Merge branch 'spi-4.20' into spi-4.21 for bcm stuff.
[linux-2.6-microblaze.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68         VDS_POS_PRIMARY_VOL_DESC,
69         VDS_POS_UNALLOC_SPACE_DESC,
70         VDS_POS_LOGICAL_VOL_DESC,
71         VDS_POS_IMP_USE_VOL_DESC,
72         VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET         32768
76 #define VSD_MAX_SECTOR_OFFSET           0x800000
77
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96                             struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98                              struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107         struct logicalVolIntegrityDesc *lvid;
108         unsigned int partnum;
109         unsigned int offset;
110
111         if (!UDF_SB(sb)->s_lvid_bh)
112                 return NULL;
113         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114         partnum = le32_to_cpu(lvid->numOfPartitions);
115         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116              offsetof(struct logicalVolIntegrityDesc, impUse)) /
117              (2 * sizeof(uint32_t)) < partnum) {
118                 udf_err(sb, "Logical volume integrity descriptor corrupted "
119                         "(numOfPartitions = %u)!\n", partnum);
120                 return NULL;
121         }
122         /* The offset is to skip freeSpaceTable and sizeTable arrays */
123         offset = partnum * 2 * sizeof(uint32_t);
124         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125 }
126
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129                       int flags, const char *dev_name, void *data)
130 {
131         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132 }
133
134 static struct file_system_type udf_fstype = {
135         .owner          = THIS_MODULE,
136         .name           = "udf",
137         .mount          = udf_mount,
138         .kill_sb        = kill_block_super,
139         .fs_flags       = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("udf");
142
143 static struct kmem_cache *udf_inode_cachep;
144
145 static struct inode *udf_alloc_inode(struct super_block *sb)
146 {
147         struct udf_inode_info *ei;
148         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149         if (!ei)
150                 return NULL;
151
152         ei->i_unique = 0;
153         ei->i_lenExtents = 0;
154         ei->i_next_alloc_block = 0;
155         ei->i_next_alloc_goal = 0;
156         ei->i_strat4096 = 0;
157         init_rwsem(&ei->i_data_sem);
158         ei->cached_extent.lstart = -1;
159         spin_lock_init(&ei->i_extent_cache_lock);
160
161         return &ei->vfs_inode;
162 }
163
164 static void udf_i_callback(struct rcu_head *head)
165 {
166         struct inode *inode = container_of(head, struct inode, i_rcu);
167         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168 }
169
170 static void udf_destroy_inode(struct inode *inode)
171 {
172         call_rcu(&inode->i_rcu, udf_i_callback);
173 }
174
175 static void init_once(void *foo)
176 {
177         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178
179         ei->i_ext.i_data = NULL;
180         inode_init_once(&ei->vfs_inode);
181 }
182
183 static int __init init_inodecache(void)
184 {
185         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186                                              sizeof(struct udf_inode_info),
187                                              0, (SLAB_RECLAIM_ACCOUNT |
188                                                  SLAB_MEM_SPREAD |
189                                                  SLAB_ACCOUNT),
190                                              init_once);
191         if (!udf_inode_cachep)
192                 return -ENOMEM;
193         return 0;
194 }
195
196 static void destroy_inodecache(void)
197 {
198         /*
199          * Make sure all delayed rcu free inodes are flushed before we
200          * destroy cache.
201          */
202         rcu_barrier();
203         kmem_cache_destroy(udf_inode_cachep);
204 }
205
206 /* Superblock operations */
207 static const struct super_operations udf_sb_ops = {
208         .alloc_inode    = udf_alloc_inode,
209         .destroy_inode  = udf_destroy_inode,
210         .write_inode    = udf_write_inode,
211         .evict_inode    = udf_evict_inode,
212         .put_super      = udf_put_super,
213         .sync_fs        = udf_sync_fs,
214         .statfs         = udf_statfs,
215         .remount_fs     = udf_remount_fs,
216         .show_options   = udf_show_options,
217 };
218
219 struct udf_options {
220         unsigned char novrs;
221         unsigned int blocksize;
222         unsigned int session;
223         unsigned int lastblock;
224         unsigned int anchor;
225         unsigned int flags;
226         umode_t umask;
227         kgid_t gid;
228         kuid_t uid;
229         umode_t fmode;
230         umode_t dmode;
231         struct nls_table *nls_map;
232 };
233
234 static int __init init_udf_fs(void)
235 {
236         int err;
237
238         err = init_inodecache();
239         if (err)
240                 goto out1;
241         err = register_filesystem(&udf_fstype);
242         if (err)
243                 goto out;
244
245         return 0;
246
247 out:
248         destroy_inodecache();
249
250 out1:
251         return err;
252 }
253
254 static void __exit exit_udf_fs(void)
255 {
256         unregister_filesystem(&udf_fstype);
257         destroy_inodecache();
258 }
259
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262         struct udf_sb_info *sbi = UDF_SB(sb);
263
264         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265         if (!sbi->s_partmaps) {
266                 sbi->s_partitions = 0;
267                 return -ENOMEM;
268         }
269
270         sbi->s_partitions = count;
271         return 0;
272 }
273
274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275 {
276         int i;
277         int nr_groups = bitmap->s_nr_groups;
278
279         for (i = 0; i < nr_groups; i++)
280                 if (bitmap->s_block_bitmap[i])
281                         brelse(bitmap->s_block_bitmap[i]);
282
283         kvfree(bitmap);
284 }
285
286 static void udf_free_partition(struct udf_part_map *map)
287 {
288         int i;
289         struct udf_meta_data *mdata;
290
291         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292                 iput(map->s_uspace.s_table);
293         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
294                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
295         if (map->s_partition_type == UDF_SPARABLE_MAP15)
296                 for (i = 0; i < 4; i++)
297                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
298         else if (map->s_partition_type == UDF_METADATA_MAP25) {
299                 mdata = &map->s_type_specific.s_metadata;
300                 iput(mdata->s_metadata_fe);
301                 mdata->s_metadata_fe = NULL;
302
303                 iput(mdata->s_mirror_fe);
304                 mdata->s_mirror_fe = NULL;
305
306                 iput(mdata->s_bitmap_fe);
307                 mdata->s_bitmap_fe = NULL;
308         }
309 }
310
311 static void udf_sb_free_partitions(struct super_block *sb)
312 {
313         struct udf_sb_info *sbi = UDF_SB(sb);
314         int i;
315
316         if (!sbi->s_partmaps)
317                 return;
318         for (i = 0; i < sbi->s_partitions; i++)
319                 udf_free_partition(&sbi->s_partmaps[i]);
320         kfree(sbi->s_partmaps);
321         sbi->s_partmaps = NULL;
322 }
323
324 static int udf_show_options(struct seq_file *seq, struct dentry *root)
325 {
326         struct super_block *sb = root->d_sb;
327         struct udf_sb_info *sbi = UDF_SB(sb);
328
329         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
330                 seq_puts(seq, ",nostrict");
331         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
332                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
333         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
334                 seq_puts(seq, ",unhide");
335         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
336                 seq_puts(seq, ",undelete");
337         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
338                 seq_puts(seq, ",noadinicb");
339         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
340                 seq_puts(seq, ",shortad");
341         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
342                 seq_puts(seq, ",uid=forget");
343         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
344                 seq_puts(seq, ",gid=forget");
345         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
346                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
347         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
348                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
349         if (sbi->s_umask != 0)
350                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
351         if (sbi->s_fmode != UDF_INVALID_MODE)
352                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
353         if (sbi->s_dmode != UDF_INVALID_MODE)
354                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
355         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
356                 seq_printf(seq, ",session=%d", sbi->s_session);
357         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
358                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
359         if (sbi->s_anchor != 0)
360                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
362                 seq_puts(seq, ",utf8");
363         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
364                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
365
366         return 0;
367 }
368
369 /*
370  * udf_parse_options
371  *
372  * PURPOSE
373  *      Parse mount options.
374  *
375  * DESCRIPTION
376  *      The following mount options are supported:
377  *
378  *      gid=            Set the default group.
379  *      umask=          Set the default umask.
380  *      mode=           Set the default file permissions.
381  *      dmode=          Set the default directory permissions.
382  *      uid=            Set the default user.
383  *      bs=             Set the block size.
384  *      unhide          Show otherwise hidden files.
385  *      undelete        Show deleted files in lists.
386  *      adinicb         Embed data in the inode (default)
387  *      noadinicb       Don't embed data in the inode
388  *      shortad         Use short ad's
389  *      longad          Use long ad's (default)
390  *      nostrict        Unset strict conformance
391  *      iocharset=      Set the NLS character set
392  *
393  *      The remaining are for debugging and disaster recovery:
394  *
395  *      novrs           Skip volume sequence recognition
396  *
397  *      The following expect a offset from 0.
398  *
399  *      session=        Set the CDROM session (default= last session)
400  *      anchor=         Override standard anchor location. (default= 256)
401  *      volume=         Override the VolumeDesc location. (unused)
402  *      partition=      Override the PartitionDesc location. (unused)
403  *      lastblock=      Set the last block of the filesystem/
404  *
405  *      The following expect a offset from the partition root.
406  *
407  *      fileset=        Override the fileset block location. (unused)
408  *      rootdir=        Override the root directory location. (unused)
409  *              WARNING: overriding the rootdir to a non-directory may
410  *              yield highly unpredictable results.
411  *
412  * PRE-CONDITIONS
413  *      options         Pointer to mount options string.
414  *      uopts           Pointer to mount options variable.
415  *
416  * POST-CONDITIONS
417  *      <return>        1       Mount options parsed okay.
418  *      <return>        0       Error parsing mount options.
419  *
420  * HISTORY
421  *      July 1, 1997 - Andrew E. Mileski
422  *      Written, tested, and released.
423  */
424
425 enum {
426         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
427         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
428         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
429         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
430         Opt_rootdir, Opt_utf8, Opt_iocharset,
431         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
432         Opt_fmode, Opt_dmode
433 };
434
435 static const match_table_t tokens = {
436         {Opt_novrs,     "novrs"},
437         {Opt_nostrict,  "nostrict"},
438         {Opt_bs,        "bs=%u"},
439         {Opt_unhide,    "unhide"},
440         {Opt_undelete,  "undelete"},
441         {Opt_noadinicb, "noadinicb"},
442         {Opt_adinicb,   "adinicb"},
443         {Opt_shortad,   "shortad"},
444         {Opt_longad,    "longad"},
445         {Opt_uforget,   "uid=forget"},
446         {Opt_uignore,   "uid=ignore"},
447         {Opt_gforget,   "gid=forget"},
448         {Opt_gignore,   "gid=ignore"},
449         {Opt_gid,       "gid=%u"},
450         {Opt_uid,       "uid=%u"},
451         {Opt_umask,     "umask=%o"},
452         {Opt_session,   "session=%u"},
453         {Opt_lastblock, "lastblock=%u"},
454         {Opt_anchor,    "anchor=%u"},
455         {Opt_volume,    "volume=%u"},
456         {Opt_partition, "partition=%u"},
457         {Opt_fileset,   "fileset=%u"},
458         {Opt_rootdir,   "rootdir=%u"},
459         {Opt_utf8,      "utf8"},
460         {Opt_iocharset, "iocharset=%s"},
461         {Opt_fmode,     "mode=%o"},
462         {Opt_dmode,     "dmode=%o"},
463         {Opt_err,       NULL}
464 };
465
466 static int udf_parse_options(char *options, struct udf_options *uopt,
467                              bool remount)
468 {
469         char *p;
470         int option;
471
472         uopt->novrs = 0;
473         uopt->session = 0xFFFFFFFF;
474         uopt->lastblock = 0;
475         uopt->anchor = 0;
476
477         if (!options)
478                 return 1;
479
480         while ((p = strsep(&options, ",")) != NULL) {
481                 substring_t args[MAX_OPT_ARGS];
482                 int token;
483                 unsigned n;
484                 if (!*p)
485                         continue;
486
487                 token = match_token(p, tokens, args);
488                 switch (token) {
489                 case Opt_novrs:
490                         uopt->novrs = 1;
491                         break;
492                 case Opt_bs:
493                         if (match_int(&args[0], &option))
494                                 return 0;
495                         n = option;
496                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
497                                 return 0;
498                         uopt->blocksize = n;
499                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
500                         break;
501                 case Opt_unhide:
502                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
503                         break;
504                 case Opt_undelete:
505                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
506                         break;
507                 case Opt_noadinicb:
508                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
509                         break;
510                 case Opt_adinicb:
511                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
512                         break;
513                 case Opt_shortad:
514                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
515                         break;
516                 case Opt_longad:
517                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
518                         break;
519                 case Opt_gid:
520                         if (match_int(args, &option))
521                                 return 0;
522                         uopt->gid = make_kgid(current_user_ns(), option);
523                         if (!gid_valid(uopt->gid))
524                                 return 0;
525                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
526                         break;
527                 case Opt_uid:
528                         if (match_int(args, &option))
529                                 return 0;
530                         uopt->uid = make_kuid(current_user_ns(), option);
531                         if (!uid_valid(uopt->uid))
532                                 return 0;
533                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
534                         break;
535                 case Opt_umask:
536                         if (match_octal(args, &option))
537                                 return 0;
538                         uopt->umask = option;
539                         break;
540                 case Opt_nostrict:
541                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
542                         break;
543                 case Opt_session:
544                         if (match_int(args, &option))
545                                 return 0;
546                         uopt->session = option;
547                         if (!remount)
548                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
549                         break;
550                 case Opt_lastblock:
551                         if (match_int(args, &option))
552                                 return 0;
553                         uopt->lastblock = option;
554                         if (!remount)
555                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
556                         break;
557                 case Opt_anchor:
558                         if (match_int(args, &option))
559                                 return 0;
560                         uopt->anchor = option;
561                         break;
562                 case Opt_volume:
563                 case Opt_partition:
564                 case Opt_fileset:
565                 case Opt_rootdir:
566                         /* Ignored (never implemented properly) */
567                         break;
568                 case Opt_utf8:
569                         uopt->flags |= (1 << UDF_FLAG_UTF8);
570                         break;
571                 case Opt_iocharset:
572                         if (!remount) {
573                                 if (uopt->nls_map)
574                                         unload_nls(uopt->nls_map);
575                                 uopt->nls_map = load_nls(args[0].from);
576                                 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
577                         }
578                         break;
579                 case Opt_uforget:
580                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
581                         break;
582                 case Opt_uignore:
583                 case Opt_gignore:
584                         /* These options are superseeded by uid=<number> */
585                         break;
586                 case Opt_gforget:
587                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
588                         break;
589                 case Opt_fmode:
590                         if (match_octal(args, &option))
591                                 return 0;
592                         uopt->fmode = option & 0777;
593                         break;
594                 case Opt_dmode:
595                         if (match_octal(args, &option))
596                                 return 0;
597                         uopt->dmode = option & 0777;
598                         break;
599                 default:
600                         pr_err("bad mount option \"%s\" or missing value\n", p);
601                         return 0;
602                 }
603         }
604         return 1;
605 }
606
607 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
608 {
609         struct udf_options uopt;
610         struct udf_sb_info *sbi = UDF_SB(sb);
611         int error = 0;
612
613         if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
614                 return -EACCES;
615
616         sync_filesystem(sb);
617
618         uopt.flags = sbi->s_flags;
619         uopt.uid   = sbi->s_uid;
620         uopt.gid   = sbi->s_gid;
621         uopt.umask = sbi->s_umask;
622         uopt.fmode = sbi->s_fmode;
623         uopt.dmode = sbi->s_dmode;
624         uopt.nls_map = NULL;
625
626         if (!udf_parse_options(options, &uopt, true))
627                 return -EINVAL;
628
629         write_lock(&sbi->s_cred_lock);
630         sbi->s_flags = uopt.flags;
631         sbi->s_uid   = uopt.uid;
632         sbi->s_gid   = uopt.gid;
633         sbi->s_umask = uopt.umask;
634         sbi->s_fmode = uopt.fmode;
635         sbi->s_dmode = uopt.dmode;
636         write_unlock(&sbi->s_cred_lock);
637
638         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
639                 goto out_unlock;
640
641         if (*flags & SB_RDONLY)
642                 udf_close_lvid(sb);
643         else
644                 udf_open_lvid(sb);
645
646 out_unlock:
647         return error;
648 }
649
650 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
651 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
652 static loff_t udf_check_vsd(struct super_block *sb)
653 {
654         struct volStructDesc *vsd = NULL;
655         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
656         int sectorsize;
657         struct buffer_head *bh = NULL;
658         int nsr02 = 0;
659         int nsr03 = 0;
660         struct udf_sb_info *sbi;
661
662         sbi = UDF_SB(sb);
663         if (sb->s_blocksize < sizeof(struct volStructDesc))
664                 sectorsize = sizeof(struct volStructDesc);
665         else
666                 sectorsize = sb->s_blocksize;
667
668         sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
669
670         udf_debug("Starting at sector %u (%lu byte sectors)\n",
671                   (unsigned int)(sector >> sb->s_blocksize_bits),
672                   sb->s_blocksize);
673         /* Process the sequence (if applicable). The hard limit on the sector
674          * offset is arbitrary, hopefully large enough so that all valid UDF
675          * filesystems will be recognised. There is no mention of an upper
676          * bound to the size of the volume recognition area in the standard.
677          *  The limit will prevent the code to read all the sectors of a
678          * specially crafted image (like a bluray disc full of CD001 sectors),
679          * potentially causing minutes or even hours of uninterruptible I/O
680          * activity. This actually happened with uninitialised SSD partitions
681          * (all 0xFF) before the check for the limit and all valid IDs were
682          * added */
683         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
684              sector += sectorsize) {
685                 /* Read a block */
686                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
687                 if (!bh)
688                         break;
689
690                 /* Look for ISO  descriptors */
691                 vsd = (struct volStructDesc *)(bh->b_data +
692                                               (sector & (sb->s_blocksize - 1)));
693
694                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
695                                     VSD_STD_ID_LEN)) {
696                         switch (vsd->structType) {
697                         case 0:
698                                 udf_debug("ISO9660 Boot Record found\n");
699                                 break;
700                         case 1:
701                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
702                                 break;
703                         case 2:
704                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
705                                 break;
706                         case 3:
707                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
708                                 break;
709                         case 255:
710                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
711                                 break;
712                         default:
713                                 udf_debug("ISO9660 VRS (%u) found\n",
714                                           vsd->structType);
715                                 break;
716                         }
717                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
718                                     VSD_STD_ID_LEN))
719                         ; /* nothing */
720                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
721                                     VSD_STD_ID_LEN)) {
722                         brelse(bh);
723                         break;
724                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
725                                     VSD_STD_ID_LEN))
726                         nsr02 = sector;
727                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
728                                     VSD_STD_ID_LEN))
729                         nsr03 = sector;
730                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
731                                     VSD_STD_ID_LEN))
732                         ; /* nothing */
733                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
734                                     VSD_STD_ID_LEN))
735                         ; /* nothing */
736                 else {
737                         /* invalid id : end of volume recognition area */
738                         brelse(bh);
739                         break;
740                 }
741                 brelse(bh);
742         }
743
744         if (nsr03)
745                 return nsr03;
746         else if (nsr02)
747                 return nsr02;
748         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
749                         VSD_FIRST_SECTOR_OFFSET)
750                 return -1;
751         else
752                 return 0;
753 }
754
755 static int udf_find_fileset(struct super_block *sb,
756                             struct kernel_lb_addr *fileset,
757                             struct kernel_lb_addr *root)
758 {
759         struct buffer_head *bh = NULL;
760         uint16_t ident;
761
762         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
763             fileset->partitionReferenceNum != 0xFFFF) {
764                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
765
766                 if (!bh) {
767                         return 1;
768                 } else if (ident != TAG_IDENT_FSD) {
769                         brelse(bh);
770                         return 1;
771                 }
772
773                 udf_debug("Fileset at block=%u, partition=%u\n",
774                           fileset->logicalBlockNum,
775                           fileset->partitionReferenceNum);
776
777                 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
778                 udf_load_fileset(sb, bh, root);
779                 brelse(bh);
780                 return 0;
781         }
782         return 1;
783 }
784
785 /*
786  * Load primary Volume Descriptor Sequence
787  *
788  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
789  * should be tried.
790  */
791 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
792 {
793         struct primaryVolDesc *pvoldesc;
794         uint8_t *outstr;
795         struct buffer_head *bh;
796         uint16_t ident;
797         int ret = -ENOMEM;
798 #ifdef UDFFS_DEBUG
799         struct timestamp *ts;
800 #endif
801
802         outstr = kmalloc(128, GFP_NOFS);
803         if (!outstr)
804                 return -ENOMEM;
805
806         bh = udf_read_tagged(sb, block, block, &ident);
807         if (!bh) {
808                 ret = -EAGAIN;
809                 goto out2;
810         }
811
812         if (ident != TAG_IDENT_PVD) {
813                 ret = -EIO;
814                 goto out_bh;
815         }
816
817         pvoldesc = (struct primaryVolDesc *)bh->b_data;
818
819         udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
820                               pvoldesc->recordingDateAndTime);
821 #ifdef UDFFS_DEBUG
822         ts = &pvoldesc->recordingDateAndTime;
823         udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
824                   le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
825                   ts->minute, le16_to_cpu(ts->typeAndTimezone));
826 #endif
827
828
829         ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
830         if (ret < 0)
831                 goto out_bh;
832
833         strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
834         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
835
836         ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
837         if (ret < 0)
838                 goto out_bh;
839
840         outstr[ret] = 0;
841         udf_debug("volSetIdent[] = '%s'\n", outstr);
842
843         ret = 0;
844 out_bh:
845         brelse(bh);
846 out2:
847         kfree(outstr);
848         return ret;
849 }
850
851 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
852                                         u32 meta_file_loc, u32 partition_ref)
853 {
854         struct kernel_lb_addr addr;
855         struct inode *metadata_fe;
856
857         addr.logicalBlockNum = meta_file_loc;
858         addr.partitionReferenceNum = partition_ref;
859
860         metadata_fe = udf_iget_special(sb, &addr);
861
862         if (IS_ERR(metadata_fe)) {
863                 udf_warn(sb, "metadata inode efe not found\n");
864                 return metadata_fe;
865         }
866         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
867                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
868                 iput(metadata_fe);
869                 return ERR_PTR(-EIO);
870         }
871
872         return metadata_fe;
873 }
874
875 static int udf_load_metadata_files(struct super_block *sb, int partition,
876                                    int type1_index)
877 {
878         struct udf_sb_info *sbi = UDF_SB(sb);
879         struct udf_part_map *map;
880         struct udf_meta_data *mdata;
881         struct kernel_lb_addr addr;
882         struct inode *fe;
883
884         map = &sbi->s_partmaps[partition];
885         mdata = &map->s_type_specific.s_metadata;
886         mdata->s_phys_partition_ref = type1_index;
887
888         /* metadata address */
889         udf_debug("Metadata file location: block = %u part = %u\n",
890                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
891
892         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
893                                          mdata->s_phys_partition_ref);
894         if (IS_ERR(fe)) {
895                 /* mirror file entry */
896                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
897                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
898
899                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
900                                                  mdata->s_phys_partition_ref);
901
902                 if (IS_ERR(fe)) {
903                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
904                         return PTR_ERR(fe);
905                 }
906                 mdata->s_mirror_fe = fe;
907         } else
908                 mdata->s_metadata_fe = fe;
909
910
911         /*
912          * bitmap file entry
913          * Note:
914          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
915         */
916         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
917                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
918                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
919
920                 udf_debug("Bitmap file location: block = %u part = %u\n",
921                           addr.logicalBlockNum, addr.partitionReferenceNum);
922
923                 fe = udf_iget_special(sb, &addr);
924                 if (IS_ERR(fe)) {
925                         if (sb_rdonly(sb))
926                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
927                         else {
928                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
929                                 return PTR_ERR(fe);
930                         }
931                 } else
932                         mdata->s_bitmap_fe = fe;
933         }
934
935         udf_debug("udf_load_metadata_files Ok\n");
936         return 0;
937 }
938
939 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
940                              struct kernel_lb_addr *root)
941 {
942         struct fileSetDesc *fset;
943
944         fset = (struct fileSetDesc *)bh->b_data;
945
946         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
947
948         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
949
950         udf_debug("Rootdir at block=%u, partition=%u\n",
951                   root->logicalBlockNum, root->partitionReferenceNum);
952 }
953
954 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
955 {
956         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
957         return DIV_ROUND_UP(map->s_partition_len +
958                             (sizeof(struct spaceBitmapDesc) << 3),
959                             sb->s_blocksize * 8);
960 }
961
962 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
963 {
964         struct udf_bitmap *bitmap;
965         int nr_groups;
966         int size;
967
968         nr_groups = udf_compute_nr_groups(sb, index);
969         size = sizeof(struct udf_bitmap) +
970                 (sizeof(struct buffer_head *) * nr_groups);
971
972         if (size <= PAGE_SIZE)
973                 bitmap = kzalloc(size, GFP_KERNEL);
974         else
975                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
976
977         if (!bitmap)
978                 return NULL;
979
980         bitmap->s_nr_groups = nr_groups;
981         return bitmap;
982 }
983
984 static int check_partition_desc(struct super_block *sb,
985                                 struct partitionDesc *p,
986                                 struct udf_part_map *map)
987 {
988         bool umap, utable, fmap, ftable;
989         struct partitionHeaderDesc *phd;
990
991         switch (le32_to_cpu(p->accessType)) {
992         case PD_ACCESS_TYPE_READ_ONLY:
993         case PD_ACCESS_TYPE_WRITE_ONCE:
994         case PD_ACCESS_TYPE_REWRITABLE:
995         case PD_ACCESS_TYPE_NONE:
996                 goto force_ro;
997         }
998
999         /* No Partition Header Descriptor? */
1000         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1001             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1002                 goto force_ro;
1003
1004         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1005         utable = phd->unallocSpaceTable.extLength;
1006         umap = phd->unallocSpaceBitmap.extLength;
1007         ftable = phd->freedSpaceTable.extLength;
1008         fmap = phd->freedSpaceBitmap.extLength;
1009
1010         /* No allocation info? */
1011         if (!utable && !umap && !ftable && !fmap)
1012                 goto force_ro;
1013
1014         /* We don't support blocks that require erasing before overwrite */
1015         if (ftable || fmap)
1016                 goto force_ro;
1017         /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1018         if (utable && umap)
1019                 goto force_ro;
1020
1021         if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1022             map->s_partition_type == UDF_VIRTUAL_MAP20)
1023                 goto force_ro;
1024
1025         return 0;
1026 force_ro:
1027         if (!sb_rdonly(sb))
1028                 return -EACCES;
1029         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1030         return 0;
1031 }
1032
1033 static int udf_fill_partdesc_info(struct super_block *sb,
1034                 struct partitionDesc *p, int p_index)
1035 {
1036         struct udf_part_map *map;
1037         struct udf_sb_info *sbi = UDF_SB(sb);
1038         struct partitionHeaderDesc *phd;
1039         int err;
1040
1041         map = &sbi->s_partmaps[p_index];
1042
1043         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1044         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1045
1046         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1047                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1048         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1049                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1050         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1051                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1052         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1053                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1054
1055         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1056                   p_index, map->s_partition_type,
1057                   map->s_partition_root, map->s_partition_len);
1058
1059         err = check_partition_desc(sb, p, map);
1060         if (err)
1061                 return err;
1062
1063         /*
1064          * Skip loading allocation info it we cannot ever write to the fs.
1065          * This is a correctness thing as we may have decided to force ro mount
1066          * to avoid allocation info we don't support.
1067          */
1068         if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1069                 return 0;
1070
1071         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1072         if (phd->unallocSpaceTable.extLength) {
1073                 struct kernel_lb_addr loc = {
1074                         .logicalBlockNum = le32_to_cpu(
1075                                 phd->unallocSpaceTable.extPosition),
1076                         .partitionReferenceNum = p_index,
1077                 };
1078                 struct inode *inode;
1079
1080                 inode = udf_iget_special(sb, &loc);
1081                 if (IS_ERR(inode)) {
1082                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1083                                   p_index);
1084                         return PTR_ERR(inode);
1085                 }
1086                 map->s_uspace.s_table = inode;
1087                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1088                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1089                           p_index, map->s_uspace.s_table->i_ino);
1090         }
1091
1092         if (phd->unallocSpaceBitmap.extLength) {
1093                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1094                 if (!bitmap)
1095                         return -ENOMEM;
1096                 map->s_uspace.s_bitmap = bitmap;
1097                 bitmap->s_extPosition = le32_to_cpu(
1098                                 phd->unallocSpaceBitmap.extPosition);
1099                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1100                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1101                           p_index, bitmap->s_extPosition);
1102         }
1103
1104         return 0;
1105 }
1106
1107 static void udf_find_vat_block(struct super_block *sb, int p_index,
1108                                int type1_index, sector_t start_block)
1109 {
1110         struct udf_sb_info *sbi = UDF_SB(sb);
1111         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1112         sector_t vat_block;
1113         struct kernel_lb_addr ino;
1114         struct inode *inode;
1115
1116         /*
1117          * VAT file entry is in the last recorded block. Some broken disks have
1118          * it a few blocks before so try a bit harder...
1119          */
1120         ino.partitionReferenceNum = type1_index;
1121         for (vat_block = start_block;
1122              vat_block >= map->s_partition_root &&
1123              vat_block >= start_block - 3; vat_block--) {
1124                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1125                 inode = udf_iget_special(sb, &ino);
1126                 if (!IS_ERR(inode)) {
1127                         sbi->s_vat_inode = inode;
1128                         break;
1129                 }
1130         }
1131 }
1132
1133 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1134 {
1135         struct udf_sb_info *sbi = UDF_SB(sb);
1136         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1137         struct buffer_head *bh = NULL;
1138         struct udf_inode_info *vati;
1139         uint32_t pos;
1140         struct virtualAllocationTable20 *vat20;
1141         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1142                           sb->s_blocksize_bits;
1143
1144         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1145         if (!sbi->s_vat_inode &&
1146             sbi->s_last_block != blocks - 1) {
1147                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1148                           (unsigned long)sbi->s_last_block,
1149                           (unsigned long)blocks - 1);
1150                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1151         }
1152         if (!sbi->s_vat_inode)
1153                 return -EIO;
1154
1155         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1156                 map->s_type_specific.s_virtual.s_start_offset = 0;
1157                 map->s_type_specific.s_virtual.s_num_entries =
1158                         (sbi->s_vat_inode->i_size - 36) >> 2;
1159         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1160                 vati = UDF_I(sbi->s_vat_inode);
1161                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1162                         pos = udf_block_map(sbi->s_vat_inode, 0);
1163                         bh = sb_bread(sb, pos);
1164                         if (!bh)
1165                                 return -EIO;
1166                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1167                 } else {
1168                         vat20 = (struct virtualAllocationTable20 *)
1169                                                         vati->i_ext.i_data;
1170                 }
1171
1172                 map->s_type_specific.s_virtual.s_start_offset =
1173                         le16_to_cpu(vat20->lengthHeader);
1174                 map->s_type_specific.s_virtual.s_num_entries =
1175                         (sbi->s_vat_inode->i_size -
1176                                 map->s_type_specific.s_virtual.
1177                                         s_start_offset) >> 2;
1178                 brelse(bh);
1179         }
1180         return 0;
1181 }
1182
1183 /*
1184  * Load partition descriptor block
1185  *
1186  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1187  * sequence.
1188  */
1189 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1190 {
1191         struct buffer_head *bh;
1192         struct partitionDesc *p;
1193         struct udf_part_map *map;
1194         struct udf_sb_info *sbi = UDF_SB(sb);
1195         int i, type1_idx;
1196         uint16_t partitionNumber;
1197         uint16_t ident;
1198         int ret;
1199
1200         bh = udf_read_tagged(sb, block, block, &ident);
1201         if (!bh)
1202                 return -EAGAIN;
1203         if (ident != TAG_IDENT_PD) {
1204                 ret = 0;
1205                 goto out_bh;
1206         }
1207
1208         p = (struct partitionDesc *)bh->b_data;
1209         partitionNumber = le16_to_cpu(p->partitionNumber);
1210
1211         /* First scan for TYPE1 and SPARABLE partitions */
1212         for (i = 0; i < sbi->s_partitions; i++) {
1213                 map = &sbi->s_partmaps[i];
1214                 udf_debug("Searching map: (%u == %u)\n",
1215                           map->s_partition_num, partitionNumber);
1216                 if (map->s_partition_num == partitionNumber &&
1217                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1218                      map->s_partition_type == UDF_SPARABLE_MAP15))
1219                         break;
1220         }
1221
1222         if (i >= sbi->s_partitions) {
1223                 udf_debug("Partition (%u) not found in partition map\n",
1224                           partitionNumber);
1225                 ret = 0;
1226                 goto out_bh;
1227         }
1228
1229         ret = udf_fill_partdesc_info(sb, p, i);
1230         if (ret < 0)
1231                 goto out_bh;
1232
1233         /*
1234          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1235          * PHYSICAL partitions are already set up
1236          */
1237         type1_idx = i;
1238 #ifdef UDFFS_DEBUG
1239         map = NULL; /* supress 'maybe used uninitialized' warning */
1240 #endif
1241         for (i = 0; i < sbi->s_partitions; i++) {
1242                 map = &sbi->s_partmaps[i];
1243
1244                 if (map->s_partition_num == partitionNumber &&
1245                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1246                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1247                      map->s_partition_type == UDF_METADATA_MAP25))
1248                         break;
1249         }
1250
1251         if (i >= sbi->s_partitions) {
1252                 ret = 0;
1253                 goto out_bh;
1254         }
1255
1256         ret = udf_fill_partdesc_info(sb, p, i);
1257         if (ret < 0)
1258                 goto out_bh;
1259
1260         if (map->s_partition_type == UDF_METADATA_MAP25) {
1261                 ret = udf_load_metadata_files(sb, i, type1_idx);
1262                 if (ret < 0) {
1263                         udf_err(sb, "error loading MetaData partition map %d\n",
1264                                 i);
1265                         goto out_bh;
1266                 }
1267         } else {
1268                 /*
1269                  * If we have a partition with virtual map, we don't handle
1270                  * writing to it (we overwrite blocks instead of relocating
1271                  * them).
1272                  */
1273                 if (!sb_rdonly(sb)) {
1274                         ret = -EACCES;
1275                         goto out_bh;
1276                 }
1277                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1278                 ret = udf_load_vat(sb, i, type1_idx);
1279                 if (ret < 0)
1280                         goto out_bh;
1281         }
1282         ret = 0;
1283 out_bh:
1284         /* In case loading failed, we handle cleanup in udf_fill_super */
1285         brelse(bh);
1286         return ret;
1287 }
1288
1289 static int udf_load_sparable_map(struct super_block *sb,
1290                                  struct udf_part_map *map,
1291                                  struct sparablePartitionMap *spm)
1292 {
1293         uint32_t loc;
1294         uint16_t ident;
1295         struct sparingTable *st;
1296         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1297         int i;
1298         struct buffer_head *bh;
1299
1300         map->s_partition_type = UDF_SPARABLE_MAP15;
1301         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1302         if (!is_power_of_2(sdata->s_packet_len)) {
1303                 udf_err(sb, "error loading logical volume descriptor: "
1304                         "Invalid packet length %u\n",
1305                         (unsigned)sdata->s_packet_len);
1306                 return -EIO;
1307         }
1308         if (spm->numSparingTables > 4) {
1309                 udf_err(sb, "error loading logical volume descriptor: "
1310                         "Too many sparing tables (%d)\n",
1311                         (int)spm->numSparingTables);
1312                 return -EIO;
1313         }
1314
1315         for (i = 0; i < spm->numSparingTables; i++) {
1316                 loc = le32_to_cpu(spm->locSparingTable[i]);
1317                 bh = udf_read_tagged(sb, loc, loc, &ident);
1318                 if (!bh)
1319                         continue;
1320
1321                 st = (struct sparingTable *)bh->b_data;
1322                 if (ident != 0 ||
1323                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1324                             strlen(UDF_ID_SPARING)) ||
1325                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1326                                                         sb->s_blocksize) {
1327                         brelse(bh);
1328                         continue;
1329                 }
1330
1331                 sdata->s_spar_map[i] = bh;
1332         }
1333         map->s_partition_func = udf_get_pblock_spar15;
1334         return 0;
1335 }
1336
1337 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1338                                struct kernel_lb_addr *fileset)
1339 {
1340         struct logicalVolDesc *lvd;
1341         int i, offset;
1342         uint8_t type;
1343         struct udf_sb_info *sbi = UDF_SB(sb);
1344         struct genericPartitionMap *gpm;
1345         uint16_t ident;
1346         struct buffer_head *bh;
1347         unsigned int table_len;
1348         int ret;
1349
1350         bh = udf_read_tagged(sb, block, block, &ident);
1351         if (!bh)
1352                 return -EAGAIN;
1353         BUG_ON(ident != TAG_IDENT_LVD);
1354         lvd = (struct logicalVolDesc *)bh->b_data;
1355         table_len = le32_to_cpu(lvd->mapTableLength);
1356         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1357                 udf_err(sb, "error loading logical volume descriptor: "
1358                         "Partition table too long (%u > %lu)\n", table_len,
1359                         sb->s_blocksize - sizeof(*lvd));
1360                 ret = -EIO;
1361                 goto out_bh;
1362         }
1363
1364         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1365         if (ret)
1366                 goto out_bh;
1367
1368         for (i = 0, offset = 0;
1369              i < sbi->s_partitions && offset < table_len;
1370              i++, offset += gpm->partitionMapLength) {
1371                 struct udf_part_map *map = &sbi->s_partmaps[i];
1372                 gpm = (struct genericPartitionMap *)
1373                                 &(lvd->partitionMaps[offset]);
1374                 type = gpm->partitionMapType;
1375                 if (type == 1) {
1376                         struct genericPartitionMap1 *gpm1 =
1377                                 (struct genericPartitionMap1 *)gpm;
1378                         map->s_partition_type = UDF_TYPE1_MAP15;
1379                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1380                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1381                         map->s_partition_func = NULL;
1382                 } else if (type == 2) {
1383                         struct udfPartitionMap2 *upm2 =
1384                                                 (struct udfPartitionMap2 *)gpm;
1385                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1386                                                 strlen(UDF_ID_VIRTUAL))) {
1387                                 u16 suf =
1388                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1389                                                         identSuffix)[0]);
1390                                 if (suf < 0x0200) {
1391                                         map->s_partition_type =
1392                                                         UDF_VIRTUAL_MAP15;
1393                                         map->s_partition_func =
1394                                                         udf_get_pblock_virt15;
1395                                 } else {
1396                                         map->s_partition_type =
1397                                                         UDF_VIRTUAL_MAP20;
1398                                         map->s_partition_func =
1399                                                         udf_get_pblock_virt20;
1400                                 }
1401                         } else if (!strncmp(upm2->partIdent.ident,
1402                                                 UDF_ID_SPARABLE,
1403                                                 strlen(UDF_ID_SPARABLE))) {
1404                                 ret = udf_load_sparable_map(sb, map,
1405                                         (struct sparablePartitionMap *)gpm);
1406                                 if (ret < 0)
1407                                         goto out_bh;
1408                         } else if (!strncmp(upm2->partIdent.ident,
1409                                                 UDF_ID_METADATA,
1410                                                 strlen(UDF_ID_METADATA))) {
1411                                 struct udf_meta_data *mdata =
1412                                         &map->s_type_specific.s_metadata;
1413                                 struct metadataPartitionMap *mdm =
1414                                                 (struct metadataPartitionMap *)
1415                                                 &(lvd->partitionMaps[offset]);
1416                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1417                                           i, type, UDF_ID_METADATA);
1418
1419                                 map->s_partition_type = UDF_METADATA_MAP25;
1420                                 map->s_partition_func = udf_get_pblock_meta25;
1421
1422                                 mdata->s_meta_file_loc   =
1423                                         le32_to_cpu(mdm->metadataFileLoc);
1424                                 mdata->s_mirror_file_loc =
1425                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1426                                 mdata->s_bitmap_file_loc =
1427                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1428                                 mdata->s_alloc_unit_size =
1429                                         le32_to_cpu(mdm->allocUnitSize);
1430                                 mdata->s_align_unit_size =
1431                                         le16_to_cpu(mdm->alignUnitSize);
1432                                 if (mdm->flags & 0x01)
1433                                         mdata->s_flags |= MF_DUPLICATE_MD;
1434
1435                                 udf_debug("Metadata Ident suffix=0x%x\n",
1436                                           le16_to_cpu(*(__le16 *)
1437                                                       mdm->partIdent.identSuffix));
1438                                 udf_debug("Metadata part num=%u\n",
1439                                           le16_to_cpu(mdm->partitionNum));
1440                                 udf_debug("Metadata part alloc unit size=%u\n",
1441                                           le32_to_cpu(mdm->allocUnitSize));
1442                                 udf_debug("Metadata file loc=%u\n",
1443                                           le32_to_cpu(mdm->metadataFileLoc));
1444                                 udf_debug("Mirror file loc=%u\n",
1445                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1446                                 udf_debug("Bitmap file loc=%u\n",
1447                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1448                                 udf_debug("Flags: %d %u\n",
1449                                           mdata->s_flags, mdm->flags);
1450                         } else {
1451                                 udf_debug("Unknown ident: %s\n",
1452                                           upm2->partIdent.ident);
1453                                 continue;
1454                         }
1455                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1456                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1457                 }
1458                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1459                           i, map->s_partition_num, type, map->s_volumeseqnum);
1460         }
1461
1462         if (fileset) {
1463                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1464
1465                 *fileset = lelb_to_cpu(la->extLocation);
1466                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1467                           fileset->logicalBlockNum,
1468                           fileset->partitionReferenceNum);
1469         }
1470         if (lvd->integritySeqExt.extLength)
1471                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1472         ret = 0;
1473 out_bh:
1474         brelse(bh);
1475         return ret;
1476 }
1477
1478 /*
1479  * Find the prevailing Logical Volume Integrity Descriptor.
1480  */
1481 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1482 {
1483         struct buffer_head *bh, *final_bh;
1484         uint16_t ident;
1485         struct udf_sb_info *sbi = UDF_SB(sb);
1486         struct logicalVolIntegrityDesc *lvid;
1487         int indirections = 0;
1488
1489         while (++indirections <= UDF_MAX_LVID_NESTING) {
1490                 final_bh = NULL;
1491                 while (loc.extLength > 0 &&
1492                         (bh = udf_read_tagged(sb, loc.extLocation,
1493                                         loc.extLocation, &ident))) {
1494                         if (ident != TAG_IDENT_LVID) {
1495                                 brelse(bh);
1496                                 break;
1497                         }
1498
1499                         brelse(final_bh);
1500                         final_bh = bh;
1501
1502                         loc.extLength -= sb->s_blocksize;
1503                         loc.extLocation++;
1504                 }
1505
1506                 if (!final_bh)
1507                         return;
1508
1509                 brelse(sbi->s_lvid_bh);
1510                 sbi->s_lvid_bh = final_bh;
1511
1512                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1513                 if (lvid->nextIntegrityExt.extLength == 0)
1514                         return;
1515
1516                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1517         }
1518
1519         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1520                 UDF_MAX_LVID_NESTING);
1521         brelse(sbi->s_lvid_bh);
1522         sbi->s_lvid_bh = NULL;
1523 }
1524
1525 /*
1526  * Step for reallocation of table of partition descriptor sequence numbers.
1527  * Must be power of 2.
1528  */
1529 #define PART_DESC_ALLOC_STEP 32
1530
1531 struct part_desc_seq_scan_data {
1532         struct udf_vds_record rec;
1533         u32 partnum;
1534 };
1535
1536 struct desc_seq_scan_data {
1537         struct udf_vds_record vds[VDS_POS_LENGTH];
1538         unsigned int size_part_descs;
1539         unsigned int num_part_descs;
1540         struct part_desc_seq_scan_data *part_descs_loc;
1541 };
1542
1543 static struct udf_vds_record *handle_partition_descriptor(
1544                                 struct buffer_head *bh,
1545                                 struct desc_seq_scan_data *data)
1546 {
1547         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1548         int partnum;
1549         int i;
1550
1551         partnum = le16_to_cpu(desc->partitionNumber);
1552         for (i = 0; i < data->num_part_descs; i++)
1553                 if (partnum == data->part_descs_loc[i].partnum)
1554                         return &(data->part_descs_loc[i].rec);
1555         if (data->num_part_descs >= data->size_part_descs) {
1556                 struct part_desc_seq_scan_data *new_loc;
1557                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1558
1559                 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1560                 if (!new_loc)
1561                         return ERR_PTR(-ENOMEM);
1562                 memcpy(new_loc, data->part_descs_loc,
1563                        data->size_part_descs * sizeof(*new_loc));
1564                 kfree(data->part_descs_loc);
1565                 data->part_descs_loc = new_loc;
1566                 data->size_part_descs = new_size;
1567         }
1568         return &(data->part_descs_loc[data->num_part_descs++].rec);
1569 }
1570
1571
1572 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1573                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1574 {
1575         switch (ident) {
1576         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1577                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1578         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1579                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1580         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1581                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1582         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1583                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1584         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1585                 return handle_partition_descriptor(bh, data);
1586         }
1587         return NULL;
1588 }
1589
1590 /*
1591  * Process a main/reserve volume descriptor sequence.
1592  *   @block             First block of first extent of the sequence.
1593  *   @lastblock         Lastblock of first extent of the sequence.
1594  *   @fileset           There we store extent containing root fileset
1595  *
1596  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1597  * sequence
1598  */
1599 static noinline int udf_process_sequence(
1600                 struct super_block *sb,
1601                 sector_t block, sector_t lastblock,
1602                 struct kernel_lb_addr *fileset)
1603 {
1604         struct buffer_head *bh = NULL;
1605         struct udf_vds_record *curr;
1606         struct generic_desc *gd;
1607         struct volDescPtr *vdp;
1608         bool done = false;
1609         uint32_t vdsn;
1610         uint16_t ident;
1611         int ret;
1612         unsigned int indirections = 0;
1613         struct desc_seq_scan_data data;
1614         unsigned int i;
1615
1616         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1617         data.size_part_descs = PART_DESC_ALLOC_STEP;
1618         data.num_part_descs = 0;
1619         data.part_descs_loc = kcalloc(data.size_part_descs,
1620                                       sizeof(*data.part_descs_loc),
1621                                       GFP_KERNEL);
1622         if (!data.part_descs_loc)
1623                 return -ENOMEM;
1624
1625         /*
1626          * Read the main descriptor sequence and find which descriptors
1627          * are in it.
1628          */
1629         for (; (!done && block <= lastblock); block++) {
1630                 bh = udf_read_tagged(sb, block, block, &ident);
1631                 if (!bh)
1632                         break;
1633
1634                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1635                 gd = (struct generic_desc *)bh->b_data;
1636                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1637                 switch (ident) {
1638                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1639                         if (++indirections > UDF_MAX_TD_NESTING) {
1640                                 udf_err(sb, "too many Volume Descriptor "
1641                                         "Pointers (max %u supported)\n",
1642                                         UDF_MAX_TD_NESTING);
1643                                 brelse(bh);
1644                                 return -EIO;
1645                         }
1646
1647                         vdp = (struct volDescPtr *)bh->b_data;
1648                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1649                         lastblock = le32_to_cpu(
1650                                 vdp->nextVolDescSeqExt.extLength) >>
1651                                 sb->s_blocksize_bits;
1652                         lastblock += block - 1;
1653                         /* For loop is going to increment 'block' again */
1654                         block--;
1655                         break;
1656                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1657                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1658                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1659                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1660                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1661                         curr = get_volume_descriptor_record(ident, bh, &data);
1662                         if (IS_ERR(curr)) {
1663                                 brelse(bh);
1664                                 return PTR_ERR(curr);
1665                         }
1666                         /* Descriptor we don't care about? */
1667                         if (!curr)
1668                                 break;
1669                         if (vdsn >= curr->volDescSeqNum) {
1670                                 curr->volDescSeqNum = vdsn;
1671                                 curr->block = block;
1672                         }
1673                         break;
1674                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1675                         done = true;
1676                         break;
1677                 }
1678                 brelse(bh);
1679         }
1680         /*
1681          * Now read interesting descriptors again and process them
1682          * in a suitable order
1683          */
1684         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1685                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1686                 return -EAGAIN;
1687         }
1688         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1689         if (ret < 0)
1690                 return ret;
1691
1692         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1693                 ret = udf_load_logicalvol(sb,
1694                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1695                                 fileset);
1696                 if (ret < 0)
1697                         return ret;
1698         }
1699
1700         /* Now handle prevailing Partition Descriptors */
1701         for (i = 0; i < data.num_part_descs; i++) {
1702                 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1703                 if (ret < 0)
1704                         return ret;
1705         }
1706
1707         return 0;
1708 }
1709
1710 /*
1711  * Load Volume Descriptor Sequence described by anchor in bh
1712  *
1713  * Returns <0 on error, 0 on success
1714  */
1715 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1716                              struct kernel_lb_addr *fileset)
1717 {
1718         struct anchorVolDescPtr *anchor;
1719         sector_t main_s, main_e, reserve_s, reserve_e;
1720         int ret;
1721
1722         anchor = (struct anchorVolDescPtr *)bh->b_data;
1723
1724         /* Locate the main sequence */
1725         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1726         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1727         main_e = main_e >> sb->s_blocksize_bits;
1728         main_e += main_s - 1;
1729
1730         /* Locate the reserve sequence */
1731         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1732         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1733         reserve_e = reserve_e >> sb->s_blocksize_bits;
1734         reserve_e += reserve_s - 1;
1735
1736         /* Process the main & reserve sequences */
1737         /* responsible for finding the PartitionDesc(s) */
1738         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1739         if (ret != -EAGAIN)
1740                 return ret;
1741         udf_sb_free_partitions(sb);
1742         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1743         if (ret < 0) {
1744                 udf_sb_free_partitions(sb);
1745                 /* No sequence was OK, return -EIO */
1746                 if (ret == -EAGAIN)
1747                         ret = -EIO;
1748         }
1749         return ret;
1750 }
1751
1752 /*
1753  * Check whether there is an anchor block in the given block and
1754  * load Volume Descriptor Sequence if so.
1755  *
1756  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1757  * block
1758  */
1759 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1760                                   struct kernel_lb_addr *fileset)
1761 {
1762         struct buffer_head *bh;
1763         uint16_t ident;
1764         int ret;
1765
1766         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1767             udf_fixed_to_variable(block) >=
1768             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1769                 return -EAGAIN;
1770
1771         bh = udf_read_tagged(sb, block, block, &ident);
1772         if (!bh)
1773                 return -EAGAIN;
1774         if (ident != TAG_IDENT_AVDP) {
1775                 brelse(bh);
1776                 return -EAGAIN;
1777         }
1778         ret = udf_load_sequence(sb, bh, fileset);
1779         brelse(bh);
1780         return ret;
1781 }
1782
1783 /*
1784  * Search for an anchor volume descriptor pointer.
1785  *
1786  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1787  * of anchors.
1788  */
1789 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1790                             struct kernel_lb_addr *fileset)
1791 {
1792         sector_t last[6];
1793         int i;
1794         struct udf_sb_info *sbi = UDF_SB(sb);
1795         int last_count = 0;
1796         int ret;
1797
1798         /* First try user provided anchor */
1799         if (sbi->s_anchor) {
1800                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1801                 if (ret != -EAGAIN)
1802                         return ret;
1803         }
1804         /*
1805          * according to spec, anchor is in either:
1806          *     block 256
1807          *     lastblock-256
1808          *     lastblock
1809          *  however, if the disc isn't closed, it could be 512.
1810          */
1811         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1812         if (ret != -EAGAIN)
1813                 return ret;
1814         /*
1815          * The trouble is which block is the last one. Drives often misreport
1816          * this so we try various possibilities.
1817          */
1818         last[last_count++] = *lastblock;
1819         if (*lastblock >= 1)
1820                 last[last_count++] = *lastblock - 1;
1821         last[last_count++] = *lastblock + 1;
1822         if (*lastblock >= 2)
1823                 last[last_count++] = *lastblock - 2;
1824         if (*lastblock >= 150)
1825                 last[last_count++] = *lastblock - 150;
1826         if (*lastblock >= 152)
1827                 last[last_count++] = *lastblock - 152;
1828
1829         for (i = 0; i < last_count; i++) {
1830                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1831                                 sb->s_blocksize_bits)
1832                         continue;
1833                 ret = udf_check_anchor_block(sb, last[i], fileset);
1834                 if (ret != -EAGAIN) {
1835                         if (!ret)
1836                                 *lastblock = last[i];
1837                         return ret;
1838                 }
1839                 if (last[i] < 256)
1840                         continue;
1841                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1842                 if (ret != -EAGAIN) {
1843                         if (!ret)
1844                                 *lastblock = last[i];
1845                         return ret;
1846                 }
1847         }
1848
1849         /* Finally try block 512 in case media is open */
1850         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1851 }
1852
1853 /*
1854  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1855  * area specified by it. The function expects sbi->s_lastblock to be the last
1856  * block on the media.
1857  *
1858  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1859  * was not found.
1860  */
1861 static int udf_find_anchor(struct super_block *sb,
1862                            struct kernel_lb_addr *fileset)
1863 {
1864         struct udf_sb_info *sbi = UDF_SB(sb);
1865         sector_t lastblock = sbi->s_last_block;
1866         int ret;
1867
1868         ret = udf_scan_anchors(sb, &lastblock, fileset);
1869         if (ret != -EAGAIN)
1870                 goto out;
1871
1872         /* No anchor found? Try VARCONV conversion of block numbers */
1873         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1874         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1875         /* Firstly, we try to not convert number of the last block */
1876         ret = udf_scan_anchors(sb, &lastblock, fileset);
1877         if (ret != -EAGAIN)
1878                 goto out;
1879
1880         lastblock = sbi->s_last_block;
1881         /* Secondly, we try with converted number of the last block */
1882         ret = udf_scan_anchors(sb, &lastblock, fileset);
1883         if (ret < 0) {
1884                 /* VARCONV didn't help. Clear it. */
1885                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1886         }
1887 out:
1888         if (ret == 0)
1889                 sbi->s_last_block = lastblock;
1890         return ret;
1891 }
1892
1893 /*
1894  * Check Volume Structure Descriptor, find Anchor block and load Volume
1895  * Descriptor Sequence.
1896  *
1897  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1898  * block was not found.
1899  */
1900 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1901                         int silent, struct kernel_lb_addr *fileset)
1902 {
1903         struct udf_sb_info *sbi = UDF_SB(sb);
1904         loff_t nsr_off;
1905         int ret;
1906
1907         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1908                 if (!silent)
1909                         udf_warn(sb, "Bad block size\n");
1910                 return -EINVAL;
1911         }
1912         sbi->s_last_block = uopt->lastblock;
1913         if (!uopt->novrs) {
1914                 /* Check that it is NSR02 compliant */
1915                 nsr_off = udf_check_vsd(sb);
1916                 if (!nsr_off) {
1917                         if (!silent)
1918                                 udf_warn(sb, "No VRS found\n");
1919                         return -EINVAL;
1920                 }
1921                 if (nsr_off == -1)
1922                         udf_debug("Failed to read sector at offset %d. "
1923                                   "Assuming open disc. Skipping validity "
1924                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1925                 if (!sbi->s_last_block)
1926                         sbi->s_last_block = udf_get_last_block(sb);
1927         } else {
1928                 udf_debug("Validity check skipped because of novrs option\n");
1929         }
1930
1931         /* Look for anchor block and load Volume Descriptor Sequence */
1932         sbi->s_anchor = uopt->anchor;
1933         ret = udf_find_anchor(sb, fileset);
1934         if (ret < 0) {
1935                 if (!silent && ret == -EAGAIN)
1936                         udf_warn(sb, "No anchor found\n");
1937                 return ret;
1938         }
1939         return 0;
1940 }
1941
1942 static void udf_open_lvid(struct super_block *sb)
1943 {
1944         struct udf_sb_info *sbi = UDF_SB(sb);
1945         struct buffer_head *bh = sbi->s_lvid_bh;
1946         struct logicalVolIntegrityDesc *lvid;
1947         struct logicalVolIntegrityDescImpUse *lvidiu;
1948         struct timespec64 ts;
1949
1950         if (!bh)
1951                 return;
1952         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1953         lvidiu = udf_sb_lvidiu(sb);
1954         if (!lvidiu)
1955                 return;
1956
1957         mutex_lock(&sbi->s_alloc_mutex);
1958         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1959         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1960         ktime_get_real_ts64(&ts);
1961         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1962         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1963                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1964         else
1965                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
1966
1967         lvid->descTag.descCRC = cpu_to_le16(
1968                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1969                         le16_to_cpu(lvid->descTag.descCRCLength)));
1970
1971         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1972         mark_buffer_dirty(bh);
1973         sbi->s_lvid_dirty = 0;
1974         mutex_unlock(&sbi->s_alloc_mutex);
1975         /* Make opening of filesystem visible on the media immediately */
1976         sync_dirty_buffer(bh);
1977 }
1978
1979 static void udf_close_lvid(struct super_block *sb)
1980 {
1981         struct udf_sb_info *sbi = UDF_SB(sb);
1982         struct buffer_head *bh = sbi->s_lvid_bh;
1983         struct logicalVolIntegrityDesc *lvid;
1984         struct logicalVolIntegrityDescImpUse *lvidiu;
1985         struct timespec64 ts;
1986
1987         if (!bh)
1988                 return;
1989         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1990         lvidiu = udf_sb_lvidiu(sb);
1991         if (!lvidiu)
1992                 return;
1993
1994         mutex_lock(&sbi->s_alloc_mutex);
1995         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1996         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1997         ktime_get_real_ts64(&ts);
1998         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1999         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2000                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2001         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2002                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2003         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2004                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2005         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2006                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2007
2008         lvid->descTag.descCRC = cpu_to_le16(
2009                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2010                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2011
2012         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2013         /*
2014          * We set buffer uptodate unconditionally here to avoid spurious
2015          * warnings from mark_buffer_dirty() when previous EIO has marked
2016          * the buffer as !uptodate
2017          */
2018         set_buffer_uptodate(bh);
2019         mark_buffer_dirty(bh);
2020         sbi->s_lvid_dirty = 0;
2021         mutex_unlock(&sbi->s_alloc_mutex);
2022         /* Make closing of filesystem visible on the media immediately */
2023         sync_dirty_buffer(bh);
2024 }
2025
2026 u64 lvid_get_unique_id(struct super_block *sb)
2027 {
2028         struct buffer_head *bh;
2029         struct udf_sb_info *sbi = UDF_SB(sb);
2030         struct logicalVolIntegrityDesc *lvid;
2031         struct logicalVolHeaderDesc *lvhd;
2032         u64 uniqueID;
2033         u64 ret;
2034
2035         bh = sbi->s_lvid_bh;
2036         if (!bh)
2037                 return 0;
2038
2039         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2040         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2041
2042         mutex_lock(&sbi->s_alloc_mutex);
2043         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2044         if (!(++uniqueID & 0xFFFFFFFF))
2045                 uniqueID += 16;
2046         lvhd->uniqueID = cpu_to_le64(uniqueID);
2047         mutex_unlock(&sbi->s_alloc_mutex);
2048         mark_buffer_dirty(bh);
2049
2050         return ret;
2051 }
2052
2053 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2054 {
2055         int ret = -EINVAL;
2056         struct inode *inode = NULL;
2057         struct udf_options uopt;
2058         struct kernel_lb_addr rootdir, fileset;
2059         struct udf_sb_info *sbi;
2060         bool lvid_open = false;
2061
2062         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2063         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2064         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2065         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2066         uopt.umask = 0;
2067         uopt.fmode = UDF_INVALID_MODE;
2068         uopt.dmode = UDF_INVALID_MODE;
2069         uopt.nls_map = NULL;
2070
2071         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2072         if (!sbi)
2073                 return -ENOMEM;
2074
2075         sb->s_fs_info = sbi;
2076
2077         mutex_init(&sbi->s_alloc_mutex);
2078
2079         if (!udf_parse_options((char *)options, &uopt, false))
2080                 goto parse_options_failure;
2081
2082         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2083             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2084                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2085                 goto parse_options_failure;
2086         }
2087         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2088                 uopt.nls_map = load_nls_default();
2089                 if (!uopt.nls_map)
2090                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2091                 else
2092                         udf_debug("Using default NLS map\n");
2093         }
2094         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2095                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2096
2097         fileset.logicalBlockNum = 0xFFFFFFFF;
2098         fileset.partitionReferenceNum = 0xFFFF;
2099
2100         sbi->s_flags = uopt.flags;
2101         sbi->s_uid = uopt.uid;
2102         sbi->s_gid = uopt.gid;
2103         sbi->s_umask = uopt.umask;
2104         sbi->s_fmode = uopt.fmode;
2105         sbi->s_dmode = uopt.dmode;
2106         sbi->s_nls_map = uopt.nls_map;
2107         rwlock_init(&sbi->s_cred_lock);
2108
2109         if (uopt.session == 0xFFFFFFFF)
2110                 sbi->s_session = udf_get_last_session(sb);
2111         else
2112                 sbi->s_session = uopt.session;
2113
2114         udf_debug("Multi-session=%d\n", sbi->s_session);
2115
2116         /* Fill in the rest of the superblock */
2117         sb->s_op = &udf_sb_ops;
2118         sb->s_export_op = &udf_export_ops;
2119
2120         sb->s_magic = UDF_SUPER_MAGIC;
2121         sb->s_time_gran = 1000;
2122
2123         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2124                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2125         } else {
2126                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2127                 while (uopt.blocksize <= 4096) {
2128                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2129                         if (ret < 0) {
2130                                 if (!silent && ret != -EACCES) {
2131                                         pr_notice("Scanning with blocksize %u failed\n",
2132                                                   uopt.blocksize);
2133                                 }
2134                                 brelse(sbi->s_lvid_bh);
2135                                 sbi->s_lvid_bh = NULL;
2136                                 /*
2137                                  * EACCES is special - we want to propagate to
2138                                  * upper layers that we cannot handle RW mount.
2139                                  */
2140                                 if (ret == -EACCES)
2141                                         break;
2142                         } else
2143                                 break;
2144
2145                         uopt.blocksize <<= 1;
2146                 }
2147         }
2148         if (ret < 0) {
2149                 if (ret == -EAGAIN) {
2150                         udf_warn(sb, "No partition found (1)\n");
2151                         ret = -EINVAL;
2152                 }
2153                 goto error_out;
2154         }
2155
2156         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2157
2158         if (sbi->s_lvid_bh) {
2159                 struct logicalVolIntegrityDescImpUse *lvidiu =
2160                                                         udf_sb_lvidiu(sb);
2161                 uint16_t minUDFReadRev;
2162                 uint16_t minUDFWriteRev;
2163
2164                 if (!lvidiu) {
2165                         ret = -EINVAL;
2166                         goto error_out;
2167                 }
2168                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2169                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2170                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2171                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2172                                 minUDFReadRev,
2173                                 UDF_MAX_READ_VERSION);
2174                         ret = -EINVAL;
2175                         goto error_out;
2176                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2177                         if (!sb_rdonly(sb)) {
2178                                 ret = -EACCES;
2179                                 goto error_out;
2180                         }
2181                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2182                 }
2183
2184                 sbi->s_udfrev = minUDFWriteRev;
2185
2186                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2187                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2188                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2189                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2190         }
2191
2192         if (!sbi->s_partitions) {
2193                 udf_warn(sb, "No partition found (2)\n");
2194                 ret = -EINVAL;
2195                 goto error_out;
2196         }
2197
2198         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2199                         UDF_PART_FLAG_READ_ONLY) {
2200                 if (!sb_rdonly(sb)) {
2201                         ret = -EACCES;
2202                         goto error_out;
2203                 }
2204                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2205         }
2206
2207         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2208                 udf_warn(sb, "No fileset found\n");
2209                 ret = -EINVAL;
2210                 goto error_out;
2211         }
2212
2213         if (!silent) {
2214                 struct timestamp ts;
2215                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2216                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2217                          sbi->s_volume_ident,
2218                          le16_to_cpu(ts.year), ts.month, ts.day,
2219                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2220         }
2221         if (!sb_rdonly(sb)) {
2222                 udf_open_lvid(sb);
2223                 lvid_open = true;
2224         }
2225
2226         /* Assign the root inode */
2227         /* assign inodes by physical block number */
2228         /* perhaps it's not extensible enough, but for now ... */
2229         inode = udf_iget(sb, &rootdir);
2230         if (IS_ERR(inode)) {
2231                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2232                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2233                 ret = PTR_ERR(inode);
2234                 goto error_out;
2235         }
2236
2237         /* Allocate a dentry for the root inode */
2238         sb->s_root = d_make_root(inode);
2239         if (!sb->s_root) {
2240                 udf_err(sb, "Couldn't allocate root dentry\n");
2241                 ret = -ENOMEM;
2242                 goto error_out;
2243         }
2244         sb->s_maxbytes = MAX_LFS_FILESIZE;
2245         sb->s_max_links = UDF_MAX_LINKS;
2246         return 0;
2247
2248 error_out:
2249         iput(sbi->s_vat_inode);
2250 parse_options_failure:
2251         if (uopt.nls_map)
2252                 unload_nls(uopt.nls_map);
2253         if (lvid_open)
2254                 udf_close_lvid(sb);
2255         brelse(sbi->s_lvid_bh);
2256         udf_sb_free_partitions(sb);
2257         kfree(sbi);
2258         sb->s_fs_info = NULL;
2259
2260         return ret;
2261 }
2262
2263 void _udf_err(struct super_block *sb, const char *function,
2264               const char *fmt, ...)
2265 {
2266         struct va_format vaf;
2267         va_list args;
2268
2269         va_start(args, fmt);
2270
2271         vaf.fmt = fmt;
2272         vaf.va = &args;
2273
2274         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2275
2276         va_end(args);
2277 }
2278
2279 void _udf_warn(struct super_block *sb, const char *function,
2280                const char *fmt, ...)
2281 {
2282         struct va_format vaf;
2283         va_list args;
2284
2285         va_start(args, fmt);
2286
2287         vaf.fmt = fmt;
2288         vaf.va = &args;
2289
2290         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2291
2292         va_end(args);
2293 }
2294
2295 static void udf_put_super(struct super_block *sb)
2296 {
2297         struct udf_sb_info *sbi;
2298
2299         sbi = UDF_SB(sb);
2300
2301         iput(sbi->s_vat_inode);
2302         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2303                 unload_nls(sbi->s_nls_map);
2304         if (!sb_rdonly(sb))
2305                 udf_close_lvid(sb);
2306         brelse(sbi->s_lvid_bh);
2307         udf_sb_free_partitions(sb);
2308         mutex_destroy(&sbi->s_alloc_mutex);
2309         kfree(sb->s_fs_info);
2310         sb->s_fs_info = NULL;
2311 }
2312
2313 static int udf_sync_fs(struct super_block *sb, int wait)
2314 {
2315         struct udf_sb_info *sbi = UDF_SB(sb);
2316
2317         mutex_lock(&sbi->s_alloc_mutex);
2318         if (sbi->s_lvid_dirty) {
2319                 /*
2320                  * Blockdevice will be synced later so we don't have to submit
2321                  * the buffer for IO
2322                  */
2323                 mark_buffer_dirty(sbi->s_lvid_bh);
2324                 sbi->s_lvid_dirty = 0;
2325         }
2326         mutex_unlock(&sbi->s_alloc_mutex);
2327
2328         return 0;
2329 }
2330
2331 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2332 {
2333         struct super_block *sb = dentry->d_sb;
2334         struct udf_sb_info *sbi = UDF_SB(sb);
2335         struct logicalVolIntegrityDescImpUse *lvidiu;
2336         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2337
2338         lvidiu = udf_sb_lvidiu(sb);
2339         buf->f_type = UDF_SUPER_MAGIC;
2340         buf->f_bsize = sb->s_blocksize;
2341         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2342         buf->f_bfree = udf_count_free(sb);
2343         buf->f_bavail = buf->f_bfree;
2344         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2345                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2346                         + buf->f_bfree;
2347         buf->f_ffree = buf->f_bfree;
2348         buf->f_namelen = UDF_NAME_LEN;
2349         buf->f_fsid.val[0] = (u32)id;
2350         buf->f_fsid.val[1] = (u32)(id >> 32);
2351
2352         return 0;
2353 }
2354
2355 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2356                                           struct udf_bitmap *bitmap)
2357 {
2358         struct buffer_head *bh = NULL;
2359         unsigned int accum = 0;
2360         int index;
2361         udf_pblk_t block = 0, newblock;
2362         struct kernel_lb_addr loc;
2363         uint32_t bytes;
2364         uint8_t *ptr;
2365         uint16_t ident;
2366         struct spaceBitmapDesc *bm;
2367
2368         loc.logicalBlockNum = bitmap->s_extPosition;
2369         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2370         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2371
2372         if (!bh) {
2373                 udf_err(sb, "udf_count_free failed\n");
2374                 goto out;
2375         } else if (ident != TAG_IDENT_SBD) {
2376                 brelse(bh);
2377                 udf_err(sb, "udf_count_free failed\n");
2378                 goto out;
2379         }
2380
2381         bm = (struct spaceBitmapDesc *)bh->b_data;
2382         bytes = le32_to_cpu(bm->numOfBytes);
2383         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2384         ptr = (uint8_t *)bh->b_data;
2385
2386         while (bytes > 0) {
2387                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2388                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2389                                         cur_bytes * 8);
2390                 bytes -= cur_bytes;
2391                 if (bytes) {
2392                         brelse(bh);
2393                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2394                         bh = udf_tread(sb, newblock);
2395                         if (!bh) {
2396                                 udf_debug("read failed\n");
2397                                 goto out;
2398                         }
2399                         index = 0;
2400                         ptr = (uint8_t *)bh->b_data;
2401                 }
2402         }
2403         brelse(bh);
2404 out:
2405         return accum;
2406 }
2407
2408 static unsigned int udf_count_free_table(struct super_block *sb,
2409                                          struct inode *table)
2410 {
2411         unsigned int accum = 0;
2412         uint32_t elen;
2413         struct kernel_lb_addr eloc;
2414         int8_t etype;
2415         struct extent_position epos;
2416
2417         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2418         epos.block = UDF_I(table)->i_location;
2419         epos.offset = sizeof(struct unallocSpaceEntry);
2420         epos.bh = NULL;
2421
2422         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2423                 accum += (elen >> table->i_sb->s_blocksize_bits);
2424
2425         brelse(epos.bh);
2426         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2427
2428         return accum;
2429 }
2430
2431 static unsigned int udf_count_free(struct super_block *sb)
2432 {
2433         unsigned int accum = 0;
2434         struct udf_sb_info *sbi;
2435         struct udf_part_map *map;
2436
2437         sbi = UDF_SB(sb);
2438         if (sbi->s_lvid_bh) {
2439                 struct logicalVolIntegrityDesc *lvid =
2440                         (struct logicalVolIntegrityDesc *)
2441                         sbi->s_lvid_bh->b_data;
2442                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2443                         accum = le32_to_cpu(
2444                                         lvid->freeSpaceTable[sbi->s_partition]);
2445                         if (accum == 0xFFFFFFFF)
2446                                 accum = 0;
2447                 }
2448         }
2449
2450         if (accum)
2451                 return accum;
2452
2453         map = &sbi->s_partmaps[sbi->s_partition];
2454         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2455                 accum += udf_count_free_bitmap(sb,
2456                                                map->s_uspace.s_bitmap);
2457         }
2458         if (accum)
2459                 return accum;
2460
2461         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2462                 accum += udf_count_free_table(sb,
2463                                               map->s_uspace.s_table);
2464         }
2465         return accum;
2466 }
2467
2468 MODULE_AUTHOR("Ben Fennema");
2469 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2470 MODULE_LICENSE("GPL");
2471 module_init(init_udf_fs)
2472 module_exit(exit_udf_fs)