Merge branch 'for-4.18/alps' into for-linus
[linux-2.6-microblaze.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21
22 #include <asm/elf.h>
23 #include <asm/tlb.h>
24 #include <asm/tlbflush.h>
25 #include "internal.h"
26
27 #define SEQ_PUT_DEC(str, val) \
28                 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
29 void task_mem(struct seq_file *m, struct mm_struct *mm)
30 {
31         unsigned long text, lib, swap, anon, file, shmem;
32         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
33
34         anon = get_mm_counter(mm, MM_ANONPAGES);
35         file = get_mm_counter(mm, MM_FILEPAGES);
36         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
37
38         /*
39          * Note: to minimize their overhead, mm maintains hiwater_vm and
40          * hiwater_rss only when about to *lower* total_vm or rss.  Any
41          * collector of these hiwater stats must therefore get total_vm
42          * and rss too, which will usually be the higher.  Barriers? not
43          * worth the effort, such snapshots can always be inconsistent.
44          */
45         hiwater_vm = total_vm = mm->total_vm;
46         if (hiwater_vm < mm->hiwater_vm)
47                 hiwater_vm = mm->hiwater_vm;
48         hiwater_rss = total_rss = anon + file + shmem;
49         if (hiwater_rss < mm->hiwater_rss)
50                 hiwater_rss = mm->hiwater_rss;
51
52         /* split executable areas between text and lib */
53         text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
54         text = min(text, mm->exec_vm << PAGE_SHIFT);
55         lib = (mm->exec_vm << PAGE_SHIFT) - text;
56
57         swap = get_mm_counter(mm, MM_SWAPENTS);
58         SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
59         SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
60         SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
61         SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
62         SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
63         SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
64         SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
65         SEQ_PUT_DEC(" kB\nRssFile:\t", file);
66         SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
67         SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
68         SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
69         seq_put_decimal_ull_width(m,
70                     " kB\nVmExe:\t", text >> 10, 8);
71         seq_put_decimal_ull_width(m,
72                     " kB\nVmLib:\t", lib >> 10, 8);
73         seq_put_decimal_ull_width(m,
74                     " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
75         SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
76         seq_puts(m, " kB\n");
77         hugetlb_report_usage(m, mm);
78 }
79 #undef SEQ_PUT_DEC
80
81 unsigned long task_vsize(struct mm_struct *mm)
82 {
83         return PAGE_SIZE * mm->total_vm;
84 }
85
86 unsigned long task_statm(struct mm_struct *mm,
87                          unsigned long *shared, unsigned long *text,
88                          unsigned long *data, unsigned long *resident)
89 {
90         *shared = get_mm_counter(mm, MM_FILEPAGES) +
91                         get_mm_counter(mm, MM_SHMEMPAGES);
92         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
93                                                                 >> PAGE_SHIFT;
94         *data = mm->data_vm + mm->stack_vm;
95         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
96         return mm->total_vm;
97 }
98
99 #ifdef CONFIG_NUMA
100 /*
101  * Save get_task_policy() for show_numa_map().
102  */
103 static void hold_task_mempolicy(struct proc_maps_private *priv)
104 {
105         struct task_struct *task = priv->task;
106
107         task_lock(task);
108         priv->task_mempolicy = get_task_policy(task);
109         mpol_get(priv->task_mempolicy);
110         task_unlock(task);
111 }
112 static void release_task_mempolicy(struct proc_maps_private *priv)
113 {
114         mpol_put(priv->task_mempolicy);
115 }
116 #else
117 static void hold_task_mempolicy(struct proc_maps_private *priv)
118 {
119 }
120 static void release_task_mempolicy(struct proc_maps_private *priv)
121 {
122 }
123 #endif
124
125 static void vma_stop(struct proc_maps_private *priv)
126 {
127         struct mm_struct *mm = priv->mm;
128
129         release_task_mempolicy(priv);
130         up_read(&mm->mmap_sem);
131         mmput(mm);
132 }
133
134 static struct vm_area_struct *
135 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
136 {
137         if (vma == priv->tail_vma)
138                 return NULL;
139         return vma->vm_next ?: priv->tail_vma;
140 }
141
142 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
143 {
144         if (m->count < m->size) /* vma is copied successfully */
145                 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
146 }
147
148 static void *m_start(struct seq_file *m, loff_t *ppos)
149 {
150         struct proc_maps_private *priv = m->private;
151         unsigned long last_addr = m->version;
152         struct mm_struct *mm;
153         struct vm_area_struct *vma;
154         unsigned int pos = *ppos;
155
156         /* See m_cache_vma(). Zero at the start or after lseek. */
157         if (last_addr == -1UL)
158                 return NULL;
159
160         priv->task = get_proc_task(priv->inode);
161         if (!priv->task)
162                 return ERR_PTR(-ESRCH);
163
164         mm = priv->mm;
165         if (!mm || !mmget_not_zero(mm))
166                 return NULL;
167
168         down_read(&mm->mmap_sem);
169         hold_task_mempolicy(priv);
170         priv->tail_vma = get_gate_vma(mm);
171
172         if (last_addr) {
173                 vma = find_vma(mm, last_addr - 1);
174                 if (vma && vma->vm_start <= last_addr)
175                         vma = m_next_vma(priv, vma);
176                 if (vma)
177                         return vma;
178         }
179
180         m->version = 0;
181         if (pos < mm->map_count) {
182                 for (vma = mm->mmap; pos; pos--) {
183                         m->version = vma->vm_start;
184                         vma = vma->vm_next;
185                 }
186                 return vma;
187         }
188
189         /* we do not bother to update m->version in this case */
190         if (pos == mm->map_count && priv->tail_vma)
191                 return priv->tail_vma;
192
193         vma_stop(priv);
194         return NULL;
195 }
196
197 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
198 {
199         struct proc_maps_private *priv = m->private;
200         struct vm_area_struct *next;
201
202         (*pos)++;
203         next = m_next_vma(priv, v);
204         if (!next)
205                 vma_stop(priv);
206         return next;
207 }
208
209 static void m_stop(struct seq_file *m, void *v)
210 {
211         struct proc_maps_private *priv = m->private;
212
213         if (!IS_ERR_OR_NULL(v))
214                 vma_stop(priv);
215         if (priv->task) {
216                 put_task_struct(priv->task);
217                 priv->task = NULL;
218         }
219 }
220
221 static int proc_maps_open(struct inode *inode, struct file *file,
222                         const struct seq_operations *ops, int psize)
223 {
224         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
225
226         if (!priv)
227                 return -ENOMEM;
228
229         priv->inode = inode;
230         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
231         if (IS_ERR(priv->mm)) {
232                 int err = PTR_ERR(priv->mm);
233
234                 seq_release_private(inode, file);
235                 return err;
236         }
237
238         return 0;
239 }
240
241 static int proc_map_release(struct inode *inode, struct file *file)
242 {
243         struct seq_file *seq = file->private_data;
244         struct proc_maps_private *priv = seq->private;
245
246         if (priv->mm)
247                 mmdrop(priv->mm);
248
249         kfree(priv->rollup);
250         return seq_release_private(inode, file);
251 }
252
253 static int do_maps_open(struct inode *inode, struct file *file,
254                         const struct seq_operations *ops)
255 {
256         return proc_maps_open(inode, file, ops,
257                                 sizeof(struct proc_maps_private));
258 }
259
260 /*
261  * Indicate if the VMA is a stack for the given task; for
262  * /proc/PID/maps that is the stack of the main task.
263  */
264 static int is_stack(struct vm_area_struct *vma)
265 {
266         /*
267          * We make no effort to guess what a given thread considers to be
268          * its "stack".  It's not even well-defined for programs written
269          * languages like Go.
270          */
271         return vma->vm_start <= vma->vm_mm->start_stack &&
272                 vma->vm_end >= vma->vm_mm->start_stack;
273 }
274
275 static void show_vma_header_prefix(struct seq_file *m,
276                                    unsigned long start, unsigned long end,
277                                    vm_flags_t flags, unsigned long long pgoff,
278                                    dev_t dev, unsigned long ino)
279 {
280         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
281         seq_put_hex_ll(m, NULL, start, 8);
282         seq_put_hex_ll(m, "-", end, 8);
283         seq_putc(m, ' ');
284         seq_putc(m, flags & VM_READ ? 'r' : '-');
285         seq_putc(m, flags & VM_WRITE ? 'w' : '-');
286         seq_putc(m, flags & VM_EXEC ? 'x' : '-');
287         seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
288         seq_put_hex_ll(m, " ", pgoff, 8);
289         seq_put_hex_ll(m, " ", MAJOR(dev), 2);
290         seq_put_hex_ll(m, ":", MINOR(dev), 2);
291         seq_put_decimal_ull(m, " ", ino);
292         seq_putc(m, ' ');
293 }
294
295 static void
296 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
297 {
298         struct mm_struct *mm = vma->vm_mm;
299         struct file *file = vma->vm_file;
300         vm_flags_t flags = vma->vm_flags;
301         unsigned long ino = 0;
302         unsigned long long pgoff = 0;
303         unsigned long start, end;
304         dev_t dev = 0;
305         const char *name = NULL;
306
307         if (file) {
308                 struct inode *inode = file_inode(vma->vm_file);
309                 dev = inode->i_sb->s_dev;
310                 ino = inode->i_ino;
311                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
312         }
313
314         start = vma->vm_start;
315         end = vma->vm_end;
316         show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
317
318         /*
319          * Print the dentry name for named mappings, and a
320          * special [heap] marker for the heap:
321          */
322         if (file) {
323                 seq_pad(m, ' ');
324                 seq_file_path(m, file, "\n");
325                 goto done;
326         }
327
328         if (vma->vm_ops && vma->vm_ops->name) {
329                 name = vma->vm_ops->name(vma);
330                 if (name)
331                         goto done;
332         }
333
334         name = arch_vma_name(vma);
335         if (!name) {
336                 if (!mm) {
337                         name = "[vdso]";
338                         goto done;
339                 }
340
341                 if (vma->vm_start <= mm->brk &&
342                     vma->vm_end >= mm->start_brk) {
343                         name = "[heap]";
344                         goto done;
345                 }
346
347                 if (is_stack(vma))
348                         name = "[stack]";
349         }
350
351 done:
352         if (name) {
353                 seq_pad(m, ' ');
354                 seq_puts(m, name);
355         }
356         seq_putc(m, '\n');
357 }
358
359 static int show_map(struct seq_file *m, void *v, int is_pid)
360 {
361         show_map_vma(m, v, is_pid);
362         m_cache_vma(m, v);
363         return 0;
364 }
365
366 static int show_pid_map(struct seq_file *m, void *v)
367 {
368         return show_map(m, v, 1);
369 }
370
371 static int show_tid_map(struct seq_file *m, void *v)
372 {
373         return show_map(m, v, 0);
374 }
375
376 static const struct seq_operations proc_pid_maps_op = {
377         .start  = m_start,
378         .next   = m_next,
379         .stop   = m_stop,
380         .show   = show_pid_map
381 };
382
383 static const struct seq_operations proc_tid_maps_op = {
384         .start  = m_start,
385         .next   = m_next,
386         .stop   = m_stop,
387         .show   = show_tid_map
388 };
389
390 static int pid_maps_open(struct inode *inode, struct file *file)
391 {
392         return do_maps_open(inode, file, &proc_pid_maps_op);
393 }
394
395 static int tid_maps_open(struct inode *inode, struct file *file)
396 {
397         return do_maps_open(inode, file, &proc_tid_maps_op);
398 }
399
400 const struct file_operations proc_pid_maps_operations = {
401         .open           = pid_maps_open,
402         .read           = seq_read,
403         .llseek         = seq_lseek,
404         .release        = proc_map_release,
405 };
406
407 const struct file_operations proc_tid_maps_operations = {
408         .open           = tid_maps_open,
409         .read           = seq_read,
410         .llseek         = seq_lseek,
411         .release        = proc_map_release,
412 };
413
414 /*
415  * Proportional Set Size(PSS): my share of RSS.
416  *
417  * PSS of a process is the count of pages it has in memory, where each
418  * page is divided by the number of processes sharing it.  So if a
419  * process has 1000 pages all to itself, and 1000 shared with one other
420  * process, its PSS will be 1500.
421  *
422  * To keep (accumulated) division errors low, we adopt a 64bit
423  * fixed-point pss counter to minimize division errors. So (pss >>
424  * PSS_SHIFT) would be the real byte count.
425  *
426  * A shift of 12 before division means (assuming 4K page size):
427  *      - 1M 3-user-pages add up to 8KB errors;
428  *      - supports mapcount up to 2^24, or 16M;
429  *      - supports PSS up to 2^52 bytes, or 4PB.
430  */
431 #define PSS_SHIFT 12
432
433 #ifdef CONFIG_PROC_PAGE_MONITOR
434 struct mem_size_stats {
435         bool first;
436         unsigned long resident;
437         unsigned long shared_clean;
438         unsigned long shared_dirty;
439         unsigned long private_clean;
440         unsigned long private_dirty;
441         unsigned long referenced;
442         unsigned long anonymous;
443         unsigned long lazyfree;
444         unsigned long anonymous_thp;
445         unsigned long shmem_thp;
446         unsigned long swap;
447         unsigned long shared_hugetlb;
448         unsigned long private_hugetlb;
449         unsigned long first_vma_start;
450         u64 pss;
451         u64 pss_locked;
452         u64 swap_pss;
453         bool check_shmem_swap;
454 };
455
456 static void smaps_account(struct mem_size_stats *mss, struct page *page,
457                 bool compound, bool young, bool dirty)
458 {
459         int i, nr = compound ? 1 << compound_order(page) : 1;
460         unsigned long size = nr * PAGE_SIZE;
461
462         if (PageAnon(page)) {
463                 mss->anonymous += size;
464                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
465                         mss->lazyfree += size;
466         }
467
468         mss->resident += size;
469         /* Accumulate the size in pages that have been accessed. */
470         if (young || page_is_young(page) || PageReferenced(page))
471                 mss->referenced += size;
472
473         /*
474          * page_count(page) == 1 guarantees the page is mapped exactly once.
475          * If any subpage of the compound page mapped with PTE it would elevate
476          * page_count().
477          */
478         if (page_count(page) == 1) {
479                 if (dirty || PageDirty(page))
480                         mss->private_dirty += size;
481                 else
482                         mss->private_clean += size;
483                 mss->pss += (u64)size << PSS_SHIFT;
484                 return;
485         }
486
487         for (i = 0; i < nr; i++, page++) {
488                 int mapcount = page_mapcount(page);
489
490                 if (mapcount >= 2) {
491                         if (dirty || PageDirty(page))
492                                 mss->shared_dirty += PAGE_SIZE;
493                         else
494                                 mss->shared_clean += PAGE_SIZE;
495                         mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
496                 } else {
497                         if (dirty || PageDirty(page))
498                                 mss->private_dirty += PAGE_SIZE;
499                         else
500                                 mss->private_clean += PAGE_SIZE;
501                         mss->pss += PAGE_SIZE << PSS_SHIFT;
502                 }
503         }
504 }
505
506 #ifdef CONFIG_SHMEM
507 static int smaps_pte_hole(unsigned long addr, unsigned long end,
508                 struct mm_walk *walk)
509 {
510         struct mem_size_stats *mss = walk->private;
511
512         mss->swap += shmem_partial_swap_usage(
513                         walk->vma->vm_file->f_mapping, addr, end);
514
515         return 0;
516 }
517 #endif
518
519 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
520                 struct mm_walk *walk)
521 {
522         struct mem_size_stats *mss = walk->private;
523         struct vm_area_struct *vma = walk->vma;
524         struct page *page = NULL;
525
526         if (pte_present(*pte)) {
527                 page = vm_normal_page(vma, addr, *pte);
528         } else if (is_swap_pte(*pte)) {
529                 swp_entry_t swpent = pte_to_swp_entry(*pte);
530
531                 if (!non_swap_entry(swpent)) {
532                         int mapcount;
533
534                         mss->swap += PAGE_SIZE;
535                         mapcount = swp_swapcount(swpent);
536                         if (mapcount >= 2) {
537                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
538
539                                 do_div(pss_delta, mapcount);
540                                 mss->swap_pss += pss_delta;
541                         } else {
542                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
543                         }
544                 } else if (is_migration_entry(swpent))
545                         page = migration_entry_to_page(swpent);
546                 else if (is_device_private_entry(swpent))
547                         page = device_private_entry_to_page(swpent);
548         } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
549                                                         && pte_none(*pte))) {
550                 page = find_get_entry(vma->vm_file->f_mapping,
551                                                 linear_page_index(vma, addr));
552                 if (!page)
553                         return;
554
555                 if (radix_tree_exceptional_entry(page))
556                         mss->swap += PAGE_SIZE;
557                 else
558                         put_page(page);
559
560                 return;
561         }
562
563         if (!page)
564                 return;
565
566         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
567 }
568
569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
570 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
571                 struct mm_walk *walk)
572 {
573         struct mem_size_stats *mss = walk->private;
574         struct vm_area_struct *vma = walk->vma;
575         struct page *page;
576
577         /* FOLL_DUMP will return -EFAULT on huge zero page */
578         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
579         if (IS_ERR_OR_NULL(page))
580                 return;
581         if (PageAnon(page))
582                 mss->anonymous_thp += HPAGE_PMD_SIZE;
583         else if (PageSwapBacked(page))
584                 mss->shmem_thp += HPAGE_PMD_SIZE;
585         else if (is_zone_device_page(page))
586                 /* pass */;
587         else
588                 VM_BUG_ON_PAGE(1, page);
589         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
590 }
591 #else
592 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
593                 struct mm_walk *walk)
594 {
595 }
596 #endif
597
598 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
599                            struct mm_walk *walk)
600 {
601         struct vm_area_struct *vma = walk->vma;
602         pte_t *pte;
603         spinlock_t *ptl;
604
605         ptl = pmd_trans_huge_lock(pmd, vma);
606         if (ptl) {
607                 if (pmd_present(*pmd))
608                         smaps_pmd_entry(pmd, addr, walk);
609                 spin_unlock(ptl);
610                 goto out;
611         }
612
613         if (pmd_trans_unstable(pmd))
614                 goto out;
615         /*
616          * The mmap_sem held all the way back in m_start() is what
617          * keeps khugepaged out of here and from collapsing things
618          * in here.
619          */
620         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
621         for (; addr != end; pte++, addr += PAGE_SIZE)
622                 smaps_pte_entry(pte, addr, walk);
623         pte_unmap_unlock(pte - 1, ptl);
624 out:
625         cond_resched();
626         return 0;
627 }
628
629 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
630 {
631         /*
632          * Don't forget to update Documentation/ on changes.
633          */
634         static const char mnemonics[BITS_PER_LONG][2] = {
635                 /*
636                  * In case if we meet a flag we don't know about.
637                  */
638                 [0 ... (BITS_PER_LONG-1)] = "??",
639
640                 [ilog2(VM_READ)]        = "rd",
641                 [ilog2(VM_WRITE)]       = "wr",
642                 [ilog2(VM_EXEC)]        = "ex",
643                 [ilog2(VM_SHARED)]      = "sh",
644                 [ilog2(VM_MAYREAD)]     = "mr",
645                 [ilog2(VM_MAYWRITE)]    = "mw",
646                 [ilog2(VM_MAYEXEC)]     = "me",
647                 [ilog2(VM_MAYSHARE)]    = "ms",
648                 [ilog2(VM_GROWSDOWN)]   = "gd",
649                 [ilog2(VM_PFNMAP)]      = "pf",
650                 [ilog2(VM_DENYWRITE)]   = "dw",
651 #ifdef CONFIG_X86_INTEL_MPX
652                 [ilog2(VM_MPX)]         = "mp",
653 #endif
654                 [ilog2(VM_LOCKED)]      = "lo",
655                 [ilog2(VM_IO)]          = "io",
656                 [ilog2(VM_SEQ_READ)]    = "sr",
657                 [ilog2(VM_RAND_READ)]   = "rr",
658                 [ilog2(VM_DONTCOPY)]    = "dc",
659                 [ilog2(VM_DONTEXPAND)]  = "de",
660                 [ilog2(VM_ACCOUNT)]     = "ac",
661                 [ilog2(VM_NORESERVE)]   = "nr",
662                 [ilog2(VM_HUGETLB)]     = "ht",
663                 [ilog2(VM_SYNC)]        = "sf",
664                 [ilog2(VM_ARCH_1)]      = "ar",
665                 [ilog2(VM_WIPEONFORK)]  = "wf",
666                 [ilog2(VM_DONTDUMP)]    = "dd",
667 #ifdef CONFIG_MEM_SOFT_DIRTY
668                 [ilog2(VM_SOFTDIRTY)]   = "sd",
669 #endif
670                 [ilog2(VM_MIXEDMAP)]    = "mm",
671                 [ilog2(VM_HUGEPAGE)]    = "hg",
672                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
673                 [ilog2(VM_MERGEABLE)]   = "mg",
674                 [ilog2(VM_UFFD_MISSING)]= "um",
675                 [ilog2(VM_UFFD_WP)]     = "uw",
676 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
677                 /* These come out via ProtectionKey: */
678                 [ilog2(VM_PKEY_BIT0)]   = "",
679                 [ilog2(VM_PKEY_BIT1)]   = "",
680                 [ilog2(VM_PKEY_BIT2)]   = "",
681                 [ilog2(VM_PKEY_BIT3)]   = "",
682 #endif
683         };
684         size_t i;
685
686         seq_puts(m, "VmFlags: ");
687         for (i = 0; i < BITS_PER_LONG; i++) {
688                 if (!mnemonics[i][0])
689                         continue;
690                 if (vma->vm_flags & (1UL << i)) {
691                         seq_putc(m, mnemonics[i][0]);
692                         seq_putc(m, mnemonics[i][1]);
693                         seq_putc(m, ' ');
694                 }
695         }
696         seq_putc(m, '\n');
697 }
698
699 #ifdef CONFIG_HUGETLB_PAGE
700 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
701                                  unsigned long addr, unsigned long end,
702                                  struct mm_walk *walk)
703 {
704         struct mem_size_stats *mss = walk->private;
705         struct vm_area_struct *vma = walk->vma;
706         struct page *page = NULL;
707
708         if (pte_present(*pte)) {
709                 page = vm_normal_page(vma, addr, *pte);
710         } else if (is_swap_pte(*pte)) {
711                 swp_entry_t swpent = pte_to_swp_entry(*pte);
712
713                 if (is_migration_entry(swpent))
714                         page = migration_entry_to_page(swpent);
715                 else if (is_device_private_entry(swpent))
716                         page = device_private_entry_to_page(swpent);
717         }
718         if (page) {
719                 int mapcount = page_mapcount(page);
720
721                 if (mapcount >= 2)
722                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
723                 else
724                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
725         }
726         return 0;
727 }
728 #endif /* HUGETLB_PAGE */
729
730 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
731 {
732 }
733
734 #define SEQ_PUT_DEC(str, val) \
735                 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
736 static int show_smap(struct seq_file *m, void *v, int is_pid)
737 {
738         struct proc_maps_private *priv = m->private;
739         struct vm_area_struct *vma = v;
740         struct mem_size_stats mss_stack;
741         struct mem_size_stats *mss;
742         struct mm_walk smaps_walk = {
743                 .pmd_entry = smaps_pte_range,
744 #ifdef CONFIG_HUGETLB_PAGE
745                 .hugetlb_entry = smaps_hugetlb_range,
746 #endif
747                 .mm = vma->vm_mm,
748         };
749         int ret = 0;
750         bool rollup_mode;
751         bool last_vma;
752
753         if (priv->rollup) {
754                 rollup_mode = true;
755                 mss = priv->rollup;
756                 if (mss->first) {
757                         mss->first_vma_start = vma->vm_start;
758                         mss->first = false;
759                 }
760                 last_vma = !m_next_vma(priv, vma);
761         } else {
762                 rollup_mode = false;
763                 memset(&mss_stack, 0, sizeof(mss_stack));
764                 mss = &mss_stack;
765         }
766
767         smaps_walk.private = mss;
768
769 #ifdef CONFIG_SHMEM
770         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
771                 /*
772                  * For shared or readonly shmem mappings we know that all
773                  * swapped out pages belong to the shmem object, and we can
774                  * obtain the swap value much more efficiently. For private
775                  * writable mappings, we might have COW pages that are
776                  * not affected by the parent swapped out pages of the shmem
777                  * object, so we have to distinguish them during the page walk.
778                  * Unless we know that the shmem object (or the part mapped by
779                  * our VMA) has no swapped out pages at all.
780                  */
781                 unsigned long shmem_swapped = shmem_swap_usage(vma);
782
783                 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
784                                         !(vma->vm_flags & VM_WRITE)) {
785                         mss->swap = shmem_swapped;
786                 } else {
787                         mss->check_shmem_swap = true;
788                         smaps_walk.pte_hole = smaps_pte_hole;
789                 }
790         }
791 #endif
792
793         /* mmap_sem is held in m_start */
794         walk_page_vma(vma, &smaps_walk);
795         if (vma->vm_flags & VM_LOCKED)
796                 mss->pss_locked += mss->pss;
797
798         if (!rollup_mode) {
799                 show_map_vma(m, vma, is_pid);
800         } else if (last_vma) {
801                 show_vma_header_prefix(
802                         m, mss->first_vma_start, vma->vm_end, 0, 0, 0, 0);
803                 seq_pad(m, ' ');
804                 seq_puts(m, "[rollup]\n");
805         } else {
806                 ret = SEQ_SKIP;
807         }
808
809         if (!rollup_mode) {
810                 SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
811                 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
812                 SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
813                 seq_puts(m, " kB\n");
814         }
815
816         if (!rollup_mode || last_vma) {
817                 SEQ_PUT_DEC("Rss:            ", mss->resident);
818                 SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
819                 SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
820                 SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
821                 SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
822                 SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
823                 SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
824                 SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
825                 SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
826                 SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
827                 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
828                 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
829                 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
830                                           mss->private_hugetlb >> 10, 7);
831                 SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
832                 SEQ_PUT_DEC(" kB\nSwapPss:        ",
833                                                 mss->swap_pss >> PSS_SHIFT);
834                 SEQ_PUT_DEC(" kB\nLocked:         ", mss->pss >> PSS_SHIFT);
835                 seq_puts(m, " kB\n");
836         }
837         if (!rollup_mode) {
838                 arch_show_smap(m, vma);
839                 show_smap_vma_flags(m, vma);
840         }
841         m_cache_vma(m, vma);
842         return ret;
843 }
844 #undef SEQ_PUT_DEC
845
846 static int show_pid_smap(struct seq_file *m, void *v)
847 {
848         return show_smap(m, v, 1);
849 }
850
851 static int show_tid_smap(struct seq_file *m, void *v)
852 {
853         return show_smap(m, v, 0);
854 }
855
856 static const struct seq_operations proc_pid_smaps_op = {
857         .start  = m_start,
858         .next   = m_next,
859         .stop   = m_stop,
860         .show   = show_pid_smap
861 };
862
863 static const struct seq_operations proc_tid_smaps_op = {
864         .start  = m_start,
865         .next   = m_next,
866         .stop   = m_stop,
867         .show   = show_tid_smap
868 };
869
870 static int pid_smaps_open(struct inode *inode, struct file *file)
871 {
872         return do_maps_open(inode, file, &proc_pid_smaps_op);
873 }
874
875 static int pid_smaps_rollup_open(struct inode *inode, struct file *file)
876 {
877         struct seq_file *seq;
878         struct proc_maps_private *priv;
879         int ret = do_maps_open(inode, file, &proc_pid_smaps_op);
880
881         if (ret < 0)
882                 return ret;
883         seq = file->private_data;
884         priv = seq->private;
885         priv->rollup = kzalloc(sizeof(*priv->rollup), GFP_KERNEL);
886         if (!priv->rollup) {
887                 proc_map_release(inode, file);
888                 return -ENOMEM;
889         }
890         priv->rollup->first = true;
891         return 0;
892 }
893
894 static int tid_smaps_open(struct inode *inode, struct file *file)
895 {
896         return do_maps_open(inode, file, &proc_tid_smaps_op);
897 }
898
899 const struct file_operations proc_pid_smaps_operations = {
900         .open           = pid_smaps_open,
901         .read           = seq_read,
902         .llseek         = seq_lseek,
903         .release        = proc_map_release,
904 };
905
906 const struct file_operations proc_pid_smaps_rollup_operations = {
907         .open           = pid_smaps_rollup_open,
908         .read           = seq_read,
909         .llseek         = seq_lseek,
910         .release        = proc_map_release,
911 };
912
913 const struct file_operations proc_tid_smaps_operations = {
914         .open           = tid_smaps_open,
915         .read           = seq_read,
916         .llseek         = seq_lseek,
917         .release        = proc_map_release,
918 };
919
920 enum clear_refs_types {
921         CLEAR_REFS_ALL = 1,
922         CLEAR_REFS_ANON,
923         CLEAR_REFS_MAPPED,
924         CLEAR_REFS_SOFT_DIRTY,
925         CLEAR_REFS_MM_HIWATER_RSS,
926         CLEAR_REFS_LAST,
927 };
928
929 struct clear_refs_private {
930         enum clear_refs_types type;
931 };
932
933 #ifdef CONFIG_MEM_SOFT_DIRTY
934 static inline void clear_soft_dirty(struct vm_area_struct *vma,
935                 unsigned long addr, pte_t *pte)
936 {
937         /*
938          * The soft-dirty tracker uses #PF-s to catch writes
939          * to pages, so write-protect the pte as well. See the
940          * Documentation/vm/soft-dirty.txt for full description
941          * of how soft-dirty works.
942          */
943         pte_t ptent = *pte;
944
945         if (pte_present(ptent)) {
946                 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
947                 ptent = pte_wrprotect(ptent);
948                 ptent = pte_clear_soft_dirty(ptent);
949                 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
950         } else if (is_swap_pte(ptent)) {
951                 ptent = pte_swp_clear_soft_dirty(ptent);
952                 set_pte_at(vma->vm_mm, addr, pte, ptent);
953         }
954 }
955 #else
956 static inline void clear_soft_dirty(struct vm_area_struct *vma,
957                 unsigned long addr, pte_t *pte)
958 {
959 }
960 #endif
961
962 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
963 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
964                 unsigned long addr, pmd_t *pmdp)
965 {
966         pmd_t old, pmd = *pmdp;
967
968         if (pmd_present(pmd)) {
969                 /* See comment in change_huge_pmd() */
970                 old = pmdp_invalidate(vma, addr, pmdp);
971                 if (pmd_dirty(old))
972                         pmd = pmd_mkdirty(pmd);
973                 if (pmd_young(old))
974                         pmd = pmd_mkyoung(pmd);
975
976                 pmd = pmd_wrprotect(pmd);
977                 pmd = pmd_clear_soft_dirty(pmd);
978
979                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
980         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
981                 pmd = pmd_swp_clear_soft_dirty(pmd);
982                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
983         }
984 }
985 #else
986 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
987                 unsigned long addr, pmd_t *pmdp)
988 {
989 }
990 #endif
991
992 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
993                                 unsigned long end, struct mm_walk *walk)
994 {
995         struct clear_refs_private *cp = walk->private;
996         struct vm_area_struct *vma = walk->vma;
997         pte_t *pte, ptent;
998         spinlock_t *ptl;
999         struct page *page;
1000
1001         ptl = pmd_trans_huge_lock(pmd, vma);
1002         if (ptl) {
1003                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1004                         clear_soft_dirty_pmd(vma, addr, pmd);
1005                         goto out;
1006                 }
1007
1008                 if (!pmd_present(*pmd))
1009                         goto out;
1010
1011                 page = pmd_page(*pmd);
1012
1013                 /* Clear accessed and referenced bits. */
1014                 pmdp_test_and_clear_young(vma, addr, pmd);
1015                 test_and_clear_page_young(page);
1016                 ClearPageReferenced(page);
1017 out:
1018                 spin_unlock(ptl);
1019                 return 0;
1020         }
1021
1022         if (pmd_trans_unstable(pmd))
1023                 return 0;
1024
1025         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1026         for (; addr != end; pte++, addr += PAGE_SIZE) {
1027                 ptent = *pte;
1028
1029                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1030                         clear_soft_dirty(vma, addr, pte);
1031                         continue;
1032                 }
1033
1034                 if (!pte_present(ptent))
1035                         continue;
1036
1037                 page = vm_normal_page(vma, addr, ptent);
1038                 if (!page)
1039                         continue;
1040
1041                 /* Clear accessed and referenced bits. */
1042                 ptep_test_and_clear_young(vma, addr, pte);
1043                 test_and_clear_page_young(page);
1044                 ClearPageReferenced(page);
1045         }
1046         pte_unmap_unlock(pte - 1, ptl);
1047         cond_resched();
1048         return 0;
1049 }
1050
1051 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1052                                 struct mm_walk *walk)
1053 {
1054         struct clear_refs_private *cp = walk->private;
1055         struct vm_area_struct *vma = walk->vma;
1056
1057         if (vma->vm_flags & VM_PFNMAP)
1058                 return 1;
1059
1060         /*
1061          * Writing 1 to /proc/pid/clear_refs affects all pages.
1062          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1063          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1064          * Writing 4 to /proc/pid/clear_refs affects all pages.
1065          */
1066         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1067                 return 1;
1068         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1069                 return 1;
1070         return 0;
1071 }
1072
1073 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1074                                 size_t count, loff_t *ppos)
1075 {
1076         struct task_struct *task;
1077         char buffer[PROC_NUMBUF];
1078         struct mm_struct *mm;
1079         struct vm_area_struct *vma;
1080         enum clear_refs_types type;
1081         struct mmu_gather tlb;
1082         int itype;
1083         int rv;
1084
1085         memset(buffer, 0, sizeof(buffer));
1086         if (count > sizeof(buffer) - 1)
1087                 count = sizeof(buffer) - 1;
1088         if (copy_from_user(buffer, buf, count))
1089                 return -EFAULT;
1090         rv = kstrtoint(strstrip(buffer), 10, &itype);
1091         if (rv < 0)
1092                 return rv;
1093         type = (enum clear_refs_types)itype;
1094         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1095                 return -EINVAL;
1096
1097         task = get_proc_task(file_inode(file));
1098         if (!task)
1099                 return -ESRCH;
1100         mm = get_task_mm(task);
1101         if (mm) {
1102                 struct clear_refs_private cp = {
1103                         .type = type,
1104                 };
1105                 struct mm_walk clear_refs_walk = {
1106                         .pmd_entry = clear_refs_pte_range,
1107                         .test_walk = clear_refs_test_walk,
1108                         .mm = mm,
1109                         .private = &cp,
1110                 };
1111
1112                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1113                         if (down_write_killable(&mm->mmap_sem)) {
1114                                 count = -EINTR;
1115                                 goto out_mm;
1116                         }
1117
1118                         /*
1119                          * Writing 5 to /proc/pid/clear_refs resets the peak
1120                          * resident set size to this mm's current rss value.
1121                          */
1122                         reset_mm_hiwater_rss(mm);
1123                         up_write(&mm->mmap_sem);
1124                         goto out_mm;
1125                 }
1126
1127                 down_read(&mm->mmap_sem);
1128                 tlb_gather_mmu(&tlb, mm, 0, -1);
1129                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1130                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1131                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1132                                         continue;
1133                                 up_read(&mm->mmap_sem);
1134                                 if (down_write_killable(&mm->mmap_sem)) {
1135                                         count = -EINTR;
1136                                         goto out_mm;
1137                                 }
1138                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1139                                         vma->vm_flags &= ~VM_SOFTDIRTY;
1140                                         vma_set_page_prot(vma);
1141                                 }
1142                                 downgrade_write(&mm->mmap_sem);
1143                                 break;
1144                         }
1145                         mmu_notifier_invalidate_range_start(mm, 0, -1);
1146                 }
1147                 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1148                 if (type == CLEAR_REFS_SOFT_DIRTY)
1149                         mmu_notifier_invalidate_range_end(mm, 0, -1);
1150                 tlb_finish_mmu(&tlb, 0, -1);
1151                 up_read(&mm->mmap_sem);
1152 out_mm:
1153                 mmput(mm);
1154         }
1155         put_task_struct(task);
1156
1157         return count;
1158 }
1159
1160 const struct file_operations proc_clear_refs_operations = {
1161         .write          = clear_refs_write,
1162         .llseek         = noop_llseek,
1163 };
1164
1165 typedef struct {
1166         u64 pme;
1167 } pagemap_entry_t;
1168
1169 struct pagemapread {
1170         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1171         pagemap_entry_t *buffer;
1172         bool show_pfn;
1173 };
1174
1175 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1176 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1177
1178 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1179 #define PM_PFRAME_BITS          55
1180 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1181 #define PM_SOFT_DIRTY           BIT_ULL(55)
1182 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1183 #define PM_FILE                 BIT_ULL(61)
1184 #define PM_SWAP                 BIT_ULL(62)
1185 #define PM_PRESENT              BIT_ULL(63)
1186
1187 #define PM_END_OF_BUFFER    1
1188
1189 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1190 {
1191         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1192 }
1193
1194 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1195                           struct pagemapread *pm)
1196 {
1197         pm->buffer[pm->pos++] = *pme;
1198         if (pm->pos >= pm->len)
1199                 return PM_END_OF_BUFFER;
1200         return 0;
1201 }
1202
1203 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1204                                 struct mm_walk *walk)
1205 {
1206         struct pagemapread *pm = walk->private;
1207         unsigned long addr = start;
1208         int err = 0;
1209
1210         while (addr < end) {
1211                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1212                 pagemap_entry_t pme = make_pme(0, 0);
1213                 /* End of address space hole, which we mark as non-present. */
1214                 unsigned long hole_end;
1215
1216                 if (vma)
1217                         hole_end = min(end, vma->vm_start);
1218                 else
1219                         hole_end = end;
1220
1221                 for (; addr < hole_end; addr += PAGE_SIZE) {
1222                         err = add_to_pagemap(addr, &pme, pm);
1223                         if (err)
1224                                 goto out;
1225                 }
1226
1227                 if (!vma)
1228                         break;
1229
1230                 /* Addresses in the VMA. */
1231                 if (vma->vm_flags & VM_SOFTDIRTY)
1232                         pme = make_pme(0, PM_SOFT_DIRTY);
1233                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1234                         err = add_to_pagemap(addr, &pme, pm);
1235                         if (err)
1236                                 goto out;
1237                 }
1238         }
1239 out:
1240         return err;
1241 }
1242
1243 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1244                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1245 {
1246         u64 frame = 0, flags = 0;
1247         struct page *page = NULL;
1248
1249         if (pte_present(pte)) {
1250                 if (pm->show_pfn)
1251                         frame = pte_pfn(pte);
1252                 flags |= PM_PRESENT;
1253                 page = _vm_normal_page(vma, addr, pte, true);
1254                 if (pte_soft_dirty(pte))
1255                         flags |= PM_SOFT_DIRTY;
1256         } else if (is_swap_pte(pte)) {
1257                 swp_entry_t entry;
1258                 if (pte_swp_soft_dirty(pte))
1259                         flags |= PM_SOFT_DIRTY;
1260                 entry = pte_to_swp_entry(pte);
1261                 frame = swp_type(entry) |
1262                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1263                 flags |= PM_SWAP;
1264                 if (is_migration_entry(entry))
1265                         page = migration_entry_to_page(entry);
1266
1267                 if (is_device_private_entry(entry))
1268                         page = device_private_entry_to_page(entry);
1269         }
1270
1271         if (page && !PageAnon(page))
1272                 flags |= PM_FILE;
1273         if (page && page_mapcount(page) == 1)
1274                 flags |= PM_MMAP_EXCLUSIVE;
1275         if (vma->vm_flags & VM_SOFTDIRTY)
1276                 flags |= PM_SOFT_DIRTY;
1277
1278         return make_pme(frame, flags);
1279 }
1280
1281 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1282                              struct mm_walk *walk)
1283 {
1284         struct vm_area_struct *vma = walk->vma;
1285         struct pagemapread *pm = walk->private;
1286         spinlock_t *ptl;
1287         pte_t *pte, *orig_pte;
1288         int err = 0;
1289
1290 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1291         ptl = pmd_trans_huge_lock(pmdp, vma);
1292         if (ptl) {
1293                 u64 flags = 0, frame = 0;
1294                 pmd_t pmd = *pmdp;
1295                 struct page *page = NULL;
1296
1297                 if (vma->vm_flags & VM_SOFTDIRTY)
1298                         flags |= PM_SOFT_DIRTY;
1299
1300                 if (pmd_present(pmd)) {
1301                         page = pmd_page(pmd);
1302
1303                         flags |= PM_PRESENT;
1304                         if (pmd_soft_dirty(pmd))
1305                                 flags |= PM_SOFT_DIRTY;
1306                         if (pm->show_pfn)
1307                                 frame = pmd_pfn(pmd) +
1308                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1309                 }
1310 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1311                 else if (is_swap_pmd(pmd)) {
1312                         swp_entry_t entry = pmd_to_swp_entry(pmd);
1313
1314                         frame = swp_type(entry) |
1315                                 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1316                         flags |= PM_SWAP;
1317                         if (pmd_swp_soft_dirty(pmd))
1318                                 flags |= PM_SOFT_DIRTY;
1319                         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1320                         page = migration_entry_to_page(entry);
1321                 }
1322 #endif
1323
1324                 if (page && page_mapcount(page) == 1)
1325                         flags |= PM_MMAP_EXCLUSIVE;
1326
1327                 for (; addr != end; addr += PAGE_SIZE) {
1328                         pagemap_entry_t pme = make_pme(frame, flags);
1329
1330                         err = add_to_pagemap(addr, &pme, pm);
1331                         if (err)
1332                                 break;
1333                         if (pm->show_pfn && (flags & PM_PRESENT))
1334                                 frame++;
1335                 }
1336                 spin_unlock(ptl);
1337                 return err;
1338         }
1339
1340         if (pmd_trans_unstable(pmdp))
1341                 return 0;
1342 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1343
1344         /*
1345          * We can assume that @vma always points to a valid one and @end never
1346          * goes beyond vma->vm_end.
1347          */
1348         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1349         for (; addr < end; pte++, addr += PAGE_SIZE) {
1350                 pagemap_entry_t pme;
1351
1352                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1353                 err = add_to_pagemap(addr, &pme, pm);
1354                 if (err)
1355                         break;
1356         }
1357         pte_unmap_unlock(orig_pte, ptl);
1358
1359         cond_resched();
1360
1361         return err;
1362 }
1363
1364 #ifdef CONFIG_HUGETLB_PAGE
1365 /* This function walks within one hugetlb entry in the single call */
1366 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1367                                  unsigned long addr, unsigned long end,
1368                                  struct mm_walk *walk)
1369 {
1370         struct pagemapread *pm = walk->private;
1371         struct vm_area_struct *vma = walk->vma;
1372         u64 flags = 0, frame = 0;
1373         int err = 0;
1374         pte_t pte;
1375
1376         if (vma->vm_flags & VM_SOFTDIRTY)
1377                 flags |= PM_SOFT_DIRTY;
1378
1379         pte = huge_ptep_get(ptep);
1380         if (pte_present(pte)) {
1381                 struct page *page = pte_page(pte);
1382
1383                 if (!PageAnon(page))
1384                         flags |= PM_FILE;
1385
1386                 if (page_mapcount(page) == 1)
1387                         flags |= PM_MMAP_EXCLUSIVE;
1388
1389                 flags |= PM_PRESENT;
1390                 if (pm->show_pfn)
1391                         frame = pte_pfn(pte) +
1392                                 ((addr & ~hmask) >> PAGE_SHIFT);
1393         }
1394
1395         for (; addr != end; addr += PAGE_SIZE) {
1396                 pagemap_entry_t pme = make_pme(frame, flags);
1397
1398                 err = add_to_pagemap(addr, &pme, pm);
1399                 if (err)
1400                         return err;
1401                 if (pm->show_pfn && (flags & PM_PRESENT))
1402                         frame++;
1403         }
1404
1405         cond_resched();
1406
1407         return err;
1408 }
1409 #endif /* HUGETLB_PAGE */
1410
1411 /*
1412  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1413  *
1414  * For each page in the address space, this file contains one 64-bit entry
1415  * consisting of the following:
1416  *
1417  * Bits 0-54  page frame number (PFN) if present
1418  * Bits 0-4   swap type if swapped
1419  * Bits 5-54  swap offset if swapped
1420  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1421  * Bit  56    page exclusively mapped
1422  * Bits 57-60 zero
1423  * Bit  61    page is file-page or shared-anon
1424  * Bit  62    page swapped
1425  * Bit  63    page present
1426  *
1427  * If the page is not present but in swap, then the PFN contains an
1428  * encoding of the swap file number and the page's offset into the
1429  * swap. Unmapped pages return a null PFN. This allows determining
1430  * precisely which pages are mapped (or in swap) and comparing mapped
1431  * pages between processes.
1432  *
1433  * Efficient users of this interface will use /proc/pid/maps to
1434  * determine which areas of memory are actually mapped and llseek to
1435  * skip over unmapped regions.
1436  */
1437 static ssize_t pagemap_read(struct file *file, char __user *buf,
1438                             size_t count, loff_t *ppos)
1439 {
1440         struct mm_struct *mm = file->private_data;
1441         struct pagemapread pm;
1442         struct mm_walk pagemap_walk = {};
1443         unsigned long src;
1444         unsigned long svpfn;
1445         unsigned long start_vaddr;
1446         unsigned long end_vaddr;
1447         int ret = 0, copied = 0;
1448
1449         if (!mm || !mmget_not_zero(mm))
1450                 goto out;
1451
1452         ret = -EINVAL;
1453         /* file position must be aligned */
1454         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1455                 goto out_mm;
1456
1457         ret = 0;
1458         if (!count)
1459                 goto out_mm;
1460
1461         /* do not disclose physical addresses: attack vector */
1462         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1463
1464         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1465         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_KERNEL);
1466         ret = -ENOMEM;
1467         if (!pm.buffer)
1468                 goto out_mm;
1469
1470         pagemap_walk.pmd_entry = pagemap_pmd_range;
1471         pagemap_walk.pte_hole = pagemap_pte_hole;
1472 #ifdef CONFIG_HUGETLB_PAGE
1473         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1474 #endif
1475         pagemap_walk.mm = mm;
1476         pagemap_walk.private = &pm;
1477
1478         src = *ppos;
1479         svpfn = src / PM_ENTRY_BYTES;
1480         start_vaddr = svpfn << PAGE_SHIFT;
1481         end_vaddr = mm->task_size;
1482
1483         /* watch out for wraparound */
1484         if (svpfn > mm->task_size >> PAGE_SHIFT)
1485                 start_vaddr = end_vaddr;
1486
1487         /*
1488          * The odds are that this will stop walking way
1489          * before end_vaddr, because the length of the
1490          * user buffer is tracked in "pm", and the walk
1491          * will stop when we hit the end of the buffer.
1492          */
1493         ret = 0;
1494         while (count && (start_vaddr < end_vaddr)) {
1495                 int len;
1496                 unsigned long end;
1497
1498                 pm.pos = 0;
1499                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1500                 /* overflow ? */
1501                 if (end < start_vaddr || end > end_vaddr)
1502                         end = end_vaddr;
1503                 down_read(&mm->mmap_sem);
1504                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1505                 up_read(&mm->mmap_sem);
1506                 start_vaddr = end;
1507
1508                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1509                 if (copy_to_user(buf, pm.buffer, len)) {
1510                         ret = -EFAULT;
1511                         goto out_free;
1512                 }
1513                 copied += len;
1514                 buf += len;
1515                 count -= len;
1516         }
1517         *ppos += copied;
1518         if (!ret || ret == PM_END_OF_BUFFER)
1519                 ret = copied;
1520
1521 out_free:
1522         kfree(pm.buffer);
1523 out_mm:
1524         mmput(mm);
1525 out:
1526         return ret;
1527 }
1528
1529 static int pagemap_open(struct inode *inode, struct file *file)
1530 {
1531         struct mm_struct *mm;
1532
1533         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1534         if (IS_ERR(mm))
1535                 return PTR_ERR(mm);
1536         file->private_data = mm;
1537         return 0;
1538 }
1539
1540 static int pagemap_release(struct inode *inode, struct file *file)
1541 {
1542         struct mm_struct *mm = file->private_data;
1543
1544         if (mm)
1545                 mmdrop(mm);
1546         return 0;
1547 }
1548
1549 const struct file_operations proc_pagemap_operations = {
1550         .llseek         = mem_lseek, /* borrow this */
1551         .read           = pagemap_read,
1552         .open           = pagemap_open,
1553         .release        = pagemap_release,
1554 };
1555 #endif /* CONFIG_PROC_PAGE_MONITOR */
1556
1557 #ifdef CONFIG_NUMA
1558
1559 struct numa_maps {
1560         unsigned long pages;
1561         unsigned long anon;
1562         unsigned long active;
1563         unsigned long writeback;
1564         unsigned long mapcount_max;
1565         unsigned long dirty;
1566         unsigned long swapcache;
1567         unsigned long node[MAX_NUMNODES];
1568 };
1569
1570 struct numa_maps_private {
1571         struct proc_maps_private proc_maps;
1572         struct numa_maps md;
1573 };
1574
1575 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1576                         unsigned long nr_pages)
1577 {
1578         int count = page_mapcount(page);
1579
1580         md->pages += nr_pages;
1581         if (pte_dirty || PageDirty(page))
1582                 md->dirty += nr_pages;
1583
1584         if (PageSwapCache(page))
1585                 md->swapcache += nr_pages;
1586
1587         if (PageActive(page) || PageUnevictable(page))
1588                 md->active += nr_pages;
1589
1590         if (PageWriteback(page))
1591                 md->writeback += nr_pages;
1592
1593         if (PageAnon(page))
1594                 md->anon += nr_pages;
1595
1596         if (count > md->mapcount_max)
1597                 md->mapcount_max = count;
1598
1599         md->node[page_to_nid(page)] += nr_pages;
1600 }
1601
1602 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1603                 unsigned long addr)
1604 {
1605         struct page *page;
1606         int nid;
1607
1608         if (!pte_present(pte))
1609                 return NULL;
1610
1611         page = vm_normal_page(vma, addr, pte);
1612         if (!page)
1613                 return NULL;
1614
1615         if (PageReserved(page))
1616                 return NULL;
1617
1618         nid = page_to_nid(page);
1619         if (!node_isset(nid, node_states[N_MEMORY]))
1620                 return NULL;
1621
1622         return page;
1623 }
1624
1625 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1626 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1627                                               struct vm_area_struct *vma,
1628                                               unsigned long addr)
1629 {
1630         struct page *page;
1631         int nid;
1632
1633         if (!pmd_present(pmd))
1634                 return NULL;
1635
1636         page = vm_normal_page_pmd(vma, addr, pmd);
1637         if (!page)
1638                 return NULL;
1639
1640         if (PageReserved(page))
1641                 return NULL;
1642
1643         nid = page_to_nid(page);
1644         if (!node_isset(nid, node_states[N_MEMORY]))
1645                 return NULL;
1646
1647         return page;
1648 }
1649 #endif
1650
1651 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1652                 unsigned long end, struct mm_walk *walk)
1653 {
1654         struct numa_maps *md = walk->private;
1655         struct vm_area_struct *vma = walk->vma;
1656         spinlock_t *ptl;
1657         pte_t *orig_pte;
1658         pte_t *pte;
1659
1660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1661         ptl = pmd_trans_huge_lock(pmd, vma);
1662         if (ptl) {
1663                 struct page *page;
1664
1665                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1666                 if (page)
1667                         gather_stats(page, md, pmd_dirty(*pmd),
1668                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1669                 spin_unlock(ptl);
1670                 return 0;
1671         }
1672
1673         if (pmd_trans_unstable(pmd))
1674                 return 0;
1675 #endif
1676         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1677         do {
1678                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1679                 if (!page)
1680                         continue;
1681                 gather_stats(page, md, pte_dirty(*pte), 1);
1682
1683         } while (pte++, addr += PAGE_SIZE, addr != end);
1684         pte_unmap_unlock(orig_pte, ptl);
1685         cond_resched();
1686         return 0;
1687 }
1688 #ifdef CONFIG_HUGETLB_PAGE
1689 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1690                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1691 {
1692         pte_t huge_pte = huge_ptep_get(pte);
1693         struct numa_maps *md;
1694         struct page *page;
1695
1696         if (!pte_present(huge_pte))
1697                 return 0;
1698
1699         page = pte_page(huge_pte);
1700         if (!page)
1701                 return 0;
1702
1703         md = walk->private;
1704         gather_stats(page, md, pte_dirty(huge_pte), 1);
1705         return 0;
1706 }
1707
1708 #else
1709 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1710                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1711 {
1712         return 0;
1713 }
1714 #endif
1715
1716 /*
1717  * Display pages allocated per node and memory policy via /proc.
1718  */
1719 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1720 {
1721         struct numa_maps_private *numa_priv = m->private;
1722         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1723         struct vm_area_struct *vma = v;
1724         struct numa_maps *md = &numa_priv->md;
1725         struct file *file = vma->vm_file;
1726         struct mm_struct *mm = vma->vm_mm;
1727         struct mm_walk walk = {
1728                 .hugetlb_entry = gather_hugetlb_stats,
1729                 .pmd_entry = gather_pte_stats,
1730                 .private = md,
1731                 .mm = mm,
1732         };
1733         struct mempolicy *pol;
1734         char buffer[64];
1735         int nid;
1736
1737         if (!mm)
1738                 return 0;
1739
1740         /* Ensure we start with an empty set of numa_maps statistics. */
1741         memset(md, 0, sizeof(*md));
1742
1743         pol = __get_vma_policy(vma, vma->vm_start);
1744         if (pol) {
1745                 mpol_to_str(buffer, sizeof(buffer), pol);
1746                 mpol_cond_put(pol);
1747         } else {
1748                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1749         }
1750
1751         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1752
1753         if (file) {
1754                 seq_puts(m, " file=");
1755                 seq_file_path(m, file, "\n\t= ");
1756         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1757                 seq_puts(m, " heap");
1758         } else if (is_stack(vma)) {
1759                 seq_puts(m, " stack");
1760         }
1761
1762         if (is_vm_hugetlb_page(vma))
1763                 seq_puts(m, " huge");
1764
1765         /* mmap_sem is held by m_start */
1766         walk_page_vma(vma, &walk);
1767
1768         if (!md->pages)
1769                 goto out;
1770
1771         if (md->anon)
1772                 seq_printf(m, " anon=%lu", md->anon);
1773
1774         if (md->dirty)
1775                 seq_printf(m, " dirty=%lu", md->dirty);
1776
1777         if (md->pages != md->anon && md->pages != md->dirty)
1778                 seq_printf(m, " mapped=%lu", md->pages);
1779
1780         if (md->mapcount_max > 1)
1781                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1782
1783         if (md->swapcache)
1784                 seq_printf(m, " swapcache=%lu", md->swapcache);
1785
1786         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1787                 seq_printf(m, " active=%lu", md->active);
1788
1789         if (md->writeback)
1790                 seq_printf(m, " writeback=%lu", md->writeback);
1791
1792         for_each_node_state(nid, N_MEMORY)
1793                 if (md->node[nid])
1794                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1795
1796         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1797 out:
1798         seq_putc(m, '\n');
1799         m_cache_vma(m, vma);
1800         return 0;
1801 }
1802
1803 static int show_pid_numa_map(struct seq_file *m, void *v)
1804 {
1805         return show_numa_map(m, v, 1);
1806 }
1807
1808 static int show_tid_numa_map(struct seq_file *m, void *v)
1809 {
1810         return show_numa_map(m, v, 0);
1811 }
1812
1813 static const struct seq_operations proc_pid_numa_maps_op = {
1814         .start  = m_start,
1815         .next   = m_next,
1816         .stop   = m_stop,
1817         .show   = show_pid_numa_map,
1818 };
1819
1820 static const struct seq_operations proc_tid_numa_maps_op = {
1821         .start  = m_start,
1822         .next   = m_next,
1823         .stop   = m_stop,
1824         .show   = show_tid_numa_map,
1825 };
1826
1827 static int numa_maps_open(struct inode *inode, struct file *file,
1828                           const struct seq_operations *ops)
1829 {
1830         return proc_maps_open(inode, file, ops,
1831                                 sizeof(struct numa_maps_private));
1832 }
1833
1834 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1835 {
1836         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1837 }
1838
1839 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1840 {
1841         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1842 }
1843
1844 const struct file_operations proc_pid_numa_maps_operations = {
1845         .open           = pid_numa_maps_open,
1846         .read           = seq_read,
1847         .llseek         = seq_lseek,
1848         .release        = proc_map_release,
1849 };
1850
1851 const struct file_operations proc_tid_numa_maps_operations = {
1852         .open           = tid_numa_maps_open,
1853         .read           = seq_read,
1854         .llseek         = seq_lseek,
1855         .release        = proc_map_release,
1856 };
1857 #endif /* CONFIG_NUMA */