Merge tag 'driver-core-5.13-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27
28 #define SEQ_PUT_DEC(str, val) \
29                 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32         unsigned long text, lib, swap, anon, file, shmem;
33         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35         anon = get_mm_counter(mm, MM_ANONPAGES);
36         file = get_mm_counter(mm, MM_FILEPAGES);
37         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39         /*
40          * Note: to minimize their overhead, mm maintains hiwater_vm and
41          * hiwater_rss only when about to *lower* total_vm or rss.  Any
42          * collector of these hiwater stats must therefore get total_vm
43          * and rss too, which will usually be the higher.  Barriers? not
44          * worth the effort, such snapshots can always be inconsistent.
45          */
46         hiwater_vm = total_vm = mm->total_vm;
47         if (hiwater_vm < mm->hiwater_vm)
48                 hiwater_vm = mm->hiwater_vm;
49         hiwater_rss = total_rss = anon + file + shmem;
50         if (hiwater_rss < mm->hiwater_rss)
51                 hiwater_rss = mm->hiwater_rss;
52
53         /* split executable areas between text and lib */
54         text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55         text = min(text, mm->exec_vm << PAGE_SHIFT);
56         lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58         swap = get_mm_counter(mm, MM_SWAPENTS);
59         SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60         SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61         SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62         SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63         SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64         SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65         SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66         SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67         SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68         SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69         SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70         seq_put_decimal_ull_width(m,
71                     " kB\nVmExe:\t", text >> 10, 8);
72         seq_put_decimal_ull_width(m,
73                     " kB\nVmLib:\t", lib >> 10, 8);
74         seq_put_decimal_ull_width(m,
75                     " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76         SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77         seq_puts(m, " kB\n");
78         hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84         return PAGE_SIZE * mm->total_vm;
85 }
86
87 unsigned long task_statm(struct mm_struct *mm,
88                          unsigned long *shared, unsigned long *text,
89                          unsigned long *data, unsigned long *resident)
90 {
91         *shared = get_mm_counter(mm, MM_FILEPAGES) +
92                         get_mm_counter(mm, MM_SHMEMPAGES);
93         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94                                                                 >> PAGE_SHIFT;
95         *data = mm->data_vm + mm->stack_vm;
96         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97         return mm->total_vm;
98 }
99
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106         struct task_struct *task = priv->task;
107
108         task_lock(task);
109         priv->task_mempolicy = get_task_policy(task);
110         mpol_get(priv->task_mempolicy);
111         task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115         mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125
126 static void *m_start(struct seq_file *m, loff_t *ppos)
127 {
128         struct proc_maps_private *priv = m->private;
129         unsigned long last_addr = *ppos;
130         struct mm_struct *mm;
131         struct vm_area_struct *vma;
132
133         /* See m_next(). Zero at the start or after lseek. */
134         if (last_addr == -1UL)
135                 return NULL;
136
137         priv->task = get_proc_task(priv->inode);
138         if (!priv->task)
139                 return ERR_PTR(-ESRCH);
140
141         mm = priv->mm;
142         if (!mm || !mmget_not_zero(mm)) {
143                 put_task_struct(priv->task);
144                 priv->task = NULL;
145                 return NULL;
146         }
147
148         if (mmap_read_lock_killable(mm)) {
149                 mmput(mm);
150                 put_task_struct(priv->task);
151                 priv->task = NULL;
152                 return ERR_PTR(-EINTR);
153         }
154
155         hold_task_mempolicy(priv);
156         priv->tail_vma = get_gate_vma(mm);
157
158         vma = find_vma(mm, last_addr);
159         if (vma)
160                 return vma;
161
162         return priv->tail_vma;
163 }
164
165 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
166 {
167         struct proc_maps_private *priv = m->private;
168         struct vm_area_struct *next, *vma = v;
169
170         if (vma == priv->tail_vma)
171                 next = NULL;
172         else if (vma->vm_next)
173                 next = vma->vm_next;
174         else
175                 next = priv->tail_vma;
176
177         *ppos = next ? next->vm_start : -1UL;
178
179         return next;
180 }
181
182 static void m_stop(struct seq_file *m, void *v)
183 {
184         struct proc_maps_private *priv = m->private;
185         struct mm_struct *mm = priv->mm;
186
187         if (!priv->task)
188                 return;
189
190         release_task_mempolicy(priv);
191         mmap_read_unlock(mm);
192         mmput(mm);
193         put_task_struct(priv->task);
194         priv->task = NULL;
195 }
196
197 static int proc_maps_open(struct inode *inode, struct file *file,
198                         const struct seq_operations *ops, int psize)
199 {
200         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
201
202         if (!priv)
203                 return -ENOMEM;
204
205         priv->inode = inode;
206         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
207         if (IS_ERR(priv->mm)) {
208                 int err = PTR_ERR(priv->mm);
209
210                 seq_release_private(inode, file);
211                 return err;
212         }
213
214         return 0;
215 }
216
217 static int proc_map_release(struct inode *inode, struct file *file)
218 {
219         struct seq_file *seq = file->private_data;
220         struct proc_maps_private *priv = seq->private;
221
222         if (priv->mm)
223                 mmdrop(priv->mm);
224
225         return seq_release_private(inode, file);
226 }
227
228 static int do_maps_open(struct inode *inode, struct file *file,
229                         const struct seq_operations *ops)
230 {
231         return proc_maps_open(inode, file, ops,
232                                 sizeof(struct proc_maps_private));
233 }
234
235 /*
236  * Indicate if the VMA is a stack for the given task; for
237  * /proc/PID/maps that is the stack of the main task.
238  */
239 static int is_stack(struct vm_area_struct *vma)
240 {
241         /*
242          * We make no effort to guess what a given thread considers to be
243          * its "stack".  It's not even well-defined for programs written
244          * languages like Go.
245          */
246         return vma->vm_start <= vma->vm_mm->start_stack &&
247                 vma->vm_end >= vma->vm_mm->start_stack;
248 }
249
250 static void show_vma_header_prefix(struct seq_file *m,
251                                    unsigned long start, unsigned long end,
252                                    vm_flags_t flags, unsigned long long pgoff,
253                                    dev_t dev, unsigned long ino)
254 {
255         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
256         seq_put_hex_ll(m, NULL, start, 8);
257         seq_put_hex_ll(m, "-", end, 8);
258         seq_putc(m, ' ');
259         seq_putc(m, flags & VM_READ ? 'r' : '-');
260         seq_putc(m, flags & VM_WRITE ? 'w' : '-');
261         seq_putc(m, flags & VM_EXEC ? 'x' : '-');
262         seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
263         seq_put_hex_ll(m, " ", pgoff, 8);
264         seq_put_hex_ll(m, " ", MAJOR(dev), 2);
265         seq_put_hex_ll(m, ":", MINOR(dev), 2);
266         seq_put_decimal_ull(m, " ", ino);
267         seq_putc(m, ' ');
268 }
269
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
272 {
273         struct mm_struct *mm = vma->vm_mm;
274         struct file *file = vma->vm_file;
275         vm_flags_t flags = vma->vm_flags;
276         unsigned long ino = 0;
277         unsigned long long pgoff = 0;
278         unsigned long start, end;
279         dev_t dev = 0;
280         const char *name = NULL;
281
282         if (file) {
283                 struct inode *inode = file_inode(vma->vm_file);
284                 dev = inode->i_sb->s_dev;
285                 ino = inode->i_ino;
286                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287         }
288
289         start = vma->vm_start;
290         end = vma->vm_end;
291         show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
292
293         /*
294          * Print the dentry name for named mappings, and a
295          * special [heap] marker for the heap:
296          */
297         if (file) {
298                 seq_pad(m, ' ');
299                 seq_file_path(m, file, "\n");
300                 goto done;
301         }
302
303         if (vma->vm_ops && vma->vm_ops->name) {
304                 name = vma->vm_ops->name(vma);
305                 if (name)
306                         goto done;
307         }
308
309         name = arch_vma_name(vma);
310         if (!name) {
311                 if (!mm) {
312                         name = "[vdso]";
313                         goto done;
314                 }
315
316                 if (vma->vm_start <= mm->brk &&
317                     vma->vm_end >= mm->start_brk) {
318                         name = "[heap]";
319                         goto done;
320                 }
321
322                 if (is_stack(vma))
323                         name = "[stack]";
324         }
325
326 done:
327         if (name) {
328                 seq_pad(m, ' ');
329                 seq_puts(m, name);
330         }
331         seq_putc(m, '\n');
332 }
333
334 static int show_map(struct seq_file *m, void *v)
335 {
336         show_map_vma(m, v);
337         return 0;
338 }
339
340 static const struct seq_operations proc_pid_maps_op = {
341         .start  = m_start,
342         .next   = m_next,
343         .stop   = m_stop,
344         .show   = show_map
345 };
346
347 static int pid_maps_open(struct inode *inode, struct file *file)
348 {
349         return do_maps_open(inode, file, &proc_pid_maps_op);
350 }
351
352 const struct file_operations proc_pid_maps_operations = {
353         .open           = pid_maps_open,
354         .read           = seq_read,
355         .llseek         = seq_lseek,
356         .release        = proc_map_release,
357 };
358
359 /*
360  * Proportional Set Size(PSS): my share of RSS.
361  *
362  * PSS of a process is the count of pages it has in memory, where each
363  * page is divided by the number of processes sharing it.  So if a
364  * process has 1000 pages all to itself, and 1000 shared with one other
365  * process, its PSS will be 1500.
366  *
367  * To keep (accumulated) division errors low, we adopt a 64bit
368  * fixed-point pss counter to minimize division errors. So (pss >>
369  * PSS_SHIFT) would be the real byte count.
370  *
371  * A shift of 12 before division means (assuming 4K page size):
372  *      - 1M 3-user-pages add up to 8KB errors;
373  *      - supports mapcount up to 2^24, or 16M;
374  *      - supports PSS up to 2^52 bytes, or 4PB.
375  */
376 #define PSS_SHIFT 12
377
378 #ifdef CONFIG_PROC_PAGE_MONITOR
379 struct mem_size_stats {
380         unsigned long resident;
381         unsigned long shared_clean;
382         unsigned long shared_dirty;
383         unsigned long private_clean;
384         unsigned long private_dirty;
385         unsigned long referenced;
386         unsigned long anonymous;
387         unsigned long lazyfree;
388         unsigned long anonymous_thp;
389         unsigned long shmem_thp;
390         unsigned long file_thp;
391         unsigned long swap;
392         unsigned long shared_hugetlb;
393         unsigned long private_hugetlb;
394         u64 pss;
395         u64 pss_anon;
396         u64 pss_file;
397         u64 pss_shmem;
398         u64 pss_locked;
399         u64 swap_pss;
400         bool check_shmem_swap;
401 };
402
403 static void smaps_page_accumulate(struct mem_size_stats *mss,
404                 struct page *page, unsigned long size, unsigned long pss,
405                 bool dirty, bool locked, bool private)
406 {
407         mss->pss += pss;
408
409         if (PageAnon(page))
410                 mss->pss_anon += pss;
411         else if (PageSwapBacked(page))
412                 mss->pss_shmem += pss;
413         else
414                 mss->pss_file += pss;
415
416         if (locked)
417                 mss->pss_locked += pss;
418
419         if (dirty || PageDirty(page)) {
420                 if (private)
421                         mss->private_dirty += size;
422                 else
423                         mss->shared_dirty += size;
424         } else {
425                 if (private)
426                         mss->private_clean += size;
427                 else
428                         mss->shared_clean += size;
429         }
430 }
431
432 static void smaps_account(struct mem_size_stats *mss, struct page *page,
433                 bool compound, bool young, bool dirty, bool locked)
434 {
435         int i, nr = compound ? compound_nr(page) : 1;
436         unsigned long size = nr * PAGE_SIZE;
437
438         /*
439          * First accumulate quantities that depend only on |size| and the type
440          * of the compound page.
441          */
442         if (PageAnon(page)) {
443                 mss->anonymous += size;
444                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
445                         mss->lazyfree += size;
446         }
447
448         mss->resident += size;
449         /* Accumulate the size in pages that have been accessed. */
450         if (young || page_is_young(page) || PageReferenced(page))
451                 mss->referenced += size;
452
453         /*
454          * Then accumulate quantities that may depend on sharing, or that may
455          * differ page-by-page.
456          *
457          * page_count(page) == 1 guarantees the page is mapped exactly once.
458          * If any subpage of the compound page mapped with PTE it would elevate
459          * page_count().
460          */
461         if (page_count(page) == 1) {
462                 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
463                         locked, true);
464                 return;
465         }
466         for (i = 0; i < nr; i++, page++) {
467                 int mapcount = page_mapcount(page);
468                 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
469                 if (mapcount >= 2)
470                         pss /= mapcount;
471                 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
472                                       mapcount < 2);
473         }
474 }
475
476 #ifdef CONFIG_SHMEM
477 static int smaps_pte_hole(unsigned long addr, unsigned long end,
478                           __always_unused int depth, struct mm_walk *walk)
479 {
480         struct mem_size_stats *mss = walk->private;
481
482         mss->swap += shmem_partial_swap_usage(
483                         walk->vma->vm_file->f_mapping, addr, end);
484
485         return 0;
486 }
487 #else
488 #define smaps_pte_hole          NULL
489 #endif /* CONFIG_SHMEM */
490
491 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
492                 struct mm_walk *walk)
493 {
494         struct mem_size_stats *mss = walk->private;
495         struct vm_area_struct *vma = walk->vma;
496         bool locked = !!(vma->vm_flags & VM_LOCKED);
497         struct page *page = NULL;
498
499         if (pte_present(*pte)) {
500                 page = vm_normal_page(vma, addr, *pte);
501         } else if (is_swap_pte(*pte)) {
502                 swp_entry_t swpent = pte_to_swp_entry(*pte);
503
504                 if (!non_swap_entry(swpent)) {
505                         int mapcount;
506
507                         mss->swap += PAGE_SIZE;
508                         mapcount = swp_swapcount(swpent);
509                         if (mapcount >= 2) {
510                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
511
512                                 do_div(pss_delta, mapcount);
513                                 mss->swap_pss += pss_delta;
514                         } else {
515                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
516                         }
517                 } else if (is_migration_entry(swpent))
518                         page = migration_entry_to_page(swpent);
519                 else if (is_device_private_entry(swpent))
520                         page = device_private_entry_to_page(swpent);
521         } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
522                                                         && pte_none(*pte))) {
523                 page = xa_load(&vma->vm_file->f_mapping->i_pages,
524                                                 linear_page_index(vma, addr));
525                 if (xa_is_value(page))
526                         mss->swap += PAGE_SIZE;
527                 return;
528         }
529
530         if (!page)
531                 return;
532
533         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
534 }
535
536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
537 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
538                 struct mm_walk *walk)
539 {
540         struct mem_size_stats *mss = walk->private;
541         struct vm_area_struct *vma = walk->vma;
542         bool locked = !!(vma->vm_flags & VM_LOCKED);
543         struct page *page = NULL;
544
545         if (pmd_present(*pmd)) {
546                 /* FOLL_DUMP will return -EFAULT on huge zero page */
547                 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
548         } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
549                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
550
551                 if (is_migration_entry(entry))
552                         page = migration_entry_to_page(entry);
553         }
554         if (IS_ERR_OR_NULL(page))
555                 return;
556         if (PageAnon(page))
557                 mss->anonymous_thp += HPAGE_PMD_SIZE;
558         else if (PageSwapBacked(page))
559                 mss->shmem_thp += HPAGE_PMD_SIZE;
560         else if (is_zone_device_page(page))
561                 /* pass */;
562         else
563                 mss->file_thp += HPAGE_PMD_SIZE;
564         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
565 }
566 #else
567 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
568                 struct mm_walk *walk)
569 {
570 }
571 #endif
572
573 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
574                            struct mm_walk *walk)
575 {
576         struct vm_area_struct *vma = walk->vma;
577         pte_t *pte;
578         spinlock_t *ptl;
579
580         ptl = pmd_trans_huge_lock(pmd, vma);
581         if (ptl) {
582                 smaps_pmd_entry(pmd, addr, walk);
583                 spin_unlock(ptl);
584                 goto out;
585         }
586
587         if (pmd_trans_unstable(pmd))
588                 goto out;
589         /*
590          * The mmap_lock held all the way back in m_start() is what
591          * keeps khugepaged out of here and from collapsing things
592          * in here.
593          */
594         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
595         for (; addr != end; pte++, addr += PAGE_SIZE)
596                 smaps_pte_entry(pte, addr, walk);
597         pte_unmap_unlock(pte - 1, ptl);
598 out:
599         cond_resched();
600         return 0;
601 }
602
603 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
604 {
605         /*
606          * Don't forget to update Documentation/ on changes.
607          */
608         static const char mnemonics[BITS_PER_LONG][2] = {
609                 /*
610                  * In case if we meet a flag we don't know about.
611                  */
612                 [0 ... (BITS_PER_LONG-1)] = "??",
613
614                 [ilog2(VM_READ)]        = "rd",
615                 [ilog2(VM_WRITE)]       = "wr",
616                 [ilog2(VM_EXEC)]        = "ex",
617                 [ilog2(VM_SHARED)]      = "sh",
618                 [ilog2(VM_MAYREAD)]     = "mr",
619                 [ilog2(VM_MAYWRITE)]    = "mw",
620                 [ilog2(VM_MAYEXEC)]     = "me",
621                 [ilog2(VM_MAYSHARE)]    = "ms",
622                 [ilog2(VM_GROWSDOWN)]   = "gd",
623                 [ilog2(VM_PFNMAP)]      = "pf",
624                 [ilog2(VM_DENYWRITE)]   = "dw",
625                 [ilog2(VM_LOCKED)]      = "lo",
626                 [ilog2(VM_IO)]          = "io",
627                 [ilog2(VM_SEQ_READ)]    = "sr",
628                 [ilog2(VM_RAND_READ)]   = "rr",
629                 [ilog2(VM_DONTCOPY)]    = "dc",
630                 [ilog2(VM_DONTEXPAND)]  = "de",
631                 [ilog2(VM_ACCOUNT)]     = "ac",
632                 [ilog2(VM_NORESERVE)]   = "nr",
633                 [ilog2(VM_HUGETLB)]     = "ht",
634                 [ilog2(VM_SYNC)]        = "sf",
635                 [ilog2(VM_ARCH_1)]      = "ar",
636                 [ilog2(VM_WIPEONFORK)]  = "wf",
637                 [ilog2(VM_DONTDUMP)]    = "dd",
638 #ifdef CONFIG_ARM64_BTI
639                 [ilog2(VM_ARM64_BTI)]   = "bt",
640 #endif
641 #ifdef CONFIG_MEM_SOFT_DIRTY
642                 [ilog2(VM_SOFTDIRTY)]   = "sd",
643 #endif
644                 [ilog2(VM_MIXEDMAP)]    = "mm",
645                 [ilog2(VM_HUGEPAGE)]    = "hg",
646                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
647                 [ilog2(VM_MERGEABLE)]   = "mg",
648                 [ilog2(VM_UFFD_MISSING)]= "um",
649                 [ilog2(VM_UFFD_WP)]     = "uw",
650 #ifdef CONFIG_ARM64_MTE
651                 [ilog2(VM_MTE)]         = "mt",
652                 [ilog2(VM_MTE_ALLOWED)] = "",
653 #endif
654 #ifdef CONFIG_ARCH_HAS_PKEYS
655                 /* These come out via ProtectionKey: */
656                 [ilog2(VM_PKEY_BIT0)]   = "",
657                 [ilog2(VM_PKEY_BIT1)]   = "",
658                 [ilog2(VM_PKEY_BIT2)]   = "",
659                 [ilog2(VM_PKEY_BIT3)]   = "",
660 #if VM_PKEY_BIT4
661                 [ilog2(VM_PKEY_BIT4)]   = "",
662 #endif
663 #endif /* CONFIG_ARCH_HAS_PKEYS */
664 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
665                 [ilog2(VM_UFFD_MINOR)]  = "ui",
666 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
667         };
668         size_t i;
669
670         seq_puts(m, "VmFlags: ");
671         for (i = 0; i < BITS_PER_LONG; i++) {
672                 if (!mnemonics[i][0])
673                         continue;
674                 if (vma->vm_flags & (1UL << i)) {
675                         seq_putc(m, mnemonics[i][0]);
676                         seq_putc(m, mnemonics[i][1]);
677                         seq_putc(m, ' ');
678                 }
679         }
680         seq_putc(m, '\n');
681 }
682
683 #ifdef CONFIG_HUGETLB_PAGE
684 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
685                                  unsigned long addr, unsigned long end,
686                                  struct mm_walk *walk)
687 {
688         struct mem_size_stats *mss = walk->private;
689         struct vm_area_struct *vma = walk->vma;
690         struct page *page = NULL;
691
692         if (pte_present(*pte)) {
693                 page = vm_normal_page(vma, addr, *pte);
694         } else if (is_swap_pte(*pte)) {
695                 swp_entry_t swpent = pte_to_swp_entry(*pte);
696
697                 if (is_migration_entry(swpent))
698                         page = migration_entry_to_page(swpent);
699                 else if (is_device_private_entry(swpent))
700                         page = device_private_entry_to_page(swpent);
701         }
702         if (page) {
703                 int mapcount = page_mapcount(page);
704
705                 if (mapcount >= 2)
706                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
707                 else
708                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
709         }
710         return 0;
711 }
712 #else
713 #define smaps_hugetlb_range     NULL
714 #endif /* HUGETLB_PAGE */
715
716 static const struct mm_walk_ops smaps_walk_ops = {
717         .pmd_entry              = smaps_pte_range,
718         .hugetlb_entry          = smaps_hugetlb_range,
719 };
720
721 static const struct mm_walk_ops smaps_shmem_walk_ops = {
722         .pmd_entry              = smaps_pte_range,
723         .hugetlb_entry          = smaps_hugetlb_range,
724         .pte_hole               = smaps_pte_hole,
725 };
726
727 /*
728  * Gather mem stats from @vma with the indicated beginning
729  * address @start, and keep them in @mss.
730  *
731  * Use vm_start of @vma as the beginning address if @start is 0.
732  */
733 static void smap_gather_stats(struct vm_area_struct *vma,
734                 struct mem_size_stats *mss, unsigned long start)
735 {
736         const struct mm_walk_ops *ops = &smaps_walk_ops;
737
738         /* Invalid start */
739         if (start >= vma->vm_end)
740                 return;
741
742 #ifdef CONFIG_SHMEM
743         /* In case of smaps_rollup, reset the value from previous vma */
744         mss->check_shmem_swap = false;
745         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
746                 /*
747                  * For shared or readonly shmem mappings we know that all
748                  * swapped out pages belong to the shmem object, and we can
749                  * obtain the swap value much more efficiently. For private
750                  * writable mappings, we might have COW pages that are
751                  * not affected by the parent swapped out pages of the shmem
752                  * object, so we have to distinguish them during the page walk.
753                  * Unless we know that the shmem object (or the part mapped by
754                  * our VMA) has no swapped out pages at all.
755                  */
756                 unsigned long shmem_swapped = shmem_swap_usage(vma);
757
758                 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
759                                         !(vma->vm_flags & VM_WRITE))) {
760                         mss->swap += shmem_swapped;
761                 } else {
762                         mss->check_shmem_swap = true;
763                         ops = &smaps_shmem_walk_ops;
764                 }
765         }
766 #endif
767         /* mmap_lock is held in m_start */
768         if (!start)
769                 walk_page_vma(vma, ops, mss);
770         else
771                 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
772 }
773
774 #define SEQ_PUT_DEC(str, val) \
775                 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
776
777 /* Show the contents common for smaps and smaps_rollup */
778 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
779         bool rollup_mode)
780 {
781         SEQ_PUT_DEC("Rss:            ", mss->resident);
782         SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
783         if (rollup_mode) {
784                 /*
785                  * These are meaningful only for smaps_rollup, otherwise two of
786                  * them are zero, and the other one is the same as Pss.
787                  */
788                 SEQ_PUT_DEC(" kB\nPss_Anon:       ",
789                         mss->pss_anon >> PSS_SHIFT);
790                 SEQ_PUT_DEC(" kB\nPss_File:       ",
791                         mss->pss_file >> PSS_SHIFT);
792                 SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
793                         mss->pss_shmem >> PSS_SHIFT);
794         }
795         SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
796         SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
797         SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
798         SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
799         SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
800         SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
801         SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
802         SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
803         SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
804         SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
805         SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
806         seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
807                                   mss->private_hugetlb >> 10, 7);
808         SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
809         SEQ_PUT_DEC(" kB\nSwapPss:        ",
810                                         mss->swap_pss >> PSS_SHIFT);
811         SEQ_PUT_DEC(" kB\nLocked:         ",
812                                         mss->pss_locked >> PSS_SHIFT);
813         seq_puts(m, " kB\n");
814 }
815
816 static int show_smap(struct seq_file *m, void *v)
817 {
818         struct vm_area_struct *vma = v;
819         struct mem_size_stats mss;
820
821         memset(&mss, 0, sizeof(mss));
822
823         smap_gather_stats(vma, &mss, 0);
824
825         show_map_vma(m, vma);
826
827         SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
828         SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
829         SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
830         seq_puts(m, " kB\n");
831
832         __show_smap(m, &mss, false);
833
834         seq_printf(m, "THPeligible:    %d\n",
835                    transparent_hugepage_enabled(vma));
836
837         if (arch_pkeys_enabled())
838                 seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
839         show_smap_vma_flags(m, vma);
840
841         return 0;
842 }
843
844 static int show_smaps_rollup(struct seq_file *m, void *v)
845 {
846         struct proc_maps_private *priv = m->private;
847         struct mem_size_stats mss;
848         struct mm_struct *mm;
849         struct vm_area_struct *vma;
850         unsigned long last_vma_end = 0;
851         int ret = 0;
852
853         priv->task = get_proc_task(priv->inode);
854         if (!priv->task)
855                 return -ESRCH;
856
857         mm = priv->mm;
858         if (!mm || !mmget_not_zero(mm)) {
859                 ret = -ESRCH;
860                 goto out_put_task;
861         }
862
863         memset(&mss, 0, sizeof(mss));
864
865         ret = mmap_read_lock_killable(mm);
866         if (ret)
867                 goto out_put_mm;
868
869         hold_task_mempolicy(priv);
870
871         for (vma = priv->mm->mmap; vma;) {
872                 smap_gather_stats(vma, &mss, 0);
873                 last_vma_end = vma->vm_end;
874
875                 /*
876                  * Release mmap_lock temporarily if someone wants to
877                  * access it for write request.
878                  */
879                 if (mmap_lock_is_contended(mm)) {
880                         mmap_read_unlock(mm);
881                         ret = mmap_read_lock_killable(mm);
882                         if (ret) {
883                                 release_task_mempolicy(priv);
884                                 goto out_put_mm;
885                         }
886
887                         /*
888                          * After dropping the lock, there are four cases to
889                          * consider. See the following example for explanation.
890                          *
891                          *   +------+------+-----------+
892                          *   | VMA1 | VMA2 | VMA3      |
893                          *   +------+------+-----------+
894                          *   |      |      |           |
895                          *  4k     8k     16k         400k
896                          *
897                          * Suppose we drop the lock after reading VMA2 due to
898                          * contention, then we get:
899                          *
900                          *      last_vma_end = 16k
901                          *
902                          * 1) VMA2 is freed, but VMA3 exists:
903                          *
904                          *    find_vma(mm, 16k - 1) will return VMA3.
905                          *    In this case, just continue from VMA3.
906                          *
907                          * 2) VMA2 still exists:
908                          *
909                          *    find_vma(mm, 16k - 1) will return VMA2.
910                          *    Iterate the loop like the original one.
911                          *
912                          * 3) No more VMAs can be found:
913                          *
914                          *    find_vma(mm, 16k - 1) will return NULL.
915                          *    No more things to do, just break.
916                          *
917                          * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
918                          *
919                          *    find_vma(mm, 16k - 1) will return VMA' whose range
920                          *    contains last_vma_end.
921                          *    Iterate VMA' from last_vma_end.
922                          */
923                         vma = find_vma(mm, last_vma_end - 1);
924                         /* Case 3 above */
925                         if (!vma)
926                                 break;
927
928                         /* Case 1 above */
929                         if (vma->vm_start >= last_vma_end)
930                                 continue;
931
932                         /* Case 4 above */
933                         if (vma->vm_end > last_vma_end)
934                                 smap_gather_stats(vma, &mss, last_vma_end);
935                 }
936                 /* Case 2 above */
937                 vma = vma->vm_next;
938         }
939
940         show_vma_header_prefix(m, priv->mm->mmap->vm_start,
941                                last_vma_end, 0, 0, 0, 0);
942         seq_pad(m, ' ');
943         seq_puts(m, "[rollup]\n");
944
945         __show_smap(m, &mss, true);
946
947         release_task_mempolicy(priv);
948         mmap_read_unlock(mm);
949
950 out_put_mm:
951         mmput(mm);
952 out_put_task:
953         put_task_struct(priv->task);
954         priv->task = NULL;
955
956         return ret;
957 }
958 #undef SEQ_PUT_DEC
959
960 static const struct seq_operations proc_pid_smaps_op = {
961         .start  = m_start,
962         .next   = m_next,
963         .stop   = m_stop,
964         .show   = show_smap
965 };
966
967 static int pid_smaps_open(struct inode *inode, struct file *file)
968 {
969         return do_maps_open(inode, file, &proc_pid_smaps_op);
970 }
971
972 static int smaps_rollup_open(struct inode *inode, struct file *file)
973 {
974         int ret;
975         struct proc_maps_private *priv;
976
977         priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
978         if (!priv)
979                 return -ENOMEM;
980
981         ret = single_open(file, show_smaps_rollup, priv);
982         if (ret)
983                 goto out_free;
984
985         priv->inode = inode;
986         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
987         if (IS_ERR(priv->mm)) {
988                 ret = PTR_ERR(priv->mm);
989
990                 single_release(inode, file);
991                 goto out_free;
992         }
993
994         return 0;
995
996 out_free:
997         kfree(priv);
998         return ret;
999 }
1000
1001 static int smaps_rollup_release(struct inode *inode, struct file *file)
1002 {
1003         struct seq_file *seq = file->private_data;
1004         struct proc_maps_private *priv = seq->private;
1005
1006         if (priv->mm)
1007                 mmdrop(priv->mm);
1008
1009         kfree(priv);
1010         return single_release(inode, file);
1011 }
1012
1013 const struct file_operations proc_pid_smaps_operations = {
1014         .open           = pid_smaps_open,
1015         .read           = seq_read,
1016         .llseek         = seq_lseek,
1017         .release        = proc_map_release,
1018 };
1019
1020 const struct file_operations proc_pid_smaps_rollup_operations = {
1021         .open           = smaps_rollup_open,
1022         .read           = seq_read,
1023         .llseek         = seq_lseek,
1024         .release        = smaps_rollup_release,
1025 };
1026
1027 enum clear_refs_types {
1028         CLEAR_REFS_ALL = 1,
1029         CLEAR_REFS_ANON,
1030         CLEAR_REFS_MAPPED,
1031         CLEAR_REFS_SOFT_DIRTY,
1032         CLEAR_REFS_MM_HIWATER_RSS,
1033         CLEAR_REFS_LAST,
1034 };
1035
1036 struct clear_refs_private {
1037         enum clear_refs_types type;
1038 };
1039
1040 #ifdef CONFIG_MEM_SOFT_DIRTY
1041
1042 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1043 {
1044         struct page *page;
1045
1046         if (!pte_write(pte))
1047                 return false;
1048         if (!is_cow_mapping(vma->vm_flags))
1049                 return false;
1050         if (likely(!atomic_read(&vma->vm_mm->has_pinned)))
1051                 return false;
1052         page = vm_normal_page(vma, addr, pte);
1053         if (!page)
1054                 return false;
1055         return page_maybe_dma_pinned(page);
1056 }
1057
1058 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1059                 unsigned long addr, pte_t *pte)
1060 {
1061         /*
1062          * The soft-dirty tracker uses #PF-s to catch writes
1063          * to pages, so write-protect the pte as well. See the
1064          * Documentation/admin-guide/mm/soft-dirty.rst for full description
1065          * of how soft-dirty works.
1066          */
1067         pte_t ptent = *pte;
1068
1069         if (pte_present(ptent)) {
1070                 pte_t old_pte;
1071
1072                 if (pte_is_pinned(vma, addr, ptent))
1073                         return;
1074                 old_pte = ptep_modify_prot_start(vma, addr, pte);
1075                 ptent = pte_wrprotect(old_pte);
1076                 ptent = pte_clear_soft_dirty(ptent);
1077                 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1078         } else if (is_swap_pte(ptent)) {
1079                 ptent = pte_swp_clear_soft_dirty(ptent);
1080                 set_pte_at(vma->vm_mm, addr, pte, ptent);
1081         }
1082 }
1083 #else
1084 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1085                 unsigned long addr, pte_t *pte)
1086 {
1087 }
1088 #endif
1089
1090 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1091 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1092                 unsigned long addr, pmd_t *pmdp)
1093 {
1094         pmd_t old, pmd = *pmdp;
1095
1096         if (pmd_present(pmd)) {
1097                 /* See comment in change_huge_pmd() */
1098                 old = pmdp_invalidate(vma, addr, pmdp);
1099                 if (pmd_dirty(old))
1100                         pmd = pmd_mkdirty(pmd);
1101                 if (pmd_young(old))
1102                         pmd = pmd_mkyoung(pmd);
1103
1104                 pmd = pmd_wrprotect(pmd);
1105                 pmd = pmd_clear_soft_dirty(pmd);
1106
1107                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1108         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1109                 pmd = pmd_swp_clear_soft_dirty(pmd);
1110                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1111         }
1112 }
1113 #else
1114 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1115                 unsigned long addr, pmd_t *pmdp)
1116 {
1117 }
1118 #endif
1119
1120 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1121                                 unsigned long end, struct mm_walk *walk)
1122 {
1123         struct clear_refs_private *cp = walk->private;
1124         struct vm_area_struct *vma = walk->vma;
1125         pte_t *pte, ptent;
1126         spinlock_t *ptl;
1127         struct page *page;
1128
1129         ptl = pmd_trans_huge_lock(pmd, vma);
1130         if (ptl) {
1131                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1132                         clear_soft_dirty_pmd(vma, addr, pmd);
1133                         goto out;
1134                 }
1135
1136                 if (!pmd_present(*pmd))
1137                         goto out;
1138
1139                 page = pmd_page(*pmd);
1140
1141                 /* Clear accessed and referenced bits. */
1142                 pmdp_test_and_clear_young(vma, addr, pmd);
1143                 test_and_clear_page_young(page);
1144                 ClearPageReferenced(page);
1145 out:
1146                 spin_unlock(ptl);
1147                 return 0;
1148         }
1149
1150         if (pmd_trans_unstable(pmd))
1151                 return 0;
1152
1153         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1154         for (; addr != end; pte++, addr += PAGE_SIZE) {
1155                 ptent = *pte;
1156
1157                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1158                         clear_soft_dirty(vma, addr, pte);
1159                         continue;
1160                 }
1161
1162                 if (!pte_present(ptent))
1163                         continue;
1164
1165                 page = vm_normal_page(vma, addr, ptent);
1166                 if (!page)
1167                         continue;
1168
1169                 /* Clear accessed and referenced bits. */
1170                 ptep_test_and_clear_young(vma, addr, pte);
1171                 test_and_clear_page_young(page);
1172                 ClearPageReferenced(page);
1173         }
1174         pte_unmap_unlock(pte - 1, ptl);
1175         cond_resched();
1176         return 0;
1177 }
1178
1179 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1180                                 struct mm_walk *walk)
1181 {
1182         struct clear_refs_private *cp = walk->private;
1183         struct vm_area_struct *vma = walk->vma;
1184
1185         if (vma->vm_flags & VM_PFNMAP)
1186                 return 1;
1187
1188         /*
1189          * Writing 1 to /proc/pid/clear_refs affects all pages.
1190          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1191          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1192          * Writing 4 to /proc/pid/clear_refs affects all pages.
1193          */
1194         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1195                 return 1;
1196         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1197                 return 1;
1198         return 0;
1199 }
1200
1201 static const struct mm_walk_ops clear_refs_walk_ops = {
1202         .pmd_entry              = clear_refs_pte_range,
1203         .test_walk              = clear_refs_test_walk,
1204 };
1205
1206 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1207                                 size_t count, loff_t *ppos)
1208 {
1209         struct task_struct *task;
1210         char buffer[PROC_NUMBUF];
1211         struct mm_struct *mm;
1212         struct vm_area_struct *vma;
1213         enum clear_refs_types type;
1214         int itype;
1215         int rv;
1216
1217         memset(buffer, 0, sizeof(buffer));
1218         if (count > sizeof(buffer) - 1)
1219                 count = sizeof(buffer) - 1;
1220         if (copy_from_user(buffer, buf, count))
1221                 return -EFAULT;
1222         rv = kstrtoint(strstrip(buffer), 10, &itype);
1223         if (rv < 0)
1224                 return rv;
1225         type = (enum clear_refs_types)itype;
1226         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1227                 return -EINVAL;
1228
1229         task = get_proc_task(file_inode(file));
1230         if (!task)
1231                 return -ESRCH;
1232         mm = get_task_mm(task);
1233         if (mm) {
1234                 struct mmu_notifier_range range;
1235                 struct clear_refs_private cp = {
1236                         .type = type,
1237                 };
1238
1239                 if (mmap_write_lock_killable(mm)) {
1240                         count = -EINTR;
1241                         goto out_mm;
1242                 }
1243                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1244                         /*
1245                          * Writing 5 to /proc/pid/clear_refs resets the peak
1246                          * resident set size to this mm's current rss value.
1247                          */
1248                         reset_mm_hiwater_rss(mm);
1249                         goto out_unlock;
1250                 }
1251
1252                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1253                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1254                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1255                                         continue;
1256                                 vma->vm_flags &= ~VM_SOFTDIRTY;
1257                                 vma_set_page_prot(vma);
1258                         }
1259
1260                         inc_tlb_flush_pending(mm);
1261                         mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1262                                                 0, NULL, mm, 0, -1UL);
1263                         mmu_notifier_invalidate_range_start(&range);
1264                 }
1265                 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1266                                 &cp);
1267                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1268                         mmu_notifier_invalidate_range_end(&range);
1269                         flush_tlb_mm(mm);
1270                         dec_tlb_flush_pending(mm);
1271                 }
1272 out_unlock:
1273                 mmap_write_unlock(mm);
1274 out_mm:
1275                 mmput(mm);
1276         }
1277         put_task_struct(task);
1278
1279         return count;
1280 }
1281
1282 const struct file_operations proc_clear_refs_operations = {
1283         .write          = clear_refs_write,
1284         .llseek         = noop_llseek,
1285 };
1286
1287 typedef struct {
1288         u64 pme;
1289 } pagemap_entry_t;
1290
1291 struct pagemapread {
1292         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1293         pagemap_entry_t *buffer;
1294         bool show_pfn;
1295 };
1296
1297 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1298 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1299
1300 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1301 #define PM_PFRAME_BITS          55
1302 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1303 #define PM_SOFT_DIRTY           BIT_ULL(55)
1304 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1305 #define PM_FILE                 BIT_ULL(61)
1306 #define PM_SWAP                 BIT_ULL(62)
1307 #define PM_PRESENT              BIT_ULL(63)
1308
1309 #define PM_END_OF_BUFFER    1
1310
1311 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1312 {
1313         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1314 }
1315
1316 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1317                           struct pagemapread *pm)
1318 {
1319         pm->buffer[pm->pos++] = *pme;
1320         if (pm->pos >= pm->len)
1321                 return PM_END_OF_BUFFER;
1322         return 0;
1323 }
1324
1325 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1326                             __always_unused int depth, struct mm_walk *walk)
1327 {
1328         struct pagemapread *pm = walk->private;
1329         unsigned long addr = start;
1330         int err = 0;
1331
1332         while (addr < end) {
1333                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1334                 pagemap_entry_t pme = make_pme(0, 0);
1335                 /* End of address space hole, which we mark as non-present. */
1336                 unsigned long hole_end;
1337
1338                 if (vma)
1339                         hole_end = min(end, vma->vm_start);
1340                 else
1341                         hole_end = end;
1342
1343                 for (; addr < hole_end; addr += PAGE_SIZE) {
1344                         err = add_to_pagemap(addr, &pme, pm);
1345                         if (err)
1346                                 goto out;
1347                 }
1348
1349                 if (!vma)
1350                         break;
1351
1352                 /* Addresses in the VMA. */
1353                 if (vma->vm_flags & VM_SOFTDIRTY)
1354                         pme = make_pme(0, PM_SOFT_DIRTY);
1355                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1356                         err = add_to_pagemap(addr, &pme, pm);
1357                         if (err)
1358                                 goto out;
1359                 }
1360         }
1361 out:
1362         return err;
1363 }
1364
1365 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1366                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1367 {
1368         u64 frame = 0, flags = 0;
1369         struct page *page = NULL;
1370
1371         if (pte_present(pte)) {
1372                 if (pm->show_pfn)
1373                         frame = pte_pfn(pte);
1374                 flags |= PM_PRESENT;
1375                 page = vm_normal_page(vma, addr, pte);
1376                 if (pte_soft_dirty(pte))
1377                         flags |= PM_SOFT_DIRTY;
1378         } else if (is_swap_pte(pte)) {
1379                 swp_entry_t entry;
1380                 if (pte_swp_soft_dirty(pte))
1381                         flags |= PM_SOFT_DIRTY;
1382                 entry = pte_to_swp_entry(pte);
1383                 if (pm->show_pfn)
1384                         frame = swp_type(entry) |
1385                                 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1386                 flags |= PM_SWAP;
1387                 if (is_migration_entry(entry))
1388                         page = migration_entry_to_page(entry);
1389
1390                 if (is_device_private_entry(entry))
1391                         page = device_private_entry_to_page(entry);
1392         }
1393
1394         if (page && !PageAnon(page))
1395                 flags |= PM_FILE;
1396         if (page && page_mapcount(page) == 1)
1397                 flags |= PM_MMAP_EXCLUSIVE;
1398         if (vma->vm_flags & VM_SOFTDIRTY)
1399                 flags |= PM_SOFT_DIRTY;
1400
1401         return make_pme(frame, flags);
1402 }
1403
1404 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1405                              struct mm_walk *walk)
1406 {
1407         struct vm_area_struct *vma = walk->vma;
1408         struct pagemapread *pm = walk->private;
1409         spinlock_t *ptl;
1410         pte_t *pte, *orig_pte;
1411         int err = 0;
1412
1413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1414         ptl = pmd_trans_huge_lock(pmdp, vma);
1415         if (ptl) {
1416                 u64 flags = 0, frame = 0;
1417                 pmd_t pmd = *pmdp;
1418                 struct page *page = NULL;
1419
1420                 if (vma->vm_flags & VM_SOFTDIRTY)
1421                         flags |= PM_SOFT_DIRTY;
1422
1423                 if (pmd_present(pmd)) {
1424                         page = pmd_page(pmd);
1425
1426                         flags |= PM_PRESENT;
1427                         if (pmd_soft_dirty(pmd))
1428                                 flags |= PM_SOFT_DIRTY;
1429                         if (pm->show_pfn)
1430                                 frame = pmd_pfn(pmd) +
1431                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1432                 }
1433 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1434                 else if (is_swap_pmd(pmd)) {
1435                         swp_entry_t entry = pmd_to_swp_entry(pmd);
1436                         unsigned long offset;
1437
1438                         if (pm->show_pfn) {
1439                                 offset = swp_offset(entry) +
1440                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1441                                 frame = swp_type(entry) |
1442                                         (offset << MAX_SWAPFILES_SHIFT);
1443                         }
1444                         flags |= PM_SWAP;
1445                         if (pmd_swp_soft_dirty(pmd))
1446                                 flags |= PM_SOFT_DIRTY;
1447                         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1448                         page = migration_entry_to_page(entry);
1449                 }
1450 #endif
1451
1452                 if (page && page_mapcount(page) == 1)
1453                         flags |= PM_MMAP_EXCLUSIVE;
1454
1455                 for (; addr != end; addr += PAGE_SIZE) {
1456                         pagemap_entry_t pme = make_pme(frame, flags);
1457
1458                         err = add_to_pagemap(addr, &pme, pm);
1459                         if (err)
1460                                 break;
1461                         if (pm->show_pfn) {
1462                                 if (flags & PM_PRESENT)
1463                                         frame++;
1464                                 else if (flags & PM_SWAP)
1465                                         frame += (1 << MAX_SWAPFILES_SHIFT);
1466                         }
1467                 }
1468                 spin_unlock(ptl);
1469                 return err;
1470         }
1471
1472         if (pmd_trans_unstable(pmdp))
1473                 return 0;
1474 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1475
1476         /*
1477          * We can assume that @vma always points to a valid one and @end never
1478          * goes beyond vma->vm_end.
1479          */
1480         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1481         for (; addr < end; pte++, addr += PAGE_SIZE) {
1482                 pagemap_entry_t pme;
1483
1484                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1485                 err = add_to_pagemap(addr, &pme, pm);
1486                 if (err)
1487                         break;
1488         }
1489         pte_unmap_unlock(orig_pte, ptl);
1490
1491         cond_resched();
1492
1493         return err;
1494 }
1495
1496 #ifdef CONFIG_HUGETLB_PAGE
1497 /* This function walks within one hugetlb entry in the single call */
1498 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1499                                  unsigned long addr, unsigned long end,
1500                                  struct mm_walk *walk)
1501 {
1502         struct pagemapread *pm = walk->private;
1503         struct vm_area_struct *vma = walk->vma;
1504         u64 flags = 0, frame = 0;
1505         int err = 0;
1506         pte_t pte;
1507
1508         if (vma->vm_flags & VM_SOFTDIRTY)
1509                 flags |= PM_SOFT_DIRTY;
1510
1511         pte = huge_ptep_get(ptep);
1512         if (pte_present(pte)) {
1513                 struct page *page = pte_page(pte);
1514
1515                 if (!PageAnon(page))
1516                         flags |= PM_FILE;
1517
1518                 if (page_mapcount(page) == 1)
1519                         flags |= PM_MMAP_EXCLUSIVE;
1520
1521                 flags |= PM_PRESENT;
1522                 if (pm->show_pfn)
1523                         frame = pte_pfn(pte) +
1524                                 ((addr & ~hmask) >> PAGE_SHIFT);
1525         }
1526
1527         for (; addr != end; addr += PAGE_SIZE) {
1528                 pagemap_entry_t pme = make_pme(frame, flags);
1529
1530                 err = add_to_pagemap(addr, &pme, pm);
1531                 if (err)
1532                         return err;
1533                 if (pm->show_pfn && (flags & PM_PRESENT))
1534                         frame++;
1535         }
1536
1537         cond_resched();
1538
1539         return err;
1540 }
1541 #else
1542 #define pagemap_hugetlb_range   NULL
1543 #endif /* HUGETLB_PAGE */
1544
1545 static const struct mm_walk_ops pagemap_ops = {
1546         .pmd_entry      = pagemap_pmd_range,
1547         .pte_hole       = pagemap_pte_hole,
1548         .hugetlb_entry  = pagemap_hugetlb_range,
1549 };
1550
1551 /*
1552  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1553  *
1554  * For each page in the address space, this file contains one 64-bit entry
1555  * consisting of the following:
1556  *
1557  * Bits 0-54  page frame number (PFN) if present
1558  * Bits 0-4   swap type if swapped
1559  * Bits 5-54  swap offset if swapped
1560  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1561  * Bit  56    page exclusively mapped
1562  * Bits 57-60 zero
1563  * Bit  61    page is file-page or shared-anon
1564  * Bit  62    page swapped
1565  * Bit  63    page present
1566  *
1567  * If the page is not present but in swap, then the PFN contains an
1568  * encoding of the swap file number and the page's offset into the
1569  * swap. Unmapped pages return a null PFN. This allows determining
1570  * precisely which pages are mapped (or in swap) and comparing mapped
1571  * pages between processes.
1572  *
1573  * Efficient users of this interface will use /proc/pid/maps to
1574  * determine which areas of memory are actually mapped and llseek to
1575  * skip over unmapped regions.
1576  */
1577 static ssize_t pagemap_read(struct file *file, char __user *buf,
1578                             size_t count, loff_t *ppos)
1579 {
1580         struct mm_struct *mm = file->private_data;
1581         struct pagemapread pm;
1582         unsigned long src;
1583         unsigned long svpfn;
1584         unsigned long start_vaddr;
1585         unsigned long end_vaddr;
1586         int ret = 0, copied = 0;
1587
1588         if (!mm || !mmget_not_zero(mm))
1589                 goto out;
1590
1591         ret = -EINVAL;
1592         /* file position must be aligned */
1593         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1594                 goto out_mm;
1595
1596         ret = 0;
1597         if (!count)
1598                 goto out_mm;
1599
1600         /* do not disclose physical addresses: attack vector */
1601         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1602
1603         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1604         pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1605         ret = -ENOMEM;
1606         if (!pm.buffer)
1607                 goto out_mm;
1608
1609         src = *ppos;
1610         svpfn = src / PM_ENTRY_BYTES;
1611         end_vaddr = mm->task_size;
1612
1613         /* watch out for wraparound */
1614         start_vaddr = end_vaddr;
1615         if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1616                 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1617
1618         /* Ensure the address is inside the task */
1619         if (start_vaddr > mm->task_size)
1620                 start_vaddr = end_vaddr;
1621
1622         /*
1623          * The odds are that this will stop walking way
1624          * before end_vaddr, because the length of the
1625          * user buffer is tracked in "pm", and the walk
1626          * will stop when we hit the end of the buffer.
1627          */
1628         ret = 0;
1629         while (count && (start_vaddr < end_vaddr)) {
1630                 int len;
1631                 unsigned long end;
1632
1633                 pm.pos = 0;
1634                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1635                 /* overflow ? */
1636                 if (end < start_vaddr || end > end_vaddr)
1637                         end = end_vaddr;
1638                 ret = mmap_read_lock_killable(mm);
1639                 if (ret)
1640                         goto out_free;
1641                 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1642                 mmap_read_unlock(mm);
1643                 start_vaddr = end;
1644
1645                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1646                 if (copy_to_user(buf, pm.buffer, len)) {
1647                         ret = -EFAULT;
1648                         goto out_free;
1649                 }
1650                 copied += len;
1651                 buf += len;
1652                 count -= len;
1653         }
1654         *ppos += copied;
1655         if (!ret || ret == PM_END_OF_BUFFER)
1656                 ret = copied;
1657
1658 out_free:
1659         kfree(pm.buffer);
1660 out_mm:
1661         mmput(mm);
1662 out:
1663         return ret;
1664 }
1665
1666 static int pagemap_open(struct inode *inode, struct file *file)
1667 {
1668         struct mm_struct *mm;
1669
1670         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1671         if (IS_ERR(mm))
1672                 return PTR_ERR(mm);
1673         file->private_data = mm;
1674         return 0;
1675 }
1676
1677 static int pagemap_release(struct inode *inode, struct file *file)
1678 {
1679         struct mm_struct *mm = file->private_data;
1680
1681         if (mm)
1682                 mmdrop(mm);
1683         return 0;
1684 }
1685
1686 const struct file_operations proc_pagemap_operations = {
1687         .llseek         = mem_lseek, /* borrow this */
1688         .read           = pagemap_read,
1689         .open           = pagemap_open,
1690         .release        = pagemap_release,
1691 };
1692 #endif /* CONFIG_PROC_PAGE_MONITOR */
1693
1694 #ifdef CONFIG_NUMA
1695
1696 struct numa_maps {
1697         unsigned long pages;
1698         unsigned long anon;
1699         unsigned long active;
1700         unsigned long writeback;
1701         unsigned long mapcount_max;
1702         unsigned long dirty;
1703         unsigned long swapcache;
1704         unsigned long node[MAX_NUMNODES];
1705 };
1706
1707 struct numa_maps_private {
1708         struct proc_maps_private proc_maps;
1709         struct numa_maps md;
1710 };
1711
1712 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1713                         unsigned long nr_pages)
1714 {
1715         int count = page_mapcount(page);
1716
1717         md->pages += nr_pages;
1718         if (pte_dirty || PageDirty(page))
1719                 md->dirty += nr_pages;
1720
1721         if (PageSwapCache(page))
1722                 md->swapcache += nr_pages;
1723
1724         if (PageActive(page) || PageUnevictable(page))
1725                 md->active += nr_pages;
1726
1727         if (PageWriteback(page))
1728                 md->writeback += nr_pages;
1729
1730         if (PageAnon(page))
1731                 md->anon += nr_pages;
1732
1733         if (count > md->mapcount_max)
1734                 md->mapcount_max = count;
1735
1736         md->node[page_to_nid(page)] += nr_pages;
1737 }
1738
1739 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1740                 unsigned long addr)
1741 {
1742         struct page *page;
1743         int nid;
1744
1745         if (!pte_present(pte))
1746                 return NULL;
1747
1748         page = vm_normal_page(vma, addr, pte);
1749         if (!page)
1750                 return NULL;
1751
1752         if (PageReserved(page))
1753                 return NULL;
1754
1755         nid = page_to_nid(page);
1756         if (!node_isset(nid, node_states[N_MEMORY]))
1757                 return NULL;
1758
1759         return page;
1760 }
1761
1762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1763 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1764                                               struct vm_area_struct *vma,
1765                                               unsigned long addr)
1766 {
1767         struct page *page;
1768         int nid;
1769
1770         if (!pmd_present(pmd))
1771                 return NULL;
1772
1773         page = vm_normal_page_pmd(vma, addr, pmd);
1774         if (!page)
1775                 return NULL;
1776
1777         if (PageReserved(page))
1778                 return NULL;
1779
1780         nid = page_to_nid(page);
1781         if (!node_isset(nid, node_states[N_MEMORY]))
1782                 return NULL;
1783
1784         return page;
1785 }
1786 #endif
1787
1788 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1789                 unsigned long end, struct mm_walk *walk)
1790 {
1791         struct numa_maps *md = walk->private;
1792         struct vm_area_struct *vma = walk->vma;
1793         spinlock_t *ptl;
1794         pte_t *orig_pte;
1795         pte_t *pte;
1796
1797 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1798         ptl = pmd_trans_huge_lock(pmd, vma);
1799         if (ptl) {
1800                 struct page *page;
1801
1802                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1803                 if (page)
1804                         gather_stats(page, md, pmd_dirty(*pmd),
1805                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1806                 spin_unlock(ptl);
1807                 return 0;
1808         }
1809
1810         if (pmd_trans_unstable(pmd))
1811                 return 0;
1812 #endif
1813         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1814         do {
1815                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1816                 if (!page)
1817                         continue;
1818                 gather_stats(page, md, pte_dirty(*pte), 1);
1819
1820         } while (pte++, addr += PAGE_SIZE, addr != end);
1821         pte_unmap_unlock(orig_pte, ptl);
1822         cond_resched();
1823         return 0;
1824 }
1825 #ifdef CONFIG_HUGETLB_PAGE
1826 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1827                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1828 {
1829         pte_t huge_pte = huge_ptep_get(pte);
1830         struct numa_maps *md;
1831         struct page *page;
1832
1833         if (!pte_present(huge_pte))
1834                 return 0;
1835
1836         page = pte_page(huge_pte);
1837         if (!page)
1838                 return 0;
1839
1840         md = walk->private;
1841         gather_stats(page, md, pte_dirty(huge_pte), 1);
1842         return 0;
1843 }
1844
1845 #else
1846 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1847                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1848 {
1849         return 0;
1850 }
1851 #endif
1852
1853 static const struct mm_walk_ops show_numa_ops = {
1854         .hugetlb_entry = gather_hugetlb_stats,
1855         .pmd_entry = gather_pte_stats,
1856 };
1857
1858 /*
1859  * Display pages allocated per node and memory policy via /proc.
1860  */
1861 static int show_numa_map(struct seq_file *m, void *v)
1862 {
1863         struct numa_maps_private *numa_priv = m->private;
1864         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1865         struct vm_area_struct *vma = v;
1866         struct numa_maps *md = &numa_priv->md;
1867         struct file *file = vma->vm_file;
1868         struct mm_struct *mm = vma->vm_mm;
1869         struct mempolicy *pol;
1870         char buffer[64];
1871         int nid;
1872
1873         if (!mm)
1874                 return 0;
1875
1876         /* Ensure we start with an empty set of numa_maps statistics. */
1877         memset(md, 0, sizeof(*md));
1878
1879         pol = __get_vma_policy(vma, vma->vm_start);
1880         if (pol) {
1881                 mpol_to_str(buffer, sizeof(buffer), pol);
1882                 mpol_cond_put(pol);
1883         } else {
1884                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1885         }
1886
1887         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1888
1889         if (file) {
1890                 seq_puts(m, " file=");
1891                 seq_file_path(m, file, "\n\t= ");
1892         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1893                 seq_puts(m, " heap");
1894         } else if (is_stack(vma)) {
1895                 seq_puts(m, " stack");
1896         }
1897
1898         if (is_vm_hugetlb_page(vma))
1899                 seq_puts(m, " huge");
1900
1901         /* mmap_lock is held by m_start */
1902         walk_page_vma(vma, &show_numa_ops, md);
1903
1904         if (!md->pages)
1905                 goto out;
1906
1907         if (md->anon)
1908                 seq_printf(m, " anon=%lu", md->anon);
1909
1910         if (md->dirty)
1911                 seq_printf(m, " dirty=%lu", md->dirty);
1912
1913         if (md->pages != md->anon && md->pages != md->dirty)
1914                 seq_printf(m, " mapped=%lu", md->pages);
1915
1916         if (md->mapcount_max > 1)
1917                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1918
1919         if (md->swapcache)
1920                 seq_printf(m, " swapcache=%lu", md->swapcache);
1921
1922         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1923                 seq_printf(m, " active=%lu", md->active);
1924
1925         if (md->writeback)
1926                 seq_printf(m, " writeback=%lu", md->writeback);
1927
1928         for_each_node_state(nid, N_MEMORY)
1929                 if (md->node[nid])
1930                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1931
1932         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1933 out:
1934         seq_putc(m, '\n');
1935         return 0;
1936 }
1937
1938 static const struct seq_operations proc_pid_numa_maps_op = {
1939         .start  = m_start,
1940         .next   = m_next,
1941         .stop   = m_stop,
1942         .show   = show_numa_map,
1943 };
1944
1945 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1946 {
1947         return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1948                                 sizeof(struct numa_maps_private));
1949 }
1950
1951 const struct file_operations proc_pid_numa_maps_operations = {
1952         .open           = pid_numa_maps_open,
1953         .read           = seq_read,
1954         .llseek         = seq_lseek,
1955         .release        = proc_map_release,
1956 };
1957
1958 #endif /* CONFIG_NUMA */