1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * super.c contains code to handle: - mount structures
9 * - filesystem drivers list
11 * - umount system call
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
42 static int thaw_super_locked(struct super_block *sb);
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
54 * One thing we have to be careful of with a per-sb shrinker is that we don't
55 * drop the last active reference to the superblock from within the shrinker.
56 * If that happens we could trigger unregistering the shrinker from within the
57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
58 * take a passive reference to the superblock to avoid this from occurring.
60 static unsigned long super_cache_scan(struct shrinker *shrink,
61 struct shrink_control *sc)
63 struct super_block *sb;
70 sb = container_of(shrink, struct super_block, s_shrink);
73 * Deadlock avoidance. We may hold various FS locks, and we don't want
74 * to recurse into the FS that called us in clear_inode() and friends..
76 if (!(sc->gfp_mask & __GFP_FS))
79 if (!trylock_super(sb))
82 if (sb->s_op->nr_cached_objects)
83 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
85 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
86 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
87 total_objects = dentries + inodes + fs_objects + 1;
91 /* proportion the scan between the caches */
92 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
93 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
94 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
97 * prune the dcache first as the icache is pinned by it, then
98 * prune the icache, followed by the filesystem specific caches
100 * Ensure that we always scan at least one object - memcg kmem
101 * accounting uses this to fully empty the caches.
103 sc->nr_to_scan = dentries + 1;
104 freed = prune_dcache_sb(sb, sc);
105 sc->nr_to_scan = inodes + 1;
106 freed += prune_icache_sb(sb, sc);
109 sc->nr_to_scan = fs_objects + 1;
110 freed += sb->s_op->free_cached_objects(sb, sc);
113 up_read(&sb->s_umount);
117 static unsigned long super_cache_count(struct shrinker *shrink,
118 struct shrink_control *sc)
120 struct super_block *sb;
121 long total_objects = 0;
123 sb = container_of(shrink, struct super_block, s_shrink);
126 * We don't call trylock_super() here as it is a scalability bottleneck,
127 * so we're exposed to partial setup state. The shrinker rwsem does not
128 * protect filesystem operations backing list_lru_shrink_count() or
129 * s_op->nr_cached_objects(). Counts can change between
130 * super_cache_count and super_cache_scan, so we really don't need locks
133 * However, if we are currently mounting the superblock, the underlying
134 * filesystem might be in a state of partial construction and hence it
135 * is dangerous to access it. trylock_super() uses a SB_BORN check to
136 * avoid this situation, so do the same here. The memory barrier is
137 * matched with the one in mount_fs() as we don't hold locks here.
139 if (!(sb->s_flags & SB_BORN))
143 if (sb->s_op && sb->s_op->nr_cached_objects)
144 total_objects = sb->s_op->nr_cached_objects(sb, sc);
146 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
147 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
152 total_objects = vfs_pressure_ratio(total_objects);
153 return total_objects;
156 static void destroy_super_work(struct work_struct *work)
158 struct super_block *s = container_of(work, struct super_block,
162 for (i = 0; i < SB_FREEZE_LEVELS; i++)
163 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
167 static void destroy_super_rcu(struct rcu_head *head)
169 struct super_block *s = container_of(head, struct super_block, rcu);
170 INIT_WORK(&s->destroy_work, destroy_super_work);
171 schedule_work(&s->destroy_work);
174 /* Free a superblock that has never been seen by anyone */
175 static void destroy_unused_super(struct super_block *s)
179 up_write(&s->s_umount);
180 list_lru_destroy(&s->s_dentry_lru);
181 list_lru_destroy(&s->s_inode_lru);
183 put_user_ns(s->s_user_ns);
185 free_prealloced_shrinker(&s->s_shrink);
186 /* no delays needed */
187 destroy_super_work(&s->destroy_work);
191 * alloc_super - create new superblock
192 * @type: filesystem type superblock should belong to
193 * @flags: the mount flags
194 * @user_ns: User namespace for the super_block
196 * Allocates and initializes a new &struct super_block. alloc_super()
197 * returns a pointer new superblock or %NULL if allocation had failed.
199 static struct super_block *alloc_super(struct file_system_type *type, int flags,
200 struct user_namespace *user_ns)
202 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
203 static const struct super_operations default_op;
209 INIT_LIST_HEAD(&s->s_mounts);
210 s->s_user_ns = get_user_ns(user_ns);
211 init_rwsem(&s->s_umount);
212 lockdep_set_class(&s->s_umount, &type->s_umount_key);
214 * sget() can have s_umount recursion.
216 * When it cannot find a suitable sb, it allocates a new
217 * one (this one), and tries again to find a suitable old
220 * In case that succeeds, it will acquire the s_umount
221 * lock of the old one. Since these are clearly distrinct
222 * locks, and this object isn't exposed yet, there's no
225 * Annotate this by putting this lock in a different
228 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
230 if (security_sb_alloc(s))
233 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
234 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 &type->s_writers_key[i]))
239 init_waitqueue_head(&s->s_writers.wait_unfrozen);
240 s->s_bdi = &noop_backing_dev_info;
242 if (s->s_user_ns != &init_user_ns)
243 s->s_iflags |= SB_I_NODEV;
244 INIT_HLIST_NODE(&s->s_instances);
245 INIT_HLIST_BL_HEAD(&s->s_roots);
246 mutex_init(&s->s_sync_lock);
247 INIT_LIST_HEAD(&s->s_inodes);
248 spin_lock_init(&s->s_inode_list_lock);
249 INIT_LIST_HEAD(&s->s_inodes_wb);
250 spin_lock_init(&s->s_inode_wblist_lock);
253 atomic_set(&s->s_active, 1);
254 mutex_init(&s->s_vfs_rename_mutex);
255 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
256 init_rwsem(&s->s_dquot.dqio_sem);
257 s->s_maxbytes = MAX_NON_LFS;
258 s->s_op = &default_op;
259 s->s_time_gran = 1000000000;
260 s->cleancache_poolid = CLEANCACHE_NO_POOL;
262 s->s_shrink.seeks = DEFAULT_SEEKS;
263 s->s_shrink.scan_objects = super_cache_scan;
264 s->s_shrink.count_objects = super_cache_count;
265 s->s_shrink.batch = 1024;
266 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
267 if (prealloc_shrinker(&s->s_shrink))
269 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
271 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
276 destroy_unused_super(s);
280 /* Superblock refcounting */
283 * Drop a superblock's refcount. The caller must hold sb_lock.
285 static void __put_super(struct super_block *s)
288 list_del_init(&s->s_list);
289 WARN_ON(s->s_dentry_lru.node);
290 WARN_ON(s->s_inode_lru.node);
291 WARN_ON(!list_empty(&s->s_mounts));
293 put_user_ns(s->s_user_ns);
295 call_rcu(&s->rcu, destroy_super_rcu);
300 * put_super - drop a temporary reference to superblock
301 * @sb: superblock in question
303 * Drops a temporary reference, frees superblock if there's no
306 static void put_super(struct super_block *sb)
310 spin_unlock(&sb_lock);
315 * deactivate_locked_super - drop an active reference to superblock
316 * @s: superblock to deactivate
318 * Drops an active reference to superblock, converting it into a temporary
319 * one if there is no other active references left. In that case we
320 * tell fs driver to shut it down and drop the temporary reference we
323 * Caller holds exclusive lock on superblock; that lock is released.
325 void deactivate_locked_super(struct super_block *s)
327 struct file_system_type *fs = s->s_type;
328 if (atomic_dec_and_test(&s->s_active)) {
329 cleancache_invalidate_fs(s);
330 unregister_shrinker(&s->s_shrink);
334 * Since list_lru_destroy() may sleep, we cannot call it from
335 * put_super(), where we hold the sb_lock. Therefore we destroy
336 * the lru lists right now.
338 list_lru_destroy(&s->s_dentry_lru);
339 list_lru_destroy(&s->s_inode_lru);
344 up_write(&s->s_umount);
348 EXPORT_SYMBOL(deactivate_locked_super);
351 * deactivate_super - drop an active reference to superblock
352 * @s: superblock to deactivate
354 * Variant of deactivate_locked_super(), except that superblock is *not*
355 * locked by caller. If we are going to drop the final active reference,
356 * lock will be acquired prior to that.
358 void deactivate_super(struct super_block *s)
360 if (!atomic_add_unless(&s->s_active, -1, 1)) {
361 down_write(&s->s_umount);
362 deactivate_locked_super(s);
366 EXPORT_SYMBOL(deactivate_super);
369 * grab_super - acquire an active reference
370 * @s: reference we are trying to make active
372 * Tries to acquire an active reference. grab_super() is used when we
373 * had just found a superblock in super_blocks or fs_type->fs_supers
374 * and want to turn it into a full-blown active reference. grab_super()
375 * is called with sb_lock held and drops it. Returns 1 in case of
376 * success, 0 if we had failed (superblock contents was already dead or
377 * dying when grab_super() had been called). Note that this is only
378 * called for superblocks not in rundown mode (== ones still on ->fs_supers
379 * of their type), so increment of ->s_count is OK here.
381 static int grab_super(struct super_block *s) __releases(sb_lock)
384 spin_unlock(&sb_lock);
385 down_write(&s->s_umount);
386 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
390 up_write(&s->s_umount);
396 * trylock_super - try to grab ->s_umount shared
397 * @sb: reference we are trying to grab
399 * Try to prevent fs shutdown. This is used in places where we
400 * cannot take an active reference but we need to ensure that the
401 * filesystem is not shut down while we are working on it. It returns
402 * false if we cannot acquire s_umount or if we lose the race and
403 * filesystem already got into shutdown, and returns true with the s_umount
404 * lock held in read mode in case of success. On successful return,
405 * the caller must drop the s_umount lock when done.
407 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
408 * The reason why it's safe is that we are OK with doing trylock instead
409 * of down_read(). There's a couple of places that are OK with that, but
410 * it's very much not a general-purpose interface.
412 bool trylock_super(struct super_block *sb)
414 if (down_read_trylock(&sb->s_umount)) {
415 if (!hlist_unhashed(&sb->s_instances) &&
416 sb->s_root && (sb->s_flags & SB_BORN))
418 up_read(&sb->s_umount);
425 * generic_shutdown_super - common helper for ->kill_sb()
426 * @sb: superblock to kill
428 * generic_shutdown_super() does all fs-independent work on superblock
429 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
430 * that need destruction out of superblock, call generic_shutdown_super()
431 * and release aforementioned objects. Note: dentries and inodes _are_
432 * taken care of and do not need specific handling.
434 * Upon calling this function, the filesystem may no longer alter or
435 * rearrange the set of dentries belonging to this super_block, nor may it
436 * change the attachments of dentries to inodes.
438 void generic_shutdown_super(struct super_block *sb)
440 const struct super_operations *sop = sb->s_op;
443 shrink_dcache_for_umount(sb);
445 sb->s_flags &= ~SB_ACTIVE;
447 fsnotify_sb_delete(sb);
448 cgroup_writeback_umount();
452 if (sb->s_dio_done_wq) {
453 destroy_workqueue(sb->s_dio_done_wq);
454 sb->s_dio_done_wq = NULL;
460 if (!list_empty(&sb->s_inodes)) {
461 printk("VFS: Busy inodes after unmount of %s. "
462 "Self-destruct in 5 seconds. Have a nice day...\n",
467 /* should be initialized for __put_super_and_need_restart() */
468 hlist_del_init(&sb->s_instances);
469 spin_unlock(&sb_lock);
470 up_write(&sb->s_umount);
471 if (sb->s_bdi != &noop_backing_dev_info) {
473 sb->s_bdi = &noop_backing_dev_info;
477 EXPORT_SYMBOL(generic_shutdown_super);
480 * sget_fc - Find or create a superblock
481 * @fc: Filesystem context.
482 * @test: Comparison callback
483 * @set: Setup callback
485 * Find or create a superblock using the parameters stored in the filesystem
486 * context and the two callback functions.
488 * If an extant superblock is matched, then that will be returned with an
489 * elevated reference count that the caller must transfer or discard.
491 * If no match is made, a new superblock will be allocated and basic
492 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
493 * the set() callback will be invoked), the superblock will be published and it
494 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
497 struct super_block *sget_fc(struct fs_context *fc,
498 int (*test)(struct super_block *, struct fs_context *),
499 int (*set)(struct super_block *, struct fs_context *))
501 struct super_block *s = NULL;
502 struct super_block *old;
503 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
506 if (!(fc->sb_flags & SB_KERNMOUNT) &&
507 fc->purpose != FS_CONTEXT_FOR_SUBMOUNT) {
508 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
509 * over the namespace.
511 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) {
512 if (!capable(CAP_SYS_ADMIN))
513 return ERR_PTR(-EPERM);
515 if (!ns_capable(fc->user_ns, CAP_SYS_ADMIN))
516 return ERR_PTR(-EPERM);
523 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
525 goto share_extant_sb;
529 spin_unlock(&sb_lock);
530 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
532 return ERR_PTR(-ENOMEM);
536 s->s_fs_info = fc->s_fs_info;
540 spin_unlock(&sb_lock);
541 destroy_unused_super(s);
544 fc->s_fs_info = NULL;
545 s->s_type = fc->fs_type;
546 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
547 list_add_tail(&s->s_list, &super_blocks);
548 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
549 spin_unlock(&sb_lock);
550 get_filesystem(s->s_type);
551 register_shrinker_prepared(&s->s_shrink);
555 if (user_ns != old->s_user_ns) {
556 spin_unlock(&sb_lock);
557 destroy_unused_super(s);
558 return ERR_PTR(-EBUSY);
560 if (!grab_super(old))
562 destroy_unused_super(s);
565 EXPORT_SYMBOL(sget_fc);
568 * sget_userns - find or create a superblock
569 * @type: filesystem type superblock should belong to
570 * @test: comparison callback
571 * @set: setup callback
572 * @flags: mount flags
573 * @user_ns: User namespace for the super_block
574 * @data: argument to each of them
576 struct super_block *sget_userns(struct file_system_type *type,
577 int (*test)(struct super_block *,void *),
578 int (*set)(struct super_block *,void *),
579 int flags, struct user_namespace *user_ns,
582 struct super_block *s = NULL;
583 struct super_block *old;
586 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
587 !(type->fs_flags & FS_USERNS_MOUNT) &&
588 !capable(CAP_SYS_ADMIN))
589 return ERR_PTR(-EPERM);
593 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
594 if (!test(old, data))
596 if (user_ns != old->s_user_ns) {
597 spin_unlock(&sb_lock);
598 destroy_unused_super(s);
599 return ERR_PTR(-EBUSY);
601 if (!grab_super(old))
603 destroy_unused_super(s);
608 spin_unlock(&sb_lock);
609 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
611 return ERR_PTR(-ENOMEM);
617 spin_unlock(&sb_lock);
618 destroy_unused_super(s);
622 strlcpy(s->s_id, type->name, sizeof(s->s_id));
623 list_add_tail(&s->s_list, &super_blocks);
624 hlist_add_head(&s->s_instances, &type->fs_supers);
625 spin_unlock(&sb_lock);
626 get_filesystem(type);
627 register_shrinker_prepared(&s->s_shrink);
631 EXPORT_SYMBOL(sget_userns);
634 * sget - find or create a superblock
635 * @type: filesystem type superblock should belong to
636 * @test: comparison callback
637 * @set: setup callback
638 * @flags: mount flags
639 * @data: argument to each of them
641 struct super_block *sget(struct file_system_type *type,
642 int (*test)(struct super_block *,void *),
643 int (*set)(struct super_block *,void *),
647 struct user_namespace *user_ns = current_user_ns();
649 /* We don't yet pass the user namespace of the parent
650 * mount through to here so always use &init_user_ns
651 * until that changes.
653 if (flags & SB_SUBMOUNT)
654 user_ns = &init_user_ns;
656 /* Ensure the requestor has permissions over the target filesystem */
657 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
658 return ERR_PTR(-EPERM);
660 return sget_userns(type, test, set, flags, user_ns, data);
665 void drop_super(struct super_block *sb)
667 up_read(&sb->s_umount);
671 EXPORT_SYMBOL(drop_super);
673 void drop_super_exclusive(struct super_block *sb)
675 up_write(&sb->s_umount);
678 EXPORT_SYMBOL(drop_super_exclusive);
680 static void __iterate_supers(void (*f)(struct super_block *))
682 struct super_block *sb, *p = NULL;
685 list_for_each_entry(sb, &super_blocks, s_list) {
686 if (hlist_unhashed(&sb->s_instances))
689 spin_unlock(&sb_lock);
700 spin_unlock(&sb_lock);
703 * iterate_supers - call function for all active superblocks
704 * @f: function to call
705 * @arg: argument to pass to it
707 * Scans the superblock list and calls given function, passing it
708 * locked superblock and given argument.
710 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
712 struct super_block *sb, *p = NULL;
715 list_for_each_entry(sb, &super_blocks, s_list) {
716 if (hlist_unhashed(&sb->s_instances))
719 spin_unlock(&sb_lock);
721 down_read(&sb->s_umount);
722 if (sb->s_root && (sb->s_flags & SB_BORN))
724 up_read(&sb->s_umount);
733 spin_unlock(&sb_lock);
737 * iterate_supers_type - call function for superblocks of given type
739 * @f: function to call
740 * @arg: argument to pass to it
742 * Scans the superblock list and calls given function, passing it
743 * locked superblock and given argument.
745 void iterate_supers_type(struct file_system_type *type,
746 void (*f)(struct super_block *, void *), void *arg)
748 struct super_block *sb, *p = NULL;
751 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
753 spin_unlock(&sb_lock);
755 down_read(&sb->s_umount);
756 if (sb->s_root && (sb->s_flags & SB_BORN))
758 up_read(&sb->s_umount);
767 spin_unlock(&sb_lock);
770 EXPORT_SYMBOL(iterate_supers_type);
772 static struct super_block *__get_super(struct block_device *bdev, bool excl)
774 struct super_block *sb;
781 list_for_each_entry(sb, &super_blocks, s_list) {
782 if (hlist_unhashed(&sb->s_instances))
784 if (sb->s_bdev == bdev) {
786 spin_unlock(&sb_lock);
788 down_read(&sb->s_umount);
790 down_write(&sb->s_umount);
792 if (sb->s_root && (sb->s_flags & SB_BORN))
795 up_read(&sb->s_umount);
797 up_write(&sb->s_umount);
798 /* nope, got unmounted */
804 spin_unlock(&sb_lock);
809 * get_super - get the superblock of a device
810 * @bdev: device to get the superblock for
812 * Scans the superblock list and finds the superblock of the file system
813 * mounted on the device given. %NULL is returned if no match is found.
815 struct super_block *get_super(struct block_device *bdev)
817 return __get_super(bdev, false);
819 EXPORT_SYMBOL(get_super);
821 static struct super_block *__get_super_thawed(struct block_device *bdev,
825 struct super_block *s = __get_super(bdev, excl);
826 if (!s || s->s_writers.frozen == SB_UNFROZEN)
829 up_read(&s->s_umount);
831 up_write(&s->s_umount);
832 wait_event(s->s_writers.wait_unfrozen,
833 s->s_writers.frozen == SB_UNFROZEN);
839 * get_super_thawed - get thawed superblock of a device
840 * @bdev: device to get the superblock for
842 * Scans the superblock list and finds the superblock of the file system
843 * mounted on the device. The superblock is returned once it is thawed
844 * (or immediately if it was not frozen). %NULL is returned if no match
847 struct super_block *get_super_thawed(struct block_device *bdev)
849 return __get_super_thawed(bdev, false);
851 EXPORT_SYMBOL(get_super_thawed);
854 * get_super_exclusive_thawed - get thawed superblock of a device
855 * @bdev: device to get the superblock for
857 * Scans the superblock list and finds the superblock of the file system
858 * mounted on the device. The superblock is returned once it is thawed
859 * (or immediately if it was not frozen) and s_umount semaphore is held
860 * in exclusive mode. %NULL is returned if no match is found.
862 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
864 return __get_super_thawed(bdev, true);
866 EXPORT_SYMBOL(get_super_exclusive_thawed);
869 * get_active_super - get an active reference to the superblock of a device
870 * @bdev: device to get the superblock for
872 * Scans the superblock list and finds the superblock of the file system
873 * mounted on the device given. Returns the superblock with an active
874 * reference or %NULL if none was found.
876 struct super_block *get_active_super(struct block_device *bdev)
878 struct super_block *sb;
885 list_for_each_entry(sb, &super_blocks, s_list) {
886 if (hlist_unhashed(&sb->s_instances))
888 if (sb->s_bdev == bdev) {
891 up_write(&sb->s_umount);
895 spin_unlock(&sb_lock);
899 struct super_block *user_get_super(dev_t dev)
901 struct super_block *sb;
905 list_for_each_entry(sb, &super_blocks, s_list) {
906 if (hlist_unhashed(&sb->s_instances))
908 if (sb->s_dev == dev) {
910 spin_unlock(&sb_lock);
911 down_read(&sb->s_umount);
913 if (sb->s_root && (sb->s_flags & SB_BORN))
915 up_read(&sb->s_umount);
916 /* nope, got unmounted */
922 spin_unlock(&sb_lock);
927 * reconfigure_super - asks filesystem to change superblock parameters
928 * @fc: The superblock and configuration
930 * Alters the configuration parameters of a live superblock.
932 int reconfigure_super(struct fs_context *fc)
934 struct super_block *sb = fc->root->d_sb;
936 bool remount_ro = false;
937 bool force = fc->sb_flags & SB_FORCE;
939 if (fc->sb_flags_mask & ~MS_RMT_MASK)
941 if (sb->s_writers.frozen != SB_UNFROZEN)
944 retval = security_sb_remount(sb, fc->security);
948 if (fc->sb_flags_mask & SB_RDONLY) {
950 if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
954 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
958 if (!hlist_empty(&sb->s_pins)) {
959 up_write(&sb->s_umount);
960 group_pin_kill(&sb->s_pins);
961 down_write(&sb->s_umount);
964 if (sb->s_writers.frozen != SB_UNFROZEN)
966 remount_ro = !sb_rdonly(sb);
969 shrink_dcache_sb(sb);
971 /* If we are reconfiguring to RDONLY and current sb is read/write,
972 * make sure there are no files open for writing.
976 sb->s_readonly_remount = 1;
979 retval = sb_prepare_remount_readonly(sb);
985 if (fc->ops->reconfigure) {
986 retval = fc->ops->reconfigure(fc);
989 goto cancel_readonly;
990 /* If forced remount, go ahead despite any errors */
991 WARN(1, "forced remount of a %s fs returned %i\n",
992 sb->s_type->name, retval);
996 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
997 (fc->sb_flags & fc->sb_flags_mask)));
998 /* Needs to be ordered wrt mnt_is_readonly() */
1000 sb->s_readonly_remount = 0;
1003 * Some filesystems modify their metadata via some other path than the
1004 * bdev buffer cache (eg. use a private mapping, or directories in
1005 * pagecache, etc). Also file data modifications go via their own
1006 * mappings. So If we try to mount readonly then copy the filesystem
1007 * from bdev, we could get stale data, so invalidate it to give a best
1008 * effort at coherency.
1010 if (remount_ro && sb->s_bdev)
1011 invalidate_bdev(sb->s_bdev);
1015 sb->s_readonly_remount = 0;
1019 static void do_emergency_remount_callback(struct super_block *sb)
1021 down_write(&sb->s_umount);
1022 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
1024 struct fs_context *fc;
1026 fc = fs_context_for_reconfigure(sb->s_root,
1027 SB_RDONLY | SB_FORCE, SB_RDONLY);
1029 if (parse_monolithic_mount_data(fc, NULL) == 0)
1030 (void)reconfigure_super(fc);
1034 up_write(&sb->s_umount);
1037 static void do_emergency_remount(struct work_struct *work)
1039 __iterate_supers(do_emergency_remount_callback);
1041 printk("Emergency Remount complete\n");
1044 void emergency_remount(void)
1046 struct work_struct *work;
1048 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1050 INIT_WORK(work, do_emergency_remount);
1051 schedule_work(work);
1055 static void do_thaw_all_callback(struct super_block *sb)
1057 down_write(&sb->s_umount);
1058 if (sb->s_root && sb->s_flags & SB_BORN) {
1059 emergency_thaw_bdev(sb);
1060 thaw_super_locked(sb);
1062 up_write(&sb->s_umount);
1066 static void do_thaw_all(struct work_struct *work)
1068 __iterate_supers(do_thaw_all_callback);
1070 printk(KERN_WARNING "Emergency Thaw complete\n");
1074 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1076 * Used for emergency unfreeze of all filesystems via SysRq
1078 void emergency_thaw_all(void)
1080 struct work_struct *work;
1082 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1084 INIT_WORK(work, do_thaw_all);
1085 schedule_work(work);
1089 static DEFINE_IDA(unnamed_dev_ida);
1092 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1093 * @p: Pointer to a dev_t.
1095 * Filesystems which don't use real block devices can call this function
1096 * to allocate a virtual block device.
1098 * Context: Any context. Frequently called while holding sb_lock.
1099 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1100 * or -ENOMEM if memory allocation failed.
1102 int get_anon_bdev(dev_t *p)
1107 * Many userspace utilities consider an FSID of 0 invalid.
1108 * Always return at least 1 from get_anon_bdev.
1110 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1120 EXPORT_SYMBOL(get_anon_bdev);
1122 void free_anon_bdev(dev_t dev)
1124 ida_free(&unnamed_dev_ida, MINOR(dev));
1126 EXPORT_SYMBOL(free_anon_bdev);
1128 int set_anon_super(struct super_block *s, void *data)
1130 return get_anon_bdev(&s->s_dev);
1132 EXPORT_SYMBOL(set_anon_super);
1134 void kill_anon_super(struct super_block *sb)
1136 dev_t dev = sb->s_dev;
1137 generic_shutdown_super(sb);
1138 free_anon_bdev(dev);
1140 EXPORT_SYMBOL(kill_anon_super);
1142 void kill_litter_super(struct super_block *sb)
1145 d_genocide(sb->s_root);
1146 kill_anon_super(sb);
1148 EXPORT_SYMBOL(kill_litter_super);
1150 static int ns_test_super(struct super_block *sb, void *data)
1152 return sb->s_fs_info == data;
1155 static int ns_set_super(struct super_block *sb, void *data)
1157 sb->s_fs_info = data;
1158 return set_anon_super(sb, NULL);
1161 struct dentry *mount_ns(struct file_system_type *fs_type,
1162 int flags, void *data, void *ns, struct user_namespace *user_ns,
1163 int (*fill_super)(struct super_block *, void *, int))
1165 struct super_block *sb;
1167 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1168 * over the namespace.
1170 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1171 return ERR_PTR(-EPERM);
1173 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1176 return ERR_CAST(sb);
1180 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1182 deactivate_locked_super(sb);
1183 return ERR_PTR(err);
1186 sb->s_flags |= SB_ACTIVE;
1189 return dget(sb->s_root);
1192 EXPORT_SYMBOL(mount_ns);
1194 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1196 return set_anon_super(sb, NULL);
1198 EXPORT_SYMBOL(set_anon_super_fc);
1200 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1202 return sb->s_fs_info == fc->s_fs_info;
1205 static int test_single_super(struct super_block *s, struct fs_context *fc)
1211 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1212 * @fc: The filesystem context holding the parameters
1213 * @keying: How to distinguish superblocks
1214 * @fill_super: Helper to initialise a new superblock
1216 * Search for a superblock and create a new one if not found. The search
1217 * criterion is controlled by @keying. If the search fails, a new superblock
1218 * is created and @fill_super() is called to initialise it.
1220 * @keying can take one of a number of values:
1222 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1223 * system. This is typically used for special system filesystems.
1225 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1226 * distinct keys (where the key is in s_fs_info). Searching for the same
1227 * key again will turn up the superblock for that key.
1229 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1230 * unkeyed. Each call will get a new superblock.
1232 * A permissions check is made by sget_fc() unless we're getting a superblock
1233 * for a kernel-internal mount or a submount.
1235 int vfs_get_super(struct fs_context *fc,
1236 enum vfs_get_super_keying keying,
1237 int (*fill_super)(struct super_block *sb,
1238 struct fs_context *fc))
1240 int (*test)(struct super_block *, struct fs_context *);
1241 struct super_block *sb;
1244 case vfs_get_single_super:
1245 test = test_single_super;
1247 case vfs_get_keyed_super:
1248 test = test_keyed_super;
1250 case vfs_get_independent_super:
1257 sb = sget_fc(fc, test, set_anon_super_fc);
1262 int err = fill_super(sb, fc);
1264 deactivate_locked_super(sb);
1268 sb->s_flags |= SB_ACTIVE;
1272 fc->root = dget(sb->s_root);
1275 EXPORT_SYMBOL(vfs_get_super);
1278 static int set_bdev_super(struct super_block *s, void *data)
1281 s->s_dev = s->s_bdev->bd_dev;
1282 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1287 static int test_bdev_super(struct super_block *s, void *data)
1289 return (void *)s->s_bdev == data;
1292 struct dentry *mount_bdev(struct file_system_type *fs_type,
1293 int flags, const char *dev_name, void *data,
1294 int (*fill_super)(struct super_block *, void *, int))
1296 struct block_device *bdev;
1297 struct super_block *s;
1298 fmode_t mode = FMODE_READ | FMODE_EXCL;
1301 if (!(flags & SB_RDONLY))
1302 mode |= FMODE_WRITE;
1304 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1306 return ERR_CAST(bdev);
1309 * once the super is inserted into the list by sget, s_umount
1310 * will protect the lockfs code from trying to start a snapshot
1311 * while we are mounting
1313 mutex_lock(&bdev->bd_fsfreeze_mutex);
1314 if (bdev->bd_fsfreeze_count > 0) {
1315 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1319 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1321 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1326 if ((flags ^ s->s_flags) & SB_RDONLY) {
1327 deactivate_locked_super(s);
1333 * s_umount nests inside bd_mutex during
1334 * __invalidate_device(). blkdev_put() acquires
1335 * bd_mutex and can't be called under s_umount. Drop
1336 * s_umount temporarily. This is safe as we're
1337 * holding an active reference.
1339 up_write(&s->s_umount);
1340 blkdev_put(bdev, mode);
1341 down_write(&s->s_umount);
1344 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1345 sb_set_blocksize(s, block_size(bdev));
1346 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1348 deactivate_locked_super(s);
1352 s->s_flags |= SB_ACTIVE;
1356 return dget(s->s_root);
1361 blkdev_put(bdev, mode);
1363 return ERR_PTR(error);
1365 EXPORT_SYMBOL(mount_bdev);
1367 void kill_block_super(struct super_block *sb)
1369 struct block_device *bdev = sb->s_bdev;
1370 fmode_t mode = sb->s_mode;
1372 bdev->bd_super = NULL;
1373 generic_shutdown_super(sb);
1374 sync_blockdev(bdev);
1375 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1376 blkdev_put(bdev, mode | FMODE_EXCL);
1379 EXPORT_SYMBOL(kill_block_super);
1382 struct dentry *mount_nodev(struct file_system_type *fs_type,
1383 int flags, void *data,
1384 int (*fill_super)(struct super_block *, void *, int))
1387 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1392 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1394 deactivate_locked_super(s);
1395 return ERR_PTR(error);
1397 s->s_flags |= SB_ACTIVE;
1398 return dget(s->s_root);
1400 EXPORT_SYMBOL(mount_nodev);
1402 static int reconfigure_single(struct super_block *s,
1403 int flags, void *data)
1405 struct fs_context *fc;
1408 /* The caller really need to be passing fc down into mount_single(),
1409 * then a chunk of this can be removed. [Bollocks -- AV]
1410 * Better yet, reconfiguration shouldn't happen, but rather the second
1411 * mount should be rejected if the parameters are not compatible.
1413 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1417 ret = parse_monolithic_mount_data(fc, data);
1421 ret = reconfigure_super(fc);
1427 static int compare_single(struct super_block *s, void *p)
1432 struct dentry *mount_single(struct file_system_type *fs_type,
1433 int flags, void *data,
1434 int (*fill_super)(struct super_block *, void *, int))
1436 struct super_block *s;
1439 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1443 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1445 s->s_flags |= SB_ACTIVE;
1447 error = reconfigure_single(s, flags, data);
1449 if (unlikely(error)) {
1450 deactivate_locked_super(s);
1451 return ERR_PTR(error);
1453 return dget(s->s_root);
1455 EXPORT_SYMBOL(mount_single);
1458 * vfs_get_tree - Get the mountable root
1459 * @fc: The superblock configuration context.
1461 * The filesystem is invoked to get or create a superblock which can then later
1462 * be used for mounting. The filesystem places a pointer to the root to be
1463 * used for mounting in @fc->root.
1465 int vfs_get_tree(struct fs_context *fc)
1467 struct super_block *sb;
1473 /* Get the mountable root in fc->root, with a ref on the root and a ref
1474 * on the superblock.
1476 error = fc->ops->get_tree(fc);
1481 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1483 /* We don't know what the locking state of the superblock is -
1484 * if there is a superblock.
1489 sb = fc->root->d_sb;
1490 WARN_ON(!sb->s_bdi);
1492 if (fc->subtype && !sb->s_subtype) {
1493 sb->s_subtype = fc->subtype;
1498 * Write barrier is for super_cache_count(). We place it before setting
1499 * SB_BORN as the data dependency between the two functions is the
1500 * superblock structure contents that we just set up, not the SB_BORN
1504 sb->s_flags |= SB_BORN;
1506 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1507 if (unlikely(error)) {
1513 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1514 * but s_maxbytes was an unsigned long long for many releases. Throw
1515 * this warning for a little while to try and catch filesystems that
1516 * violate this rule.
1518 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1519 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1523 EXPORT_SYMBOL(vfs_get_tree);
1526 * Setup private BDI for given superblock. It gets automatically cleaned up
1527 * in generic_shutdown_super().
1529 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1531 struct backing_dev_info *bdi;
1535 bdi = bdi_alloc(GFP_KERNEL);
1539 bdi->name = sb->s_type->name;
1541 va_start(args, fmt);
1542 err = bdi_register_va(bdi, fmt, args);
1548 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1553 EXPORT_SYMBOL(super_setup_bdi_name);
1556 * Setup private BDI for given superblock. I gets automatically cleaned up
1557 * in generic_shutdown_super().
1559 int super_setup_bdi(struct super_block *sb)
1561 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1563 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1564 atomic_long_inc_return(&bdi_seq));
1566 EXPORT_SYMBOL(super_setup_bdi);
1569 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1572 void __sb_end_write(struct super_block *sb, int level)
1574 percpu_up_read(sb->s_writers.rw_sem + level-1);
1576 EXPORT_SYMBOL(__sb_end_write);
1579 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1582 int __sb_start_write(struct super_block *sb, int level, bool wait)
1584 bool force_trylock = false;
1587 #ifdef CONFIG_LOCKDEP
1589 * We want lockdep to tell us about possible deadlocks with freezing
1590 * but it's it bit tricky to properly instrument it. Getting a freeze
1591 * protection works as getting a read lock but there are subtle
1592 * problems. XFS for example gets freeze protection on internal level
1593 * twice in some cases, which is OK only because we already hold a
1594 * freeze protection also on higher level. Due to these cases we have
1595 * to use wait == F (trylock mode) which must not fail.
1600 for (i = 0; i < level - 1; i++)
1601 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1602 force_trylock = true;
1607 if (wait && !force_trylock)
1608 percpu_down_read(sb->s_writers.rw_sem + level-1);
1610 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1612 WARN_ON(force_trylock && !ret);
1615 EXPORT_SYMBOL(__sb_start_write);
1618 * sb_wait_write - wait until all writers to given file system finish
1619 * @sb: the super for which we wait
1620 * @level: type of writers we wait for (normal vs page fault)
1622 * This function waits until there are no writers of given type to given file
1625 static void sb_wait_write(struct super_block *sb, int level)
1627 percpu_down_write(sb->s_writers.rw_sem + level-1);
1631 * We are going to return to userspace and forget about these locks, the
1632 * ownership goes to the caller of thaw_super() which does unlock().
1634 static void lockdep_sb_freeze_release(struct super_block *sb)
1638 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1639 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1643 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1645 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1649 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1650 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1653 static void sb_freeze_unlock(struct super_block *sb)
1657 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1658 percpu_up_write(sb->s_writers.rw_sem + level);
1662 * freeze_super - lock the filesystem and force it into a consistent state
1663 * @sb: the super to lock
1665 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1666 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1669 * During this function, sb->s_writers.frozen goes through these values:
1671 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1673 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1674 * writes should be blocked, though page faults are still allowed. We wait for
1675 * all writes to complete and then proceed to the next stage.
1677 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1678 * but internal fs threads can still modify the filesystem (although they
1679 * should not dirty new pages or inodes), writeback can run etc. After waiting
1680 * for all running page faults we sync the filesystem which will clean all
1681 * dirty pages and inodes (no new dirty pages or inodes can be created when
1684 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1685 * modification are blocked (e.g. XFS preallocation truncation on inode
1686 * reclaim). This is usually implemented by blocking new transactions for
1687 * filesystems that have them and need this additional guard. After all
1688 * internal writers are finished we call ->freeze_fs() to finish filesystem
1689 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1690 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1692 * sb->s_writers.frozen is protected by sb->s_umount.
1694 int freeze_super(struct super_block *sb)
1698 atomic_inc(&sb->s_active);
1699 down_write(&sb->s_umount);
1700 if (sb->s_writers.frozen != SB_UNFROZEN) {
1701 deactivate_locked_super(sb);
1705 if (!(sb->s_flags & SB_BORN)) {
1706 up_write(&sb->s_umount);
1707 return 0; /* sic - it's "nothing to do" */
1710 if (sb_rdonly(sb)) {
1711 /* Nothing to do really... */
1712 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1713 up_write(&sb->s_umount);
1717 sb->s_writers.frozen = SB_FREEZE_WRITE;
1718 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1719 up_write(&sb->s_umount);
1720 sb_wait_write(sb, SB_FREEZE_WRITE);
1721 down_write(&sb->s_umount);
1723 /* Now we go and block page faults... */
1724 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1725 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1727 /* All writers are done so after syncing there won't be dirty data */
1728 sync_filesystem(sb);
1730 /* Now wait for internal filesystem counter */
1731 sb->s_writers.frozen = SB_FREEZE_FS;
1732 sb_wait_write(sb, SB_FREEZE_FS);
1734 if (sb->s_op->freeze_fs) {
1735 ret = sb->s_op->freeze_fs(sb);
1738 "VFS:Filesystem freeze failed\n");
1739 sb->s_writers.frozen = SB_UNFROZEN;
1740 sb_freeze_unlock(sb);
1741 wake_up(&sb->s_writers.wait_unfrozen);
1742 deactivate_locked_super(sb);
1747 * For debugging purposes so that fs can warn if it sees write activity
1748 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1750 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1751 lockdep_sb_freeze_release(sb);
1752 up_write(&sb->s_umount);
1755 EXPORT_SYMBOL(freeze_super);
1758 * thaw_super -- unlock filesystem
1759 * @sb: the super to thaw
1761 * Unlocks the filesystem and marks it writeable again after freeze_super().
1763 static int thaw_super_locked(struct super_block *sb)
1767 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1768 up_write(&sb->s_umount);
1772 if (sb_rdonly(sb)) {
1773 sb->s_writers.frozen = SB_UNFROZEN;
1777 lockdep_sb_freeze_acquire(sb);
1779 if (sb->s_op->unfreeze_fs) {
1780 error = sb->s_op->unfreeze_fs(sb);
1783 "VFS:Filesystem thaw failed\n");
1784 lockdep_sb_freeze_release(sb);
1785 up_write(&sb->s_umount);
1790 sb->s_writers.frozen = SB_UNFROZEN;
1791 sb_freeze_unlock(sb);
1793 wake_up(&sb->s_writers.wait_unfrozen);
1794 deactivate_locked_super(sb);
1798 int thaw_super(struct super_block *sb)
1800 down_write(&sb->s_umount);
1801 return thaw_super_locked(sb);
1803 EXPORT_SYMBOL(thaw_super);