Merge tag 'x86-urgent-2020-05-24' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / ubifs / master.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10
11 /* This file implements reading and writing the master node */
12
13 #include "ubifs.h"
14
15 /**
16  * ubifs_compare_master_node - compare two UBIFS master nodes
17  * @c: UBIFS file-system description object
18  * @m1: the first node
19  * @m2: the second node
20  *
21  * This function compares two UBIFS master nodes. Returns 0 if they are equal
22  * and nonzero if not.
23  */
24 int ubifs_compare_master_node(struct ubifs_info *c, void *m1, void *m2)
25 {
26         int ret;
27         int behind;
28         int hmac_offs = offsetof(struct ubifs_mst_node, hmac);
29
30         /*
31          * Do not compare the common node header since the sequence number and
32          * hence the CRC are different.
33          */
34         ret = memcmp(m1 + UBIFS_CH_SZ, m2 + UBIFS_CH_SZ,
35                      hmac_offs - UBIFS_CH_SZ);
36         if (ret)
37                 return ret;
38
39         /*
40          * Do not compare the embedded HMAC aswell which also must be different
41          * due to the different common node header.
42          */
43         behind = hmac_offs + UBIFS_MAX_HMAC_LEN;
44
45         if (UBIFS_MST_NODE_SZ > behind)
46                 return memcmp(m1 + behind, m2 + behind, UBIFS_MST_NODE_SZ - behind);
47
48         return 0;
49 }
50
51 /* mst_node_check_hash - Check hash of a master node
52  * @c: UBIFS file-system description object
53  * @mst: The master node
54  * @expected: The expected hash of the master node
55  *
56  * This checks the hash of a master node against a given expected hash.
57  * Note that we have two master nodes on a UBIFS image which have different
58  * sequence numbers and consequently different CRCs. To be able to match
59  * both master nodes we exclude the common node header containing the sequence
60  * number and CRC from the hash.
61  *
62  * Returns 0 if the hashes are equal, a negative error code otherwise.
63  */
64 static int mst_node_check_hash(const struct ubifs_info *c,
65                                const struct ubifs_mst_node *mst,
66                                const u8 *expected)
67 {
68         u8 calc[UBIFS_MAX_HASH_LEN];
69         const void *node = mst;
70
71         SHASH_DESC_ON_STACK(shash, c->hash_tfm);
72
73         shash->tfm = c->hash_tfm;
74
75         crypto_shash_digest(shash, node + sizeof(struct ubifs_ch),
76                             UBIFS_MST_NODE_SZ - sizeof(struct ubifs_ch), calc);
77
78         if (ubifs_check_hash(c, expected, calc))
79                 return -EPERM;
80
81         return 0;
82 }
83
84 /**
85  * scan_for_master - search the valid master node.
86  * @c: UBIFS file-system description object
87  *
88  * This function scans the master node LEBs and search for the latest master
89  * node. Returns zero in case of success, %-EUCLEAN if there master area is
90  * corrupted and requires recovery, and a negative error code in case of
91  * failure.
92  */
93 static int scan_for_master(struct ubifs_info *c)
94 {
95         struct ubifs_scan_leb *sleb;
96         struct ubifs_scan_node *snod;
97         int lnum, offs = 0, nodes_cnt, err;
98
99         lnum = UBIFS_MST_LNUM;
100
101         sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
102         if (IS_ERR(sleb))
103                 return PTR_ERR(sleb);
104         nodes_cnt = sleb->nodes_cnt;
105         if (nodes_cnt > 0) {
106                 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
107                                   list);
108                 if (snod->type != UBIFS_MST_NODE)
109                         goto out_dump;
110                 memcpy(c->mst_node, snod->node, snod->len);
111                 offs = snod->offs;
112         }
113         ubifs_scan_destroy(sleb);
114
115         lnum += 1;
116
117         sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
118         if (IS_ERR(sleb))
119                 return PTR_ERR(sleb);
120         if (sleb->nodes_cnt != nodes_cnt)
121                 goto out;
122         if (!sleb->nodes_cnt)
123                 goto out;
124         snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, list);
125         if (snod->type != UBIFS_MST_NODE)
126                 goto out_dump;
127         if (snod->offs != offs)
128                 goto out;
129         if (ubifs_compare_master_node(c, c->mst_node, snod->node))
130                 goto out;
131
132         c->mst_offs = offs;
133         ubifs_scan_destroy(sleb);
134
135         if (!ubifs_authenticated(c))
136                 return 0;
137
138         if (ubifs_hmac_zero(c, c->mst_node->hmac)) {
139                 err = mst_node_check_hash(c, c->mst_node,
140                                           c->sup_node->hash_mst);
141                 if (err)
142                         ubifs_err(c, "Failed to verify master node hash");
143         } else {
144                 err = ubifs_node_verify_hmac(c, c->mst_node,
145                                         sizeof(struct ubifs_mst_node),
146                                         offsetof(struct ubifs_mst_node, hmac));
147                 if (err)
148                         ubifs_err(c, "Failed to verify master node HMAC");
149         }
150
151         if (err)
152                 return -EPERM;
153
154         return 0;
155
156 out:
157         ubifs_scan_destroy(sleb);
158         return -EUCLEAN;
159
160 out_dump:
161         ubifs_err(c, "unexpected node type %d master LEB %d:%d",
162                   snod->type, lnum, snod->offs);
163         ubifs_scan_destroy(sleb);
164         return -EINVAL;
165 }
166
167 /**
168  * validate_master - validate master node.
169  * @c: UBIFS file-system description object
170  *
171  * This function validates data which was read from master node. Returns zero
172  * if the data is all right and %-EINVAL if not.
173  */
174 static int validate_master(const struct ubifs_info *c)
175 {
176         long long main_sz;
177         int err;
178
179         if (c->max_sqnum >= SQNUM_WATERMARK) {
180                 err = 1;
181                 goto out;
182         }
183
184         if (c->cmt_no >= c->max_sqnum) {
185                 err = 2;
186                 goto out;
187         }
188
189         if (c->highest_inum >= INUM_WATERMARK) {
190                 err = 3;
191                 goto out;
192         }
193
194         if (c->lhead_lnum < UBIFS_LOG_LNUM ||
195             c->lhead_lnum >= UBIFS_LOG_LNUM + c->log_lebs ||
196             c->lhead_offs < 0 || c->lhead_offs >= c->leb_size ||
197             c->lhead_offs & (c->min_io_size - 1)) {
198                 err = 4;
199                 goto out;
200         }
201
202         if (c->zroot.lnum >= c->leb_cnt || c->zroot.lnum < c->main_first ||
203             c->zroot.offs >= c->leb_size || c->zroot.offs & 7) {
204                 err = 5;
205                 goto out;
206         }
207
208         if (c->zroot.len < c->ranges[UBIFS_IDX_NODE].min_len ||
209             c->zroot.len > c->ranges[UBIFS_IDX_NODE].max_len) {
210                 err = 6;
211                 goto out;
212         }
213
214         if (c->gc_lnum >= c->leb_cnt || c->gc_lnum < c->main_first) {
215                 err = 7;
216                 goto out;
217         }
218
219         if (c->ihead_lnum >= c->leb_cnt || c->ihead_lnum < c->main_first ||
220             c->ihead_offs % c->min_io_size || c->ihead_offs < 0 ||
221             c->ihead_offs > c->leb_size || c->ihead_offs & 7) {
222                 err = 8;
223                 goto out;
224         }
225
226         main_sz = (long long)c->main_lebs * c->leb_size;
227         if (c->bi.old_idx_sz & 7 || c->bi.old_idx_sz >= main_sz) {
228                 err = 9;
229                 goto out;
230         }
231
232         if (c->lpt_lnum < c->lpt_first || c->lpt_lnum > c->lpt_last ||
233             c->lpt_offs < 0 || c->lpt_offs + c->nnode_sz > c->leb_size) {
234                 err = 10;
235                 goto out;
236         }
237
238         if (c->nhead_lnum < c->lpt_first || c->nhead_lnum > c->lpt_last ||
239             c->nhead_offs < 0 || c->nhead_offs % c->min_io_size ||
240             c->nhead_offs > c->leb_size) {
241                 err = 11;
242                 goto out;
243         }
244
245         if (c->ltab_lnum < c->lpt_first || c->ltab_lnum > c->lpt_last ||
246             c->ltab_offs < 0 ||
247             c->ltab_offs + c->ltab_sz > c->leb_size) {
248                 err = 12;
249                 goto out;
250         }
251
252         if (c->big_lpt && (c->lsave_lnum < c->lpt_first ||
253             c->lsave_lnum > c->lpt_last || c->lsave_offs < 0 ||
254             c->lsave_offs + c->lsave_sz > c->leb_size)) {
255                 err = 13;
256                 goto out;
257         }
258
259         if (c->lscan_lnum < c->main_first || c->lscan_lnum >= c->leb_cnt) {
260                 err = 14;
261                 goto out;
262         }
263
264         if (c->lst.empty_lebs < 0 || c->lst.empty_lebs > c->main_lebs - 2) {
265                 err = 15;
266                 goto out;
267         }
268
269         if (c->lst.idx_lebs < 0 || c->lst.idx_lebs > c->main_lebs - 1) {
270                 err = 16;
271                 goto out;
272         }
273
274         if (c->lst.total_free < 0 || c->lst.total_free > main_sz ||
275             c->lst.total_free & 7) {
276                 err = 17;
277                 goto out;
278         }
279
280         if (c->lst.total_dirty < 0 || (c->lst.total_dirty & 7)) {
281                 err = 18;
282                 goto out;
283         }
284
285         if (c->lst.total_used < 0 || (c->lst.total_used & 7)) {
286                 err = 19;
287                 goto out;
288         }
289
290         if (c->lst.total_free + c->lst.total_dirty +
291             c->lst.total_used > main_sz) {
292                 err = 20;
293                 goto out;
294         }
295
296         if (c->lst.total_dead + c->lst.total_dark +
297             c->lst.total_used + c->bi.old_idx_sz > main_sz) {
298                 err = 21;
299                 goto out;
300         }
301
302         if (c->lst.total_dead < 0 ||
303             c->lst.total_dead > c->lst.total_free + c->lst.total_dirty ||
304             c->lst.total_dead & 7) {
305                 err = 22;
306                 goto out;
307         }
308
309         if (c->lst.total_dark < 0 ||
310             c->lst.total_dark > c->lst.total_free + c->lst.total_dirty ||
311             c->lst.total_dark & 7) {
312                 err = 23;
313                 goto out;
314         }
315
316         return 0;
317
318 out:
319         ubifs_err(c, "bad master node at offset %d error %d", c->mst_offs, err);
320         ubifs_dump_node(c, c->mst_node);
321         return -EINVAL;
322 }
323
324 /**
325  * ubifs_read_master - read master node.
326  * @c: UBIFS file-system description object
327  *
328  * This function finds and reads the master node during file-system mount. If
329  * the flash is empty, it creates default master node as well. Returns zero in
330  * case of success and a negative error code in case of failure.
331  */
332 int ubifs_read_master(struct ubifs_info *c)
333 {
334         int err, old_leb_cnt;
335
336         c->mst_node = kzalloc(c->mst_node_alsz, GFP_KERNEL);
337         if (!c->mst_node)
338                 return -ENOMEM;
339
340         err = scan_for_master(c);
341         if (err) {
342                 if (err == -EUCLEAN)
343                         err = ubifs_recover_master_node(c);
344                 if (err)
345                         /*
346                          * Note, we do not free 'c->mst_node' here because the
347                          * unmount routine will take care of this.
348                          */
349                         return err;
350         }
351
352         /* Make sure that the recovery flag is clear */
353         c->mst_node->flags &= cpu_to_le32(~UBIFS_MST_RCVRY);
354
355         c->max_sqnum       = le64_to_cpu(c->mst_node->ch.sqnum);
356         c->highest_inum    = le64_to_cpu(c->mst_node->highest_inum);
357         c->cmt_no          = le64_to_cpu(c->mst_node->cmt_no);
358         c->zroot.lnum      = le32_to_cpu(c->mst_node->root_lnum);
359         c->zroot.offs      = le32_to_cpu(c->mst_node->root_offs);
360         c->zroot.len       = le32_to_cpu(c->mst_node->root_len);
361         c->lhead_lnum      = le32_to_cpu(c->mst_node->log_lnum);
362         c->gc_lnum         = le32_to_cpu(c->mst_node->gc_lnum);
363         c->ihead_lnum      = le32_to_cpu(c->mst_node->ihead_lnum);
364         c->ihead_offs      = le32_to_cpu(c->mst_node->ihead_offs);
365         c->bi.old_idx_sz   = le64_to_cpu(c->mst_node->index_size);
366         c->lpt_lnum        = le32_to_cpu(c->mst_node->lpt_lnum);
367         c->lpt_offs        = le32_to_cpu(c->mst_node->lpt_offs);
368         c->nhead_lnum      = le32_to_cpu(c->mst_node->nhead_lnum);
369         c->nhead_offs      = le32_to_cpu(c->mst_node->nhead_offs);
370         c->ltab_lnum       = le32_to_cpu(c->mst_node->ltab_lnum);
371         c->ltab_offs       = le32_to_cpu(c->mst_node->ltab_offs);
372         c->lsave_lnum      = le32_to_cpu(c->mst_node->lsave_lnum);
373         c->lsave_offs      = le32_to_cpu(c->mst_node->lsave_offs);
374         c->lscan_lnum      = le32_to_cpu(c->mst_node->lscan_lnum);
375         c->lst.empty_lebs  = le32_to_cpu(c->mst_node->empty_lebs);
376         c->lst.idx_lebs    = le32_to_cpu(c->mst_node->idx_lebs);
377         old_leb_cnt        = le32_to_cpu(c->mst_node->leb_cnt);
378         c->lst.total_free  = le64_to_cpu(c->mst_node->total_free);
379         c->lst.total_dirty = le64_to_cpu(c->mst_node->total_dirty);
380         c->lst.total_used  = le64_to_cpu(c->mst_node->total_used);
381         c->lst.total_dead  = le64_to_cpu(c->mst_node->total_dead);
382         c->lst.total_dark  = le64_to_cpu(c->mst_node->total_dark);
383
384         ubifs_copy_hash(c, c->mst_node->hash_root_idx, c->zroot.hash);
385
386         c->calc_idx_sz = c->bi.old_idx_sz;
387
388         if (c->mst_node->flags & cpu_to_le32(UBIFS_MST_NO_ORPHS))
389                 c->no_orphs = 1;
390
391         if (old_leb_cnt != c->leb_cnt) {
392                 /* The file system has been resized */
393                 int growth = c->leb_cnt - old_leb_cnt;
394
395                 if (c->leb_cnt < old_leb_cnt ||
396                     c->leb_cnt < UBIFS_MIN_LEB_CNT) {
397                         ubifs_err(c, "bad leb_cnt on master node");
398                         ubifs_dump_node(c, c->mst_node);
399                         return -EINVAL;
400                 }
401
402                 dbg_mnt("Auto resizing (master) from %d LEBs to %d LEBs",
403                         old_leb_cnt, c->leb_cnt);
404                 c->lst.empty_lebs += growth;
405                 c->lst.total_free += growth * (long long)c->leb_size;
406                 c->lst.total_dark += growth * (long long)c->dark_wm;
407
408                 /*
409                  * Reflect changes back onto the master node. N.B. the master
410                  * node gets written immediately whenever mounting (or
411                  * remounting) in read-write mode, so we do not need to write it
412                  * here.
413                  */
414                 c->mst_node->leb_cnt = cpu_to_le32(c->leb_cnt);
415                 c->mst_node->empty_lebs = cpu_to_le32(c->lst.empty_lebs);
416                 c->mst_node->total_free = cpu_to_le64(c->lst.total_free);
417                 c->mst_node->total_dark = cpu_to_le64(c->lst.total_dark);
418         }
419
420         err = validate_master(c);
421         if (err)
422                 return err;
423
424         err = dbg_old_index_check_init(c, &c->zroot);
425
426         return err;
427 }
428
429 /**
430  * ubifs_write_master - write master node.
431  * @c: UBIFS file-system description object
432  *
433  * This function writes the master node. Returns zero in case of success and a
434  * negative error code in case of failure. The master node is written twice to
435  * enable recovery.
436  */
437 int ubifs_write_master(struct ubifs_info *c)
438 {
439         int err, lnum, offs, len;
440
441         ubifs_assert(c, !c->ro_media && !c->ro_mount);
442         if (c->ro_error)
443                 return -EROFS;
444
445         lnum = UBIFS_MST_LNUM;
446         offs = c->mst_offs + c->mst_node_alsz;
447         len = UBIFS_MST_NODE_SZ;
448
449         if (offs + UBIFS_MST_NODE_SZ > c->leb_size) {
450                 err = ubifs_leb_unmap(c, lnum);
451                 if (err)
452                         return err;
453                 offs = 0;
454         }
455
456         c->mst_offs = offs;
457         c->mst_node->highest_inum = cpu_to_le64(c->highest_inum);
458
459         ubifs_copy_hash(c, c->zroot.hash, c->mst_node->hash_root_idx);
460         err = ubifs_write_node_hmac(c, c->mst_node, len, lnum, offs,
461                                     offsetof(struct ubifs_mst_node, hmac));
462         if (err)
463                 return err;
464
465         lnum += 1;
466
467         if (offs == 0) {
468                 err = ubifs_leb_unmap(c, lnum);
469                 if (err)
470                         return err;
471         }
472         err = ubifs_write_node_hmac(c, c->mst_node, len, lnum, offs,
473                                     offsetof(struct ubifs_mst_node, hmac));
474
475         return err;
476 }