cifs: Move some extern decls from .c files to .h
[linux-2.6-microblaze.git] / fs / smb / client / misc.c
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29
30 /* The xid serves as a useful identifier for each incoming vfs request,
31    in a similar way to the mid which is useful to track each sent smb,
32    and CurrentXid can also provide a running counter (although it
33    will eventually wrap past zero) of the total vfs operations handled
34    since the cifs fs was mounted */
35
36 unsigned int
37 _get_xid(void)
38 {
39         unsigned int xid;
40
41         spin_lock(&GlobalMid_Lock);
42         GlobalTotalActiveXid++;
43
44         /* keep high water mark for number of simultaneous ops in filesystem */
45         if (GlobalTotalActiveXid > GlobalMaxActiveXid)
46                 GlobalMaxActiveXid = GlobalTotalActiveXid;
47         if (GlobalTotalActiveXid > 65000)
48                 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
49         xid = GlobalCurrentXid++;
50         spin_unlock(&GlobalMid_Lock);
51         return xid;
52 }
53
54 void
55 _free_xid(unsigned int xid)
56 {
57         spin_lock(&GlobalMid_Lock);
58         /* if (GlobalTotalActiveXid == 0)
59                 BUG(); */
60         GlobalTotalActiveXid--;
61         spin_unlock(&GlobalMid_Lock);
62 }
63
64 struct cifs_ses *
65 sesInfoAlloc(void)
66 {
67         struct cifs_ses *ret_buf;
68
69         ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
70         if (ret_buf) {
71                 atomic_inc(&sesInfoAllocCount);
72                 spin_lock_init(&ret_buf->ses_lock);
73                 ret_buf->ses_status = SES_NEW;
74                 ++ret_buf->ses_count;
75                 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
76                 INIT_LIST_HEAD(&ret_buf->tcon_list);
77                 mutex_init(&ret_buf->session_mutex);
78                 spin_lock_init(&ret_buf->iface_lock);
79                 INIT_LIST_HEAD(&ret_buf->iface_list);
80                 spin_lock_init(&ret_buf->chan_lock);
81         }
82         return ret_buf;
83 }
84
85 void
86 sesInfoFree(struct cifs_ses *buf_to_free)
87 {
88         struct cifs_server_iface *iface = NULL, *niface = NULL;
89
90         if (buf_to_free == NULL) {
91                 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
92                 return;
93         }
94
95         unload_nls(buf_to_free->local_nls);
96         atomic_dec(&sesInfoAllocCount);
97         kfree(buf_to_free->serverOS);
98         kfree(buf_to_free->serverDomain);
99         kfree(buf_to_free->serverNOS);
100         kfree_sensitive(buf_to_free->password);
101         kfree(buf_to_free->user_name);
102         kfree(buf_to_free->domainName);
103         kfree_sensitive(buf_to_free->auth_key.response);
104         spin_lock(&buf_to_free->iface_lock);
105         list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
106                                  iface_head)
107                 kref_put(&iface->refcount, release_iface);
108         spin_unlock(&buf_to_free->iface_lock);
109         kfree_sensitive(buf_to_free);
110 }
111
112 struct cifs_tcon *
113 tcon_info_alloc(bool dir_leases_enabled)
114 {
115         struct cifs_tcon *ret_buf;
116
117         ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
118         if (!ret_buf)
119                 return NULL;
120
121         if (dir_leases_enabled == true) {
122                 ret_buf->cfids = init_cached_dirs();
123                 if (!ret_buf->cfids) {
124                         kfree(ret_buf);
125                         return NULL;
126                 }
127         }
128         /* else ret_buf->cfids is already set to NULL above */
129
130         atomic_inc(&tconInfoAllocCount);
131         ret_buf->status = TID_NEW;
132         ++ret_buf->tc_count;
133         spin_lock_init(&ret_buf->tc_lock);
134         INIT_LIST_HEAD(&ret_buf->openFileList);
135         INIT_LIST_HEAD(&ret_buf->tcon_list);
136         spin_lock_init(&ret_buf->open_file_lock);
137         spin_lock_init(&ret_buf->stat_lock);
138         atomic_set(&ret_buf->num_local_opens, 0);
139         atomic_set(&ret_buf->num_remote_opens, 0);
140         ret_buf->stats_from_time = ktime_get_real_seconds();
141 #ifdef CONFIG_CIFS_DFS_UPCALL
142         INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
143 #endif
144
145         return ret_buf;
146 }
147
148 void
149 tconInfoFree(struct cifs_tcon *tcon)
150 {
151         if (tcon == NULL) {
152                 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
153                 return;
154         }
155         free_cached_dirs(tcon->cfids);
156         atomic_dec(&tconInfoAllocCount);
157         kfree(tcon->nativeFileSystem);
158         kfree_sensitive(tcon->password);
159 #ifdef CONFIG_CIFS_DFS_UPCALL
160         dfs_put_root_smb_sessions(&tcon->dfs_ses_list);
161 #endif
162         kfree(tcon->origin_fullpath);
163         kfree(tcon);
164 }
165
166 struct smb_hdr *
167 cifs_buf_get(void)
168 {
169         struct smb_hdr *ret_buf = NULL;
170         /*
171          * SMB2 header is bigger than CIFS one - no problems to clean some
172          * more bytes for CIFS.
173          */
174         size_t buf_size = sizeof(struct smb2_hdr);
175
176         /*
177          * We could use negotiated size instead of max_msgsize -
178          * but it may be more efficient to always alloc same size
179          * albeit slightly larger than necessary and maxbuffersize
180          * defaults to this and can not be bigger.
181          */
182         ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
183
184         /* clear the first few header bytes */
185         /* for most paths, more is cleared in header_assemble */
186         memset(ret_buf, 0, buf_size + 3);
187         atomic_inc(&buf_alloc_count);
188 #ifdef CONFIG_CIFS_STATS2
189         atomic_inc(&total_buf_alloc_count);
190 #endif /* CONFIG_CIFS_STATS2 */
191
192         return ret_buf;
193 }
194
195 void
196 cifs_buf_release(void *buf_to_free)
197 {
198         if (buf_to_free == NULL) {
199                 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
200                 return;
201         }
202         mempool_free(buf_to_free, cifs_req_poolp);
203
204         atomic_dec(&buf_alloc_count);
205         return;
206 }
207
208 struct smb_hdr *
209 cifs_small_buf_get(void)
210 {
211         struct smb_hdr *ret_buf = NULL;
212
213 /* We could use negotiated size instead of max_msgsize -
214    but it may be more efficient to always alloc same size
215    albeit slightly larger than necessary and maxbuffersize
216    defaults to this and can not be bigger */
217         ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
218         /* No need to clear memory here, cleared in header assemble */
219         /*      memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
220         atomic_inc(&small_buf_alloc_count);
221 #ifdef CONFIG_CIFS_STATS2
222         atomic_inc(&total_small_buf_alloc_count);
223 #endif /* CONFIG_CIFS_STATS2 */
224
225         return ret_buf;
226 }
227
228 void
229 cifs_small_buf_release(void *buf_to_free)
230 {
231
232         if (buf_to_free == NULL) {
233                 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
234                 return;
235         }
236         mempool_free(buf_to_free, cifs_sm_req_poolp);
237
238         atomic_dec(&small_buf_alloc_count);
239         return;
240 }
241
242 void
243 free_rsp_buf(int resp_buftype, void *rsp)
244 {
245         if (resp_buftype == CIFS_SMALL_BUFFER)
246                 cifs_small_buf_release(rsp);
247         else if (resp_buftype == CIFS_LARGE_BUFFER)
248                 cifs_buf_release(rsp);
249 }
250
251 /* NB: MID can not be set if treeCon not passed in, in that
252    case it is responsbility of caller to set the mid */
253 void
254 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
255                 const struct cifs_tcon *treeCon, int word_count
256                 /* length of fixed section (word count) in two byte units  */)
257 {
258         char *temp = (char *) buffer;
259
260         memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
261
262         buffer->smb_buf_length = cpu_to_be32(
263             (2 * word_count) + sizeof(struct smb_hdr) -
264             4 /*  RFC 1001 length field does not count */  +
265             2 /* for bcc field itself */) ;
266
267         buffer->Protocol[0] = 0xFF;
268         buffer->Protocol[1] = 'S';
269         buffer->Protocol[2] = 'M';
270         buffer->Protocol[3] = 'B';
271         buffer->Command = smb_command;
272         buffer->Flags = 0x00;   /* case sensitive */
273         buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
274         buffer->Pid = cpu_to_le16((__u16)current->tgid);
275         buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
276         if (treeCon) {
277                 buffer->Tid = treeCon->tid;
278                 if (treeCon->ses) {
279                         if (treeCon->ses->capabilities & CAP_UNICODE)
280                                 buffer->Flags2 |= SMBFLG2_UNICODE;
281                         if (treeCon->ses->capabilities & CAP_STATUS32)
282                                 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
283
284                         /* Uid is not converted */
285                         buffer->Uid = treeCon->ses->Suid;
286                         if (treeCon->ses->server)
287                                 buffer->Mid = get_next_mid(treeCon->ses->server);
288                 }
289                 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
290                         buffer->Flags2 |= SMBFLG2_DFS;
291                 if (treeCon->nocase)
292                         buffer->Flags  |= SMBFLG_CASELESS;
293                 if ((treeCon->ses) && (treeCon->ses->server))
294                         if (treeCon->ses->server->sign)
295                                 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
296         }
297
298 /*  endian conversion of flags is now done just before sending */
299         buffer->WordCount = (char) word_count;
300         return;
301 }
302
303 static int
304 check_smb_hdr(struct smb_hdr *smb)
305 {
306         /* does it have the right SMB "signature" ? */
307         if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
308                 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
309                          *(unsigned int *)smb->Protocol);
310                 return 1;
311         }
312
313         /* if it's a response then accept */
314         if (smb->Flags & SMBFLG_RESPONSE)
315                 return 0;
316
317         /* only one valid case where server sends us request */
318         if (smb->Command == SMB_COM_LOCKING_ANDX)
319                 return 0;
320
321         cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
322                  get_mid(smb));
323         return 1;
324 }
325
326 int
327 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
328 {
329         struct smb_hdr *smb = (struct smb_hdr *)buf;
330         __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
331         __u32 clc_len;  /* calculated length */
332         cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
333                  total_read, rfclen);
334
335         /* is this frame too small to even get to a BCC? */
336         if (total_read < 2 + sizeof(struct smb_hdr)) {
337                 if ((total_read >= sizeof(struct smb_hdr) - 1)
338                             && (smb->Status.CifsError != 0)) {
339                         /* it's an error return */
340                         smb->WordCount = 0;
341                         /* some error cases do not return wct and bcc */
342                         return 0;
343                 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
344                                 (smb->WordCount == 0)) {
345                         char *tmp = (char *)smb;
346                         /* Need to work around a bug in two servers here */
347                         /* First, check if the part of bcc they sent was zero */
348                         if (tmp[sizeof(struct smb_hdr)] == 0) {
349                                 /* some servers return only half of bcc
350                                  * on simple responses (wct, bcc both zero)
351                                  * in particular have seen this on
352                                  * ulogoffX and FindClose. This leaves
353                                  * one byte of bcc potentially unitialized
354                                  */
355                                 /* zero rest of bcc */
356                                 tmp[sizeof(struct smb_hdr)+1] = 0;
357                                 return 0;
358                         }
359                         cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
360                 } else {
361                         cifs_dbg(VFS, "Length less than smb header size\n");
362                 }
363                 return -EIO;
364         } else if (total_read < sizeof(*smb) + 2 * smb->WordCount) {
365                 cifs_dbg(VFS, "%s: can't read BCC due to invalid WordCount(%u)\n",
366                          __func__, smb->WordCount);
367                 return -EIO;
368         }
369
370         /* otherwise, there is enough to get to the BCC */
371         if (check_smb_hdr(smb))
372                 return -EIO;
373         clc_len = smbCalcSize(smb);
374
375         if (4 + rfclen != total_read) {
376                 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
377                          rfclen);
378                 return -EIO;
379         }
380
381         if (4 + rfclen != clc_len) {
382                 __u16 mid = get_mid(smb);
383                 /* check if bcc wrapped around for large read responses */
384                 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
385                         /* check if lengths match mod 64K */
386                         if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
387                                 return 0; /* bcc wrapped */
388                 }
389                 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
390                          clc_len, 4 + rfclen, mid);
391
392                 if (4 + rfclen < clc_len) {
393                         cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
394                                  rfclen, mid);
395                         return -EIO;
396                 } else if (rfclen > clc_len + 512) {
397                         /*
398                          * Some servers (Windows XP in particular) send more
399                          * data than the lengths in the SMB packet would
400                          * indicate on certain calls (byte range locks and
401                          * trans2 find first calls in particular). While the
402                          * client can handle such a frame by ignoring the
403                          * trailing data, we choose limit the amount of extra
404                          * data to 512 bytes.
405                          */
406                         cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
407                                  rfclen, mid);
408                         return -EIO;
409                 }
410         }
411         return 0;
412 }
413
414 bool
415 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
416 {
417         struct smb_hdr *buf = (struct smb_hdr *)buffer;
418         struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
419         struct TCP_Server_Info *pserver;
420         struct cifs_ses *ses;
421         struct cifs_tcon *tcon;
422         struct cifsInodeInfo *pCifsInode;
423         struct cifsFileInfo *netfile;
424
425         cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
426         if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
427            (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
428                 struct smb_com_transaction_change_notify_rsp *pSMBr =
429                         (struct smb_com_transaction_change_notify_rsp *)buf;
430                 struct file_notify_information *pnotify;
431                 __u32 data_offset = 0;
432                 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
433
434                 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
435                         data_offset = le32_to_cpu(pSMBr->DataOffset);
436
437                         if (data_offset >
438                             len - sizeof(struct file_notify_information)) {
439                                 cifs_dbg(FYI, "Invalid data_offset %u\n",
440                                          data_offset);
441                                 return true;
442                         }
443                         pnotify = (struct file_notify_information *)
444                                 ((char *)&pSMBr->hdr.Protocol + data_offset);
445                         cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
446                                  pnotify->FileName, pnotify->Action);
447                         /*   cifs_dump_mem("Rcvd notify Data: ",buf,
448                                 sizeof(struct smb_hdr)+60); */
449                         return true;
450                 }
451                 if (pSMBr->hdr.Status.CifsError) {
452                         cifs_dbg(FYI, "notify err 0x%x\n",
453                                  pSMBr->hdr.Status.CifsError);
454                         return true;
455                 }
456                 return false;
457         }
458         if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
459                 return false;
460         if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
461                 /* no sense logging error on invalid handle on oplock
462                    break - harmless race between close request and oplock
463                    break response is expected from time to time writing out
464                    large dirty files cached on the client */
465                 if ((NT_STATUS_INVALID_HANDLE) ==
466                    le32_to_cpu(pSMB->hdr.Status.CifsError)) {
467                         cifs_dbg(FYI, "Invalid handle on oplock break\n");
468                         return true;
469                 } else if (ERRbadfid ==
470                    le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
471                         return true;
472                 } else {
473                         return false; /* on valid oplock brk we get "request" */
474                 }
475         }
476         if (pSMB->hdr.WordCount != 8)
477                 return false;
478
479         cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
480                  pSMB->LockType, pSMB->OplockLevel);
481         if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
482                 return false;
483
484         /* If server is a channel, select the primary channel */
485         pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
486
487         /* look up tcon based on tid & uid */
488         spin_lock(&cifs_tcp_ses_lock);
489         list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
490                 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
491                         if (tcon->tid != buf->Tid)
492                                 continue;
493
494                         cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
495                         spin_lock(&tcon->open_file_lock);
496                         list_for_each_entry(netfile, &tcon->openFileList, tlist) {
497                                 if (pSMB->Fid != netfile->fid.netfid)
498                                         continue;
499
500                                 cifs_dbg(FYI, "file id match, oplock break\n");
501                                 pCifsInode = CIFS_I(d_inode(netfile->dentry));
502
503                                 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
504                                         &pCifsInode->flags);
505
506                                 netfile->oplock_epoch = 0;
507                                 netfile->oplock_level = pSMB->OplockLevel;
508                                 netfile->oplock_break_cancelled = false;
509                                 cifs_queue_oplock_break(netfile);
510
511                                 spin_unlock(&tcon->open_file_lock);
512                                 spin_unlock(&cifs_tcp_ses_lock);
513                                 return true;
514                         }
515                         spin_unlock(&tcon->open_file_lock);
516                         spin_unlock(&cifs_tcp_ses_lock);
517                         cifs_dbg(FYI, "No matching file for oplock break\n");
518                         return true;
519                 }
520         }
521         spin_unlock(&cifs_tcp_ses_lock);
522         cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
523         return true;
524 }
525
526 void
527 dump_smb(void *buf, int smb_buf_length)
528 {
529         if (traceSMB == 0)
530                 return;
531
532         print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
533                        smb_buf_length, true);
534 }
535
536 void
537 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
538 {
539         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
540                 struct cifs_tcon *tcon = NULL;
541
542                 if (cifs_sb->master_tlink)
543                         tcon = cifs_sb_master_tcon(cifs_sb);
544
545                 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
546                 cifs_sb->mnt_cifs_serverino_autodisabled = true;
547                 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
548                          tcon ? tcon->tree_name : "new server");
549                 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
550                 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
551
552         }
553 }
554
555 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
556 {
557         oplock &= 0xF;
558
559         if (oplock == OPLOCK_EXCLUSIVE) {
560                 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
561                 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
562                          &cinode->netfs.inode);
563         } else if (oplock == OPLOCK_READ) {
564                 cinode->oplock = CIFS_CACHE_READ_FLG;
565                 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
566                          &cinode->netfs.inode);
567         } else
568                 cinode->oplock = 0;
569 }
570
571 /*
572  * We wait for oplock breaks to be processed before we attempt to perform
573  * writes.
574  */
575 int cifs_get_writer(struct cifsInodeInfo *cinode)
576 {
577         int rc;
578
579 start:
580         rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
581                          TASK_KILLABLE);
582         if (rc)
583                 return rc;
584
585         spin_lock(&cinode->writers_lock);
586         if (!cinode->writers)
587                 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
588         cinode->writers++;
589         /* Check to see if we have started servicing an oplock break */
590         if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
591                 cinode->writers--;
592                 if (cinode->writers == 0) {
593                         clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
594                         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
595                 }
596                 spin_unlock(&cinode->writers_lock);
597                 goto start;
598         }
599         spin_unlock(&cinode->writers_lock);
600         return 0;
601 }
602
603 void cifs_put_writer(struct cifsInodeInfo *cinode)
604 {
605         spin_lock(&cinode->writers_lock);
606         cinode->writers--;
607         if (cinode->writers == 0) {
608                 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
609                 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
610         }
611         spin_unlock(&cinode->writers_lock);
612 }
613
614 /**
615  * cifs_queue_oplock_break - queue the oplock break handler for cfile
616  * @cfile: The file to break the oplock on
617  *
618  * This function is called from the demultiplex thread when it
619  * receives an oplock break for @cfile.
620  *
621  * Assumes the tcon->open_file_lock is held.
622  * Assumes cfile->file_info_lock is NOT held.
623  */
624 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
625 {
626         /*
627          * Bump the handle refcount now while we hold the
628          * open_file_lock to enforce the validity of it for the oplock
629          * break handler. The matching put is done at the end of the
630          * handler.
631          */
632         cifsFileInfo_get(cfile);
633
634         queue_work(cifsoplockd_wq, &cfile->oplock_break);
635 }
636
637 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
638 {
639         clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
640         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
641 }
642
643 bool
644 backup_cred(struct cifs_sb_info *cifs_sb)
645 {
646         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
647                 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
648                         return true;
649         }
650         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
651                 if (in_group_p(cifs_sb->ctx->backupgid))
652                         return true;
653         }
654
655         return false;
656 }
657
658 void
659 cifs_del_pending_open(struct cifs_pending_open *open)
660 {
661         spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
662         list_del(&open->olist);
663         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
664 }
665
666 void
667 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
668                              struct cifs_pending_open *open)
669 {
670         memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
671         open->oplock = CIFS_OPLOCK_NO_CHANGE;
672         open->tlink = tlink;
673         fid->pending_open = open;
674         list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
675 }
676
677 void
678 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
679                       struct cifs_pending_open *open)
680 {
681         spin_lock(&tlink_tcon(tlink)->open_file_lock);
682         cifs_add_pending_open_locked(fid, tlink, open);
683         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
684 }
685
686 /*
687  * Critical section which runs after acquiring deferred_lock.
688  * As there is no reference count on cifs_deferred_close, pdclose
689  * should not be used outside deferred_lock.
690  */
691 bool
692 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
693 {
694         struct cifs_deferred_close *dclose;
695
696         list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
697                 if ((dclose->netfid == cfile->fid.netfid) &&
698                         (dclose->persistent_fid == cfile->fid.persistent_fid) &&
699                         (dclose->volatile_fid == cfile->fid.volatile_fid)) {
700                         *pdclose = dclose;
701                         return true;
702                 }
703         }
704         return false;
705 }
706
707 /*
708  * Critical section which runs after acquiring deferred_lock.
709  */
710 void
711 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
712 {
713         bool is_deferred = false;
714         struct cifs_deferred_close *pdclose;
715
716         is_deferred = cifs_is_deferred_close(cfile, &pdclose);
717         if (is_deferred) {
718                 kfree(dclose);
719                 return;
720         }
721
722         dclose->tlink = cfile->tlink;
723         dclose->netfid = cfile->fid.netfid;
724         dclose->persistent_fid = cfile->fid.persistent_fid;
725         dclose->volatile_fid = cfile->fid.volatile_fid;
726         list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
727 }
728
729 /*
730  * Critical section which runs after acquiring deferred_lock.
731  */
732 void
733 cifs_del_deferred_close(struct cifsFileInfo *cfile)
734 {
735         bool is_deferred = false;
736         struct cifs_deferred_close *dclose;
737
738         is_deferred = cifs_is_deferred_close(cfile, &dclose);
739         if (!is_deferred)
740                 return;
741         list_del(&dclose->dlist);
742         kfree(dclose);
743 }
744
745 void
746 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
747 {
748         struct cifsFileInfo *cfile = NULL;
749         struct file_list *tmp_list, *tmp_next_list;
750         struct list_head file_head;
751
752         if (cifs_inode == NULL)
753                 return;
754
755         INIT_LIST_HEAD(&file_head);
756         spin_lock(&cifs_inode->open_file_lock);
757         list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
758                 if (delayed_work_pending(&cfile->deferred)) {
759                         if (cancel_delayed_work(&cfile->deferred)) {
760                                 spin_lock(&cifs_inode->deferred_lock);
761                                 cifs_del_deferred_close(cfile);
762                                 spin_unlock(&cifs_inode->deferred_lock);
763
764                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
765                                 if (tmp_list == NULL)
766                                         break;
767                                 tmp_list->cfile = cfile;
768                                 list_add_tail(&tmp_list->list, &file_head);
769                         }
770                 }
771         }
772         spin_unlock(&cifs_inode->open_file_lock);
773
774         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
775                 _cifsFileInfo_put(tmp_list->cfile, false, false);
776                 list_del(&tmp_list->list);
777                 kfree(tmp_list);
778         }
779 }
780
781 void
782 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
783 {
784         struct cifsFileInfo *cfile;
785         struct file_list *tmp_list, *tmp_next_list;
786         struct list_head file_head;
787
788         INIT_LIST_HEAD(&file_head);
789         spin_lock(&tcon->open_file_lock);
790         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
791                 if (delayed_work_pending(&cfile->deferred)) {
792                         if (cancel_delayed_work(&cfile->deferred)) {
793                                 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
794                                 cifs_del_deferred_close(cfile);
795                                 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
796
797                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
798                                 if (tmp_list == NULL)
799                                         break;
800                                 tmp_list->cfile = cfile;
801                                 list_add_tail(&tmp_list->list, &file_head);
802                         }
803                 }
804         }
805         spin_unlock(&tcon->open_file_lock);
806
807         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
808                 _cifsFileInfo_put(tmp_list->cfile, true, false);
809                 list_del(&tmp_list->list);
810                 kfree(tmp_list);
811         }
812 }
813 void
814 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
815 {
816         struct cifsFileInfo *cfile;
817         struct file_list *tmp_list, *tmp_next_list;
818         struct list_head file_head;
819         void *page;
820         const char *full_path;
821
822         INIT_LIST_HEAD(&file_head);
823         page = alloc_dentry_path();
824         spin_lock(&tcon->open_file_lock);
825         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
826                 full_path = build_path_from_dentry(cfile->dentry, page);
827                 if (strstr(full_path, path)) {
828                         if (delayed_work_pending(&cfile->deferred)) {
829                                 if (cancel_delayed_work(&cfile->deferred)) {
830                                         spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
831                                         cifs_del_deferred_close(cfile);
832                                         spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
833
834                                         tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
835                                         if (tmp_list == NULL)
836                                                 break;
837                                         tmp_list->cfile = cfile;
838                                         list_add_tail(&tmp_list->list, &file_head);
839                                 }
840                         }
841                 }
842         }
843         spin_unlock(&tcon->open_file_lock);
844
845         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
846                 _cifsFileInfo_put(tmp_list->cfile, true, false);
847                 list_del(&tmp_list->list);
848                 kfree(tmp_list);
849         }
850         free_dentry_path(page);
851 }
852
853 /*
854  * If a dentry has been deleted, all corresponding open handles should know that
855  * so that we do not defer close them.
856  */
857 void cifs_mark_open_handles_for_deleted_file(struct inode *inode,
858                                              const char *path)
859 {
860         struct cifsFileInfo *cfile;
861         void *page;
862         const char *full_path;
863         struct cifsInodeInfo *cinode = CIFS_I(inode);
864
865         page = alloc_dentry_path();
866         spin_lock(&cinode->open_file_lock);
867
868         /*
869          * note: we need to construct path from dentry and compare only if the
870          * inode has any hardlinks. When number of hardlinks is 1, we can just
871          * mark all open handles since they are going to be from the same file.
872          */
873         if (inode->i_nlink > 1) {
874                 list_for_each_entry(cfile, &cinode->openFileList, flist) {
875                         full_path = build_path_from_dentry(cfile->dentry, page);
876                         if (!IS_ERR(full_path) && strcmp(full_path, path) == 0)
877                                 cfile->status_file_deleted = true;
878                 }
879         } else {
880                 list_for_each_entry(cfile, &cinode->openFileList, flist)
881                         cfile->status_file_deleted = true;
882         }
883         spin_unlock(&cinode->open_file_lock);
884         free_dentry_path(page);
885 }
886
887 /* parses DFS referral V3 structure
888  * caller is responsible for freeing target_nodes
889  * returns:
890  * - on success - 0
891  * - on failure - errno
892  */
893 int
894 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
895                     unsigned int *num_of_nodes,
896                     struct dfs_info3_param **target_nodes,
897                     const struct nls_table *nls_codepage, int remap,
898                     const char *searchName, bool is_unicode)
899 {
900         int i, rc = 0;
901         char *data_end;
902         struct dfs_referral_level_3 *ref;
903
904         *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
905
906         if (*num_of_nodes < 1) {
907                 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
908                          *num_of_nodes);
909                 rc = -EINVAL;
910                 goto parse_DFS_referrals_exit;
911         }
912
913         ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
914         if (ref->VersionNumber != cpu_to_le16(3)) {
915                 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
916                          le16_to_cpu(ref->VersionNumber));
917                 rc = -EINVAL;
918                 goto parse_DFS_referrals_exit;
919         }
920
921         /* get the upper boundary of the resp buffer */
922         data_end = (char *)rsp + rsp_size;
923
924         cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
925                  *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
926
927         *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
928                                 GFP_KERNEL);
929         if (*target_nodes == NULL) {
930                 rc = -ENOMEM;
931                 goto parse_DFS_referrals_exit;
932         }
933
934         /* collect necessary data from referrals */
935         for (i = 0; i < *num_of_nodes; i++) {
936                 char *temp;
937                 int max_len;
938                 struct dfs_info3_param *node = (*target_nodes)+i;
939
940                 node->flags = le32_to_cpu(rsp->DFSFlags);
941                 if (is_unicode) {
942                         __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
943                                                 GFP_KERNEL);
944                         if (tmp == NULL) {
945                                 rc = -ENOMEM;
946                                 goto parse_DFS_referrals_exit;
947                         }
948                         cifsConvertToUTF16((__le16 *) tmp, searchName,
949                                            PATH_MAX, nls_codepage, remap);
950                         node->path_consumed = cifs_utf16_bytes(tmp,
951                                         le16_to_cpu(rsp->PathConsumed),
952                                         nls_codepage);
953                         kfree(tmp);
954                 } else
955                         node->path_consumed = le16_to_cpu(rsp->PathConsumed);
956
957                 node->server_type = le16_to_cpu(ref->ServerType);
958                 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
959
960                 /* copy DfsPath */
961                 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
962                 max_len = data_end - temp;
963                 node->path_name = cifs_strndup_from_utf16(temp, max_len,
964                                                 is_unicode, nls_codepage);
965                 if (!node->path_name) {
966                         rc = -ENOMEM;
967                         goto parse_DFS_referrals_exit;
968                 }
969
970                 /* copy link target UNC */
971                 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
972                 max_len = data_end - temp;
973                 node->node_name = cifs_strndup_from_utf16(temp, max_len,
974                                                 is_unicode, nls_codepage);
975                 if (!node->node_name) {
976                         rc = -ENOMEM;
977                         goto parse_DFS_referrals_exit;
978                 }
979
980                 node->ttl = le32_to_cpu(ref->TimeToLive);
981
982                 ref++;
983         }
984
985 parse_DFS_referrals_exit:
986         if (rc) {
987                 free_dfs_info_array(*target_nodes, *num_of_nodes);
988                 *target_nodes = NULL;
989                 *num_of_nodes = 0;
990         }
991         return rc;
992 }
993
994 struct cifs_aio_ctx *
995 cifs_aio_ctx_alloc(void)
996 {
997         struct cifs_aio_ctx *ctx;
998
999         /*
1000          * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
1001          * to false so that we know when we have to unreference pages within
1002          * cifs_aio_ctx_release()
1003          */
1004         ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
1005         if (!ctx)
1006                 return NULL;
1007
1008         INIT_LIST_HEAD(&ctx->list);
1009         mutex_init(&ctx->aio_mutex);
1010         init_completion(&ctx->done);
1011         kref_init(&ctx->refcount);
1012         return ctx;
1013 }
1014
1015 void
1016 cifs_aio_ctx_release(struct kref *refcount)
1017 {
1018         struct cifs_aio_ctx *ctx = container_of(refcount,
1019                                         struct cifs_aio_ctx, refcount);
1020
1021         cifsFileInfo_put(ctx->cfile);
1022
1023         /*
1024          * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
1025          * which means that iov_iter_extract_pages() was a success and thus
1026          * that we may have references or pins on pages that we need to
1027          * release.
1028          */
1029         if (ctx->bv) {
1030                 if (ctx->should_dirty || ctx->bv_need_unpin) {
1031                         unsigned int i;
1032
1033                         for (i = 0; i < ctx->nr_pinned_pages; i++) {
1034                                 struct page *page = ctx->bv[i].bv_page;
1035
1036                                 if (ctx->should_dirty)
1037                                         set_page_dirty(page);
1038                                 if (ctx->bv_need_unpin)
1039                                         unpin_user_page(page);
1040                         }
1041                 }
1042                 kvfree(ctx->bv);
1043         }
1044
1045         kfree(ctx);
1046 }
1047
1048 /**
1049  * cifs_alloc_hash - allocate hash and hash context together
1050  * @name: The name of the crypto hash algo
1051  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1052  *
1053  * The caller has to make sure @sdesc is initialized to either NULL or
1054  * a valid context. It can be freed via cifs_free_hash().
1055  */
1056 int
1057 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1058 {
1059         int rc = 0;
1060         struct crypto_shash *alg = NULL;
1061
1062         if (*sdesc)
1063                 return 0;
1064
1065         alg = crypto_alloc_shash(name, 0, 0);
1066         if (IS_ERR(alg)) {
1067                 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1068                 rc = PTR_ERR(alg);
1069                 *sdesc = NULL;
1070                 return rc;
1071         }
1072
1073         *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1074         if (*sdesc == NULL) {
1075                 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1076                 crypto_free_shash(alg);
1077                 return -ENOMEM;
1078         }
1079
1080         (*sdesc)->tfm = alg;
1081         return 0;
1082 }
1083
1084 /**
1085  * cifs_free_hash - free hash and hash context together
1086  * @sdesc: Where to find the pointer to the hash TFM
1087  *
1088  * Freeing a NULL descriptor is safe.
1089  */
1090 void
1091 cifs_free_hash(struct shash_desc **sdesc)
1092 {
1093         if (unlikely(!sdesc) || !*sdesc)
1094                 return;
1095
1096         if ((*sdesc)->tfm) {
1097                 crypto_free_shash((*sdesc)->tfm);
1098                 (*sdesc)->tfm = NULL;
1099         }
1100
1101         kfree_sensitive(*sdesc);
1102         *sdesc = NULL;
1103 }
1104
1105 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1106 {
1107         const char *end;
1108
1109         /* skip initial slashes */
1110         while (*unc && (*unc == '\\' || *unc == '/'))
1111                 unc++;
1112
1113         end = unc;
1114
1115         while (*end && !(*end == '\\' || *end == '/'))
1116                 end++;
1117
1118         *h = unc;
1119         *len = end - unc;
1120 }
1121
1122 /**
1123  * copy_path_name - copy src path to dst, possibly truncating
1124  * @dst: The destination buffer
1125  * @src: The source name
1126  *
1127  * returns number of bytes written (including trailing nul)
1128  */
1129 int copy_path_name(char *dst, const char *src)
1130 {
1131         int name_len;
1132
1133         /*
1134          * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1135          * will truncate and strlen(dst) will be PATH_MAX-1
1136          */
1137         name_len = strscpy(dst, src, PATH_MAX);
1138         if (WARN_ON_ONCE(name_len < 0))
1139                 name_len = PATH_MAX-1;
1140
1141         /* we count the trailing nul */
1142         name_len++;
1143         return name_len;
1144 }
1145
1146 struct super_cb_data {
1147         void *data;
1148         struct super_block *sb;
1149 };
1150
1151 static void tcon_super_cb(struct super_block *sb, void *arg)
1152 {
1153         struct super_cb_data *sd = arg;
1154         struct cifs_sb_info *cifs_sb;
1155         struct cifs_tcon *t1 = sd->data, *t2;
1156
1157         if (sd->sb)
1158                 return;
1159
1160         cifs_sb = CIFS_SB(sb);
1161         t2 = cifs_sb_master_tcon(cifs_sb);
1162
1163         spin_lock(&t2->tc_lock);
1164         if (t1->ses == t2->ses &&
1165             t1->ses->server == t2->ses->server &&
1166             t2->origin_fullpath &&
1167             dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1168                 sd->sb = sb;
1169         spin_unlock(&t2->tc_lock);
1170 }
1171
1172 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1173                                             void *data)
1174 {
1175         struct super_cb_data sd = {
1176                 .data = data,
1177                 .sb = NULL,
1178         };
1179         struct file_system_type **fs_type = (struct file_system_type *[]) {
1180                 &cifs_fs_type, &smb3_fs_type, NULL,
1181         };
1182
1183         for (; *fs_type; fs_type++) {
1184                 iterate_supers_type(*fs_type, f, &sd);
1185                 if (sd.sb) {
1186                         /*
1187                          * Grab an active reference in order to prevent automounts (DFS links)
1188                          * of expiring and then freeing up our cifs superblock pointer while
1189                          * we're doing failover.
1190                          */
1191                         cifs_sb_active(sd.sb);
1192                         return sd.sb;
1193                 }
1194         }
1195         pr_warn_once("%s: could not find dfs superblock\n", __func__);
1196         return ERR_PTR(-EINVAL);
1197 }
1198
1199 static void __cifs_put_super(struct super_block *sb)
1200 {
1201         if (!IS_ERR_OR_NULL(sb))
1202                 cifs_sb_deactive(sb);
1203 }
1204
1205 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1206 {
1207         spin_lock(&tcon->tc_lock);
1208         if (!tcon->origin_fullpath) {
1209                 spin_unlock(&tcon->tc_lock);
1210                 return ERR_PTR(-ENOENT);
1211         }
1212         spin_unlock(&tcon->tc_lock);
1213         return __cifs_get_super(tcon_super_cb, tcon);
1214 }
1215
1216 void cifs_put_tcp_super(struct super_block *sb)
1217 {
1218         __cifs_put_super(sb);
1219 }
1220
1221 #ifdef CONFIG_CIFS_DFS_UPCALL
1222 int match_target_ip(struct TCP_Server_Info *server,
1223                     const char *share, size_t share_len,
1224                     bool *result)
1225 {
1226         int rc;
1227         char *target;
1228         struct sockaddr_storage ss;
1229
1230         *result = false;
1231
1232         target = kzalloc(share_len + 3, GFP_KERNEL);
1233         if (!target)
1234                 return -ENOMEM;
1235
1236         scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1237
1238         cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1239
1240         rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1241         kfree(target);
1242
1243         if (rc < 0)
1244                 return rc;
1245
1246         spin_lock(&server->srv_lock);
1247         *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1248         spin_unlock(&server->srv_lock);
1249         cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1250         return 0;
1251 }
1252
1253 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1254 {
1255         int rc;
1256
1257         kfree(cifs_sb->prepath);
1258         cifs_sb->prepath = NULL;
1259
1260         if (prefix && *prefix) {
1261                 cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1262                 if (IS_ERR(cifs_sb->prepath)) {
1263                         rc = PTR_ERR(cifs_sb->prepath);
1264                         cifs_sb->prepath = NULL;
1265                         return rc;
1266                 }
1267                 if (cifs_sb->prepath)
1268                         convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1269         }
1270
1271         cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1272         return 0;
1273 }
1274
1275 /*
1276  * Handle weird Windows SMB server behaviour. It responds with
1277  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1278  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1279  * non-ASCII unicode symbols.
1280  */
1281 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1282                                    struct cifs_tcon *tcon,
1283                                    struct cifs_sb_info *cifs_sb,
1284                                    const char *full_path,
1285                                    bool *islink)
1286 {
1287         struct cifs_ses *ses = tcon->ses;
1288         size_t len;
1289         char *path;
1290         char *ref_path;
1291
1292         *islink = false;
1293
1294         /*
1295          * Fast path - skip check when @full_path doesn't have a prefix path to
1296          * look up or tcon is not DFS.
1297          */
1298         if (strlen(full_path) < 2 || !cifs_sb ||
1299             (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1300             !is_tcon_dfs(tcon))
1301                 return 0;
1302
1303         spin_lock(&tcon->tc_lock);
1304         if (!tcon->origin_fullpath) {
1305                 spin_unlock(&tcon->tc_lock);
1306                 return 0;
1307         }
1308         spin_unlock(&tcon->tc_lock);
1309
1310         /*
1311          * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1312          * to get a referral to figure out whether it is an DFS link.
1313          */
1314         len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1315         path = kmalloc(len, GFP_KERNEL);
1316         if (!path)
1317                 return -ENOMEM;
1318
1319         scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1320         ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1321                                             cifs_remap(cifs_sb));
1322         kfree(path);
1323
1324         if (IS_ERR(ref_path)) {
1325                 if (PTR_ERR(ref_path) != -EINVAL)
1326                         return PTR_ERR(ref_path);
1327         } else {
1328                 struct dfs_info3_param *refs = NULL;
1329                 int num_refs = 0;
1330
1331                 /*
1332                  * XXX: we are not using dfs_cache_find() here because we might
1333                  * end up filling all the DFS cache and thus potentially
1334                  * removing cached DFS targets that the client would eventually
1335                  * need during failover.
1336                  */
1337                 ses = CIFS_DFS_ROOT_SES(ses);
1338                 if (ses->server->ops->get_dfs_refer &&
1339                     !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1340                                                      &num_refs, cifs_sb->local_nls,
1341                                                      cifs_remap(cifs_sb)))
1342                         *islink = refs[0].server_type == DFS_TYPE_LINK;
1343                 free_dfs_info_array(refs, num_refs);
1344                 kfree(ref_path);
1345         }
1346         return 0;
1347 }
1348 #endif
1349
1350 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1351 {
1352         int timeout = 10;
1353         int rc;
1354
1355         spin_lock(&server->srv_lock);
1356         if (server->tcpStatus != CifsNeedReconnect) {
1357                 spin_unlock(&server->srv_lock);
1358                 return 0;
1359         }
1360         timeout *= server->nr_targets;
1361         spin_unlock(&server->srv_lock);
1362
1363         /*
1364          * Give demultiplex thread up to 10 seconds to each target available for
1365          * reconnect -- should be greater than cifs socket timeout which is 7
1366          * seconds.
1367          *
1368          * On "soft" mounts we wait once. Hard mounts keep retrying until
1369          * process is killed or server comes back on-line.
1370          */
1371         do {
1372                 rc = wait_event_interruptible_timeout(server->response_q,
1373                                                       (server->tcpStatus != CifsNeedReconnect),
1374                                                       timeout * HZ);
1375                 if (rc < 0) {
1376                         cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1377                                  __func__);
1378                         return -ERESTARTSYS;
1379                 }
1380
1381                 /* are we still trying to reconnect? */
1382                 spin_lock(&server->srv_lock);
1383                 if (server->tcpStatus != CifsNeedReconnect) {
1384                         spin_unlock(&server->srv_lock);
1385                         return 0;
1386                 }
1387                 spin_unlock(&server->srv_lock);
1388         } while (retry);
1389
1390         cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1391         return -EHOSTDOWN;
1392 }