Linux 6.9-rc1
[linux-2.6-microblaze.git] / fs / ubifs / io.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  * Copyright (C) 2006, 2007 University of Szeged, Hungary
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  *          Zoltan Sogor
11  */
12
13 /*
14  * This file implements UBIFS I/O subsystem which provides various I/O-related
15  * helper functions (reading/writing/checking/validating nodes) and implements
16  * write-buffering support. Write buffers help to save space which otherwise
17  * would have been wasted for padding to the nearest minimal I/O unit boundary.
18  * Instead, data first goes to the write-buffer and is flushed when the
19  * buffer is full or when it is not used for some time (by timer). This is
20  * similar to the mechanism is used by JFFS2.
21  *
22  * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
23  * write size (@c->max_write_size). The latter is the maximum amount of bytes
24  * the underlying flash is able to program at a time, and writing in
25  * @c->max_write_size units should presumably be faster. Obviously,
26  * @c->min_io_size <= @c->max_write_size. Write-buffers are of
27  * @c->max_write_size bytes in size for maximum performance. However, when a
28  * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
29  * boundary) which contains data is written, not the whole write-buffer,
30  * because this is more space-efficient.
31  *
32  * This optimization adds few complications to the code. Indeed, on the one
33  * hand, we want to write in optimal @c->max_write_size bytes chunks, which
34  * also means aligning writes at the @c->max_write_size bytes offsets. On the
35  * other hand, we do not want to waste space when synchronizing the write
36  * buffer, so during synchronization we writes in smaller chunks. And this makes
37  * the next write offset to be not aligned to @c->max_write_size bytes. So the
38  * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
39  * to @c->max_write_size bytes again. We do this by temporarily shrinking
40  * write-buffer size (@wbuf->size).
41  *
42  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
43  * mutexes defined inside these objects. Since sometimes upper-level code
44  * has to lock the write-buffer (e.g. journal space reservation code), many
45  * functions related to write-buffers have "nolock" suffix which means that the
46  * caller has to lock the write-buffer before calling this function.
47  *
48  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
49  * aligned, UBIFS starts the next node from the aligned address, and the padded
50  * bytes may contain any rubbish. In other words, UBIFS does not put padding
51  * bytes in those small gaps. Common headers of nodes store real node lengths,
52  * not aligned lengths. Indexing nodes also store real lengths in branches.
53  *
54  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
55  * uses padding nodes or padding bytes, if the padding node does not fit.
56  *
57  * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
58  * they are read from the flash media.
59  */
60
61 #include <linux/crc32.h>
62 #include <linux/slab.h>
63 #include "ubifs.h"
64
65 /**
66  * ubifs_ro_mode - switch UBIFS to read read-only mode.
67  * @c: UBIFS file-system description object
68  * @err: error code which is the reason of switching to R/O mode
69  */
70 void ubifs_ro_mode(struct ubifs_info *c, int err)
71 {
72         if (!c->ro_error) {
73                 c->ro_error = 1;
74                 c->no_chk_data_crc = 0;
75                 c->vfs_sb->s_flags |= SB_RDONLY;
76                 ubifs_warn(c, "switched to read-only mode, error %d", err);
77                 dump_stack();
78         }
79 }
80
81 /*
82  * Below are simple wrappers over UBI I/O functions which include some
83  * additional checks and UBIFS debugging stuff. See corresponding UBI function
84  * for more information.
85  */
86
87 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
88                    int len, int even_ebadmsg)
89 {
90         int err;
91
92         err = ubi_read(c->ubi, lnum, buf, offs, len);
93         /*
94          * In case of %-EBADMSG print the error message only if the
95          * @even_ebadmsg is true.
96          */
97         if (err && (err != -EBADMSG || even_ebadmsg)) {
98                 ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
99                           len, lnum, offs, err);
100                 dump_stack();
101         }
102         return err;
103 }
104
105 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
106                     int len)
107 {
108         int err;
109
110         ubifs_assert(c, !c->ro_media && !c->ro_mount);
111         if (c->ro_error)
112                 return -EROFS;
113         if (!dbg_is_tst_rcvry(c))
114                 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
115         else
116                 err = dbg_leb_write(c, lnum, buf, offs, len);
117         if (err) {
118                 ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
119                           len, lnum, offs, err);
120                 ubifs_ro_mode(c, err);
121                 dump_stack();
122         }
123         return err;
124 }
125
126 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
127 {
128         int err;
129
130         ubifs_assert(c, !c->ro_media && !c->ro_mount);
131         if (c->ro_error)
132                 return -EROFS;
133         if (!dbg_is_tst_rcvry(c))
134                 err = ubi_leb_change(c->ubi, lnum, buf, len);
135         else
136                 err = dbg_leb_change(c, lnum, buf, len);
137         if (err) {
138                 ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
139                           len, lnum, err);
140                 ubifs_ro_mode(c, err);
141                 dump_stack();
142         }
143         return err;
144 }
145
146 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
147 {
148         int err;
149
150         ubifs_assert(c, !c->ro_media && !c->ro_mount);
151         if (c->ro_error)
152                 return -EROFS;
153         if (!dbg_is_tst_rcvry(c))
154                 err = ubi_leb_unmap(c->ubi, lnum);
155         else
156                 err = dbg_leb_unmap(c, lnum);
157         if (err) {
158                 ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
159                 ubifs_ro_mode(c, err);
160                 dump_stack();
161         }
162         return err;
163 }
164
165 int ubifs_leb_map(struct ubifs_info *c, int lnum)
166 {
167         int err;
168
169         ubifs_assert(c, !c->ro_media && !c->ro_mount);
170         if (c->ro_error)
171                 return -EROFS;
172         if (!dbg_is_tst_rcvry(c))
173                 err = ubi_leb_map(c->ubi, lnum);
174         else
175                 err = dbg_leb_map(c, lnum);
176         if (err) {
177                 ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
178                 ubifs_ro_mode(c, err);
179                 dump_stack();
180         }
181         return err;
182 }
183
184 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
185 {
186         int err;
187
188         err = ubi_is_mapped(c->ubi, lnum);
189         if (err < 0) {
190                 ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
191                           lnum, err);
192                 dump_stack();
193         }
194         return err;
195 }
196
197 static void record_magic_error(struct ubifs_stats_info *stats)
198 {
199         if (stats)
200                 stats->magic_errors++;
201 }
202
203 static void record_node_error(struct ubifs_stats_info *stats)
204 {
205         if (stats)
206                 stats->node_errors++;
207 }
208
209 static void record_crc_error(struct ubifs_stats_info *stats)
210 {
211         if (stats)
212                 stats->crc_errors++;
213 }
214
215 /**
216  * ubifs_check_node - check node.
217  * @c: UBIFS file-system description object
218  * @buf: node to check
219  * @len: node length
220  * @lnum: logical eraseblock number
221  * @offs: offset within the logical eraseblock
222  * @quiet: print no messages
223  * @must_chk_crc: indicates whether to always check the CRC
224  *
225  * This function checks node magic number and CRC checksum. This function also
226  * validates node length to prevent UBIFS from becoming crazy when an attacker
227  * feeds it a file-system image with incorrect nodes. For example, too large
228  * node length in the common header could cause UBIFS to read memory outside of
229  * allocated buffer when checking the CRC checksum.
230  *
231  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
232  * true, which is controlled by corresponding UBIFS mount option. However, if
233  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
234  * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
235  * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
236  * is checked. This is because during mounting or re-mounting from R/O mode to
237  * R/W mode we may read journal nodes (when replying the journal or doing the
238  * recovery) and the journal nodes may potentially be corrupted, so checking is
239  * required.
240  *
241  * This function returns zero in case of success and %-EUCLEAN in case of bad
242  * CRC or magic.
243  */
244 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int len,
245                      int lnum, int offs, int quiet, int must_chk_crc)
246 {
247         int err = -EINVAL, type, node_len;
248         uint32_t crc, node_crc, magic;
249         const struct ubifs_ch *ch = buf;
250
251         ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
252         ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
253
254         magic = le32_to_cpu(ch->magic);
255         if (magic != UBIFS_NODE_MAGIC) {
256                 if (!quiet)
257                         ubifs_err(c, "bad magic %#08x, expected %#08x",
258                                   magic, UBIFS_NODE_MAGIC);
259                 record_magic_error(c->stats);
260                 err = -EUCLEAN;
261                 goto out;
262         }
263
264         type = ch->node_type;
265         if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
266                 if (!quiet)
267                         ubifs_err(c, "bad node type %d", type);
268                 record_node_error(c->stats);
269                 goto out;
270         }
271
272         node_len = le32_to_cpu(ch->len);
273         if (node_len + offs > c->leb_size)
274                 goto out_len;
275
276         if (c->ranges[type].max_len == 0) {
277                 if (node_len != c->ranges[type].len)
278                         goto out_len;
279         } else if (node_len < c->ranges[type].min_len ||
280                    node_len > c->ranges[type].max_len)
281                 goto out_len;
282
283         if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
284             !c->remounting_rw && c->no_chk_data_crc)
285                 return 0;
286
287         crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
288         node_crc = le32_to_cpu(ch->crc);
289         if (crc != node_crc) {
290                 if (!quiet)
291                         ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
292                                   crc, node_crc);
293                 record_crc_error(c->stats);
294                 err = -EUCLEAN;
295                 goto out;
296         }
297
298         return 0;
299
300 out_len:
301         if (!quiet)
302                 ubifs_err(c, "bad node length %d", node_len);
303 out:
304         if (!quiet) {
305                 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
306                 ubifs_dump_node(c, buf, len);
307                 dump_stack();
308         }
309         return err;
310 }
311
312 /**
313  * ubifs_pad - pad flash space.
314  * @c: UBIFS file-system description object
315  * @buf: buffer to put padding to
316  * @pad: how many bytes to pad
317  *
318  * The flash media obliges us to write only in chunks of %c->min_io_size and
319  * when we have to write less data we add padding node to the write-buffer and
320  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
321  * media is being scanned. If the amount of wasted space is not enough to fit a
322  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
323  * pattern (%UBIFS_PADDING_BYTE).
324  *
325  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
326  * used.
327  */
328 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
329 {
330         uint32_t crc;
331
332         ubifs_assert(c, pad >= 0);
333
334         if (pad >= UBIFS_PAD_NODE_SZ) {
335                 struct ubifs_ch *ch = buf;
336                 struct ubifs_pad_node *pad_node = buf;
337
338                 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
339                 ch->node_type = UBIFS_PAD_NODE;
340                 ch->group_type = UBIFS_NO_NODE_GROUP;
341                 ch->padding[0] = ch->padding[1] = 0;
342                 ch->sqnum = 0;
343                 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
344                 pad -= UBIFS_PAD_NODE_SZ;
345                 pad_node->pad_len = cpu_to_le32(pad);
346                 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
347                 ch->crc = cpu_to_le32(crc);
348                 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
349         } else if (pad > 0)
350                 /* Too little space, padding node won't fit */
351                 memset(buf, UBIFS_PADDING_BYTE, pad);
352 }
353
354 /**
355  * next_sqnum - get next sequence number.
356  * @c: UBIFS file-system description object
357  */
358 static unsigned long long next_sqnum(struct ubifs_info *c)
359 {
360         unsigned long long sqnum;
361
362         spin_lock(&c->cnt_lock);
363         sqnum = ++c->max_sqnum;
364         spin_unlock(&c->cnt_lock);
365
366         if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
367                 if (sqnum >= SQNUM_WATERMARK) {
368                         ubifs_err(c, "sequence number overflow %llu, end of life",
369                                   sqnum);
370                         ubifs_ro_mode(c, -EINVAL);
371                 }
372                 ubifs_warn(c, "running out of sequence numbers, end of life soon");
373         }
374
375         return sqnum;
376 }
377
378 void ubifs_init_node(struct ubifs_info *c, void *node, int len, int pad)
379 {
380         struct ubifs_ch *ch = node;
381         unsigned long long sqnum = next_sqnum(c);
382
383         ubifs_assert(c, len >= UBIFS_CH_SZ);
384
385         ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
386         ch->len = cpu_to_le32(len);
387         ch->group_type = UBIFS_NO_NODE_GROUP;
388         ch->sqnum = cpu_to_le64(sqnum);
389         ch->padding[0] = ch->padding[1] = 0;
390
391         if (pad) {
392                 len = ALIGN(len, 8);
393                 pad = ALIGN(len, c->min_io_size) - len;
394                 ubifs_pad(c, node + len, pad);
395         }
396 }
397
398 void ubifs_crc_node(struct ubifs_info *c, void *node, int len)
399 {
400         struct ubifs_ch *ch = node;
401         uint32_t crc;
402
403         crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
404         ch->crc = cpu_to_le32(crc);
405 }
406
407 /**
408  * ubifs_prepare_node_hmac - prepare node to be written to flash.
409  * @c: UBIFS file-system description object
410  * @node: the node to pad
411  * @len: node length
412  * @hmac_offs: offset of the HMAC in the node
413  * @pad: if the buffer has to be padded
414  *
415  * This function prepares node at @node to be written to the media - it
416  * calculates node CRC, fills the common header, and adds proper padding up to
417  * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then
418  * a HMAC is inserted into the node at the given offset.
419  *
420  * This function returns 0 for success or a negative error code otherwise.
421  */
422 int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len,
423                             int hmac_offs, int pad)
424 {
425         int err;
426
427         ubifs_init_node(c, node, len, pad);
428
429         if (hmac_offs > 0) {
430                 err = ubifs_node_insert_hmac(c, node, len, hmac_offs);
431                 if (err)
432                         return err;
433         }
434
435         ubifs_crc_node(c, node, len);
436
437         return 0;
438 }
439
440 /**
441  * ubifs_prepare_node - prepare node to be written to flash.
442  * @c: UBIFS file-system description object
443  * @node: the node to pad
444  * @len: node length
445  * @pad: if the buffer has to be padded
446  *
447  * This function prepares node at @node to be written to the media - it
448  * calculates node CRC, fills the common header, and adds proper padding up to
449  * the next minimum I/O unit if @pad is not zero.
450  */
451 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
452 {
453         /*
454          * Deliberately ignore return value since this function can only fail
455          * when a hmac offset is given.
456          */
457         ubifs_prepare_node_hmac(c, node, len, 0, pad);
458 }
459
460 /**
461  * ubifs_prep_grp_node - prepare node of a group to be written to flash.
462  * @c: UBIFS file-system description object
463  * @node: the node to pad
464  * @len: node length
465  * @last: indicates the last node of the group
466  *
467  * This function prepares node at @node to be written to the media - it
468  * calculates node CRC and fills the common header.
469  */
470 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
471 {
472         uint32_t crc;
473         struct ubifs_ch *ch = node;
474         unsigned long long sqnum = next_sqnum(c);
475
476         ubifs_assert(c, len >= UBIFS_CH_SZ);
477
478         ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
479         ch->len = cpu_to_le32(len);
480         if (last)
481                 ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
482         else
483                 ch->group_type = UBIFS_IN_NODE_GROUP;
484         ch->sqnum = cpu_to_le64(sqnum);
485         ch->padding[0] = ch->padding[1] = 0;
486         crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
487         ch->crc = cpu_to_le32(crc);
488 }
489
490 /**
491  * wbuf_timer_callback_nolock - write-buffer timer callback function.
492  * @timer: timer data (write-buffer descriptor)
493  *
494  * This function is called when the write-buffer timer expires.
495  */
496 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
497 {
498         struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
499
500         dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
501         wbuf->need_sync = 1;
502         wbuf->c->need_wbuf_sync = 1;
503         ubifs_wake_up_bgt(wbuf->c);
504         return HRTIMER_NORESTART;
505 }
506
507 /**
508  * new_wbuf_timer_nolock - start new write-buffer timer.
509  * @c: UBIFS file-system description object
510  * @wbuf: write-buffer descriptor
511  */
512 static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
513 {
514         ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10);
515         unsigned long long delta = dirty_writeback_interval;
516
517         /* centi to milli, milli to nano, then 10% */
518         delta *= 10ULL * NSEC_PER_MSEC / 10ULL;
519
520         ubifs_assert(c, !hrtimer_active(&wbuf->timer));
521         ubifs_assert(c, delta <= ULONG_MAX);
522
523         if (wbuf->no_timer)
524                 return;
525         dbg_io("set timer for jhead %s, %llu-%llu millisecs",
526                dbg_jhead(wbuf->jhead),
527                div_u64(ktime_to_ns(softlimit), USEC_PER_SEC),
528                div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC));
529         hrtimer_start_range_ns(&wbuf->timer, softlimit, delta,
530                                HRTIMER_MODE_REL);
531 }
532
533 /**
534  * cancel_wbuf_timer_nolock - cancel write-buffer timer.
535  * @wbuf: write-buffer descriptor
536  */
537 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
538 {
539         if (wbuf->no_timer)
540                 return;
541         wbuf->need_sync = 0;
542         hrtimer_cancel(&wbuf->timer);
543 }
544
545 /**
546  * ubifs_wbuf_sync_nolock - synchronize write-buffer.
547  * @wbuf: write-buffer to synchronize
548  *
549  * This function synchronizes write-buffer @buf and returns zero in case of
550  * success or a negative error code in case of failure.
551  *
552  * Note, although write-buffers are of @c->max_write_size, this function does
553  * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
554  * if the write-buffer is only partially filled with data, only the used part
555  * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
556  * This way we waste less space.
557  */
558 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
559 {
560         struct ubifs_info *c = wbuf->c;
561         int err, dirt, sync_len;
562
563         cancel_wbuf_timer_nolock(wbuf);
564         if (!wbuf->used || wbuf->lnum == -1)
565                 /* Write-buffer is empty or not seeked */
566                 return 0;
567
568         dbg_io("LEB %d:%d, %d bytes, jhead %s",
569                wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
570         ubifs_assert(c, !(wbuf->avail & 7));
571         ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size);
572         ubifs_assert(c, wbuf->size >= c->min_io_size);
573         ubifs_assert(c, wbuf->size <= c->max_write_size);
574         ubifs_assert(c, wbuf->size % c->min_io_size == 0);
575         ubifs_assert(c, !c->ro_media && !c->ro_mount);
576         if (c->leb_size - wbuf->offs >= c->max_write_size)
577                 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
578
579         if (c->ro_error)
580                 return -EROFS;
581
582         /*
583          * Do not write whole write buffer but write only the minimum necessary
584          * amount of min. I/O units.
585          */
586         sync_len = ALIGN(wbuf->used, c->min_io_size);
587         dirt = sync_len - wbuf->used;
588         if (dirt)
589                 ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
590         err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
591         if (err)
592                 return err;
593
594         spin_lock(&wbuf->lock);
595         wbuf->offs += sync_len;
596         /*
597          * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
598          * But our goal is to optimize writes and make sure we write in
599          * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
600          * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
601          * sure that @wbuf->offs + @wbuf->size is aligned to
602          * @c->max_write_size. This way we make sure that after next
603          * write-buffer flush we are again at the optimal offset (aligned to
604          * @c->max_write_size).
605          */
606         if (c->leb_size - wbuf->offs < c->max_write_size)
607                 wbuf->size = c->leb_size - wbuf->offs;
608         else if (wbuf->offs & (c->max_write_size - 1))
609                 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
610         else
611                 wbuf->size = c->max_write_size;
612         wbuf->avail = wbuf->size;
613         wbuf->used = 0;
614         wbuf->next_ino = 0;
615         spin_unlock(&wbuf->lock);
616
617         if (wbuf->sync_callback)
618                 err = wbuf->sync_callback(c, wbuf->lnum,
619                                           c->leb_size - wbuf->offs, dirt);
620         return err;
621 }
622
623 /**
624  * ubifs_wbuf_seek_nolock - seek write-buffer.
625  * @wbuf: write-buffer
626  * @lnum: logical eraseblock number to seek to
627  * @offs: logical eraseblock offset to seek to
628  *
629  * This function targets the write-buffer to logical eraseblock @lnum:@offs.
630  * The write-buffer has to be empty. Returns zero in case of success and a
631  * negative error code in case of failure.
632  */
633 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
634 {
635         const struct ubifs_info *c = wbuf->c;
636
637         dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
638         ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt);
639         ubifs_assert(c, offs >= 0 && offs <= c->leb_size);
640         ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7));
641         ubifs_assert(c, lnum != wbuf->lnum);
642         ubifs_assert(c, wbuf->used == 0);
643
644         spin_lock(&wbuf->lock);
645         wbuf->lnum = lnum;
646         wbuf->offs = offs;
647         if (c->leb_size - wbuf->offs < c->max_write_size)
648                 wbuf->size = c->leb_size - wbuf->offs;
649         else if (wbuf->offs & (c->max_write_size - 1))
650                 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
651         else
652                 wbuf->size = c->max_write_size;
653         wbuf->avail = wbuf->size;
654         wbuf->used = 0;
655         spin_unlock(&wbuf->lock);
656
657         return 0;
658 }
659
660 /**
661  * ubifs_bg_wbufs_sync - synchronize write-buffers.
662  * @c: UBIFS file-system description object
663  *
664  * This function is called by background thread to synchronize write-buffers.
665  * Returns zero in case of success and a negative error code in case of
666  * failure.
667  */
668 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
669 {
670         int err, i;
671
672         ubifs_assert(c, !c->ro_media && !c->ro_mount);
673         if (!c->need_wbuf_sync)
674                 return 0;
675         c->need_wbuf_sync = 0;
676
677         if (c->ro_error) {
678                 err = -EROFS;
679                 goto out_timers;
680         }
681
682         dbg_io("synchronize");
683         for (i = 0; i < c->jhead_cnt; i++) {
684                 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
685
686                 cond_resched();
687
688                 /*
689                  * If the mutex is locked then wbuf is being changed, so
690                  * synchronization is not necessary.
691                  */
692                 if (mutex_is_locked(&wbuf->io_mutex))
693                         continue;
694
695                 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
696                 if (!wbuf->need_sync) {
697                         mutex_unlock(&wbuf->io_mutex);
698                         continue;
699                 }
700
701                 err = ubifs_wbuf_sync_nolock(wbuf);
702                 mutex_unlock(&wbuf->io_mutex);
703                 if (err) {
704                         ubifs_err(c, "cannot sync write-buffer, error %d", err);
705                         ubifs_ro_mode(c, err);
706                         goto out_timers;
707                 }
708         }
709
710         return 0;
711
712 out_timers:
713         /* Cancel all timers to prevent repeated errors */
714         for (i = 0; i < c->jhead_cnt; i++) {
715                 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
716
717                 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
718                 cancel_wbuf_timer_nolock(wbuf);
719                 mutex_unlock(&wbuf->io_mutex);
720         }
721         return err;
722 }
723
724 /**
725  * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
726  * @wbuf: write-buffer
727  * @buf: node to write
728  * @len: node length
729  *
730  * This function writes data to flash via write-buffer @wbuf. This means that
731  * the last piece of the node won't reach the flash media immediately if it
732  * does not take whole max. write unit (@c->max_write_size). Instead, the node
733  * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
734  * because more data are appended to the write-buffer).
735  *
736  * This function returns zero in case of success and a negative error code in
737  * case of failure. If the node cannot be written because there is no more
738  * space in this logical eraseblock, %-ENOSPC is returned.
739  */
740 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
741 {
742         struct ubifs_info *c = wbuf->c;
743         int err, n, written = 0, aligned_len = ALIGN(len, 8);
744
745         dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
746                dbg_ntype(((struct ubifs_ch *)buf)->node_type),
747                dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
748         ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
749         ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
750         ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
751         ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size);
752         ubifs_assert(c, wbuf->size >= c->min_io_size);
753         ubifs_assert(c, wbuf->size <= c->max_write_size);
754         ubifs_assert(c, wbuf->size % c->min_io_size == 0);
755         ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex));
756         ubifs_assert(c, !c->ro_media && !c->ro_mount);
757         ubifs_assert(c, !c->space_fixup);
758         if (c->leb_size - wbuf->offs >= c->max_write_size)
759                 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
760
761         if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
762                 err = -ENOSPC;
763                 goto out;
764         }
765
766         cancel_wbuf_timer_nolock(wbuf);
767
768         if (c->ro_error)
769                 return -EROFS;
770
771         if (aligned_len <= wbuf->avail) {
772                 /*
773                  * The node is not very large and fits entirely within
774                  * write-buffer.
775                  */
776                 memcpy(wbuf->buf + wbuf->used, buf, len);
777                 if (aligned_len > len) {
778                         ubifs_assert(c, aligned_len - len < 8);
779                         ubifs_pad(c, wbuf->buf + wbuf->used + len, aligned_len - len);
780                 }
781
782                 if (aligned_len == wbuf->avail) {
783                         dbg_io("flush jhead %s wbuf to LEB %d:%d",
784                                dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
785                         err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
786                                               wbuf->offs, wbuf->size);
787                         if (err)
788                                 goto out;
789
790                         spin_lock(&wbuf->lock);
791                         wbuf->offs += wbuf->size;
792                         if (c->leb_size - wbuf->offs >= c->max_write_size)
793                                 wbuf->size = c->max_write_size;
794                         else
795                                 wbuf->size = c->leb_size - wbuf->offs;
796                         wbuf->avail = wbuf->size;
797                         wbuf->used = 0;
798                         wbuf->next_ino = 0;
799                         spin_unlock(&wbuf->lock);
800                 } else {
801                         spin_lock(&wbuf->lock);
802                         wbuf->avail -= aligned_len;
803                         wbuf->used += aligned_len;
804                         spin_unlock(&wbuf->lock);
805                 }
806
807                 goto exit;
808         }
809
810         if (wbuf->used) {
811                 /*
812                  * The node is large enough and does not fit entirely within
813                  * current available space. We have to fill and flush
814                  * write-buffer and switch to the next max. write unit.
815                  */
816                 dbg_io("flush jhead %s wbuf to LEB %d:%d",
817                        dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
818                 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
819                 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
820                                       wbuf->size);
821                 if (err)
822                         goto out;
823
824                 wbuf->offs += wbuf->size;
825                 len -= wbuf->avail;
826                 aligned_len -= wbuf->avail;
827                 written += wbuf->avail;
828         } else if (wbuf->offs & (c->max_write_size - 1)) {
829                 /*
830                  * The write-buffer offset is not aligned to
831                  * @c->max_write_size and @wbuf->size is less than
832                  * @c->max_write_size. Write @wbuf->size bytes to make sure the
833                  * following writes are done in optimal @c->max_write_size
834                  * chunks.
835                  */
836                 dbg_io("write %d bytes to LEB %d:%d",
837                        wbuf->size, wbuf->lnum, wbuf->offs);
838                 err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
839                                       wbuf->size);
840                 if (err)
841                         goto out;
842
843                 wbuf->offs += wbuf->size;
844                 len -= wbuf->size;
845                 aligned_len -= wbuf->size;
846                 written += wbuf->size;
847         }
848
849         /*
850          * The remaining data may take more whole max. write units, so write the
851          * remains multiple to max. write unit size directly to the flash media.
852          * We align node length to 8-byte boundary because we anyway flash wbuf
853          * if the remaining space is less than 8 bytes.
854          */
855         n = aligned_len >> c->max_write_shift;
856         if (n) {
857                 int m = n - 1;
858
859                 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
860                        wbuf->offs);
861
862                 if (m) {
863                         /* '(n-1)<<c->max_write_shift < len' is always true. */
864                         m <<= c->max_write_shift;
865                         err = ubifs_leb_write(c, wbuf->lnum, buf + written,
866                                               wbuf->offs, m);
867                         if (err)
868                                 goto out;
869                         wbuf->offs += m;
870                         aligned_len -= m;
871                         len -= m;
872                         written += m;
873                 }
874
875                 /*
876                  * The non-written len of buf may be less than 'n' because
877                  * parameter 'len' is not 8 bytes aligned, so here we read
878                  * min(len, n) bytes from buf.
879                  */
880                 n = 1 << c->max_write_shift;
881                 memcpy(wbuf->buf, buf + written, min(len, n));
882                 if (n > len) {
883                         ubifs_assert(c, n - len < 8);
884                         ubifs_pad(c, wbuf->buf + len, n - len);
885                 }
886
887                 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, n);
888                 if (err)
889                         goto out;
890                 wbuf->offs += n;
891                 aligned_len -= n;
892                 len -= min(len, n);
893                 written += n;
894         }
895
896         spin_lock(&wbuf->lock);
897         if (aligned_len) {
898                 /*
899                  * And now we have what's left and what does not take whole
900                  * max. write unit, so write it to the write-buffer and we are
901                  * done.
902                  */
903                 memcpy(wbuf->buf, buf + written, len);
904                 if (aligned_len > len) {
905                         ubifs_assert(c, aligned_len - len < 8);
906                         ubifs_pad(c, wbuf->buf + len, aligned_len - len);
907                 }
908         }
909
910         if (c->leb_size - wbuf->offs >= c->max_write_size)
911                 wbuf->size = c->max_write_size;
912         else
913                 wbuf->size = c->leb_size - wbuf->offs;
914         wbuf->avail = wbuf->size - aligned_len;
915         wbuf->used = aligned_len;
916         wbuf->next_ino = 0;
917         spin_unlock(&wbuf->lock);
918
919 exit:
920         if (wbuf->sync_callback) {
921                 int free = c->leb_size - wbuf->offs - wbuf->used;
922
923                 err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
924                 if (err)
925                         goto out;
926         }
927
928         if (wbuf->used)
929                 new_wbuf_timer_nolock(c, wbuf);
930
931         return 0;
932
933 out:
934         ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
935                   len, wbuf->lnum, wbuf->offs, err);
936         ubifs_dump_node(c, buf, written + len);
937         dump_stack();
938         ubifs_dump_leb(c, wbuf->lnum);
939         return err;
940 }
941
942 /**
943  * ubifs_write_node_hmac - write node to the media.
944  * @c: UBIFS file-system description object
945  * @buf: the node to write
946  * @len: node length
947  * @lnum: logical eraseblock number
948  * @offs: offset within the logical eraseblock
949  * @hmac_offs: offset of the HMAC within the node
950  *
951  * This function automatically fills node magic number, assigns sequence
952  * number, and calculates node CRC checksum. The length of the @buf buffer has
953  * to be aligned to the minimal I/O unit size. This function automatically
954  * appends padding node and padding bytes if needed. Returns zero in case of
955  * success and a negative error code in case of failure.
956  */
957 int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum,
958                           int offs, int hmac_offs)
959 {
960         int err, buf_len = ALIGN(len, c->min_io_size);
961
962         dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
963                lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
964                buf_len);
965         ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
966         ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size);
967         ubifs_assert(c, !c->ro_media && !c->ro_mount);
968         ubifs_assert(c, !c->space_fixup);
969
970         if (c->ro_error)
971                 return -EROFS;
972
973         err = ubifs_prepare_node_hmac(c, buf, len, hmac_offs, 1);
974         if (err)
975                 return err;
976
977         err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
978         if (err)
979                 ubifs_dump_node(c, buf, len);
980
981         return err;
982 }
983
984 /**
985  * ubifs_write_node - write node to the media.
986  * @c: UBIFS file-system description object
987  * @buf: the node to write
988  * @len: node length
989  * @lnum: logical eraseblock number
990  * @offs: offset within the logical eraseblock
991  *
992  * This function automatically fills node magic number, assigns sequence
993  * number, and calculates node CRC checksum. The length of the @buf buffer has
994  * to be aligned to the minimal I/O unit size. This function automatically
995  * appends padding node and padding bytes if needed. Returns zero in case of
996  * success and a negative error code in case of failure.
997  */
998 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
999                      int offs)
1000 {
1001         return ubifs_write_node_hmac(c, buf, len, lnum, offs, -1);
1002 }
1003
1004 /**
1005  * ubifs_read_node_wbuf - read node from the media or write-buffer.
1006  * @wbuf: wbuf to check for un-written data
1007  * @buf: buffer to read to
1008  * @type: node type
1009  * @len: node length
1010  * @lnum: logical eraseblock number
1011  * @offs: offset within the logical eraseblock
1012  *
1013  * This function reads a node of known type and length, checks it and stores
1014  * in @buf. If the node partially or fully sits in the write-buffer, this
1015  * function takes data from the buffer, otherwise it reads the flash media.
1016  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
1017  * error code in case of failure.
1018  */
1019 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
1020                          int lnum, int offs)
1021 {
1022         const struct ubifs_info *c = wbuf->c;
1023         int err, rlen, overlap;
1024         struct ubifs_ch *ch = buf;
1025
1026         dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
1027                dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
1028         ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1029         ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1030         ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1031
1032         spin_lock(&wbuf->lock);
1033         overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1034         if (!overlap) {
1035                 /* We may safely unlock the write-buffer and read the data */
1036                 spin_unlock(&wbuf->lock);
1037                 return ubifs_read_node(c, buf, type, len, lnum, offs);
1038         }
1039
1040         /* Don't read under wbuf */
1041         rlen = wbuf->offs - offs;
1042         if (rlen < 0)
1043                 rlen = 0;
1044
1045         /* Copy the rest from the write-buffer */
1046         memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1047         spin_unlock(&wbuf->lock);
1048
1049         if (rlen > 0) {
1050                 /* Read everything that goes before write-buffer */
1051                 err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1052                 if (err && err != -EBADMSG)
1053                         return err;
1054         }
1055
1056         if (type != ch->node_type) {
1057                 ubifs_err(c, "bad node type (%d but expected %d)",
1058                           ch->node_type, type);
1059                 goto out;
1060         }
1061
1062         err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0);
1063         if (err) {
1064                 ubifs_err(c, "expected node type %d", type);
1065                 return err;
1066         }
1067
1068         rlen = le32_to_cpu(ch->len);
1069         if (rlen != len) {
1070                 ubifs_err(c, "bad node length %d, expected %d", rlen, len);
1071                 goto out;
1072         }
1073
1074         return 0;
1075
1076 out:
1077         ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
1078         ubifs_dump_node(c, buf, len);
1079         dump_stack();
1080         return -EINVAL;
1081 }
1082
1083 /**
1084  * ubifs_read_node - read node.
1085  * @c: UBIFS file-system description object
1086  * @buf: buffer to read to
1087  * @type: node type
1088  * @len: node length (not aligned)
1089  * @lnum: logical eraseblock number
1090  * @offs: offset within the logical eraseblock
1091  *
1092  * This function reads a node of known type and length, checks it and
1093  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
1094  * and a negative error code in case of failure.
1095  */
1096 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
1097                     int lnum, int offs)
1098 {
1099         int err, l;
1100         struct ubifs_ch *ch = buf;
1101
1102         dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
1103         ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1104         ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
1105         ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1106         ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1107
1108         err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1109         if (err && err != -EBADMSG)
1110                 return err;
1111
1112         if (type != ch->node_type) {
1113                 ubifs_errc(c, "bad node type (%d but expected %d)",
1114                            ch->node_type, type);
1115                 goto out;
1116         }
1117
1118         err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0);
1119         if (err) {
1120                 ubifs_errc(c, "expected node type %d", type);
1121                 return err;
1122         }
1123
1124         l = le32_to_cpu(ch->len);
1125         if (l != len) {
1126                 ubifs_errc(c, "bad node length %d, expected %d", l, len);
1127                 goto out;
1128         }
1129
1130         return 0;
1131
1132 out:
1133         ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1134                    offs, ubi_is_mapped(c->ubi, lnum));
1135         if (!c->probing) {
1136                 ubifs_dump_node(c, buf, len);
1137                 dump_stack();
1138         }
1139         return -EINVAL;
1140 }
1141
1142 /**
1143  * ubifs_wbuf_init - initialize write-buffer.
1144  * @c: UBIFS file-system description object
1145  * @wbuf: write-buffer to initialize
1146  *
1147  * This function initializes write-buffer. Returns zero in case of success
1148  * %-ENOMEM in case of failure.
1149  */
1150 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1151 {
1152         size_t size;
1153
1154         wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1155         if (!wbuf->buf)
1156                 return -ENOMEM;
1157
1158         size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1159         wbuf->inodes = kmalloc(size, GFP_KERNEL);
1160         if (!wbuf->inodes) {
1161                 kfree(wbuf->buf);
1162                 wbuf->buf = NULL;
1163                 return -ENOMEM;
1164         }
1165
1166         wbuf->used = 0;
1167         wbuf->lnum = wbuf->offs = -1;
1168         /*
1169          * If the LEB starts at the max. write size aligned address, then
1170          * write-buffer size has to be set to @c->max_write_size. Otherwise,
1171          * set it to something smaller so that it ends at the closest max.
1172          * write size boundary.
1173          */
1174         size = c->max_write_size - (c->leb_start % c->max_write_size);
1175         wbuf->avail = wbuf->size = size;
1176         wbuf->sync_callback = NULL;
1177         mutex_init(&wbuf->io_mutex);
1178         spin_lock_init(&wbuf->lock);
1179         wbuf->c = c;
1180         wbuf->next_ino = 0;
1181
1182         hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1183         wbuf->timer.function = wbuf_timer_callback_nolock;
1184         return 0;
1185 }
1186
1187 /**
1188  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1189  * @wbuf: the write-buffer where to add
1190  * @inum: the inode number
1191  *
1192  * This function adds an inode number to the inode array of the write-buffer.
1193  */
1194 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1195 {
1196         if (!wbuf->buf)
1197                 /* NOR flash or something similar */
1198                 return;
1199
1200         spin_lock(&wbuf->lock);
1201         if (wbuf->used)
1202                 wbuf->inodes[wbuf->next_ino++] = inum;
1203         spin_unlock(&wbuf->lock);
1204 }
1205
1206 /**
1207  * wbuf_has_ino - returns if the wbuf contains data from the inode.
1208  * @wbuf: the write-buffer
1209  * @inum: the inode number
1210  *
1211  * This function returns with %1 if the write-buffer contains some data from the
1212  * given inode otherwise it returns with %0.
1213  */
1214 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1215 {
1216         int i, ret = 0;
1217
1218         spin_lock(&wbuf->lock);
1219         for (i = 0; i < wbuf->next_ino; i++)
1220                 if (inum == wbuf->inodes[i]) {
1221                         ret = 1;
1222                         break;
1223                 }
1224         spin_unlock(&wbuf->lock);
1225
1226         return ret;
1227 }
1228
1229 /**
1230  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1231  * @c: UBIFS file-system description object
1232  * @inode: inode to synchronize
1233  *
1234  * This function synchronizes write-buffers which contain nodes belonging to
1235  * @inode. Returns zero in case of success and a negative error code in case of
1236  * failure.
1237  */
1238 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1239 {
1240         int i, err = 0;
1241
1242         for (i = 0; i < c->jhead_cnt; i++) {
1243                 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1244
1245                 if (i == GCHD)
1246                         /*
1247                          * GC head is special, do not look at it. Even if the
1248                          * head contains something related to this inode, it is
1249                          * a _copy_ of corresponding on-flash node which sits
1250                          * somewhere else.
1251                          */
1252                         continue;
1253
1254                 if (!wbuf_has_ino(wbuf, inode->i_ino))
1255                         continue;
1256
1257                 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1258                 if (wbuf_has_ino(wbuf, inode->i_ino))
1259                         err = ubifs_wbuf_sync_nolock(wbuf);
1260                 mutex_unlock(&wbuf->io_mutex);
1261
1262                 if (err) {
1263                         ubifs_ro_mode(c, err);
1264                         return err;
1265                 }
1266         }
1267         return 0;
1268 }