thp: change pmd_trans_huge_lock() interface to return ptl
[linux-2.6-microblaze.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
18
19 #include <asm/elf.h>
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 #include "internal.h"
23
24 void task_mem(struct seq_file *m, struct mm_struct *mm)
25 {
26         unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28
29         anon = get_mm_counter(mm, MM_ANONPAGES);
30         file = get_mm_counter(mm, MM_FILEPAGES);
31         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
32
33         /*
34          * Note: to minimize their overhead, mm maintains hiwater_vm and
35          * hiwater_rss only when about to *lower* total_vm or rss.  Any
36          * collector of these hiwater stats must therefore get total_vm
37          * and rss too, which will usually be the higher.  Barriers? not
38          * worth the effort, such snapshots can always be inconsistent.
39          */
40         hiwater_vm = total_vm = mm->total_vm;
41         if (hiwater_vm < mm->hiwater_vm)
42                 hiwater_vm = mm->hiwater_vm;
43         hiwater_rss = total_rss = anon + file + shmem;
44         if (hiwater_rss < mm->hiwater_rss)
45                 hiwater_rss = mm->hiwater_rss;
46
47         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
48         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
49         swap = get_mm_counter(mm, MM_SWAPENTS);
50         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
51         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52         seq_printf(m,
53                 "VmPeak:\t%8lu kB\n"
54                 "VmSize:\t%8lu kB\n"
55                 "VmLck:\t%8lu kB\n"
56                 "VmPin:\t%8lu kB\n"
57                 "VmHWM:\t%8lu kB\n"
58                 "VmRSS:\t%8lu kB\n"
59                 "RssAnon:\t%8lu kB\n"
60                 "RssFile:\t%8lu kB\n"
61                 "RssShmem:\t%8lu kB\n"
62                 "VmData:\t%8lu kB\n"
63                 "VmStk:\t%8lu kB\n"
64                 "VmExe:\t%8lu kB\n"
65                 "VmLib:\t%8lu kB\n"
66                 "VmPTE:\t%8lu kB\n"
67                 "VmPMD:\t%8lu kB\n"
68                 "VmSwap:\t%8lu kB\n",
69                 hiwater_vm << (PAGE_SHIFT-10),
70                 total_vm << (PAGE_SHIFT-10),
71                 mm->locked_vm << (PAGE_SHIFT-10),
72                 mm->pinned_vm << (PAGE_SHIFT-10),
73                 hiwater_rss << (PAGE_SHIFT-10),
74                 total_rss << (PAGE_SHIFT-10),
75                 anon << (PAGE_SHIFT-10),
76                 file << (PAGE_SHIFT-10),
77                 shmem << (PAGE_SHIFT-10),
78                 mm->data_vm << (PAGE_SHIFT-10),
79                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80                 ptes >> 10,
81                 pmds >> 10,
82                 swap << (PAGE_SHIFT-10));
83         hugetlb_report_usage(m, mm);
84 }
85
86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88         return PAGE_SIZE * mm->total_vm;
89 }
90
91 unsigned long task_statm(struct mm_struct *mm,
92                          unsigned long *shared, unsigned long *text,
93                          unsigned long *data, unsigned long *resident)
94 {
95         *shared = get_mm_counter(mm, MM_FILEPAGES) +
96                         get_mm_counter(mm, MM_SHMEMPAGES);
97         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98                                                                 >> PAGE_SHIFT;
99         *data = mm->data_vm + mm->stack_vm;
100         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101         return mm->total_vm;
102 }
103
104 #ifdef CONFIG_NUMA
105 /*
106  * Save get_task_policy() for show_numa_map().
107  */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110         struct task_struct *task = priv->task;
111
112         task_lock(task);
113         priv->task_mempolicy = get_task_policy(task);
114         mpol_get(priv->task_mempolicy);
115         task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119         mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129
130 static void vma_stop(struct proc_maps_private *priv)
131 {
132         struct mm_struct *mm = priv->mm;
133
134         release_task_mempolicy(priv);
135         up_read(&mm->mmap_sem);
136         mmput(mm);
137 }
138
139 static struct vm_area_struct *
140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
141 {
142         if (vma == priv->tail_vma)
143                 return NULL;
144         return vma->vm_next ?: priv->tail_vma;
145 }
146
147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
148 {
149         if (m->count < m->size) /* vma is copied successfully */
150                 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
151 }
152
153 static void *m_start(struct seq_file *m, loff_t *ppos)
154 {
155         struct proc_maps_private *priv = m->private;
156         unsigned long last_addr = m->version;
157         struct mm_struct *mm;
158         struct vm_area_struct *vma;
159         unsigned int pos = *ppos;
160
161         /* See m_cache_vma(). Zero at the start or after lseek. */
162         if (last_addr == -1UL)
163                 return NULL;
164
165         priv->task = get_proc_task(priv->inode);
166         if (!priv->task)
167                 return ERR_PTR(-ESRCH);
168
169         mm = priv->mm;
170         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
171                 return NULL;
172
173         down_read(&mm->mmap_sem);
174         hold_task_mempolicy(priv);
175         priv->tail_vma = get_gate_vma(mm);
176
177         if (last_addr) {
178                 vma = find_vma(mm, last_addr);
179                 if (vma && (vma = m_next_vma(priv, vma)))
180                         return vma;
181         }
182
183         m->version = 0;
184         if (pos < mm->map_count) {
185                 for (vma = mm->mmap; pos; pos--) {
186                         m->version = vma->vm_start;
187                         vma = vma->vm_next;
188                 }
189                 return vma;
190         }
191
192         /* we do not bother to update m->version in this case */
193         if (pos == mm->map_count && priv->tail_vma)
194                 return priv->tail_vma;
195
196         vma_stop(priv);
197         return NULL;
198 }
199
200 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
201 {
202         struct proc_maps_private *priv = m->private;
203         struct vm_area_struct *next;
204
205         (*pos)++;
206         next = m_next_vma(priv, v);
207         if (!next)
208                 vma_stop(priv);
209         return next;
210 }
211
212 static void m_stop(struct seq_file *m, void *v)
213 {
214         struct proc_maps_private *priv = m->private;
215
216         if (!IS_ERR_OR_NULL(v))
217                 vma_stop(priv);
218         if (priv->task) {
219                 put_task_struct(priv->task);
220                 priv->task = NULL;
221         }
222 }
223
224 static int proc_maps_open(struct inode *inode, struct file *file,
225                         const struct seq_operations *ops, int psize)
226 {
227         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
228
229         if (!priv)
230                 return -ENOMEM;
231
232         priv->inode = inode;
233         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
234         if (IS_ERR(priv->mm)) {
235                 int err = PTR_ERR(priv->mm);
236
237                 seq_release_private(inode, file);
238                 return err;
239         }
240
241         return 0;
242 }
243
244 static int proc_map_release(struct inode *inode, struct file *file)
245 {
246         struct seq_file *seq = file->private_data;
247         struct proc_maps_private *priv = seq->private;
248
249         if (priv->mm)
250                 mmdrop(priv->mm);
251
252         return seq_release_private(inode, file);
253 }
254
255 static int do_maps_open(struct inode *inode, struct file *file,
256                         const struct seq_operations *ops)
257 {
258         return proc_maps_open(inode, file, ops,
259                                 sizeof(struct proc_maps_private));
260 }
261
262 static pid_t pid_of_stack(struct proc_maps_private *priv,
263                                 struct vm_area_struct *vma, bool is_pid)
264 {
265         struct inode *inode = priv->inode;
266         struct task_struct *task;
267         pid_t ret = 0;
268
269         rcu_read_lock();
270         task = pid_task(proc_pid(inode), PIDTYPE_PID);
271         if (task) {
272                 task = task_of_stack(task, vma, is_pid);
273                 if (task)
274                         ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
275         }
276         rcu_read_unlock();
277
278         return ret;
279 }
280
281 static void
282 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
283 {
284         struct mm_struct *mm = vma->vm_mm;
285         struct file *file = vma->vm_file;
286         struct proc_maps_private *priv = m->private;
287         vm_flags_t flags = vma->vm_flags;
288         unsigned long ino = 0;
289         unsigned long long pgoff = 0;
290         unsigned long start, end;
291         dev_t dev = 0;
292         const char *name = NULL;
293
294         if (file) {
295                 struct inode *inode = file_inode(vma->vm_file);
296                 dev = inode->i_sb->s_dev;
297                 ino = inode->i_ino;
298                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
299         }
300
301         /* We don't show the stack guard page in /proc/maps */
302         start = vma->vm_start;
303         if (stack_guard_page_start(vma, start))
304                 start += PAGE_SIZE;
305         end = vma->vm_end;
306         if (stack_guard_page_end(vma, end))
307                 end -= PAGE_SIZE;
308
309         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
310         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
311                         start,
312                         end,
313                         flags & VM_READ ? 'r' : '-',
314                         flags & VM_WRITE ? 'w' : '-',
315                         flags & VM_EXEC ? 'x' : '-',
316                         flags & VM_MAYSHARE ? 's' : 'p',
317                         pgoff,
318                         MAJOR(dev), MINOR(dev), ino);
319
320         /*
321          * Print the dentry name for named mappings, and a
322          * special [heap] marker for the heap:
323          */
324         if (file) {
325                 seq_pad(m, ' ');
326                 seq_file_path(m, file, "\n");
327                 goto done;
328         }
329
330         if (vma->vm_ops && vma->vm_ops->name) {
331                 name = vma->vm_ops->name(vma);
332                 if (name)
333                         goto done;
334         }
335
336         name = arch_vma_name(vma);
337         if (!name) {
338                 pid_t tid;
339
340                 if (!mm) {
341                         name = "[vdso]";
342                         goto done;
343                 }
344
345                 if (vma->vm_start <= mm->brk &&
346                     vma->vm_end >= mm->start_brk) {
347                         name = "[heap]";
348                         goto done;
349                 }
350
351                 tid = pid_of_stack(priv, vma, is_pid);
352                 if (tid != 0) {
353                         /*
354                          * Thread stack in /proc/PID/task/TID/maps or
355                          * the main process stack.
356                          */
357                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
358                             vma->vm_end >= mm->start_stack)) {
359                                 name = "[stack]";
360                         } else {
361                                 /* Thread stack in /proc/PID/maps */
362                                 seq_pad(m, ' ');
363                                 seq_printf(m, "[stack:%d]", tid);
364                         }
365                 }
366         }
367
368 done:
369         if (name) {
370                 seq_pad(m, ' ');
371                 seq_puts(m, name);
372         }
373         seq_putc(m, '\n');
374 }
375
376 static int show_map(struct seq_file *m, void *v, int is_pid)
377 {
378         show_map_vma(m, v, is_pid);
379         m_cache_vma(m, v);
380         return 0;
381 }
382
383 static int show_pid_map(struct seq_file *m, void *v)
384 {
385         return show_map(m, v, 1);
386 }
387
388 static int show_tid_map(struct seq_file *m, void *v)
389 {
390         return show_map(m, v, 0);
391 }
392
393 static const struct seq_operations proc_pid_maps_op = {
394         .start  = m_start,
395         .next   = m_next,
396         .stop   = m_stop,
397         .show   = show_pid_map
398 };
399
400 static const struct seq_operations proc_tid_maps_op = {
401         .start  = m_start,
402         .next   = m_next,
403         .stop   = m_stop,
404         .show   = show_tid_map
405 };
406
407 static int pid_maps_open(struct inode *inode, struct file *file)
408 {
409         return do_maps_open(inode, file, &proc_pid_maps_op);
410 }
411
412 static int tid_maps_open(struct inode *inode, struct file *file)
413 {
414         return do_maps_open(inode, file, &proc_tid_maps_op);
415 }
416
417 const struct file_operations proc_pid_maps_operations = {
418         .open           = pid_maps_open,
419         .read           = seq_read,
420         .llseek         = seq_lseek,
421         .release        = proc_map_release,
422 };
423
424 const struct file_operations proc_tid_maps_operations = {
425         .open           = tid_maps_open,
426         .read           = seq_read,
427         .llseek         = seq_lseek,
428         .release        = proc_map_release,
429 };
430
431 /*
432  * Proportional Set Size(PSS): my share of RSS.
433  *
434  * PSS of a process is the count of pages it has in memory, where each
435  * page is divided by the number of processes sharing it.  So if a
436  * process has 1000 pages all to itself, and 1000 shared with one other
437  * process, its PSS will be 1500.
438  *
439  * To keep (accumulated) division errors low, we adopt a 64bit
440  * fixed-point pss counter to minimize division errors. So (pss >>
441  * PSS_SHIFT) would be the real byte count.
442  *
443  * A shift of 12 before division means (assuming 4K page size):
444  *      - 1M 3-user-pages add up to 8KB errors;
445  *      - supports mapcount up to 2^24, or 16M;
446  *      - supports PSS up to 2^52 bytes, or 4PB.
447  */
448 #define PSS_SHIFT 12
449
450 #ifdef CONFIG_PROC_PAGE_MONITOR
451 struct mem_size_stats {
452         unsigned long resident;
453         unsigned long shared_clean;
454         unsigned long shared_dirty;
455         unsigned long private_clean;
456         unsigned long private_dirty;
457         unsigned long referenced;
458         unsigned long anonymous;
459         unsigned long anonymous_thp;
460         unsigned long swap;
461         unsigned long shared_hugetlb;
462         unsigned long private_hugetlb;
463         u64 pss;
464         u64 swap_pss;
465         bool check_shmem_swap;
466 };
467
468 static void smaps_account(struct mem_size_stats *mss, struct page *page,
469                 bool compound, bool young, bool dirty)
470 {
471         int i, nr = compound ? 1 << compound_order(page) : 1;
472         unsigned long size = nr * PAGE_SIZE;
473
474         if (PageAnon(page))
475                 mss->anonymous += size;
476
477         mss->resident += size;
478         /* Accumulate the size in pages that have been accessed. */
479         if (young || page_is_young(page) || PageReferenced(page))
480                 mss->referenced += size;
481
482         /*
483          * page_count(page) == 1 guarantees the page is mapped exactly once.
484          * If any subpage of the compound page mapped with PTE it would elevate
485          * page_count().
486          */
487         if (page_count(page) == 1) {
488                 if (dirty || PageDirty(page))
489                         mss->private_dirty += size;
490                 else
491                         mss->private_clean += size;
492                 mss->pss += (u64)size << PSS_SHIFT;
493                 return;
494         }
495
496         for (i = 0; i < nr; i++, page++) {
497                 int mapcount = page_mapcount(page);
498
499                 if (mapcount >= 2) {
500                         if (dirty || PageDirty(page))
501                                 mss->shared_dirty += PAGE_SIZE;
502                         else
503                                 mss->shared_clean += PAGE_SIZE;
504                         mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
505                 } else {
506                         if (dirty || PageDirty(page))
507                                 mss->private_dirty += PAGE_SIZE;
508                         else
509                                 mss->private_clean += PAGE_SIZE;
510                         mss->pss += PAGE_SIZE << PSS_SHIFT;
511                 }
512         }
513 }
514
515 #ifdef CONFIG_SHMEM
516 static int smaps_pte_hole(unsigned long addr, unsigned long end,
517                 struct mm_walk *walk)
518 {
519         struct mem_size_stats *mss = walk->private;
520
521         mss->swap += shmem_partial_swap_usage(
522                         walk->vma->vm_file->f_mapping, addr, end);
523
524         return 0;
525 }
526 #endif
527
528 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
529                 struct mm_walk *walk)
530 {
531         struct mem_size_stats *mss = walk->private;
532         struct vm_area_struct *vma = walk->vma;
533         struct page *page = NULL;
534
535         if (pte_present(*pte)) {
536                 page = vm_normal_page(vma, addr, *pte);
537         } else if (is_swap_pte(*pte)) {
538                 swp_entry_t swpent = pte_to_swp_entry(*pte);
539
540                 if (!non_swap_entry(swpent)) {
541                         int mapcount;
542
543                         mss->swap += PAGE_SIZE;
544                         mapcount = swp_swapcount(swpent);
545                         if (mapcount >= 2) {
546                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
547
548                                 do_div(pss_delta, mapcount);
549                                 mss->swap_pss += pss_delta;
550                         } else {
551                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
552                         }
553                 } else if (is_migration_entry(swpent))
554                         page = migration_entry_to_page(swpent);
555         } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
556                                                         && pte_none(*pte))) {
557                 page = find_get_entry(vma->vm_file->f_mapping,
558                                                 linear_page_index(vma, addr));
559                 if (!page)
560                         return;
561
562                 if (radix_tree_exceptional_entry(page))
563                         mss->swap += PAGE_SIZE;
564                 else
565                         page_cache_release(page);
566
567                 return;
568         }
569
570         if (!page)
571                 return;
572
573         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
574 }
575
576 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
577 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
578                 struct mm_walk *walk)
579 {
580         struct mem_size_stats *mss = walk->private;
581         struct vm_area_struct *vma = walk->vma;
582         struct page *page;
583
584         /* FOLL_DUMP will return -EFAULT on huge zero page */
585         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
586         if (IS_ERR_OR_NULL(page))
587                 return;
588         mss->anonymous_thp += HPAGE_PMD_SIZE;
589         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
590 }
591 #else
592 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
593                 struct mm_walk *walk)
594 {
595 }
596 #endif
597
598 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
599                            struct mm_walk *walk)
600 {
601         struct vm_area_struct *vma = walk->vma;
602         pte_t *pte;
603         spinlock_t *ptl;
604
605         ptl = pmd_trans_huge_lock(pmd, vma);
606         if (ptl) {
607                 smaps_pmd_entry(pmd, addr, walk);
608                 spin_unlock(ptl);
609                 return 0;
610         }
611
612         if (pmd_trans_unstable(pmd))
613                 return 0;
614         /*
615          * The mmap_sem held all the way back in m_start() is what
616          * keeps khugepaged out of here and from collapsing things
617          * in here.
618          */
619         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
620         for (; addr != end; pte++, addr += PAGE_SIZE)
621                 smaps_pte_entry(pte, addr, walk);
622         pte_unmap_unlock(pte - 1, ptl);
623         cond_resched();
624         return 0;
625 }
626
627 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
628 {
629         /*
630          * Don't forget to update Documentation/ on changes.
631          */
632         static const char mnemonics[BITS_PER_LONG][2] = {
633                 /*
634                  * In case if we meet a flag we don't know about.
635                  */
636                 [0 ... (BITS_PER_LONG-1)] = "??",
637
638                 [ilog2(VM_READ)]        = "rd",
639                 [ilog2(VM_WRITE)]       = "wr",
640                 [ilog2(VM_EXEC)]        = "ex",
641                 [ilog2(VM_SHARED)]      = "sh",
642                 [ilog2(VM_MAYREAD)]     = "mr",
643                 [ilog2(VM_MAYWRITE)]    = "mw",
644                 [ilog2(VM_MAYEXEC)]     = "me",
645                 [ilog2(VM_MAYSHARE)]    = "ms",
646                 [ilog2(VM_GROWSDOWN)]   = "gd",
647                 [ilog2(VM_PFNMAP)]      = "pf",
648                 [ilog2(VM_DENYWRITE)]   = "dw",
649 #ifdef CONFIG_X86_INTEL_MPX
650                 [ilog2(VM_MPX)]         = "mp",
651 #endif
652                 [ilog2(VM_LOCKED)]      = "lo",
653                 [ilog2(VM_IO)]          = "io",
654                 [ilog2(VM_SEQ_READ)]    = "sr",
655                 [ilog2(VM_RAND_READ)]   = "rr",
656                 [ilog2(VM_DONTCOPY)]    = "dc",
657                 [ilog2(VM_DONTEXPAND)]  = "de",
658                 [ilog2(VM_ACCOUNT)]     = "ac",
659                 [ilog2(VM_NORESERVE)]   = "nr",
660                 [ilog2(VM_HUGETLB)]     = "ht",
661                 [ilog2(VM_ARCH_1)]      = "ar",
662                 [ilog2(VM_DONTDUMP)]    = "dd",
663 #ifdef CONFIG_MEM_SOFT_DIRTY
664                 [ilog2(VM_SOFTDIRTY)]   = "sd",
665 #endif
666                 [ilog2(VM_MIXEDMAP)]    = "mm",
667                 [ilog2(VM_HUGEPAGE)]    = "hg",
668                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
669                 [ilog2(VM_MERGEABLE)]   = "mg",
670                 [ilog2(VM_UFFD_MISSING)]= "um",
671                 [ilog2(VM_UFFD_WP)]     = "uw",
672         };
673         size_t i;
674
675         seq_puts(m, "VmFlags: ");
676         for (i = 0; i < BITS_PER_LONG; i++) {
677                 if (vma->vm_flags & (1UL << i)) {
678                         seq_printf(m, "%c%c ",
679                                    mnemonics[i][0], mnemonics[i][1]);
680                 }
681         }
682         seq_putc(m, '\n');
683 }
684
685 #ifdef CONFIG_HUGETLB_PAGE
686 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
687                                  unsigned long addr, unsigned long end,
688                                  struct mm_walk *walk)
689 {
690         struct mem_size_stats *mss = walk->private;
691         struct vm_area_struct *vma = walk->vma;
692         struct page *page = NULL;
693
694         if (pte_present(*pte)) {
695                 page = vm_normal_page(vma, addr, *pte);
696         } else if (is_swap_pte(*pte)) {
697                 swp_entry_t swpent = pte_to_swp_entry(*pte);
698
699                 if (is_migration_entry(swpent))
700                         page = migration_entry_to_page(swpent);
701         }
702         if (page) {
703                 int mapcount = page_mapcount(page);
704
705                 if (mapcount >= 2)
706                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
707                 else
708                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
709         }
710         return 0;
711 }
712 #endif /* HUGETLB_PAGE */
713
714 static int show_smap(struct seq_file *m, void *v, int is_pid)
715 {
716         struct vm_area_struct *vma = v;
717         struct mem_size_stats mss;
718         struct mm_walk smaps_walk = {
719                 .pmd_entry = smaps_pte_range,
720 #ifdef CONFIG_HUGETLB_PAGE
721                 .hugetlb_entry = smaps_hugetlb_range,
722 #endif
723                 .mm = vma->vm_mm,
724                 .private = &mss,
725         };
726
727         memset(&mss, 0, sizeof mss);
728
729 #ifdef CONFIG_SHMEM
730         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
731                 /*
732                  * For shared or readonly shmem mappings we know that all
733                  * swapped out pages belong to the shmem object, and we can
734                  * obtain the swap value much more efficiently. For private
735                  * writable mappings, we might have COW pages that are
736                  * not affected by the parent swapped out pages of the shmem
737                  * object, so we have to distinguish them during the page walk.
738                  * Unless we know that the shmem object (or the part mapped by
739                  * our VMA) has no swapped out pages at all.
740                  */
741                 unsigned long shmem_swapped = shmem_swap_usage(vma);
742
743                 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
744                                         !(vma->vm_flags & VM_WRITE)) {
745                         mss.swap = shmem_swapped;
746                 } else {
747                         mss.check_shmem_swap = true;
748                         smaps_walk.pte_hole = smaps_pte_hole;
749                 }
750         }
751 #endif
752
753         /* mmap_sem is held in m_start */
754         walk_page_vma(vma, &smaps_walk);
755
756         show_map_vma(m, vma, is_pid);
757
758         seq_printf(m,
759                    "Size:           %8lu kB\n"
760                    "Rss:            %8lu kB\n"
761                    "Pss:            %8lu kB\n"
762                    "Shared_Clean:   %8lu kB\n"
763                    "Shared_Dirty:   %8lu kB\n"
764                    "Private_Clean:  %8lu kB\n"
765                    "Private_Dirty:  %8lu kB\n"
766                    "Referenced:     %8lu kB\n"
767                    "Anonymous:      %8lu kB\n"
768                    "AnonHugePages:  %8lu kB\n"
769                    "Shared_Hugetlb: %8lu kB\n"
770                    "Private_Hugetlb: %7lu kB\n"
771                    "Swap:           %8lu kB\n"
772                    "SwapPss:        %8lu kB\n"
773                    "KernelPageSize: %8lu kB\n"
774                    "MMUPageSize:    %8lu kB\n"
775                    "Locked:         %8lu kB\n",
776                    (vma->vm_end - vma->vm_start) >> 10,
777                    mss.resident >> 10,
778                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
779                    mss.shared_clean  >> 10,
780                    mss.shared_dirty  >> 10,
781                    mss.private_clean >> 10,
782                    mss.private_dirty >> 10,
783                    mss.referenced >> 10,
784                    mss.anonymous >> 10,
785                    mss.anonymous_thp >> 10,
786                    mss.shared_hugetlb >> 10,
787                    mss.private_hugetlb >> 10,
788                    mss.swap >> 10,
789                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
790                    vma_kernel_pagesize(vma) >> 10,
791                    vma_mmu_pagesize(vma) >> 10,
792                    (vma->vm_flags & VM_LOCKED) ?
793                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
794
795         show_smap_vma_flags(m, vma);
796         m_cache_vma(m, vma);
797         return 0;
798 }
799
800 static int show_pid_smap(struct seq_file *m, void *v)
801 {
802         return show_smap(m, v, 1);
803 }
804
805 static int show_tid_smap(struct seq_file *m, void *v)
806 {
807         return show_smap(m, v, 0);
808 }
809
810 static const struct seq_operations proc_pid_smaps_op = {
811         .start  = m_start,
812         .next   = m_next,
813         .stop   = m_stop,
814         .show   = show_pid_smap
815 };
816
817 static const struct seq_operations proc_tid_smaps_op = {
818         .start  = m_start,
819         .next   = m_next,
820         .stop   = m_stop,
821         .show   = show_tid_smap
822 };
823
824 static int pid_smaps_open(struct inode *inode, struct file *file)
825 {
826         return do_maps_open(inode, file, &proc_pid_smaps_op);
827 }
828
829 static int tid_smaps_open(struct inode *inode, struct file *file)
830 {
831         return do_maps_open(inode, file, &proc_tid_smaps_op);
832 }
833
834 const struct file_operations proc_pid_smaps_operations = {
835         .open           = pid_smaps_open,
836         .read           = seq_read,
837         .llseek         = seq_lseek,
838         .release        = proc_map_release,
839 };
840
841 const struct file_operations proc_tid_smaps_operations = {
842         .open           = tid_smaps_open,
843         .read           = seq_read,
844         .llseek         = seq_lseek,
845         .release        = proc_map_release,
846 };
847
848 enum clear_refs_types {
849         CLEAR_REFS_ALL = 1,
850         CLEAR_REFS_ANON,
851         CLEAR_REFS_MAPPED,
852         CLEAR_REFS_SOFT_DIRTY,
853         CLEAR_REFS_MM_HIWATER_RSS,
854         CLEAR_REFS_LAST,
855 };
856
857 struct clear_refs_private {
858         enum clear_refs_types type;
859 };
860
861 #ifdef CONFIG_MEM_SOFT_DIRTY
862 static inline void clear_soft_dirty(struct vm_area_struct *vma,
863                 unsigned long addr, pte_t *pte)
864 {
865         /*
866          * The soft-dirty tracker uses #PF-s to catch writes
867          * to pages, so write-protect the pte as well. See the
868          * Documentation/vm/soft-dirty.txt for full description
869          * of how soft-dirty works.
870          */
871         pte_t ptent = *pte;
872
873         if (pte_present(ptent)) {
874                 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
875                 ptent = pte_wrprotect(ptent);
876                 ptent = pte_clear_soft_dirty(ptent);
877                 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
878         } else if (is_swap_pte(ptent)) {
879                 ptent = pte_swp_clear_soft_dirty(ptent);
880                 set_pte_at(vma->vm_mm, addr, pte, ptent);
881         }
882 }
883 #else
884 static inline void clear_soft_dirty(struct vm_area_struct *vma,
885                 unsigned long addr, pte_t *pte)
886 {
887 }
888 #endif
889
890 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
891 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
892                 unsigned long addr, pmd_t *pmdp)
893 {
894         pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
895
896         pmd = pmd_wrprotect(pmd);
897         pmd = pmd_clear_soft_dirty(pmd);
898
899         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
900 }
901 #else
902 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
903                 unsigned long addr, pmd_t *pmdp)
904 {
905 }
906 #endif
907
908 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
909                                 unsigned long end, struct mm_walk *walk)
910 {
911         struct clear_refs_private *cp = walk->private;
912         struct vm_area_struct *vma = walk->vma;
913         pte_t *pte, ptent;
914         spinlock_t *ptl;
915         struct page *page;
916
917         ptl = pmd_trans_huge_lock(pmd, vma);
918         if (ptl) {
919                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
920                         clear_soft_dirty_pmd(vma, addr, pmd);
921                         goto out;
922                 }
923
924                 page = pmd_page(*pmd);
925
926                 /* Clear accessed and referenced bits. */
927                 pmdp_test_and_clear_young(vma, addr, pmd);
928                 test_and_clear_page_young(page);
929                 ClearPageReferenced(page);
930 out:
931                 spin_unlock(ptl);
932                 return 0;
933         }
934
935         if (pmd_trans_unstable(pmd))
936                 return 0;
937
938         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
939         for (; addr != end; pte++, addr += PAGE_SIZE) {
940                 ptent = *pte;
941
942                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
943                         clear_soft_dirty(vma, addr, pte);
944                         continue;
945                 }
946
947                 if (!pte_present(ptent))
948                         continue;
949
950                 page = vm_normal_page(vma, addr, ptent);
951                 if (!page)
952                         continue;
953
954                 /* Clear accessed and referenced bits. */
955                 ptep_test_and_clear_young(vma, addr, pte);
956                 test_and_clear_page_young(page);
957                 ClearPageReferenced(page);
958         }
959         pte_unmap_unlock(pte - 1, ptl);
960         cond_resched();
961         return 0;
962 }
963
964 static int clear_refs_test_walk(unsigned long start, unsigned long end,
965                                 struct mm_walk *walk)
966 {
967         struct clear_refs_private *cp = walk->private;
968         struct vm_area_struct *vma = walk->vma;
969
970         if (vma->vm_flags & VM_PFNMAP)
971                 return 1;
972
973         /*
974          * Writing 1 to /proc/pid/clear_refs affects all pages.
975          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
976          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
977          * Writing 4 to /proc/pid/clear_refs affects all pages.
978          */
979         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
980                 return 1;
981         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
982                 return 1;
983         return 0;
984 }
985
986 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
987                                 size_t count, loff_t *ppos)
988 {
989         struct task_struct *task;
990         char buffer[PROC_NUMBUF];
991         struct mm_struct *mm;
992         struct vm_area_struct *vma;
993         enum clear_refs_types type;
994         int itype;
995         int rv;
996
997         memset(buffer, 0, sizeof(buffer));
998         if (count > sizeof(buffer) - 1)
999                 count = sizeof(buffer) - 1;
1000         if (copy_from_user(buffer, buf, count))
1001                 return -EFAULT;
1002         rv = kstrtoint(strstrip(buffer), 10, &itype);
1003         if (rv < 0)
1004                 return rv;
1005         type = (enum clear_refs_types)itype;
1006         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1007                 return -EINVAL;
1008
1009         task = get_proc_task(file_inode(file));
1010         if (!task)
1011                 return -ESRCH;
1012         mm = get_task_mm(task);
1013         if (mm) {
1014                 struct clear_refs_private cp = {
1015                         .type = type,
1016                 };
1017                 struct mm_walk clear_refs_walk = {
1018                         .pmd_entry = clear_refs_pte_range,
1019                         .test_walk = clear_refs_test_walk,
1020                         .mm = mm,
1021                         .private = &cp,
1022                 };
1023
1024                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1025                         /*
1026                          * Writing 5 to /proc/pid/clear_refs resets the peak
1027                          * resident set size to this mm's current rss value.
1028                          */
1029                         down_write(&mm->mmap_sem);
1030                         reset_mm_hiwater_rss(mm);
1031                         up_write(&mm->mmap_sem);
1032                         goto out_mm;
1033                 }
1034
1035                 down_read(&mm->mmap_sem);
1036                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1037                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1038                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1039                                         continue;
1040                                 up_read(&mm->mmap_sem);
1041                                 down_write(&mm->mmap_sem);
1042                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1043                                         vma->vm_flags &= ~VM_SOFTDIRTY;
1044                                         vma_set_page_prot(vma);
1045                                 }
1046                                 downgrade_write(&mm->mmap_sem);
1047                                 break;
1048                         }
1049                         mmu_notifier_invalidate_range_start(mm, 0, -1);
1050                 }
1051                 walk_page_range(0, ~0UL, &clear_refs_walk);
1052                 if (type == CLEAR_REFS_SOFT_DIRTY)
1053                         mmu_notifier_invalidate_range_end(mm, 0, -1);
1054                 flush_tlb_mm(mm);
1055                 up_read(&mm->mmap_sem);
1056 out_mm:
1057                 mmput(mm);
1058         }
1059         put_task_struct(task);
1060
1061         return count;
1062 }
1063
1064 const struct file_operations proc_clear_refs_operations = {
1065         .write          = clear_refs_write,
1066         .llseek         = noop_llseek,
1067 };
1068
1069 typedef struct {
1070         u64 pme;
1071 } pagemap_entry_t;
1072
1073 struct pagemapread {
1074         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1075         pagemap_entry_t *buffer;
1076         bool show_pfn;
1077 };
1078
1079 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1080 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1081
1082 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1083 #define PM_PFRAME_BITS          55
1084 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1085 #define PM_SOFT_DIRTY           BIT_ULL(55)
1086 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1087 #define PM_FILE                 BIT_ULL(61)
1088 #define PM_SWAP                 BIT_ULL(62)
1089 #define PM_PRESENT              BIT_ULL(63)
1090
1091 #define PM_END_OF_BUFFER    1
1092
1093 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1094 {
1095         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1096 }
1097
1098 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1099                           struct pagemapread *pm)
1100 {
1101         pm->buffer[pm->pos++] = *pme;
1102         if (pm->pos >= pm->len)
1103                 return PM_END_OF_BUFFER;
1104         return 0;
1105 }
1106
1107 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1108                                 struct mm_walk *walk)
1109 {
1110         struct pagemapread *pm = walk->private;
1111         unsigned long addr = start;
1112         int err = 0;
1113
1114         while (addr < end) {
1115                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1116                 pagemap_entry_t pme = make_pme(0, 0);
1117                 /* End of address space hole, which we mark as non-present. */
1118                 unsigned long hole_end;
1119
1120                 if (vma)
1121                         hole_end = min(end, vma->vm_start);
1122                 else
1123                         hole_end = end;
1124
1125                 for (; addr < hole_end; addr += PAGE_SIZE) {
1126                         err = add_to_pagemap(addr, &pme, pm);
1127                         if (err)
1128                                 goto out;
1129                 }
1130
1131                 if (!vma)
1132                         break;
1133
1134                 /* Addresses in the VMA. */
1135                 if (vma->vm_flags & VM_SOFTDIRTY)
1136                         pme = make_pme(0, PM_SOFT_DIRTY);
1137                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1138                         err = add_to_pagemap(addr, &pme, pm);
1139                         if (err)
1140                                 goto out;
1141                 }
1142         }
1143 out:
1144         return err;
1145 }
1146
1147 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1148                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1149 {
1150         u64 frame = 0, flags = 0;
1151         struct page *page = NULL;
1152
1153         if (pte_present(pte)) {
1154                 if (pm->show_pfn)
1155                         frame = pte_pfn(pte);
1156                 flags |= PM_PRESENT;
1157                 page = vm_normal_page(vma, addr, pte);
1158                 if (pte_soft_dirty(pte))
1159                         flags |= PM_SOFT_DIRTY;
1160         } else if (is_swap_pte(pte)) {
1161                 swp_entry_t entry;
1162                 if (pte_swp_soft_dirty(pte))
1163                         flags |= PM_SOFT_DIRTY;
1164                 entry = pte_to_swp_entry(pte);
1165                 frame = swp_type(entry) |
1166                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1167                 flags |= PM_SWAP;
1168                 if (is_migration_entry(entry))
1169                         page = migration_entry_to_page(entry);
1170         }
1171
1172         if (page && !PageAnon(page))
1173                 flags |= PM_FILE;
1174         if (page && page_mapcount(page) == 1)
1175                 flags |= PM_MMAP_EXCLUSIVE;
1176         if (vma->vm_flags & VM_SOFTDIRTY)
1177                 flags |= PM_SOFT_DIRTY;
1178
1179         return make_pme(frame, flags);
1180 }
1181
1182 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1183                              struct mm_walk *walk)
1184 {
1185         struct vm_area_struct *vma = walk->vma;
1186         struct pagemapread *pm = walk->private;
1187         spinlock_t *ptl;
1188         pte_t *pte, *orig_pte;
1189         int err = 0;
1190
1191 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1192         ptl = pmd_trans_huge_lock(pmdp, vma);
1193         if (ptl) {
1194                 u64 flags = 0, frame = 0;
1195                 pmd_t pmd = *pmdp;
1196
1197                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1198                         flags |= PM_SOFT_DIRTY;
1199
1200                 /*
1201                  * Currently pmd for thp is always present because thp
1202                  * can not be swapped-out, migrated, or HWPOISONed
1203                  * (split in such cases instead.)
1204                  * This if-check is just to prepare for future implementation.
1205                  */
1206                 if (pmd_present(pmd)) {
1207                         struct page *page = pmd_page(pmd);
1208
1209                         if (page_mapcount(page) == 1)
1210                                 flags |= PM_MMAP_EXCLUSIVE;
1211
1212                         flags |= PM_PRESENT;
1213                         if (pm->show_pfn)
1214                                 frame = pmd_pfn(pmd) +
1215                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1216                 }
1217
1218                 for (; addr != end; addr += PAGE_SIZE) {
1219                         pagemap_entry_t pme = make_pme(frame, flags);
1220
1221                         err = add_to_pagemap(addr, &pme, pm);
1222                         if (err)
1223                                 break;
1224                         if (pm->show_pfn && (flags & PM_PRESENT))
1225                                 frame++;
1226                 }
1227                 spin_unlock(ptl);
1228                 return err;
1229         }
1230
1231         if (pmd_trans_unstable(pmdp))
1232                 return 0;
1233 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1234
1235         /*
1236          * We can assume that @vma always points to a valid one and @end never
1237          * goes beyond vma->vm_end.
1238          */
1239         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1240         for (; addr < end; pte++, addr += PAGE_SIZE) {
1241                 pagemap_entry_t pme;
1242
1243                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1244                 err = add_to_pagemap(addr, &pme, pm);
1245                 if (err)
1246                         break;
1247         }
1248         pte_unmap_unlock(orig_pte, ptl);
1249
1250         cond_resched();
1251
1252         return err;
1253 }
1254
1255 #ifdef CONFIG_HUGETLB_PAGE
1256 /* This function walks within one hugetlb entry in the single call */
1257 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1258                                  unsigned long addr, unsigned long end,
1259                                  struct mm_walk *walk)
1260 {
1261         struct pagemapread *pm = walk->private;
1262         struct vm_area_struct *vma = walk->vma;
1263         u64 flags = 0, frame = 0;
1264         int err = 0;
1265         pte_t pte;
1266
1267         if (vma->vm_flags & VM_SOFTDIRTY)
1268                 flags |= PM_SOFT_DIRTY;
1269
1270         pte = huge_ptep_get(ptep);
1271         if (pte_present(pte)) {
1272                 struct page *page = pte_page(pte);
1273
1274                 if (!PageAnon(page))
1275                         flags |= PM_FILE;
1276
1277                 if (page_mapcount(page) == 1)
1278                         flags |= PM_MMAP_EXCLUSIVE;
1279
1280                 flags |= PM_PRESENT;
1281                 if (pm->show_pfn)
1282                         frame = pte_pfn(pte) +
1283                                 ((addr & ~hmask) >> PAGE_SHIFT);
1284         }
1285
1286         for (; addr != end; addr += PAGE_SIZE) {
1287                 pagemap_entry_t pme = make_pme(frame, flags);
1288
1289                 err = add_to_pagemap(addr, &pme, pm);
1290                 if (err)
1291                         return err;
1292                 if (pm->show_pfn && (flags & PM_PRESENT))
1293                         frame++;
1294         }
1295
1296         cond_resched();
1297
1298         return err;
1299 }
1300 #endif /* HUGETLB_PAGE */
1301
1302 /*
1303  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1304  *
1305  * For each page in the address space, this file contains one 64-bit entry
1306  * consisting of the following:
1307  *
1308  * Bits 0-54  page frame number (PFN) if present
1309  * Bits 0-4   swap type if swapped
1310  * Bits 5-54  swap offset if swapped
1311  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1312  * Bit  56    page exclusively mapped
1313  * Bits 57-60 zero
1314  * Bit  61    page is file-page or shared-anon
1315  * Bit  62    page swapped
1316  * Bit  63    page present
1317  *
1318  * If the page is not present but in swap, then the PFN contains an
1319  * encoding of the swap file number and the page's offset into the
1320  * swap. Unmapped pages return a null PFN. This allows determining
1321  * precisely which pages are mapped (or in swap) and comparing mapped
1322  * pages between processes.
1323  *
1324  * Efficient users of this interface will use /proc/pid/maps to
1325  * determine which areas of memory are actually mapped and llseek to
1326  * skip over unmapped regions.
1327  */
1328 static ssize_t pagemap_read(struct file *file, char __user *buf,
1329                             size_t count, loff_t *ppos)
1330 {
1331         struct mm_struct *mm = file->private_data;
1332         struct pagemapread pm;
1333         struct mm_walk pagemap_walk = {};
1334         unsigned long src;
1335         unsigned long svpfn;
1336         unsigned long start_vaddr;
1337         unsigned long end_vaddr;
1338         int ret = 0, copied = 0;
1339
1340         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1341                 goto out;
1342
1343         ret = -EINVAL;
1344         /* file position must be aligned */
1345         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1346                 goto out_mm;
1347
1348         ret = 0;
1349         if (!count)
1350                 goto out_mm;
1351
1352         /* do not disclose physical addresses: attack vector */
1353         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1354
1355         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1356         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1357         ret = -ENOMEM;
1358         if (!pm.buffer)
1359                 goto out_mm;
1360
1361         pagemap_walk.pmd_entry = pagemap_pmd_range;
1362         pagemap_walk.pte_hole = pagemap_pte_hole;
1363 #ifdef CONFIG_HUGETLB_PAGE
1364         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1365 #endif
1366         pagemap_walk.mm = mm;
1367         pagemap_walk.private = &pm;
1368
1369         src = *ppos;
1370         svpfn = src / PM_ENTRY_BYTES;
1371         start_vaddr = svpfn << PAGE_SHIFT;
1372         end_vaddr = mm->task_size;
1373
1374         /* watch out for wraparound */
1375         if (svpfn > mm->task_size >> PAGE_SHIFT)
1376                 start_vaddr = end_vaddr;
1377
1378         /*
1379          * The odds are that this will stop walking way
1380          * before end_vaddr, because the length of the
1381          * user buffer is tracked in "pm", and the walk
1382          * will stop when we hit the end of the buffer.
1383          */
1384         ret = 0;
1385         while (count && (start_vaddr < end_vaddr)) {
1386                 int len;
1387                 unsigned long end;
1388
1389                 pm.pos = 0;
1390                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1391                 /* overflow ? */
1392                 if (end < start_vaddr || end > end_vaddr)
1393                         end = end_vaddr;
1394                 down_read(&mm->mmap_sem);
1395                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1396                 up_read(&mm->mmap_sem);
1397                 start_vaddr = end;
1398
1399                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1400                 if (copy_to_user(buf, pm.buffer, len)) {
1401                         ret = -EFAULT;
1402                         goto out_free;
1403                 }
1404                 copied += len;
1405                 buf += len;
1406                 count -= len;
1407         }
1408         *ppos += copied;
1409         if (!ret || ret == PM_END_OF_BUFFER)
1410                 ret = copied;
1411
1412 out_free:
1413         kfree(pm.buffer);
1414 out_mm:
1415         mmput(mm);
1416 out:
1417         return ret;
1418 }
1419
1420 static int pagemap_open(struct inode *inode, struct file *file)
1421 {
1422         struct mm_struct *mm;
1423
1424         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1425         if (IS_ERR(mm))
1426                 return PTR_ERR(mm);
1427         file->private_data = mm;
1428         return 0;
1429 }
1430
1431 static int pagemap_release(struct inode *inode, struct file *file)
1432 {
1433         struct mm_struct *mm = file->private_data;
1434
1435         if (mm)
1436                 mmdrop(mm);
1437         return 0;
1438 }
1439
1440 const struct file_operations proc_pagemap_operations = {
1441         .llseek         = mem_lseek, /* borrow this */
1442         .read           = pagemap_read,
1443         .open           = pagemap_open,
1444         .release        = pagemap_release,
1445 };
1446 #endif /* CONFIG_PROC_PAGE_MONITOR */
1447
1448 #ifdef CONFIG_NUMA
1449
1450 struct numa_maps {
1451         unsigned long pages;
1452         unsigned long anon;
1453         unsigned long active;
1454         unsigned long writeback;
1455         unsigned long mapcount_max;
1456         unsigned long dirty;
1457         unsigned long swapcache;
1458         unsigned long node[MAX_NUMNODES];
1459 };
1460
1461 struct numa_maps_private {
1462         struct proc_maps_private proc_maps;
1463         struct numa_maps md;
1464 };
1465
1466 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1467                         unsigned long nr_pages)
1468 {
1469         int count = page_mapcount(page);
1470
1471         md->pages += nr_pages;
1472         if (pte_dirty || PageDirty(page))
1473                 md->dirty += nr_pages;
1474
1475         if (PageSwapCache(page))
1476                 md->swapcache += nr_pages;
1477
1478         if (PageActive(page) || PageUnevictable(page))
1479                 md->active += nr_pages;
1480
1481         if (PageWriteback(page))
1482                 md->writeback += nr_pages;
1483
1484         if (PageAnon(page))
1485                 md->anon += nr_pages;
1486
1487         if (count > md->mapcount_max)
1488                 md->mapcount_max = count;
1489
1490         md->node[page_to_nid(page)] += nr_pages;
1491 }
1492
1493 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1494                 unsigned long addr)
1495 {
1496         struct page *page;
1497         int nid;
1498
1499         if (!pte_present(pte))
1500                 return NULL;
1501
1502         page = vm_normal_page(vma, addr, pte);
1503         if (!page)
1504                 return NULL;
1505
1506         if (PageReserved(page))
1507                 return NULL;
1508
1509         nid = page_to_nid(page);
1510         if (!node_isset(nid, node_states[N_MEMORY]))
1511                 return NULL;
1512
1513         return page;
1514 }
1515
1516 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1517                 unsigned long end, struct mm_walk *walk)
1518 {
1519         struct numa_maps *md = walk->private;
1520         struct vm_area_struct *vma = walk->vma;
1521         spinlock_t *ptl;
1522         pte_t *orig_pte;
1523         pte_t *pte;
1524
1525         ptl = pmd_trans_huge_lock(pmd, vma);
1526         if (ptl) {
1527                 pte_t huge_pte = *(pte_t *)pmd;
1528                 struct page *page;
1529
1530                 page = can_gather_numa_stats(huge_pte, vma, addr);
1531                 if (page)
1532                         gather_stats(page, md, pte_dirty(huge_pte),
1533                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1534                 spin_unlock(ptl);
1535                 return 0;
1536         }
1537
1538         if (pmd_trans_unstable(pmd))
1539                 return 0;
1540         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1541         do {
1542                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1543                 if (!page)
1544                         continue;
1545                 gather_stats(page, md, pte_dirty(*pte), 1);
1546
1547         } while (pte++, addr += PAGE_SIZE, addr != end);
1548         pte_unmap_unlock(orig_pte, ptl);
1549         return 0;
1550 }
1551 #ifdef CONFIG_HUGETLB_PAGE
1552 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1553                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1554 {
1555         struct numa_maps *md;
1556         struct page *page;
1557
1558         if (!pte_present(*pte))
1559                 return 0;
1560
1561         page = pte_page(*pte);
1562         if (!page)
1563                 return 0;
1564
1565         md = walk->private;
1566         gather_stats(page, md, pte_dirty(*pte), 1);
1567         return 0;
1568 }
1569
1570 #else
1571 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1572                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1573 {
1574         return 0;
1575 }
1576 #endif
1577
1578 /*
1579  * Display pages allocated per node and memory policy via /proc.
1580  */
1581 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1582 {
1583         struct numa_maps_private *numa_priv = m->private;
1584         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1585         struct vm_area_struct *vma = v;
1586         struct numa_maps *md = &numa_priv->md;
1587         struct file *file = vma->vm_file;
1588         struct mm_struct *mm = vma->vm_mm;
1589         struct mm_walk walk = {
1590                 .hugetlb_entry = gather_hugetlb_stats,
1591                 .pmd_entry = gather_pte_stats,
1592                 .private = md,
1593                 .mm = mm,
1594         };
1595         struct mempolicy *pol;
1596         char buffer[64];
1597         int nid;
1598
1599         if (!mm)
1600                 return 0;
1601
1602         /* Ensure we start with an empty set of numa_maps statistics. */
1603         memset(md, 0, sizeof(*md));
1604
1605         pol = __get_vma_policy(vma, vma->vm_start);
1606         if (pol) {
1607                 mpol_to_str(buffer, sizeof(buffer), pol);
1608                 mpol_cond_put(pol);
1609         } else {
1610                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1611         }
1612
1613         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1614
1615         if (file) {
1616                 seq_puts(m, " file=");
1617                 seq_file_path(m, file, "\n\t= ");
1618         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1619                 seq_puts(m, " heap");
1620         } else {
1621                 pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1622                 if (tid != 0) {
1623                         /*
1624                          * Thread stack in /proc/PID/task/TID/maps or
1625                          * the main process stack.
1626                          */
1627                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
1628                             vma->vm_end >= mm->start_stack))
1629                                 seq_puts(m, " stack");
1630                         else
1631                                 seq_printf(m, " stack:%d", tid);
1632                 }
1633         }
1634
1635         if (is_vm_hugetlb_page(vma))
1636                 seq_puts(m, " huge");
1637
1638         /* mmap_sem is held by m_start */
1639         walk_page_vma(vma, &walk);
1640
1641         if (!md->pages)
1642                 goto out;
1643
1644         if (md->anon)
1645                 seq_printf(m, " anon=%lu", md->anon);
1646
1647         if (md->dirty)
1648                 seq_printf(m, " dirty=%lu", md->dirty);
1649
1650         if (md->pages != md->anon && md->pages != md->dirty)
1651                 seq_printf(m, " mapped=%lu", md->pages);
1652
1653         if (md->mapcount_max > 1)
1654                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1655
1656         if (md->swapcache)
1657                 seq_printf(m, " swapcache=%lu", md->swapcache);
1658
1659         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1660                 seq_printf(m, " active=%lu", md->active);
1661
1662         if (md->writeback)
1663                 seq_printf(m, " writeback=%lu", md->writeback);
1664
1665         for_each_node_state(nid, N_MEMORY)
1666                 if (md->node[nid])
1667                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1668
1669         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1670 out:
1671         seq_putc(m, '\n');
1672         m_cache_vma(m, vma);
1673         return 0;
1674 }
1675
1676 static int show_pid_numa_map(struct seq_file *m, void *v)
1677 {
1678         return show_numa_map(m, v, 1);
1679 }
1680
1681 static int show_tid_numa_map(struct seq_file *m, void *v)
1682 {
1683         return show_numa_map(m, v, 0);
1684 }
1685
1686 static const struct seq_operations proc_pid_numa_maps_op = {
1687         .start  = m_start,
1688         .next   = m_next,
1689         .stop   = m_stop,
1690         .show   = show_pid_numa_map,
1691 };
1692
1693 static const struct seq_operations proc_tid_numa_maps_op = {
1694         .start  = m_start,
1695         .next   = m_next,
1696         .stop   = m_stop,
1697         .show   = show_tid_numa_map,
1698 };
1699
1700 static int numa_maps_open(struct inode *inode, struct file *file,
1701                           const struct seq_operations *ops)
1702 {
1703         return proc_maps_open(inode, file, ops,
1704                                 sizeof(struct numa_maps_private));
1705 }
1706
1707 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1708 {
1709         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1710 }
1711
1712 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1713 {
1714         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1715 }
1716
1717 const struct file_operations proc_pid_numa_maps_operations = {
1718         .open           = pid_numa_maps_open,
1719         .read           = seq_read,
1720         .llseek         = seq_lseek,
1721         .release        = proc_map_release,
1722 };
1723
1724 const struct file_operations proc_tid_numa_maps_operations = {
1725         .open           = tid_numa_maps_open,
1726         .read           = seq_read,
1727         .llseek         = seq_lseek,
1728         .release        = proc_map_release,
1729 };
1730 #endif /* CONFIG_NUMA */