blockdevice will be synced later so we don't have to submit
2382                  * the buffer for IO
2383                  */
2384                 mark_buffer_dirty(bh);
2385                 sbi->s_lvid_dirty = 0;
2386         }
2387         mutex_unlock(&sbi->s_alloc_mutex);
2388
2389         return 0;
2390 }
2391
2392 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2393 {
2394         struct super_block *sb = dentry->d_sb;
2395         struct udf_sb_info *sbi = UDF_SB(sb);
2396         struct logicalVolIntegrityDescImpUse *lvidiu;
2397         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2398
2399         lvidiu = udf_sb_lvidiu(sb);
2400         buf->f_type = UDF_SUPER_MAGIC;
2401         buf->f_bsize = sb->s_blocksize;
2402         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2403         buf->f_bfree = udf_count_free(sb);
2404         buf->f_bavail = buf->f_bfree;
2405         /*
2406          * Let's pretend each free block is also a free 'inode' since UDF does
2407          * not have separate preallocated table of inodes.
2408          */
2409         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2410                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2411                         + buf->f_bfree;
2412         buf->f_ffree = buf->f_bfree;
2413         buf->f_namelen = UDF_NAME_LEN;
2414         buf->f_fsid.val[0] = (u32)id;
2415         buf->f_fsid.val[1] = (u32)(id >> 32);
2416
2417         return 0;
2418 }
2419
2420 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2421                                           struct udf_bitmap *bitmap)
2422 {
2423         struct buffer_head *bh = NULL;
2424         unsigned int accum = 0;
2425         int index;
2426         udf_pblk_t block = 0, newblock;
2427         struct kernel_lb_addr loc;
2428         uint32_t bytes;
2429         uint8_t *ptr;
2430         uint16_t ident;
2431         struct spaceBitmapDesc *bm;
2432
2433         loc.logicalBlockNum = bitmap->s_extPosition;
2434         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2435         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2436
2437         if (!bh) {
2438                 udf_err(sb, "udf_count_free failed\n");
2439                 goto out;
2440         } else if (ident != TAG_IDENT_SBD) {
2441                 brelse(bh);
2442                 udf_err(sb, "udf_count_free failed\n");
2443                 goto out;
2444         }
2445
2446         bm = (struct spaceBitmapDesc *)bh->b_data;
2447         bytes = le32_to_cpu(bm->numOfBytes);
2448         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2449         ptr = (uint8_t *)bh->b_data;
2450
2451         while (bytes > 0) {
2452                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2453                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2454                                         cur_bytes * 8);
2455                 bytes -= cur_bytes;
2456                 if (bytes) {
2457                         brelse(bh);
2458                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2459                         bh = udf_tread(sb, newblock);
2460                         if (!bh) {
2461                                 udf_debug("read failed\n");
2462                                 goto out;
2463                         }
2464                         index = 0;
2465                         ptr = (uint8_t *)bh->b_data;
2466                 }
2467         }
2468         brelse(bh);
2469 out:
2470         return accum;
2471 }
2472
2473 static unsigned int udf_count_free_table(struct super_block *sb,
2474                                          struct inode *table)
2475 {
2476         unsigned int accum = 0;
2477         uint32_t elen;
2478         struct kernel_lb_addr eloc;
2479         int8_t etype;
2480         struct extent_position epos;
2481
2482         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2483         epos.block = UDF_I(table)->i_location;
2484         epos.offset = sizeof(struct unallocSpaceEntry);
2485         epos.bh = NULL;
2486
2487         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2488                 accum += (elen >> table->i_sb->s_blocksize_bits);
2489
2490         brelse(epos.bh);
2491         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2492
2493         return accum;
2494 }
2495
2496 static unsigned int udf_count_free(struct super_block *sb)
2497 {
2498         unsigned int accum = 0;
2499         struct udf_sb_info *sbi = UDF_SB(sb);
2500         struct udf_part_map *map;
2501         unsigned int part = sbi->s_partition;
2502         int ptype = sbi->s_partmaps[part].s_partition_type;
2503
2504         if (ptype == UDF_METADATA_MAP25) {
2505                 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2506                                                         s_phys_partition_ref;
2507         } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2508                 /*
2509                  * Filesystems with VAT are append-only and we cannot write to
2510                  * them. Let's just report 0 here.
2511                  */
2512                 return 0;
2513         }
2514
2515         if (sbi->s_lvid_bh) {
2516                 struct logicalVolIntegrityDesc *lvid =
2517                         (struct logicalVolIntegrityDesc *)
2518                         sbi->s_lvid_bh->b_data;
2519                 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2520                         accum = le32_to_cpu(
2521                                         lvid->freeSpaceTable[part]);
2522                         if (accum == 0xFFFFFFFF)
2523                                 accum = 0;
2524                 }
2525         }
2526
2527         if (accum)
2528                 return accum;
2529
2530         map = &sbi->s_partmaps[part];
2531         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2532                 accum += udf_count_free_bitmap(sb,
2533                                                map->s_uspace.s_bitmap);
2534         }
2535         if (accum)
2536                 return accum;
2537
2538         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2539                 accum += udf_count_free_table(sb,
2540                                               map->s_uspace.s_table);
2541         }
2542         return accum;
2543 }
2544
2545 MODULE_AUTHOR("Ben Fennema");
2546 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2547 MODULE_LICENSE("GPL");
2548 module_init(init_udf_fs)
2549 module_exit(exit_udf_fs)