Merge remote-tracking branch 'remotes/powerpc/topic/ppc-kvm' into kvm-ppc-next
[linux-2.6-microblaze.git] / fs / ubifs / debug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10
11 /*
12  * This file implements most of the debugging stuff which is compiled in only
13  * when it is enabled. But some debugging check functions are implemented in
14  * corresponding subsystem, just because they are closely related and utilize
15  * various local functions of those subsystems.
16  */
17
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/math64.h>
21 #include <linux/uaccess.h>
22 #include <linux/random.h>
23 #include <linux/ctype.h>
24 #include "ubifs.h"
25
26 static DEFINE_SPINLOCK(dbg_lock);
27
28 static const char *get_key_fmt(int fmt)
29 {
30         switch (fmt) {
31         case UBIFS_SIMPLE_KEY_FMT:
32                 return "simple";
33         default:
34                 return "unknown/invalid format";
35         }
36 }
37
38 static const char *get_key_hash(int hash)
39 {
40         switch (hash) {
41         case UBIFS_KEY_HASH_R5:
42                 return "R5";
43         case UBIFS_KEY_HASH_TEST:
44                 return "test";
45         default:
46                 return "unknown/invalid name hash";
47         }
48 }
49
50 static const char *get_key_type(int type)
51 {
52         switch (type) {
53         case UBIFS_INO_KEY:
54                 return "inode";
55         case UBIFS_DENT_KEY:
56                 return "direntry";
57         case UBIFS_XENT_KEY:
58                 return "xentry";
59         case UBIFS_DATA_KEY:
60                 return "data";
61         case UBIFS_TRUN_KEY:
62                 return "truncate";
63         default:
64                 return "unknown/invalid key";
65         }
66 }
67
68 static const char *get_dent_type(int type)
69 {
70         switch (type) {
71         case UBIFS_ITYPE_REG:
72                 return "file";
73         case UBIFS_ITYPE_DIR:
74                 return "dir";
75         case UBIFS_ITYPE_LNK:
76                 return "symlink";
77         case UBIFS_ITYPE_BLK:
78                 return "blkdev";
79         case UBIFS_ITYPE_CHR:
80                 return "char dev";
81         case UBIFS_ITYPE_FIFO:
82                 return "fifo";
83         case UBIFS_ITYPE_SOCK:
84                 return "socket";
85         default:
86                 return "unknown/invalid type";
87         }
88 }
89
90 const char *dbg_snprintf_key(const struct ubifs_info *c,
91                              const union ubifs_key *key, char *buffer, int len)
92 {
93         char *p = buffer;
94         int type = key_type(c, key);
95
96         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
97                 switch (type) {
98                 case UBIFS_INO_KEY:
99                         len -= snprintf(p, len, "(%lu, %s)",
100                                         (unsigned long)key_inum(c, key),
101                                         get_key_type(type));
102                         break;
103                 case UBIFS_DENT_KEY:
104                 case UBIFS_XENT_KEY:
105                         len -= snprintf(p, len, "(%lu, %s, %#08x)",
106                                         (unsigned long)key_inum(c, key),
107                                         get_key_type(type), key_hash(c, key));
108                         break;
109                 case UBIFS_DATA_KEY:
110                         len -= snprintf(p, len, "(%lu, %s, %u)",
111                                         (unsigned long)key_inum(c, key),
112                                         get_key_type(type), key_block(c, key));
113                         break;
114                 case UBIFS_TRUN_KEY:
115                         len -= snprintf(p, len, "(%lu, %s)",
116                                         (unsigned long)key_inum(c, key),
117                                         get_key_type(type));
118                         break;
119                 default:
120                         len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
121                                         key->u32[0], key->u32[1]);
122                 }
123         } else
124                 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
125         ubifs_assert(c, len > 0);
126         return p;
127 }
128
129 const char *dbg_ntype(int type)
130 {
131         switch (type) {
132         case UBIFS_PAD_NODE:
133                 return "padding node";
134         case UBIFS_SB_NODE:
135                 return "superblock node";
136         case UBIFS_MST_NODE:
137                 return "master node";
138         case UBIFS_REF_NODE:
139                 return "reference node";
140         case UBIFS_INO_NODE:
141                 return "inode node";
142         case UBIFS_DENT_NODE:
143                 return "direntry node";
144         case UBIFS_XENT_NODE:
145                 return "xentry node";
146         case UBIFS_DATA_NODE:
147                 return "data node";
148         case UBIFS_TRUN_NODE:
149                 return "truncate node";
150         case UBIFS_IDX_NODE:
151                 return "indexing node";
152         case UBIFS_CS_NODE:
153                 return "commit start node";
154         case UBIFS_ORPH_NODE:
155                 return "orphan node";
156         case UBIFS_AUTH_NODE:
157                 return "auth node";
158         default:
159                 return "unknown node";
160         }
161 }
162
163 static const char *dbg_gtype(int type)
164 {
165         switch (type) {
166         case UBIFS_NO_NODE_GROUP:
167                 return "no node group";
168         case UBIFS_IN_NODE_GROUP:
169                 return "in node group";
170         case UBIFS_LAST_OF_NODE_GROUP:
171                 return "last of node group";
172         default:
173                 return "unknown";
174         }
175 }
176
177 const char *dbg_cstate(int cmt_state)
178 {
179         switch (cmt_state) {
180         case COMMIT_RESTING:
181                 return "commit resting";
182         case COMMIT_BACKGROUND:
183                 return "background commit requested";
184         case COMMIT_REQUIRED:
185                 return "commit required";
186         case COMMIT_RUNNING_BACKGROUND:
187                 return "BACKGROUND commit running";
188         case COMMIT_RUNNING_REQUIRED:
189                 return "commit running and required";
190         case COMMIT_BROKEN:
191                 return "broken commit";
192         default:
193                 return "unknown commit state";
194         }
195 }
196
197 const char *dbg_jhead(int jhead)
198 {
199         switch (jhead) {
200         case GCHD:
201                 return "0 (GC)";
202         case BASEHD:
203                 return "1 (base)";
204         case DATAHD:
205                 return "2 (data)";
206         default:
207                 return "unknown journal head";
208         }
209 }
210
211 static void dump_ch(const struct ubifs_ch *ch)
212 {
213         pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
214         pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
215         pr_err("\tnode_type      %d (%s)\n", ch->node_type,
216                dbg_ntype(ch->node_type));
217         pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
218                dbg_gtype(ch->group_type));
219         pr_err("\tsqnum          %llu\n",
220                (unsigned long long)le64_to_cpu(ch->sqnum));
221         pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
222 }
223
224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
225 {
226         const struct ubifs_inode *ui = ubifs_inode(inode);
227         struct fscrypt_name nm = {0};
228         union ubifs_key key;
229         struct ubifs_dent_node *dent, *pdent = NULL;
230         int count = 2;
231
232         pr_err("Dump in-memory inode:");
233         pr_err("\tinode          %lu\n", inode->i_ino);
234         pr_err("\tsize           %llu\n",
235                (unsigned long long)i_size_read(inode));
236         pr_err("\tnlink          %u\n", inode->i_nlink);
237         pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
238         pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
239         pr_err("\tatime          %u.%u\n",
240                (unsigned int)inode->i_atime.tv_sec,
241                (unsigned int)inode->i_atime.tv_nsec);
242         pr_err("\tmtime          %u.%u\n",
243                (unsigned int)inode->i_mtime.tv_sec,
244                (unsigned int)inode->i_mtime.tv_nsec);
245         pr_err("\tctime          %u.%u\n",
246                (unsigned int)inode->i_ctime.tv_sec,
247                (unsigned int)inode->i_ctime.tv_nsec);
248         pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
249         pr_err("\txattr_size     %u\n", ui->xattr_size);
250         pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
251         pr_err("\txattr_names    %u\n", ui->xattr_names);
252         pr_err("\tdirty          %u\n", ui->dirty);
253         pr_err("\txattr          %u\n", ui->xattr);
254         pr_err("\tbulk_read      %u\n", ui->bulk_read);
255         pr_err("\tsynced_i_size  %llu\n",
256                (unsigned long long)ui->synced_i_size);
257         pr_err("\tui_size        %llu\n",
258                (unsigned long long)ui->ui_size);
259         pr_err("\tflags          %d\n", ui->flags);
260         pr_err("\tcompr_type     %d\n", ui->compr_type);
261         pr_err("\tlast_page_read %lu\n", ui->last_page_read);
262         pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
263         pr_err("\tdata_len       %d\n", ui->data_len);
264
265         if (!S_ISDIR(inode->i_mode))
266                 return;
267
268         pr_err("List of directory entries:\n");
269         ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
270
271         lowest_dent_key(c, &key, inode->i_ino);
272         while (1) {
273                 dent = ubifs_tnc_next_ent(c, &key, &nm);
274                 if (IS_ERR(dent)) {
275                         if (PTR_ERR(dent) != -ENOENT)
276                                 pr_err("error %ld\n", PTR_ERR(dent));
277                         break;
278                 }
279
280                 pr_err("\t%d: inode %llu, type %s, len %d\n",
281                        count++, (unsigned long long) le64_to_cpu(dent->inum),
282                        get_dent_type(dent->type),
283                        le16_to_cpu(dent->nlen));
284
285                 fname_name(&nm) = dent->name;
286                 fname_len(&nm) = le16_to_cpu(dent->nlen);
287                 kfree(pdent);
288                 pdent = dent;
289                 key_read(c, &dent->key, &key);
290         }
291         kfree(pdent);
292 }
293
294 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
295 {
296         int i, n;
297         union ubifs_key key;
298         const struct ubifs_ch *ch = node;
299         char key_buf[DBG_KEY_BUF_LEN];
300
301         /* If the magic is incorrect, just hexdump the first bytes */
302         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
303                 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
304                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
305                                (void *)node, UBIFS_CH_SZ, 1);
306                 return;
307         }
308
309         spin_lock(&dbg_lock);
310         dump_ch(node);
311
312         switch (ch->node_type) {
313         case UBIFS_PAD_NODE:
314         {
315                 const struct ubifs_pad_node *pad = node;
316
317                 pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
318                 break;
319         }
320         case UBIFS_SB_NODE:
321         {
322                 const struct ubifs_sb_node *sup = node;
323                 unsigned int sup_flags = le32_to_cpu(sup->flags);
324
325                 pr_err("\tkey_hash       %d (%s)\n",
326                        (int)sup->key_hash, get_key_hash(sup->key_hash));
327                 pr_err("\tkey_fmt        %d (%s)\n",
328                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
329                 pr_err("\tflags          %#x\n", sup_flags);
330                 pr_err("\tbig_lpt        %u\n",
331                        !!(sup_flags & UBIFS_FLG_BIGLPT));
332                 pr_err("\tspace_fixup    %u\n",
333                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
334                 pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
335                 pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
336                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
337                 pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
338                 pr_err("\tmax_bud_bytes  %llu\n",
339                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
340                 pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
341                 pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
342                 pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
343                 pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
344                 pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
345                 pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
346                 pr_err("\tdefault_compr  %u\n",
347                        (int)le16_to_cpu(sup->default_compr));
348                 pr_err("\trp_size        %llu\n",
349                        (unsigned long long)le64_to_cpu(sup->rp_size));
350                 pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
351                 pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
352                 pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
353                 pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
354                 pr_err("\tUUID           %pUB\n", sup->uuid);
355                 break;
356         }
357         case UBIFS_MST_NODE:
358         {
359                 const struct ubifs_mst_node *mst = node;
360
361                 pr_err("\thighest_inum   %llu\n",
362                        (unsigned long long)le64_to_cpu(mst->highest_inum));
363                 pr_err("\tcommit number  %llu\n",
364                        (unsigned long long)le64_to_cpu(mst->cmt_no));
365                 pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
366                 pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
367                 pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
368                 pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
369                 pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
370                 pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
371                 pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
372                 pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
373                 pr_err("\tindex_size     %llu\n",
374                        (unsigned long long)le64_to_cpu(mst->index_size));
375                 pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
376                 pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
377                 pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
378                 pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
379                 pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
380                 pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
381                 pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
382                 pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
383                 pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
384                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
385                 pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
386                 pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
387                 pr_err("\ttotal_free     %llu\n",
388                        (unsigned long long)le64_to_cpu(mst->total_free));
389                 pr_err("\ttotal_dirty    %llu\n",
390                        (unsigned long long)le64_to_cpu(mst->total_dirty));
391                 pr_err("\ttotal_used     %llu\n",
392                        (unsigned long long)le64_to_cpu(mst->total_used));
393                 pr_err("\ttotal_dead     %llu\n",
394                        (unsigned long long)le64_to_cpu(mst->total_dead));
395                 pr_err("\ttotal_dark     %llu\n",
396                        (unsigned long long)le64_to_cpu(mst->total_dark));
397                 break;
398         }
399         case UBIFS_REF_NODE:
400         {
401                 const struct ubifs_ref_node *ref = node;
402
403                 pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
404                 pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
405                 pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
406                 break;
407         }
408         case UBIFS_INO_NODE:
409         {
410                 const struct ubifs_ino_node *ino = node;
411
412                 key_read(c, &ino->key, &key);
413                 pr_err("\tkey            %s\n",
414                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
415                 pr_err("\tcreat_sqnum    %llu\n",
416                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
417                 pr_err("\tsize           %llu\n",
418                        (unsigned long long)le64_to_cpu(ino->size));
419                 pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
420                 pr_err("\tatime          %lld.%u\n",
421                        (long long)le64_to_cpu(ino->atime_sec),
422                        le32_to_cpu(ino->atime_nsec));
423                 pr_err("\tmtime          %lld.%u\n",
424                        (long long)le64_to_cpu(ino->mtime_sec),
425                        le32_to_cpu(ino->mtime_nsec));
426                 pr_err("\tctime          %lld.%u\n",
427                        (long long)le64_to_cpu(ino->ctime_sec),
428                        le32_to_cpu(ino->ctime_nsec));
429                 pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
430                 pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
431                 pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
432                 pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
433                 pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
434                 pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
435                 pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
436                 pr_err("\tcompr_type     %#x\n",
437                        (int)le16_to_cpu(ino->compr_type));
438                 pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
439                 break;
440         }
441         case UBIFS_DENT_NODE:
442         case UBIFS_XENT_NODE:
443         {
444                 const struct ubifs_dent_node *dent = node;
445                 int nlen = le16_to_cpu(dent->nlen);
446
447                 key_read(c, &dent->key, &key);
448                 pr_err("\tkey            %s\n",
449                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
450                 pr_err("\tinum           %llu\n",
451                        (unsigned long long)le64_to_cpu(dent->inum));
452                 pr_err("\ttype           %d\n", (int)dent->type);
453                 pr_err("\tnlen           %d\n", nlen);
454                 pr_err("\tname           ");
455
456                 if (nlen > UBIFS_MAX_NLEN)
457                         pr_err("(bad name length, not printing, bad or corrupted node)");
458                 else {
459                         for (i = 0; i < nlen && dent->name[i]; i++)
460                                 pr_cont("%c", isprint(dent->name[i]) ?
461                                         dent->name[i] : '?');
462                 }
463                 pr_cont("\n");
464
465                 break;
466         }
467         case UBIFS_DATA_NODE:
468         {
469                 const struct ubifs_data_node *dn = node;
470                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
471
472                 key_read(c, &dn->key, &key);
473                 pr_err("\tkey            %s\n",
474                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
475                 pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
476                 pr_err("\tcompr_typ      %d\n",
477                        (int)le16_to_cpu(dn->compr_type));
478                 pr_err("\tdata size      %d\n", dlen);
479                 pr_err("\tdata:\n");
480                 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
481                                (void *)&dn->data, dlen, 0);
482                 break;
483         }
484         case UBIFS_TRUN_NODE:
485         {
486                 const struct ubifs_trun_node *trun = node;
487
488                 pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
489                 pr_err("\told_size       %llu\n",
490                        (unsigned long long)le64_to_cpu(trun->old_size));
491                 pr_err("\tnew_size       %llu\n",
492                        (unsigned long long)le64_to_cpu(trun->new_size));
493                 break;
494         }
495         case UBIFS_IDX_NODE:
496         {
497                 const struct ubifs_idx_node *idx = node;
498
499                 n = le16_to_cpu(idx->child_cnt);
500                 pr_err("\tchild_cnt      %d\n", n);
501                 pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
502                 pr_err("\tBranches:\n");
503
504                 for (i = 0; i < n && i < c->fanout - 1; i++) {
505                         const struct ubifs_branch *br;
506
507                         br = ubifs_idx_branch(c, idx, i);
508                         key_read(c, &br->key, &key);
509                         pr_err("\t%d: LEB %d:%d len %d key %s\n",
510                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
511                                le32_to_cpu(br->len),
512                                dbg_snprintf_key(c, &key, key_buf,
513                                                 DBG_KEY_BUF_LEN));
514                 }
515                 break;
516         }
517         case UBIFS_CS_NODE:
518                 break;
519         case UBIFS_ORPH_NODE:
520         {
521                 const struct ubifs_orph_node *orph = node;
522
523                 pr_err("\tcommit number  %llu\n",
524                        (unsigned long long)
525                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
526                 pr_err("\tlast node flag %llu\n",
527                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
528                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
529                 pr_err("\t%d orphan inode numbers:\n", n);
530                 for (i = 0; i < n; i++)
531                         pr_err("\t  ino %llu\n",
532                                (unsigned long long)le64_to_cpu(orph->inos[i]));
533                 break;
534         }
535         case UBIFS_AUTH_NODE:
536         {
537                 break;
538         }
539         default:
540                 pr_err("node type %d was not recognized\n",
541                        (int)ch->node_type);
542         }
543         spin_unlock(&dbg_lock);
544 }
545
546 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
547 {
548         spin_lock(&dbg_lock);
549         pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
550                req->new_ino, req->dirtied_ino);
551         pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
552                req->new_ino_d, req->dirtied_ino_d);
553         pr_err("\tnew_page    %d, dirtied_page %d\n",
554                req->new_page, req->dirtied_page);
555         pr_err("\tnew_dent    %d, mod_dent     %d\n",
556                req->new_dent, req->mod_dent);
557         pr_err("\tidx_growth  %d\n", req->idx_growth);
558         pr_err("\tdata_growth %d dd_growth     %d\n",
559                req->data_growth, req->dd_growth);
560         spin_unlock(&dbg_lock);
561 }
562
563 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
564 {
565         spin_lock(&dbg_lock);
566         pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
567                current->pid, lst->empty_lebs, lst->idx_lebs);
568         pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
569                lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
570         pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
571                lst->total_used, lst->total_dark, lst->total_dead);
572         spin_unlock(&dbg_lock);
573 }
574
575 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
576 {
577         int i;
578         struct rb_node *rb;
579         struct ubifs_bud *bud;
580         struct ubifs_gced_idx_leb *idx_gc;
581         long long available, outstanding, free;
582
583         spin_lock(&c->space_lock);
584         spin_lock(&dbg_lock);
585         pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
586                current->pid, bi->data_growth + bi->dd_growth,
587                bi->data_growth + bi->dd_growth + bi->idx_growth);
588         pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
589                bi->data_growth, bi->dd_growth, bi->idx_growth);
590         pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
591                bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
592         pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
593                bi->page_budget, bi->inode_budget, bi->dent_budget);
594         pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
595         pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
596                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
597
598         if (bi != &c->bi)
599                 /*
600                  * If we are dumping saved budgeting data, do not print
601                  * additional information which is about the current state, not
602                  * the old one which corresponded to the saved budgeting data.
603                  */
604                 goto out_unlock;
605
606         pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
607                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
608         pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
609                atomic_long_read(&c->dirty_pg_cnt),
610                atomic_long_read(&c->dirty_zn_cnt),
611                atomic_long_read(&c->clean_zn_cnt));
612         pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
613
614         /* If we are in R/O mode, journal heads do not exist */
615         if (c->jheads)
616                 for (i = 0; i < c->jhead_cnt; i++)
617                         pr_err("\tjhead %s\t LEB %d\n",
618                                dbg_jhead(c->jheads[i].wbuf.jhead),
619                                c->jheads[i].wbuf.lnum);
620         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
621                 bud = rb_entry(rb, struct ubifs_bud, rb);
622                 pr_err("\tbud LEB %d\n", bud->lnum);
623         }
624         list_for_each_entry(bud, &c->old_buds, list)
625                 pr_err("\told bud LEB %d\n", bud->lnum);
626         list_for_each_entry(idx_gc, &c->idx_gc, list)
627                 pr_err("\tGC'ed idx LEB %d unmap %d\n",
628                        idx_gc->lnum, idx_gc->unmap);
629         pr_err("\tcommit state %d\n", c->cmt_state);
630
631         /* Print budgeting predictions */
632         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
633         outstanding = c->bi.data_growth + c->bi.dd_growth;
634         free = ubifs_get_free_space_nolock(c);
635         pr_err("Budgeting predictions:\n");
636         pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
637                available, outstanding, free);
638 out_unlock:
639         spin_unlock(&dbg_lock);
640         spin_unlock(&c->space_lock);
641 }
642
643 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
644 {
645         int i, spc, dark = 0, dead = 0;
646         struct rb_node *rb;
647         struct ubifs_bud *bud;
648
649         spc = lp->free + lp->dirty;
650         if (spc < c->dead_wm)
651                 dead = spc;
652         else
653                 dark = ubifs_calc_dark(c, spc);
654
655         if (lp->flags & LPROPS_INDEX)
656                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
657                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
658                        lp->flags);
659         else
660                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
661                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
662                        dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
663
664         if (lp->flags & LPROPS_TAKEN) {
665                 if (lp->flags & LPROPS_INDEX)
666                         pr_cont("index, taken");
667                 else
668                         pr_cont("taken");
669         } else {
670                 const char *s;
671
672                 if (lp->flags & LPROPS_INDEX) {
673                         switch (lp->flags & LPROPS_CAT_MASK) {
674                         case LPROPS_DIRTY_IDX:
675                                 s = "dirty index";
676                                 break;
677                         case LPROPS_FRDI_IDX:
678                                 s = "freeable index";
679                                 break;
680                         default:
681                                 s = "index";
682                         }
683                 } else {
684                         switch (lp->flags & LPROPS_CAT_MASK) {
685                         case LPROPS_UNCAT:
686                                 s = "not categorized";
687                                 break;
688                         case LPROPS_DIRTY:
689                                 s = "dirty";
690                                 break;
691                         case LPROPS_FREE:
692                                 s = "free";
693                                 break;
694                         case LPROPS_EMPTY:
695                                 s = "empty";
696                                 break;
697                         case LPROPS_FREEABLE:
698                                 s = "freeable";
699                                 break;
700                         default:
701                                 s = NULL;
702                                 break;
703                         }
704                 }
705                 pr_cont("%s", s);
706         }
707
708         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
709                 bud = rb_entry(rb, struct ubifs_bud, rb);
710                 if (bud->lnum == lp->lnum) {
711                         int head = 0;
712                         for (i = 0; i < c->jhead_cnt; i++) {
713                                 /*
714                                  * Note, if we are in R/O mode or in the middle
715                                  * of mounting/re-mounting, the write-buffers do
716                                  * not exist.
717                                  */
718                                 if (c->jheads &&
719                                     lp->lnum == c->jheads[i].wbuf.lnum) {
720                                         pr_cont(", jhead %s", dbg_jhead(i));
721                                         head = 1;
722                                 }
723                         }
724                         if (!head)
725                                 pr_cont(", bud of jhead %s",
726                                        dbg_jhead(bud->jhead));
727                 }
728         }
729         if (lp->lnum == c->gc_lnum)
730                 pr_cont(", GC LEB");
731         pr_cont(")\n");
732 }
733
734 void ubifs_dump_lprops(struct ubifs_info *c)
735 {
736         int lnum, err;
737         struct ubifs_lprops lp;
738         struct ubifs_lp_stats lst;
739
740         pr_err("(pid %d) start dumping LEB properties\n", current->pid);
741         ubifs_get_lp_stats(c, &lst);
742         ubifs_dump_lstats(&lst);
743
744         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
745                 err = ubifs_read_one_lp(c, lnum, &lp);
746                 if (err) {
747                         ubifs_err(c, "cannot read lprops for LEB %d", lnum);
748                         continue;
749                 }
750
751                 ubifs_dump_lprop(c, &lp);
752         }
753         pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
754 }
755
756 void ubifs_dump_lpt_info(struct ubifs_info *c)
757 {
758         int i;
759
760         spin_lock(&dbg_lock);
761         pr_err("(pid %d) dumping LPT information\n", current->pid);
762         pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
763         pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
764         pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
765         pr_err("\tltab_sz:       %d\n", c->ltab_sz);
766         pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
767         pr_err("\tbig_lpt:       %d\n", c->big_lpt);
768         pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
769         pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
770         pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
771         pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
772         pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
773         pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
774         pr_err("\tspace_bits:    %d\n", c->space_bits);
775         pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
776         pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
777         pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
778         pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
779         pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
780         pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
781         pr_err("\tLPT head is at %d:%d\n",
782                c->nhead_lnum, c->nhead_offs);
783         pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
784         if (c->big_lpt)
785                 pr_err("\tLPT lsave is at %d:%d\n",
786                        c->lsave_lnum, c->lsave_offs);
787         for (i = 0; i < c->lpt_lebs; i++)
788                 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
789                        i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
790                        c->ltab[i].tgc, c->ltab[i].cmt);
791         spin_unlock(&dbg_lock);
792 }
793
794 void ubifs_dump_sleb(const struct ubifs_info *c,
795                      const struct ubifs_scan_leb *sleb, int offs)
796 {
797         struct ubifs_scan_node *snod;
798
799         pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
800                current->pid, sleb->lnum, offs);
801
802         list_for_each_entry(snod, &sleb->nodes, list) {
803                 cond_resched();
804                 pr_err("Dumping node at LEB %d:%d len %d\n",
805                        sleb->lnum, snod->offs, snod->len);
806                 ubifs_dump_node(c, snod->node);
807         }
808 }
809
810 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
811 {
812         struct ubifs_scan_leb *sleb;
813         struct ubifs_scan_node *snod;
814         void *buf;
815
816         pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
817
818         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
819         if (!buf) {
820                 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
821                 return;
822         }
823
824         sleb = ubifs_scan(c, lnum, 0, buf, 0);
825         if (IS_ERR(sleb)) {
826                 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
827                 goto out;
828         }
829
830         pr_err("LEB %d has %d nodes ending at %d\n", lnum,
831                sleb->nodes_cnt, sleb->endpt);
832
833         list_for_each_entry(snod, &sleb->nodes, list) {
834                 cond_resched();
835                 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
836                        snod->offs, snod->len);
837                 ubifs_dump_node(c, snod->node);
838         }
839
840         pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
841         ubifs_scan_destroy(sleb);
842
843 out:
844         vfree(buf);
845         return;
846 }
847
848 void ubifs_dump_znode(const struct ubifs_info *c,
849                       const struct ubifs_znode *znode)
850 {
851         int n;
852         const struct ubifs_zbranch *zbr;
853         char key_buf[DBG_KEY_BUF_LEN];
854
855         spin_lock(&dbg_lock);
856         if (znode->parent)
857                 zbr = &znode->parent->zbranch[znode->iip];
858         else
859                 zbr = &c->zroot;
860
861         pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
862                znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
863                znode->level, znode->child_cnt, znode->flags);
864
865         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
866                 spin_unlock(&dbg_lock);
867                 return;
868         }
869
870         pr_err("zbranches:\n");
871         for (n = 0; n < znode->child_cnt; n++) {
872                 zbr = &znode->zbranch[n];
873                 if (znode->level > 0)
874                         pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
875                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
876                                dbg_snprintf_key(c, &zbr->key, key_buf,
877                                                 DBG_KEY_BUF_LEN));
878                 else
879                         pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
880                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
881                                dbg_snprintf_key(c, &zbr->key, key_buf,
882                                                 DBG_KEY_BUF_LEN));
883         }
884         spin_unlock(&dbg_lock);
885 }
886
887 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
888 {
889         int i;
890
891         pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
892                current->pid, cat, heap->cnt);
893         for (i = 0; i < heap->cnt; i++) {
894                 struct ubifs_lprops *lprops = heap->arr[i];
895
896                 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
897                        i, lprops->lnum, lprops->hpos, lprops->free,
898                        lprops->dirty, lprops->flags);
899         }
900         pr_err("(pid %d) finish dumping heap\n", current->pid);
901 }
902
903 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
904                       struct ubifs_nnode *parent, int iip)
905 {
906         int i;
907
908         pr_err("(pid %d) dumping pnode:\n", current->pid);
909         pr_err("\taddress %zx parent %zx cnext %zx\n",
910                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
911         pr_err("\tflags %lu iip %d level %d num %d\n",
912                pnode->flags, iip, pnode->level, pnode->num);
913         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
914                 struct ubifs_lprops *lp = &pnode->lprops[i];
915
916                 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
917                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
918         }
919 }
920
921 void ubifs_dump_tnc(struct ubifs_info *c)
922 {
923         struct ubifs_znode *znode;
924         int level;
925
926         pr_err("\n");
927         pr_err("(pid %d) start dumping TNC tree\n", current->pid);
928         znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
929         level = znode->level;
930         pr_err("== Level %d ==\n", level);
931         while (znode) {
932                 if (level != znode->level) {
933                         level = znode->level;
934                         pr_err("== Level %d ==\n", level);
935                 }
936                 ubifs_dump_znode(c, znode);
937                 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
938         }
939         pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
940 }
941
942 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
943                       void *priv)
944 {
945         ubifs_dump_znode(c, znode);
946         return 0;
947 }
948
949 /**
950  * ubifs_dump_index - dump the on-flash index.
951  * @c: UBIFS file-system description object
952  *
953  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
954  * which dumps only in-memory znodes and does not read znodes which from flash.
955  */
956 void ubifs_dump_index(struct ubifs_info *c)
957 {
958         dbg_walk_index(c, NULL, dump_znode, NULL);
959 }
960
961 /**
962  * dbg_save_space_info - save information about flash space.
963  * @c: UBIFS file-system description object
964  *
965  * This function saves information about UBIFS free space, dirty space, etc, in
966  * order to check it later.
967  */
968 void dbg_save_space_info(struct ubifs_info *c)
969 {
970         struct ubifs_debug_info *d = c->dbg;
971         int freeable_cnt;
972
973         spin_lock(&c->space_lock);
974         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
975         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
976         d->saved_idx_gc_cnt = c->idx_gc_cnt;
977
978         /*
979          * We use a dirty hack here and zero out @c->freeable_cnt, because it
980          * affects the free space calculations, and UBIFS might not know about
981          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
982          * only when we read their lprops, and we do this only lazily, upon the
983          * need. So at any given point of time @c->freeable_cnt might be not
984          * exactly accurate.
985          *
986          * Just one example about the issue we hit when we did not zero
987          * @c->freeable_cnt.
988          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
989          *    amount of free space in @d->saved_free
990          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
991          *    information from flash, where we cache LEBs from various
992          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
993          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
994          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
995          *    -> 'ubifs_add_to_cat()').
996          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
997          *    becomes %1.
998          * 4. We calculate the amount of free space when the re-mount is
999          *    finished in 'dbg_check_space_info()' and it does not match
1000          *    @d->saved_free.
1001          */
1002         freeable_cnt = c->freeable_cnt;
1003         c->freeable_cnt = 0;
1004         d->saved_free = ubifs_get_free_space_nolock(c);
1005         c->freeable_cnt = freeable_cnt;
1006         spin_unlock(&c->space_lock);
1007 }
1008
1009 /**
1010  * dbg_check_space_info - check flash space information.
1011  * @c: UBIFS file-system description object
1012  *
1013  * This function compares current flash space information with the information
1014  * which was saved when the 'dbg_save_space_info()' function was called.
1015  * Returns zero if the information has not changed, and %-EINVAL it it has
1016  * changed.
1017  */
1018 int dbg_check_space_info(struct ubifs_info *c)
1019 {
1020         struct ubifs_debug_info *d = c->dbg;
1021         struct ubifs_lp_stats lst;
1022         long long free;
1023         int freeable_cnt;
1024
1025         spin_lock(&c->space_lock);
1026         freeable_cnt = c->freeable_cnt;
1027         c->freeable_cnt = 0;
1028         free = ubifs_get_free_space_nolock(c);
1029         c->freeable_cnt = freeable_cnt;
1030         spin_unlock(&c->space_lock);
1031
1032         if (free != d->saved_free) {
1033                 ubifs_err(c, "free space changed from %lld to %lld",
1034                           d->saved_free, free);
1035                 goto out;
1036         }
1037
1038         return 0;
1039
1040 out:
1041         ubifs_msg(c, "saved lprops statistics dump");
1042         ubifs_dump_lstats(&d->saved_lst);
1043         ubifs_msg(c, "saved budgeting info dump");
1044         ubifs_dump_budg(c, &d->saved_bi);
1045         ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1046         ubifs_msg(c, "current lprops statistics dump");
1047         ubifs_get_lp_stats(c, &lst);
1048         ubifs_dump_lstats(&lst);
1049         ubifs_msg(c, "current budgeting info dump");
1050         ubifs_dump_budg(c, &c->bi);
1051         dump_stack();
1052         return -EINVAL;
1053 }
1054
1055 /**
1056  * dbg_check_synced_i_size - check synchronized inode size.
1057  * @c: UBIFS file-system description object
1058  * @inode: inode to check
1059  *
1060  * If inode is clean, synchronized inode size has to be equivalent to current
1061  * inode size. This function has to be called only for locked inodes (@i_mutex
1062  * has to be locked). Returns %0 if synchronized inode size if correct, and
1063  * %-EINVAL if not.
1064  */
1065 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1066 {
1067         int err = 0;
1068         struct ubifs_inode *ui = ubifs_inode(inode);
1069
1070         if (!dbg_is_chk_gen(c))
1071                 return 0;
1072         if (!S_ISREG(inode->i_mode))
1073                 return 0;
1074
1075         mutex_lock(&ui->ui_mutex);
1076         spin_lock(&ui->ui_lock);
1077         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1078                 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1079                           ui->ui_size, ui->synced_i_size);
1080                 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1081                           inode->i_mode, i_size_read(inode));
1082                 dump_stack();
1083                 err = -EINVAL;
1084         }
1085         spin_unlock(&ui->ui_lock);
1086         mutex_unlock(&ui->ui_mutex);
1087         return err;
1088 }
1089
1090 /*
1091  * dbg_check_dir - check directory inode size and link count.
1092  * @c: UBIFS file-system description object
1093  * @dir: the directory to calculate size for
1094  * @size: the result is returned here
1095  *
1096  * This function makes sure that directory size and link count are correct.
1097  * Returns zero in case of success and a negative error code in case of
1098  * failure.
1099  *
1100  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1101  * calling this function.
1102  */
1103 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1104 {
1105         unsigned int nlink = 2;
1106         union ubifs_key key;
1107         struct ubifs_dent_node *dent, *pdent = NULL;
1108         struct fscrypt_name nm = {0};
1109         loff_t size = UBIFS_INO_NODE_SZ;
1110
1111         if (!dbg_is_chk_gen(c))
1112                 return 0;
1113
1114         if (!S_ISDIR(dir->i_mode))
1115                 return 0;
1116
1117         lowest_dent_key(c, &key, dir->i_ino);
1118         while (1) {
1119                 int err;
1120
1121                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1122                 if (IS_ERR(dent)) {
1123                         err = PTR_ERR(dent);
1124                         if (err == -ENOENT)
1125                                 break;
1126                         return err;
1127                 }
1128
1129                 fname_name(&nm) = dent->name;
1130                 fname_len(&nm) = le16_to_cpu(dent->nlen);
1131                 size += CALC_DENT_SIZE(fname_len(&nm));
1132                 if (dent->type == UBIFS_ITYPE_DIR)
1133                         nlink += 1;
1134                 kfree(pdent);
1135                 pdent = dent;
1136                 key_read(c, &dent->key, &key);
1137         }
1138         kfree(pdent);
1139
1140         if (i_size_read(dir) != size) {
1141                 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1142                           dir->i_ino, (unsigned long long)i_size_read(dir),
1143                           (unsigned long long)size);
1144                 ubifs_dump_inode(c, dir);
1145                 dump_stack();
1146                 return -EINVAL;
1147         }
1148         if (dir->i_nlink != nlink) {
1149                 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1150                           dir->i_ino, dir->i_nlink, nlink);
1151                 ubifs_dump_inode(c, dir);
1152                 dump_stack();
1153                 return -EINVAL;
1154         }
1155
1156         return 0;
1157 }
1158
1159 /**
1160  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1161  * @c: UBIFS file-system description object
1162  * @zbr1: first zbranch
1163  * @zbr2: following zbranch
1164  *
1165  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1166  * names of the direntries/xentries which are referred by the keys. This
1167  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1168  * sure the name of direntry/xentry referred by @zbr1 is less than
1169  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1170  * and a negative error code in case of failure.
1171  */
1172 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1173                                struct ubifs_zbranch *zbr2)
1174 {
1175         int err, nlen1, nlen2, cmp;
1176         struct ubifs_dent_node *dent1, *dent2;
1177         union ubifs_key key;
1178         char key_buf[DBG_KEY_BUF_LEN];
1179
1180         ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1181         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1182         if (!dent1)
1183                 return -ENOMEM;
1184         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1185         if (!dent2) {
1186                 err = -ENOMEM;
1187                 goto out_free;
1188         }
1189
1190         err = ubifs_tnc_read_node(c, zbr1, dent1);
1191         if (err)
1192                 goto out_free;
1193         err = ubifs_validate_entry(c, dent1);
1194         if (err)
1195                 goto out_free;
1196
1197         err = ubifs_tnc_read_node(c, zbr2, dent2);
1198         if (err)
1199                 goto out_free;
1200         err = ubifs_validate_entry(c, dent2);
1201         if (err)
1202                 goto out_free;
1203
1204         /* Make sure node keys are the same as in zbranch */
1205         err = 1;
1206         key_read(c, &dent1->key, &key);
1207         if (keys_cmp(c, &zbr1->key, &key)) {
1208                 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1209                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1210                                                        DBG_KEY_BUF_LEN));
1211                 ubifs_err(c, "but it should have key %s according to tnc",
1212                           dbg_snprintf_key(c, &zbr1->key, key_buf,
1213                                            DBG_KEY_BUF_LEN));
1214                 ubifs_dump_node(c, dent1);
1215                 goto out_free;
1216         }
1217
1218         key_read(c, &dent2->key, &key);
1219         if (keys_cmp(c, &zbr2->key, &key)) {
1220                 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1221                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1222                                                        DBG_KEY_BUF_LEN));
1223                 ubifs_err(c, "but it should have key %s according to tnc",
1224                           dbg_snprintf_key(c, &zbr2->key, key_buf,
1225                                            DBG_KEY_BUF_LEN));
1226                 ubifs_dump_node(c, dent2);
1227                 goto out_free;
1228         }
1229
1230         nlen1 = le16_to_cpu(dent1->nlen);
1231         nlen2 = le16_to_cpu(dent2->nlen);
1232
1233         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1234         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1235                 err = 0;
1236                 goto out_free;
1237         }
1238         if (cmp == 0 && nlen1 == nlen2)
1239                 ubifs_err(c, "2 xent/dent nodes with the same name");
1240         else
1241                 ubifs_err(c, "bad order of colliding key %s",
1242                           dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1243
1244         ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1245         ubifs_dump_node(c, dent1);
1246         ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1247         ubifs_dump_node(c, dent2);
1248
1249 out_free:
1250         kfree(dent2);
1251         kfree(dent1);
1252         return err;
1253 }
1254
1255 /**
1256  * dbg_check_znode - check if znode is all right.
1257  * @c: UBIFS file-system description object
1258  * @zbr: zbranch which points to this znode
1259  *
1260  * This function makes sure that znode referred to by @zbr is all right.
1261  * Returns zero if it is, and %-EINVAL if it is not.
1262  */
1263 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1264 {
1265         struct ubifs_znode *znode = zbr->znode;
1266         struct ubifs_znode *zp = znode->parent;
1267         int n, err, cmp;
1268
1269         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1270                 err = 1;
1271                 goto out;
1272         }
1273         if (znode->level < 0) {
1274                 err = 2;
1275                 goto out;
1276         }
1277         if (znode->iip < 0 || znode->iip >= c->fanout) {
1278                 err = 3;
1279                 goto out;
1280         }
1281
1282         if (zbr->len == 0)
1283                 /* Only dirty zbranch may have no on-flash nodes */
1284                 if (!ubifs_zn_dirty(znode)) {
1285                         err = 4;
1286                         goto out;
1287                 }
1288
1289         if (ubifs_zn_dirty(znode)) {
1290                 /*
1291                  * If znode is dirty, its parent has to be dirty as well. The
1292                  * order of the operation is important, so we have to have
1293                  * memory barriers.
1294                  */
1295                 smp_mb();
1296                 if (zp && !ubifs_zn_dirty(zp)) {
1297                         /*
1298                          * The dirty flag is atomic and is cleared outside the
1299                          * TNC mutex, so znode's dirty flag may now have
1300                          * been cleared. The child is always cleared before the
1301                          * parent, so we just need to check again.
1302                          */
1303                         smp_mb();
1304                         if (ubifs_zn_dirty(znode)) {
1305                                 err = 5;
1306                                 goto out;
1307                         }
1308                 }
1309         }
1310
1311         if (zp) {
1312                 const union ubifs_key *min, *max;
1313
1314                 if (znode->level != zp->level - 1) {
1315                         err = 6;
1316                         goto out;
1317                 }
1318
1319                 /* Make sure the 'parent' pointer in our znode is correct */
1320                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1321                 if (!err) {
1322                         /* This zbranch does not exist in the parent */
1323                         err = 7;
1324                         goto out;
1325                 }
1326
1327                 if (znode->iip >= zp->child_cnt) {
1328                         err = 8;
1329                         goto out;
1330                 }
1331
1332                 if (znode->iip != n) {
1333                         /* This may happen only in case of collisions */
1334                         if (keys_cmp(c, &zp->zbranch[n].key,
1335                                      &zp->zbranch[znode->iip].key)) {
1336                                 err = 9;
1337                                 goto out;
1338                         }
1339                         n = znode->iip;
1340                 }
1341
1342                 /*
1343                  * Make sure that the first key in our znode is greater than or
1344                  * equal to the key in the pointing zbranch.
1345                  */
1346                 min = &zbr->key;
1347                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1348                 if (cmp == 1) {
1349                         err = 10;
1350                         goto out;
1351                 }
1352
1353                 if (n + 1 < zp->child_cnt) {
1354                         max = &zp->zbranch[n + 1].key;
1355
1356                         /*
1357                          * Make sure the last key in our znode is less or
1358                          * equivalent than the key in the zbranch which goes
1359                          * after our pointing zbranch.
1360                          */
1361                         cmp = keys_cmp(c, max,
1362                                 &znode->zbranch[znode->child_cnt - 1].key);
1363                         if (cmp == -1) {
1364                                 err = 11;
1365                                 goto out;
1366                         }
1367                 }
1368         } else {
1369                 /* This may only be root znode */
1370                 if (zbr != &c->zroot) {
1371                         err = 12;
1372                         goto out;
1373                 }
1374         }
1375
1376         /*
1377          * Make sure that next key is greater or equivalent then the previous
1378          * one.
1379          */
1380         for (n = 1; n < znode->child_cnt; n++) {
1381                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1382                                &znode->zbranch[n].key);
1383                 if (cmp > 0) {
1384                         err = 13;
1385                         goto out;
1386                 }
1387                 if (cmp == 0) {
1388                         /* This can only be keys with colliding hash */
1389                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1390                                 err = 14;
1391                                 goto out;
1392                         }
1393
1394                         if (znode->level != 0 || c->replaying)
1395                                 continue;
1396
1397                         /*
1398                          * Colliding keys should follow binary order of
1399                          * corresponding xentry/dentry names.
1400                          */
1401                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1402                                                   &znode->zbranch[n]);
1403                         if (err < 0)
1404                                 return err;
1405                         if (err) {
1406                                 err = 15;
1407                                 goto out;
1408                         }
1409                 }
1410         }
1411
1412         for (n = 0; n < znode->child_cnt; n++) {
1413                 if (!znode->zbranch[n].znode &&
1414                     (znode->zbranch[n].lnum == 0 ||
1415                      znode->zbranch[n].len == 0)) {
1416                         err = 16;
1417                         goto out;
1418                 }
1419
1420                 if (znode->zbranch[n].lnum != 0 &&
1421                     znode->zbranch[n].len == 0) {
1422                         err = 17;
1423                         goto out;
1424                 }
1425
1426                 if (znode->zbranch[n].lnum == 0 &&
1427                     znode->zbranch[n].len != 0) {
1428                         err = 18;
1429                         goto out;
1430                 }
1431
1432                 if (znode->zbranch[n].lnum == 0 &&
1433                     znode->zbranch[n].offs != 0) {
1434                         err = 19;
1435                         goto out;
1436                 }
1437
1438                 if (znode->level != 0 && znode->zbranch[n].znode)
1439                         if (znode->zbranch[n].znode->parent != znode) {
1440                                 err = 20;
1441                                 goto out;
1442                         }
1443         }
1444
1445         return 0;
1446
1447 out:
1448         ubifs_err(c, "failed, error %d", err);
1449         ubifs_msg(c, "dump of the znode");
1450         ubifs_dump_znode(c, znode);
1451         if (zp) {
1452                 ubifs_msg(c, "dump of the parent znode");
1453                 ubifs_dump_znode(c, zp);
1454         }
1455         dump_stack();
1456         return -EINVAL;
1457 }
1458
1459 /**
1460  * dbg_check_tnc - check TNC tree.
1461  * @c: UBIFS file-system description object
1462  * @extra: do extra checks that are possible at start commit
1463  *
1464  * This function traverses whole TNC tree and checks every znode. Returns zero
1465  * if everything is all right and %-EINVAL if something is wrong with TNC.
1466  */
1467 int dbg_check_tnc(struct ubifs_info *c, int extra)
1468 {
1469         struct ubifs_znode *znode;
1470         long clean_cnt = 0, dirty_cnt = 0;
1471         int err, last;
1472
1473         if (!dbg_is_chk_index(c))
1474                 return 0;
1475
1476         ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1477         if (!c->zroot.znode)
1478                 return 0;
1479
1480         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1481         while (1) {
1482                 struct ubifs_znode *prev;
1483                 struct ubifs_zbranch *zbr;
1484
1485                 if (!znode->parent)
1486                         zbr = &c->zroot;
1487                 else
1488                         zbr = &znode->parent->zbranch[znode->iip];
1489
1490                 err = dbg_check_znode(c, zbr);
1491                 if (err)
1492                         return err;
1493
1494                 if (extra) {
1495                         if (ubifs_zn_dirty(znode))
1496                                 dirty_cnt += 1;
1497                         else
1498                                 clean_cnt += 1;
1499                 }
1500
1501                 prev = znode;
1502                 znode = ubifs_tnc_postorder_next(c, znode);
1503                 if (!znode)
1504                         break;
1505
1506                 /*
1507                  * If the last key of this znode is equivalent to the first key
1508                  * of the next znode (collision), then check order of the keys.
1509                  */
1510                 last = prev->child_cnt - 1;
1511                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1512                     !keys_cmp(c, &prev->zbranch[last].key,
1513                               &znode->zbranch[0].key)) {
1514                         err = dbg_check_key_order(c, &prev->zbranch[last],
1515                                                   &znode->zbranch[0]);
1516                         if (err < 0)
1517                                 return err;
1518                         if (err) {
1519                                 ubifs_msg(c, "first znode");
1520                                 ubifs_dump_znode(c, prev);
1521                                 ubifs_msg(c, "second znode");
1522                                 ubifs_dump_znode(c, znode);
1523                                 return -EINVAL;
1524                         }
1525                 }
1526         }
1527
1528         if (extra) {
1529                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1530                         ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1531                                   atomic_long_read(&c->clean_zn_cnt),
1532                                   clean_cnt);
1533                         return -EINVAL;
1534                 }
1535                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1536                         ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1537                                   atomic_long_read(&c->dirty_zn_cnt),
1538                                   dirty_cnt);
1539                         return -EINVAL;
1540                 }
1541         }
1542
1543         return 0;
1544 }
1545
1546 /**
1547  * dbg_walk_index - walk the on-flash index.
1548  * @c: UBIFS file-system description object
1549  * @leaf_cb: called for each leaf node
1550  * @znode_cb: called for each indexing node
1551  * @priv: private data which is passed to callbacks
1552  *
1553  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1554  * node and @znode_cb for each indexing node. Returns zero in case of success
1555  * and a negative error code in case of failure.
1556  *
1557  * It would be better if this function removed every znode it pulled to into
1558  * the TNC, so that the behavior more closely matched the non-debugging
1559  * behavior.
1560  */
1561 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1562                    dbg_znode_callback znode_cb, void *priv)
1563 {
1564         int err;
1565         struct ubifs_zbranch *zbr;
1566         struct ubifs_znode *znode, *child;
1567
1568         mutex_lock(&c->tnc_mutex);
1569         /* If the root indexing node is not in TNC - pull it */
1570         if (!c->zroot.znode) {
1571                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1572                 if (IS_ERR(c->zroot.znode)) {
1573                         err = PTR_ERR(c->zroot.znode);
1574                         c->zroot.znode = NULL;
1575                         goto out_unlock;
1576                 }
1577         }
1578
1579         /*
1580          * We are going to traverse the indexing tree in the postorder manner.
1581          * Go down and find the leftmost indexing node where we are going to
1582          * start from.
1583          */
1584         znode = c->zroot.znode;
1585         while (znode->level > 0) {
1586                 zbr = &znode->zbranch[0];
1587                 child = zbr->znode;
1588                 if (!child) {
1589                         child = ubifs_load_znode(c, zbr, znode, 0);
1590                         if (IS_ERR(child)) {
1591                                 err = PTR_ERR(child);
1592                                 goto out_unlock;
1593                         }
1594                 }
1595
1596                 znode = child;
1597         }
1598
1599         /* Iterate over all indexing nodes */
1600         while (1) {
1601                 int idx;
1602
1603                 cond_resched();
1604
1605                 if (znode_cb) {
1606                         err = znode_cb(c, znode, priv);
1607                         if (err) {
1608                                 ubifs_err(c, "znode checking function returned error %d",
1609                                           err);
1610                                 ubifs_dump_znode(c, znode);
1611                                 goto out_dump;
1612                         }
1613                 }
1614                 if (leaf_cb && znode->level == 0) {
1615                         for (idx = 0; idx < znode->child_cnt; idx++) {
1616                                 zbr = &znode->zbranch[idx];
1617                                 err = leaf_cb(c, zbr, priv);
1618                                 if (err) {
1619                                         ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1620                                                   err, zbr->lnum, zbr->offs);
1621                                         goto out_dump;
1622                                 }
1623                         }
1624                 }
1625
1626                 if (!znode->parent)
1627                         break;
1628
1629                 idx = znode->iip + 1;
1630                 znode = znode->parent;
1631                 if (idx < znode->child_cnt) {
1632                         /* Switch to the next index in the parent */
1633                         zbr = &znode->zbranch[idx];
1634                         child = zbr->znode;
1635                         if (!child) {
1636                                 child = ubifs_load_znode(c, zbr, znode, idx);
1637                                 if (IS_ERR(child)) {
1638                                         err = PTR_ERR(child);
1639                                         goto out_unlock;
1640                                 }
1641                                 zbr->znode = child;
1642                         }
1643                         znode = child;
1644                 } else
1645                         /*
1646                          * This is the last child, switch to the parent and
1647                          * continue.
1648                          */
1649                         continue;
1650
1651                 /* Go to the lowest leftmost znode in the new sub-tree */
1652                 while (znode->level > 0) {
1653                         zbr = &znode->zbranch[0];
1654                         child = zbr->znode;
1655                         if (!child) {
1656                                 child = ubifs_load_znode(c, zbr, znode, 0);
1657                                 if (IS_ERR(child)) {
1658                                         err = PTR_ERR(child);
1659                                         goto out_unlock;
1660                                 }
1661                                 zbr->znode = child;
1662                         }
1663                         znode = child;
1664                 }
1665         }
1666
1667         mutex_unlock(&c->tnc_mutex);
1668         return 0;
1669
1670 out_dump:
1671         if (znode->parent)
1672                 zbr = &znode->parent->zbranch[znode->iip];
1673         else
1674                 zbr = &c->zroot;
1675         ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1676         ubifs_dump_znode(c, znode);
1677 out_unlock:
1678         mutex_unlock(&c->tnc_mutex);
1679         return err;
1680 }
1681
1682 /**
1683  * add_size - add znode size to partially calculated index size.
1684  * @c: UBIFS file-system description object
1685  * @znode: znode to add size for
1686  * @priv: partially calculated index size
1687  *
1688  * This is a helper function for 'dbg_check_idx_size()' which is called for
1689  * every indexing node and adds its size to the 'long long' variable pointed to
1690  * by @priv.
1691  */
1692 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1693 {
1694         long long *idx_size = priv;
1695         int add;
1696
1697         add = ubifs_idx_node_sz(c, znode->child_cnt);
1698         add = ALIGN(add, 8);
1699         *idx_size += add;
1700         return 0;
1701 }
1702
1703 /**
1704  * dbg_check_idx_size - check index size.
1705  * @c: UBIFS file-system description object
1706  * @idx_size: size to check
1707  *
1708  * This function walks the UBIFS index, calculates its size and checks that the
1709  * size is equivalent to @idx_size. Returns zero in case of success and a
1710  * negative error code in case of failure.
1711  */
1712 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1713 {
1714         int err;
1715         long long calc = 0;
1716
1717         if (!dbg_is_chk_index(c))
1718                 return 0;
1719
1720         err = dbg_walk_index(c, NULL, add_size, &calc);
1721         if (err) {
1722                 ubifs_err(c, "error %d while walking the index", err);
1723                 return err;
1724         }
1725
1726         if (calc != idx_size) {
1727                 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1728                           calc, idx_size);
1729                 dump_stack();
1730                 return -EINVAL;
1731         }
1732
1733         return 0;
1734 }
1735
1736 /**
1737  * struct fsck_inode - information about an inode used when checking the file-system.
1738  * @rb: link in the RB-tree of inodes
1739  * @inum: inode number
1740  * @mode: inode type, permissions, etc
1741  * @nlink: inode link count
1742  * @xattr_cnt: count of extended attributes
1743  * @references: how many directory/xattr entries refer this inode (calculated
1744  *              while walking the index)
1745  * @calc_cnt: for directory inode count of child directories
1746  * @size: inode size (read from on-flash inode)
1747  * @xattr_sz: summary size of all extended attributes (read from on-flash
1748  *            inode)
1749  * @calc_sz: for directories calculated directory size
1750  * @calc_xcnt: count of extended attributes
1751  * @calc_xsz: calculated summary size of all extended attributes
1752  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1753  *             inode (read from on-flash inode)
1754  * @calc_xnms: calculated sum of lengths of all extended attribute names
1755  */
1756 struct fsck_inode {
1757         struct rb_node rb;
1758         ino_t inum;
1759         umode_t mode;
1760         unsigned int nlink;
1761         unsigned int xattr_cnt;
1762         int references;
1763         int calc_cnt;
1764         long long size;
1765         unsigned int xattr_sz;
1766         long long calc_sz;
1767         long long calc_xcnt;
1768         long long calc_xsz;
1769         unsigned int xattr_nms;
1770         long long calc_xnms;
1771 };
1772
1773 /**
1774  * struct fsck_data - private FS checking information.
1775  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1776  */
1777 struct fsck_data {
1778         struct rb_root inodes;
1779 };
1780
1781 /**
1782  * add_inode - add inode information to RB-tree of inodes.
1783  * @c: UBIFS file-system description object
1784  * @fsckd: FS checking information
1785  * @ino: raw UBIFS inode to add
1786  *
1787  * This is a helper function for 'check_leaf()' which adds information about
1788  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1789  * case of success and a negative error code in case of failure.
1790  */
1791 static struct fsck_inode *add_inode(struct ubifs_info *c,
1792                                     struct fsck_data *fsckd,
1793                                     struct ubifs_ino_node *ino)
1794 {
1795         struct rb_node **p, *parent = NULL;
1796         struct fsck_inode *fscki;
1797         ino_t inum = key_inum_flash(c, &ino->key);
1798         struct inode *inode;
1799         struct ubifs_inode *ui;
1800
1801         p = &fsckd->inodes.rb_node;
1802         while (*p) {
1803                 parent = *p;
1804                 fscki = rb_entry(parent, struct fsck_inode, rb);
1805                 if (inum < fscki->inum)
1806                         p = &(*p)->rb_left;
1807                 else if (inum > fscki->inum)
1808                         p = &(*p)->rb_right;
1809                 else
1810                         return fscki;
1811         }
1812
1813         if (inum > c->highest_inum) {
1814                 ubifs_err(c, "too high inode number, max. is %lu",
1815                           (unsigned long)c->highest_inum);
1816                 return ERR_PTR(-EINVAL);
1817         }
1818
1819         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1820         if (!fscki)
1821                 return ERR_PTR(-ENOMEM);
1822
1823         inode = ilookup(c->vfs_sb, inum);
1824
1825         fscki->inum = inum;
1826         /*
1827          * If the inode is present in the VFS inode cache, use it instead of
1828          * the on-flash inode which might be out-of-date. E.g., the size might
1829          * be out-of-date. If we do not do this, the following may happen, for
1830          * example:
1831          *   1. A power cut happens
1832          *   2. We mount the file-system R/O, the replay process fixes up the
1833          *      inode size in the VFS cache, but on on-flash.
1834          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1835          *      size.
1836          */
1837         if (!inode) {
1838                 fscki->nlink = le32_to_cpu(ino->nlink);
1839                 fscki->size = le64_to_cpu(ino->size);
1840                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1841                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1842                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1843                 fscki->mode = le32_to_cpu(ino->mode);
1844         } else {
1845                 ui = ubifs_inode(inode);
1846                 fscki->nlink = inode->i_nlink;
1847                 fscki->size = inode->i_size;
1848                 fscki->xattr_cnt = ui->xattr_cnt;
1849                 fscki->xattr_sz = ui->xattr_size;
1850                 fscki->xattr_nms = ui->xattr_names;
1851                 fscki->mode = inode->i_mode;
1852                 iput(inode);
1853         }
1854
1855         if (S_ISDIR(fscki->mode)) {
1856                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1857                 fscki->calc_cnt = 2;
1858         }
1859
1860         rb_link_node(&fscki->rb, parent, p);
1861         rb_insert_color(&fscki->rb, &fsckd->inodes);
1862
1863         return fscki;
1864 }
1865
1866 /**
1867  * search_inode - search inode in the RB-tree of inodes.
1868  * @fsckd: FS checking information
1869  * @inum: inode number to search
1870  *
1871  * This is a helper function for 'check_leaf()' which searches inode @inum in
1872  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1873  * the inode was not found.
1874  */
1875 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1876 {
1877         struct rb_node *p;
1878         struct fsck_inode *fscki;
1879
1880         p = fsckd->inodes.rb_node;
1881         while (p) {
1882                 fscki = rb_entry(p, struct fsck_inode, rb);
1883                 if (inum < fscki->inum)
1884                         p = p->rb_left;
1885                 else if (inum > fscki->inum)
1886                         p = p->rb_right;
1887                 else
1888                         return fscki;
1889         }
1890         return NULL;
1891 }
1892
1893 /**
1894  * read_add_inode - read inode node and add it to RB-tree of inodes.
1895  * @c: UBIFS file-system description object
1896  * @fsckd: FS checking information
1897  * @inum: inode number to read
1898  *
1899  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1900  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1901  * information pointer in case of success and a negative error code in case of
1902  * failure.
1903  */
1904 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1905                                          struct fsck_data *fsckd, ino_t inum)
1906 {
1907         int n, err;
1908         union ubifs_key key;
1909         struct ubifs_znode *znode;
1910         struct ubifs_zbranch *zbr;
1911         struct ubifs_ino_node *ino;
1912         struct fsck_inode *fscki;
1913
1914         fscki = search_inode(fsckd, inum);
1915         if (fscki)
1916                 return fscki;
1917
1918         ino_key_init(c, &key, inum);
1919         err = ubifs_lookup_level0(c, &key, &znode, &n);
1920         if (!err) {
1921                 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1922                 return ERR_PTR(-ENOENT);
1923         } else if (err < 0) {
1924                 ubifs_err(c, "error %d while looking up inode %lu",
1925                           err, (unsigned long)inum);
1926                 return ERR_PTR(err);
1927         }
1928
1929         zbr = &znode->zbranch[n];
1930         if (zbr->len < UBIFS_INO_NODE_SZ) {
1931                 ubifs_err(c, "bad node %lu node length %d",
1932                           (unsigned long)inum, zbr->len);
1933                 return ERR_PTR(-EINVAL);
1934         }
1935
1936         ino = kmalloc(zbr->len, GFP_NOFS);
1937         if (!ino)
1938                 return ERR_PTR(-ENOMEM);
1939
1940         err = ubifs_tnc_read_node(c, zbr, ino);
1941         if (err) {
1942                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1943                           zbr->lnum, zbr->offs, err);
1944                 kfree(ino);
1945                 return ERR_PTR(err);
1946         }
1947
1948         fscki = add_inode(c, fsckd, ino);
1949         kfree(ino);
1950         if (IS_ERR(fscki)) {
1951                 ubifs_err(c, "error %ld while adding inode %lu node",
1952                           PTR_ERR(fscki), (unsigned long)inum);
1953                 return fscki;
1954         }
1955
1956         return fscki;
1957 }
1958
1959 /**
1960  * check_leaf - check leaf node.
1961  * @c: UBIFS file-system description object
1962  * @zbr: zbranch of the leaf node to check
1963  * @priv: FS checking information
1964  *
1965  * This is a helper function for 'dbg_check_filesystem()' which is called for
1966  * every single leaf node while walking the indexing tree. It checks that the
1967  * leaf node referred from the indexing tree exists, has correct CRC, and does
1968  * some other basic validation. This function is also responsible for building
1969  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1970  * calculates reference count, size, etc for each inode in order to later
1971  * compare them to the information stored inside the inodes and detect possible
1972  * inconsistencies. Returns zero in case of success and a negative error code
1973  * in case of failure.
1974  */
1975 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1976                       void *priv)
1977 {
1978         ino_t inum;
1979         void *node;
1980         struct ubifs_ch *ch;
1981         int err, type = key_type(c, &zbr->key);
1982         struct fsck_inode *fscki;
1983
1984         if (zbr->len < UBIFS_CH_SZ) {
1985                 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1986                           zbr->len, zbr->lnum, zbr->offs);
1987                 return -EINVAL;
1988         }
1989
1990         node = kmalloc(zbr->len, GFP_NOFS);
1991         if (!node)
1992                 return -ENOMEM;
1993
1994         err = ubifs_tnc_read_node(c, zbr, node);
1995         if (err) {
1996                 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
1997                           zbr->lnum, zbr->offs, err);
1998                 goto out_free;
1999         }
2000
2001         /* If this is an inode node, add it to RB-tree of inodes */
2002         if (type == UBIFS_INO_KEY) {
2003                 fscki = add_inode(c, priv, node);
2004                 if (IS_ERR(fscki)) {
2005                         err = PTR_ERR(fscki);
2006                         ubifs_err(c, "error %d while adding inode node", err);
2007                         goto out_dump;
2008                 }
2009                 goto out;
2010         }
2011
2012         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2013             type != UBIFS_DATA_KEY) {
2014                 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2015                           type, zbr->lnum, zbr->offs);
2016                 err = -EINVAL;
2017                 goto out_free;
2018         }
2019
2020         ch = node;
2021         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2022                 ubifs_err(c, "too high sequence number, max. is %llu",
2023                           c->max_sqnum);
2024                 err = -EINVAL;
2025                 goto out_dump;
2026         }
2027
2028         if (type == UBIFS_DATA_KEY) {
2029                 long long blk_offs;
2030                 struct ubifs_data_node *dn = node;
2031
2032                 ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2033
2034                 /*
2035                  * Search the inode node this data node belongs to and insert
2036                  * it to the RB-tree of inodes.
2037                  */
2038                 inum = key_inum_flash(c, &dn->key);
2039                 fscki = read_add_inode(c, priv, inum);
2040                 if (IS_ERR(fscki)) {
2041                         err = PTR_ERR(fscki);
2042                         ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2043                                   err, (unsigned long)inum);
2044                         goto out_dump;
2045                 }
2046
2047                 /* Make sure the data node is within inode size */
2048                 blk_offs = key_block_flash(c, &dn->key);
2049                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2050                 blk_offs += le32_to_cpu(dn->size);
2051                 if (blk_offs > fscki->size) {
2052                         ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2053                                   zbr->lnum, zbr->offs, fscki->size);
2054                         err = -EINVAL;
2055                         goto out_dump;
2056                 }
2057         } else {
2058                 int nlen;
2059                 struct ubifs_dent_node *dent = node;
2060                 struct fsck_inode *fscki1;
2061
2062                 ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2063
2064                 err = ubifs_validate_entry(c, dent);
2065                 if (err)
2066                         goto out_dump;
2067
2068                 /*
2069                  * Search the inode node this entry refers to and the parent
2070                  * inode node and insert them to the RB-tree of inodes.
2071                  */
2072                 inum = le64_to_cpu(dent->inum);
2073                 fscki = read_add_inode(c, priv, inum);
2074                 if (IS_ERR(fscki)) {
2075                         err = PTR_ERR(fscki);
2076                         ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2077                                   err, (unsigned long)inum);
2078                         goto out_dump;
2079                 }
2080
2081                 /* Count how many direntries or xentries refers this inode */
2082                 fscki->references += 1;
2083
2084                 inum = key_inum_flash(c, &dent->key);
2085                 fscki1 = read_add_inode(c, priv, inum);
2086                 if (IS_ERR(fscki1)) {
2087                         err = PTR_ERR(fscki1);
2088                         ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2089                                   err, (unsigned long)inum);
2090                         goto out_dump;
2091                 }
2092
2093                 nlen = le16_to_cpu(dent->nlen);
2094                 if (type == UBIFS_XENT_KEY) {
2095                         fscki1->calc_xcnt += 1;
2096                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2097                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2098                         fscki1->calc_xnms += nlen;
2099                 } else {
2100                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2101                         if (dent->type == UBIFS_ITYPE_DIR)
2102                                 fscki1->calc_cnt += 1;
2103                 }
2104         }
2105
2106 out:
2107         kfree(node);
2108         return 0;
2109
2110 out_dump:
2111         ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2112         ubifs_dump_node(c, node);
2113 out_free:
2114         kfree(node);
2115         return err;
2116 }
2117
2118 /**
2119  * free_inodes - free RB-tree of inodes.
2120  * @fsckd: FS checking information
2121  */
2122 static void free_inodes(struct fsck_data *fsckd)
2123 {
2124         struct fsck_inode *fscki, *n;
2125
2126         rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2127                 kfree(fscki);
2128 }
2129
2130 /**
2131  * check_inodes - checks all inodes.
2132  * @c: UBIFS file-system description object
2133  * @fsckd: FS checking information
2134  *
2135  * This is a helper function for 'dbg_check_filesystem()' which walks the
2136  * RB-tree of inodes after the index scan has been finished, and checks that
2137  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2138  * %-EINVAL if not, and a negative error code in case of failure.
2139  */
2140 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2141 {
2142         int n, err;
2143         union ubifs_key key;
2144         struct ubifs_znode *znode;
2145         struct ubifs_zbranch *zbr;
2146         struct ubifs_ino_node *ino;
2147         struct fsck_inode *fscki;
2148         struct rb_node *this = rb_first(&fsckd->inodes);
2149
2150         while (this) {
2151                 fscki = rb_entry(this, struct fsck_inode, rb);
2152                 this = rb_next(this);
2153
2154                 if (S_ISDIR(fscki->mode)) {
2155                         /*
2156                          * Directories have to have exactly one reference (they
2157                          * cannot have hardlinks), although root inode is an
2158                          * exception.
2159                          */
2160                         if (fscki->inum != UBIFS_ROOT_INO &&
2161                             fscki->references != 1) {
2162                                 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2163                                           (unsigned long)fscki->inum,
2164                                           fscki->references);
2165                                 goto out_dump;
2166                         }
2167                         if (fscki->inum == UBIFS_ROOT_INO &&
2168                             fscki->references != 0) {
2169                                 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2170                                           (unsigned long)fscki->inum,
2171                                           fscki->references);
2172                                 goto out_dump;
2173                         }
2174                         if (fscki->calc_sz != fscki->size) {
2175                                 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2176                                           (unsigned long)fscki->inum,
2177                                           fscki->size, fscki->calc_sz);
2178                                 goto out_dump;
2179                         }
2180                         if (fscki->calc_cnt != fscki->nlink) {
2181                                 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2182                                           (unsigned long)fscki->inum,
2183                                           fscki->nlink, fscki->calc_cnt);
2184                                 goto out_dump;
2185                         }
2186                 } else {
2187                         if (fscki->references != fscki->nlink) {
2188                                 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2189                                           (unsigned long)fscki->inum,
2190                                           fscki->nlink, fscki->references);
2191                                 goto out_dump;
2192                         }
2193                 }
2194                 if (fscki->xattr_sz != fscki->calc_xsz) {
2195                         ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2196                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2197                                   fscki->calc_xsz);
2198                         goto out_dump;
2199                 }
2200                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2201                         ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2202                                   (unsigned long)fscki->inum,
2203                                   fscki->xattr_cnt, fscki->calc_xcnt);
2204                         goto out_dump;
2205                 }
2206                 if (fscki->xattr_nms != fscki->calc_xnms) {
2207                         ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2208                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2209                                   fscki->calc_xnms);
2210                         goto out_dump;
2211                 }
2212         }
2213
2214         return 0;
2215
2216 out_dump:
2217         /* Read the bad inode and dump it */
2218         ino_key_init(c, &key, fscki->inum);
2219         err = ubifs_lookup_level0(c, &key, &znode, &n);
2220         if (!err) {
2221                 ubifs_err(c, "inode %lu not found in index",
2222                           (unsigned long)fscki->inum);
2223                 return -ENOENT;
2224         } else if (err < 0) {
2225                 ubifs_err(c, "error %d while looking up inode %lu",
2226                           err, (unsigned long)fscki->inum);
2227                 return err;
2228         }
2229
2230         zbr = &znode->zbranch[n];
2231         ino = kmalloc(zbr->len, GFP_NOFS);
2232         if (!ino)
2233                 return -ENOMEM;
2234
2235         err = ubifs_tnc_read_node(c, zbr, ino);
2236         if (err) {
2237                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2238                           zbr->lnum, zbr->offs, err);
2239                 kfree(ino);
2240                 return err;
2241         }
2242
2243         ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2244                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2245         ubifs_dump_node(c, ino);
2246         kfree(ino);
2247         return -EINVAL;
2248 }
2249
2250 /**
2251  * dbg_check_filesystem - check the file-system.
2252  * @c: UBIFS file-system description object
2253  *
2254  * This function checks the file system, namely:
2255  * o makes sure that all leaf nodes exist and their CRCs are correct;
2256  * o makes sure inode nlink, size, xattr size/count are correct (for all
2257  *   inodes).
2258  *
2259  * The function reads whole indexing tree and all nodes, so it is pretty
2260  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2261  * not, and a negative error code in case of failure.
2262  */
2263 int dbg_check_filesystem(struct ubifs_info *c)
2264 {
2265         int err;
2266         struct fsck_data fsckd;
2267
2268         if (!dbg_is_chk_fs(c))
2269                 return 0;
2270
2271         fsckd.inodes = RB_ROOT;
2272         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2273         if (err)
2274                 goto out_free;
2275
2276         err = check_inodes(c, &fsckd);
2277         if (err)
2278                 goto out_free;
2279
2280         free_inodes(&fsckd);
2281         return 0;
2282
2283 out_free:
2284         ubifs_err(c, "file-system check failed with error %d", err);
2285         dump_stack();
2286         free_inodes(&fsckd);
2287         return err;
2288 }
2289
2290 /**
2291  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2292  * @c: UBIFS file-system description object
2293  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2294  *
2295  * This function returns zero if the list of data nodes is sorted correctly,
2296  * and %-EINVAL if not.
2297  */
2298 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2299 {
2300         struct list_head *cur;
2301         struct ubifs_scan_node *sa, *sb;
2302
2303         if (!dbg_is_chk_gen(c))
2304                 return 0;
2305
2306         for (cur = head->next; cur->next != head; cur = cur->next) {
2307                 ino_t inuma, inumb;
2308                 uint32_t blka, blkb;
2309
2310                 cond_resched();
2311                 sa = container_of(cur, struct ubifs_scan_node, list);
2312                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2313
2314                 if (sa->type != UBIFS_DATA_NODE) {
2315                         ubifs_err(c, "bad node type %d", sa->type);
2316                         ubifs_dump_node(c, sa->node);
2317                         return -EINVAL;
2318                 }
2319                 if (sb->type != UBIFS_DATA_NODE) {
2320                         ubifs_err(c, "bad node type %d", sb->type);
2321                         ubifs_dump_node(c, sb->node);
2322                         return -EINVAL;
2323                 }
2324
2325                 inuma = key_inum(c, &sa->key);
2326                 inumb = key_inum(c, &sb->key);
2327
2328                 if (inuma < inumb)
2329                         continue;
2330                 if (inuma > inumb) {
2331                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2332                                   (unsigned long)inuma, (unsigned long)inumb);
2333                         goto error_dump;
2334                 }
2335
2336                 blka = key_block(c, &sa->key);
2337                 blkb = key_block(c, &sb->key);
2338
2339                 if (blka > blkb) {
2340                         ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2341                         goto error_dump;
2342                 }
2343                 if (blka == blkb) {
2344                         ubifs_err(c, "two data nodes for the same block");
2345                         goto error_dump;
2346                 }
2347         }
2348
2349         return 0;
2350
2351 error_dump:
2352         ubifs_dump_node(c, sa->node);
2353         ubifs_dump_node(c, sb->node);
2354         return -EINVAL;
2355 }
2356
2357 /**
2358  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2359  * @c: UBIFS file-system description object
2360  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2361  *
2362  * This function returns zero if the list of non-data nodes is sorted correctly,
2363  * and %-EINVAL if not.
2364  */
2365 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2366 {
2367         struct list_head *cur;
2368         struct ubifs_scan_node *sa, *sb;
2369
2370         if (!dbg_is_chk_gen(c))
2371                 return 0;
2372
2373         for (cur = head->next; cur->next != head; cur = cur->next) {
2374                 ino_t inuma, inumb;
2375                 uint32_t hasha, hashb;
2376
2377                 cond_resched();
2378                 sa = container_of(cur, struct ubifs_scan_node, list);
2379                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2380
2381                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2382                     sa->type != UBIFS_XENT_NODE) {
2383                         ubifs_err(c, "bad node type %d", sa->type);
2384                         ubifs_dump_node(c, sa->node);
2385                         return -EINVAL;
2386                 }
2387                 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2388                     sb->type != UBIFS_XENT_NODE) {
2389                         ubifs_err(c, "bad node type %d", sb->type);
2390                         ubifs_dump_node(c, sb->node);
2391                         return -EINVAL;
2392                 }
2393
2394                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2395                         ubifs_err(c, "non-inode node goes before inode node");
2396                         goto error_dump;
2397                 }
2398
2399                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2400                         continue;
2401
2402                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2403                         /* Inode nodes are sorted in descending size order */
2404                         if (sa->len < sb->len) {
2405                                 ubifs_err(c, "smaller inode node goes first");
2406                                 goto error_dump;
2407                         }
2408                         continue;
2409                 }
2410
2411                 /*
2412                  * This is either a dentry or xentry, which should be sorted in
2413                  * ascending (parent ino, hash) order.
2414                  */
2415                 inuma = key_inum(c, &sa->key);
2416                 inumb = key_inum(c, &sb->key);
2417
2418                 if (inuma < inumb)
2419                         continue;
2420                 if (inuma > inumb) {
2421                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2422                                   (unsigned long)inuma, (unsigned long)inumb);
2423                         goto error_dump;
2424                 }
2425
2426                 hasha = key_block(c, &sa->key);
2427                 hashb = key_block(c, &sb->key);
2428
2429                 if (hasha > hashb) {
2430                         ubifs_err(c, "larger hash %u goes before %u",
2431                                   hasha, hashb);
2432                         goto error_dump;
2433                 }
2434         }
2435
2436         return 0;
2437
2438 error_dump:
2439         ubifs_msg(c, "dumping first node");
2440         ubifs_dump_node(c, sa->node);
2441         ubifs_msg(c, "dumping second node");
2442         ubifs_dump_node(c, sb->node);
2443         return -EINVAL;
2444         return 0;
2445 }
2446
2447 static inline int chance(unsigned int n, unsigned int out_of)
2448 {
2449         return !!((prandom_u32() % out_of) + 1 <= n);
2450
2451 }
2452
2453 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2454 {
2455         struct ubifs_debug_info *d = c->dbg;
2456
2457         ubifs_assert(c, dbg_is_tst_rcvry(c));
2458
2459         if (!d->pc_cnt) {
2460                 /* First call - decide delay to the power cut */
2461                 if (chance(1, 2)) {
2462                         unsigned long delay;
2463
2464                         if (chance(1, 2)) {
2465                                 d->pc_delay = 1;
2466                                 /* Fail within 1 minute */
2467                                 delay = prandom_u32() % 60000;
2468                                 d->pc_timeout = jiffies;
2469                                 d->pc_timeout += msecs_to_jiffies(delay);
2470                                 ubifs_warn(c, "failing after %lums", delay);
2471                         } else {
2472                                 d->pc_delay = 2;
2473                                 delay = prandom_u32() % 10000;
2474                                 /* Fail within 10000 operations */
2475                                 d->pc_cnt_max = delay;
2476                                 ubifs_warn(c, "failing after %lu calls", delay);
2477                         }
2478                 }
2479
2480                 d->pc_cnt += 1;
2481         }
2482
2483         /* Determine if failure delay has expired */
2484         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2485                         return 0;
2486         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2487                         return 0;
2488
2489         if (lnum == UBIFS_SB_LNUM) {
2490                 if (write && chance(1, 2))
2491                         return 0;
2492                 if (chance(19, 20))
2493                         return 0;
2494                 ubifs_warn(c, "failing in super block LEB %d", lnum);
2495         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2496                 if (chance(19, 20))
2497                         return 0;
2498                 ubifs_warn(c, "failing in master LEB %d", lnum);
2499         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2500                 if (write && chance(99, 100))
2501                         return 0;
2502                 if (chance(399, 400))
2503                         return 0;
2504                 ubifs_warn(c, "failing in log LEB %d", lnum);
2505         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2506                 if (write && chance(7, 8))
2507                         return 0;
2508                 if (chance(19, 20))
2509                         return 0;
2510                 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2511         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2512                 if (write && chance(1, 2))
2513                         return 0;
2514                 if (chance(9, 10))
2515                         return 0;
2516                 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2517         } else if (lnum == c->ihead_lnum) {
2518                 if (chance(99, 100))
2519                         return 0;
2520                 ubifs_warn(c, "failing in index head LEB %d", lnum);
2521         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2522                 if (chance(9, 10))
2523                         return 0;
2524                 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2525         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2526                    !ubifs_search_bud(c, lnum)) {
2527                 if (chance(19, 20))
2528                         return 0;
2529                 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2530         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2531                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2532                 if (chance(999, 1000))
2533                         return 0;
2534                 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2535         } else {
2536                 if (chance(9999, 10000))
2537                         return 0;
2538                 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2539         }
2540
2541         d->pc_happened = 1;
2542         ubifs_warn(c, "========== Power cut emulated ==========");
2543         dump_stack();
2544         return 1;
2545 }
2546
2547 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2548                         unsigned int len)
2549 {
2550         unsigned int from, to, ffs = chance(1, 2);
2551         unsigned char *p = (void *)buf;
2552
2553         from = prandom_u32() % len;
2554         /* Corruption span max to end of write unit */
2555         to = min(len, ALIGN(from + 1, c->max_write_size));
2556
2557         ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2558                    ffs ? "0xFFs" : "random data");
2559
2560         if (ffs)
2561                 memset(p + from, 0xFF, to - from);
2562         else
2563                 prandom_bytes(p + from, to - from);
2564
2565         return to;
2566 }
2567
2568 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2569                   int offs, int len)
2570 {
2571         int err, failing;
2572
2573         if (dbg_is_power_cut(c))
2574                 return -EROFS;
2575
2576         failing = power_cut_emulated(c, lnum, 1);
2577         if (failing) {
2578                 len = corrupt_data(c, buf, len);
2579                 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2580                            len, lnum, offs);
2581         }
2582         err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2583         if (err)
2584                 return err;
2585         if (failing)
2586                 return -EROFS;
2587         return 0;
2588 }
2589
2590 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2591                    int len)
2592 {
2593         int err;
2594
2595         if (dbg_is_power_cut(c))
2596                 return -EROFS;
2597         if (power_cut_emulated(c, lnum, 1))
2598                 return -EROFS;
2599         err = ubi_leb_change(c->ubi, lnum, buf, len);
2600         if (err)
2601                 return err;
2602         if (power_cut_emulated(c, lnum, 1))
2603                 return -EROFS;
2604         return 0;
2605 }
2606
2607 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2608 {
2609         int err;
2610
2611         if (dbg_is_power_cut(c))
2612                 return -EROFS;
2613         if (power_cut_emulated(c, lnum, 0))
2614                 return -EROFS;
2615         err = ubi_leb_unmap(c->ubi, lnum);
2616         if (err)
2617                 return err;
2618         if (power_cut_emulated(c, lnum, 0))
2619                 return -EROFS;
2620         return 0;
2621 }
2622
2623 int dbg_leb_map(struct ubifs_info *c, int lnum)
2624 {
2625         int err;
2626
2627         if (dbg_is_power_cut(c))
2628                 return -EROFS;
2629         if (power_cut_emulated(c, lnum, 0))
2630                 return -EROFS;
2631         err = ubi_leb_map(c->ubi, lnum);
2632         if (err)
2633                 return err;
2634         if (power_cut_emulated(c, lnum, 0))
2635                 return -EROFS;
2636         return 0;
2637 }
2638
2639 /*
2640  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2641  * contain the stuff specific to particular file-system mounts.
2642  */
2643 static struct dentry *dfs_rootdir;
2644
2645 static int dfs_file_open(struct inode *inode, struct file *file)
2646 {
2647         file->private_data = inode->i_private;
2648         return nonseekable_open(inode, file);
2649 }
2650
2651 /**
2652  * provide_user_output - provide output to the user reading a debugfs file.
2653  * @val: boolean value for the answer
2654  * @u: the buffer to store the answer at
2655  * @count: size of the buffer
2656  * @ppos: position in the @u output buffer
2657  *
2658  * This is a simple helper function which stores @val boolean value in the user
2659  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2660  * bytes written to @u in case of success and a negative error code in case of
2661  * failure.
2662  */
2663 static int provide_user_output(int val, char __user *u, size_t count,
2664                                loff_t *ppos)
2665 {
2666         char buf[3];
2667
2668         if (val)
2669                 buf[0] = '1';
2670         else
2671                 buf[0] = '0';
2672         buf[1] = '\n';
2673         buf[2] = 0x00;
2674
2675         return simple_read_from_buffer(u, count, ppos, buf, 2);
2676 }
2677
2678 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2679                              loff_t *ppos)
2680 {
2681         struct dentry *dent = file->f_path.dentry;
2682         struct ubifs_info *c = file->private_data;
2683         struct ubifs_debug_info *d = c->dbg;
2684         int val;
2685
2686         if (dent == d->dfs_chk_gen)
2687                 val = d->chk_gen;
2688         else if (dent == d->dfs_chk_index)
2689                 val = d->chk_index;
2690         else if (dent == d->dfs_chk_orph)
2691                 val = d->chk_orph;
2692         else if (dent == d->dfs_chk_lprops)
2693                 val = d->chk_lprops;
2694         else if (dent == d->dfs_chk_fs)
2695                 val = d->chk_fs;
2696         else if (dent == d->dfs_tst_rcvry)
2697                 val = d->tst_rcvry;
2698         else if (dent == d->dfs_ro_error)
2699                 val = c->ro_error;
2700         else
2701                 return -EINVAL;
2702
2703         return provide_user_output(val, u, count, ppos);
2704 }
2705
2706 /**
2707  * interpret_user_input - interpret user debugfs file input.
2708  * @u: user-provided buffer with the input
2709  * @count: buffer size
2710  *
2711  * This is a helper function which interpret user input to a boolean UBIFS
2712  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2713  * in case of failure.
2714  */
2715 static int interpret_user_input(const char __user *u, size_t count)
2716 {
2717         size_t buf_size;
2718         char buf[8];
2719
2720         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2721         if (copy_from_user(buf, u, buf_size))
2722                 return -EFAULT;
2723
2724         if (buf[0] == '1')
2725                 return 1;
2726         else if (buf[0] == '0')
2727                 return 0;
2728
2729         return -EINVAL;
2730 }
2731
2732 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2733                               size_t count, loff_t *ppos)
2734 {
2735         struct ubifs_info *c = file->private_data;
2736         struct ubifs_debug_info *d = c->dbg;
2737         struct dentry *dent = file->f_path.dentry;
2738         int val;
2739
2740         /*
2741          * TODO: this is racy - the file-system might have already been
2742          * unmounted and we'd oops in this case. The plan is to fix it with
2743          * help of 'iterate_supers_type()' which we should have in v3.0: when
2744          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2745          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2746          * superblocks and fine the one with the same UUID, and take the
2747          * locking right.
2748          *
2749          * The other way to go suggested by Al Viro is to create a separate
2750          * 'ubifs-debug' file-system instead.
2751          */
2752         if (file->f_path.dentry == d->dfs_dump_lprops) {
2753                 ubifs_dump_lprops(c);
2754                 return count;
2755         }
2756         if (file->f_path.dentry == d->dfs_dump_budg) {
2757                 ubifs_dump_budg(c, &c->bi);
2758                 return count;
2759         }
2760         if (file->f_path.dentry == d->dfs_dump_tnc) {
2761                 mutex_lock(&c->tnc_mutex);
2762                 ubifs_dump_tnc(c);
2763                 mutex_unlock(&c->tnc_mutex);
2764                 return count;
2765         }
2766
2767         val = interpret_user_input(u, count);
2768         if (val < 0)
2769                 return val;
2770
2771         if (dent == d->dfs_chk_gen)
2772                 d->chk_gen = val;
2773         else if (dent == d->dfs_chk_index)
2774                 d->chk_index = val;
2775         else if (dent == d->dfs_chk_orph)
2776                 d->chk_orph = val;
2777         else if (dent == d->dfs_chk_lprops)
2778                 d->chk_lprops = val;
2779         else if (dent == d->dfs_chk_fs)
2780                 d->chk_fs = val;
2781         else if (dent == d->dfs_tst_rcvry)
2782                 d->tst_rcvry = val;
2783         else if (dent == d->dfs_ro_error)
2784                 c->ro_error = !!val;
2785         else
2786                 return -EINVAL;
2787
2788         return count;
2789 }
2790
2791 static const struct file_operations dfs_fops = {
2792         .open = dfs_file_open,
2793         .read = dfs_file_read,
2794         .write = dfs_file_write,
2795         .owner = THIS_MODULE,
2796         .llseek = no_llseek,
2797 };
2798
2799 /**
2800  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2801  * @c: UBIFS file-system description object
2802  *
2803  * This function creates all debugfs files for this instance of UBIFS.
2804  *
2805  * Note, the only reason we have not merged this function with the
2806  * 'ubifs_debugging_init()' function is because it is better to initialize
2807  * debugfs interfaces at the very end of the mount process, and remove them at
2808  * the very beginning of the mount process.
2809  */
2810 void dbg_debugfs_init_fs(struct ubifs_info *c)
2811 {
2812         int n;
2813         const char *fname;
2814         struct ubifs_debug_info *d = c->dbg;
2815
2816         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2817                      c->vi.ubi_num, c->vi.vol_id);
2818         if (n == UBIFS_DFS_DIR_LEN) {
2819                 /* The array size is too small */
2820                 fname = UBIFS_DFS_DIR_NAME;
2821                 return;
2822         }
2823
2824         fname = d->dfs_dir_name;
2825         d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2826
2827         fname = "dump_lprops";
2828         d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2829                                                  &dfs_fops);
2830
2831         fname = "dump_budg";
2832         d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2833                                                &dfs_fops);
2834
2835         fname = "dump_tnc";
2836         d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2837                                               &dfs_fops);
2838
2839         fname = "chk_general";
2840         d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2841                                              d->dfs_dir, c, &dfs_fops);
2842
2843         fname = "chk_index";
2844         d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2845                                                d->dfs_dir, c, &dfs_fops);
2846
2847         fname = "chk_orphans";
2848         d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2849                                               d->dfs_dir, c, &dfs_fops);
2850
2851         fname = "chk_lprops";
2852         d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2853                                                 d->dfs_dir, c, &dfs_fops);
2854
2855         fname = "chk_fs";
2856         d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2857                                             d->dfs_dir, c, &dfs_fops);
2858
2859         fname = "tst_recovery";
2860         d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2861                                                d->dfs_dir, c, &dfs_fops);
2862
2863         fname = "ro_error";
2864         d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2865                                               d->dfs_dir, c, &dfs_fops);
2866 }
2867
2868 /**
2869  * dbg_debugfs_exit_fs - remove all debugfs files.
2870  * @c: UBIFS file-system description object
2871  */
2872 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2873 {
2874         debugfs_remove_recursive(c->dbg->dfs_dir);
2875 }
2876
2877 struct ubifs_global_debug_info ubifs_dbg;
2878
2879 static struct dentry *dfs_chk_gen;
2880 static struct dentry *dfs_chk_index;
2881 static struct dentry *dfs_chk_orph;
2882 static struct dentry *dfs_chk_lprops;
2883 static struct dentry *dfs_chk_fs;
2884 static struct dentry *dfs_tst_rcvry;
2885
2886 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2887                                     size_t count, loff_t *ppos)
2888 {
2889         struct dentry *dent = file->f_path.dentry;
2890         int val;
2891
2892         if (dent == dfs_chk_gen)
2893                 val = ubifs_dbg.chk_gen;
2894         else if (dent == dfs_chk_index)
2895                 val = ubifs_dbg.chk_index;
2896         else if (dent == dfs_chk_orph)
2897                 val = ubifs_dbg.chk_orph;
2898         else if (dent == dfs_chk_lprops)
2899                 val = ubifs_dbg.chk_lprops;
2900         else if (dent == dfs_chk_fs)
2901                 val = ubifs_dbg.chk_fs;
2902         else if (dent == dfs_tst_rcvry)
2903                 val = ubifs_dbg.tst_rcvry;
2904         else
2905                 return -EINVAL;
2906
2907         return provide_user_output(val, u, count, ppos);
2908 }
2909
2910 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2911                                      size_t count, loff_t *ppos)
2912 {
2913         struct dentry *dent = file->f_path.dentry;
2914         int val;
2915
2916         val = interpret_user_input(u, count);
2917         if (val < 0)
2918                 return val;
2919
2920         if (dent == dfs_chk_gen)
2921                 ubifs_dbg.chk_gen = val;
2922         else if (dent == dfs_chk_index)
2923                 ubifs_dbg.chk_index = val;
2924         else if (dent == dfs_chk_orph)
2925                 ubifs_dbg.chk_orph = val;
2926         else if (dent == dfs_chk_lprops)
2927                 ubifs_dbg.chk_lprops = val;
2928         else if (dent == dfs_chk_fs)
2929                 ubifs_dbg.chk_fs = val;
2930         else if (dent == dfs_tst_rcvry)
2931                 ubifs_dbg.tst_rcvry = val;
2932         else
2933                 return -EINVAL;
2934
2935         return count;
2936 }
2937
2938 static const struct file_operations dfs_global_fops = {
2939         .read = dfs_global_file_read,
2940         .write = dfs_global_file_write,
2941         .owner = THIS_MODULE,
2942         .llseek = no_llseek,
2943 };
2944
2945 /**
2946  * dbg_debugfs_init - initialize debugfs file-system.
2947  *
2948  * UBIFS uses debugfs file-system to expose various debugging knobs to
2949  * user-space. This function creates "ubifs" directory in the debugfs
2950  * file-system.
2951  */
2952 void dbg_debugfs_init(void)
2953 {
2954         const char *fname;
2955
2956         fname = "ubifs";
2957         dfs_rootdir = debugfs_create_dir(fname, NULL);
2958
2959         fname = "chk_general";
2960         dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2961                                           NULL, &dfs_global_fops);
2962
2963         fname = "chk_index";
2964         dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2965                                             dfs_rootdir, NULL, &dfs_global_fops);
2966
2967         fname = "chk_orphans";
2968         dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2969                                            dfs_rootdir, NULL, &dfs_global_fops);
2970
2971         fname = "chk_lprops";
2972         dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2973                                              dfs_rootdir, NULL, &dfs_global_fops);
2974
2975         fname = "chk_fs";
2976         dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2977                                          NULL, &dfs_global_fops);
2978
2979         fname = "tst_recovery";
2980         dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2981                                             dfs_rootdir, NULL, &dfs_global_fops);
2982 }
2983
2984 /**
2985  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2986  */
2987 void dbg_debugfs_exit(void)
2988 {
2989         debugfs_remove_recursive(dfs_rootdir);
2990 }
2991
2992 void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
2993                          const char *file, int line)
2994 {
2995         ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
2996
2997         switch (c->assert_action) {
2998                 case ASSACT_PANIC:
2999                 BUG();
3000                 break;
3001
3002                 case ASSACT_RO:
3003                 ubifs_ro_mode(c, -EINVAL);
3004                 break;
3005
3006                 case ASSACT_REPORT:
3007                 default:
3008                 dump_stack();
3009                 break;
3010
3011         }
3012 }
3013
3014 /**
3015  * ubifs_debugging_init - initialize UBIFS debugging.
3016  * @c: UBIFS file-system description object
3017  *
3018  * This function initializes debugging-related data for the file system.
3019  * Returns zero in case of success and a negative error code in case of
3020  * failure.
3021  */
3022 int ubifs_debugging_init(struct ubifs_info *c)
3023 {
3024         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3025         if (!c->dbg)
3026                 return -ENOMEM;
3027
3028         return 0;
3029 }
3030
3031 /**
3032  * ubifs_debugging_exit - free debugging data.
3033  * @c: UBIFS file-system description object
3034  */
3035 void ubifs_debugging_exit(struct ubifs_info *c)
3036 {
3037         kfree(c->dbg);
3038 }