mmap locking API: use coccinelle to convert mmap_sem rwsem call sites
[linux-2.6-microblaze.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27
28 #define SEQ_PUT_DEC(str, val) \
29                 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32         unsigned long text, lib, swap, anon, file, shmem;
33         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35         anon = get_mm_counter(mm, MM_ANONPAGES);
36         file = get_mm_counter(mm, MM_FILEPAGES);
37         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39         /*
40          * Note: to minimize their overhead, mm maintains hiwater_vm and
41          * hiwater_rss only when about to *lower* total_vm or rss.  Any
42          * collector of these hiwater stats must therefore get total_vm
43          * and rss too, which will usually be the higher.  Barriers? not
44          * worth the effort, such snapshots can always be inconsistent.
45          */
46         hiwater_vm = total_vm = mm->total_vm;
47         if (hiwater_vm < mm->hiwater_vm)
48                 hiwater_vm = mm->hiwater_vm;
49         hiwater_rss = total_rss = anon + file + shmem;
50         if (hiwater_rss < mm->hiwater_rss)
51                 hiwater_rss = mm->hiwater_rss;
52
53         /* split executable areas between text and lib */
54         text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55         text = min(text, mm->exec_vm << PAGE_SHIFT);
56         lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58         swap = get_mm_counter(mm, MM_SWAPENTS);
59         SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60         SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61         SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62         SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63         SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64         SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65         SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66         SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67         SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68         SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69         SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70         seq_put_decimal_ull_width(m,
71                     " kB\nVmExe:\t", text >> 10, 8);
72         seq_put_decimal_ull_width(m,
73                     " kB\nVmLib:\t", lib >> 10, 8);
74         seq_put_decimal_ull_width(m,
75                     " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76         SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77         seq_puts(m, " kB\n");
78         hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84         return PAGE_SIZE * mm->total_vm;
85 }
86
87 unsigned long task_statm(struct mm_struct *mm,
88                          unsigned long *shared, unsigned long *text,
89                          unsigned long *data, unsigned long *resident)
90 {
91         *shared = get_mm_counter(mm, MM_FILEPAGES) +
92                         get_mm_counter(mm, MM_SHMEMPAGES);
93         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94                                                                 >> PAGE_SHIFT;
95         *data = mm->data_vm + mm->stack_vm;
96         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97         return mm->total_vm;
98 }
99
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106         struct task_struct *task = priv->task;
107
108         task_lock(task);
109         priv->task_mempolicy = get_task_policy(task);
110         mpol_get(priv->task_mempolicy);
111         task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115         mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125
126 static void *m_start(struct seq_file *m, loff_t *ppos)
127 {
128         struct proc_maps_private *priv = m->private;
129         unsigned long last_addr = *ppos;
130         struct mm_struct *mm;
131         struct vm_area_struct *vma;
132
133         /* See m_next(). Zero at the start or after lseek. */
134         if (last_addr == -1UL)
135                 return NULL;
136
137         priv->task = get_proc_task(priv->inode);
138         if (!priv->task)
139                 return ERR_PTR(-ESRCH);
140
141         mm = priv->mm;
142         if (!mm || !mmget_not_zero(mm)) {
143                 put_task_struct(priv->task);
144                 priv->task = NULL;
145                 return NULL;
146         }
147
148         if (mmap_read_lock_killable(mm)) {
149                 mmput(mm);
150                 put_task_struct(priv->task);
151                 priv->task = NULL;
152                 return ERR_PTR(-EINTR);
153         }
154
155         hold_task_mempolicy(priv);
156         priv->tail_vma = get_gate_vma(mm);
157
158         vma = find_vma(mm, last_addr);
159         if (vma)
160                 return vma;
161
162         return priv->tail_vma;
163 }
164
165 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
166 {
167         struct proc_maps_private *priv = m->private;
168         struct vm_area_struct *next, *vma = v;
169
170         if (vma == priv->tail_vma)
171                 next = NULL;
172         else if (vma->vm_next)
173                 next = vma->vm_next;
174         else
175                 next = priv->tail_vma;
176
177         *ppos = next ? next->vm_start : -1UL;
178
179         return next;
180 }
181
182 static void m_stop(struct seq_file *m, void *v)
183 {
184         struct proc_maps_private *priv = m->private;
185         struct mm_struct *mm = priv->mm;
186
187         if (!priv->task)
188                 return;
189
190         release_task_mempolicy(priv);
191         mmap_read_unlock(mm);
192         mmput(mm);
193         put_task_struct(priv->task);
194         priv->task = NULL;
195 }
196
197 static int proc_maps_open(struct inode *inode, struct file *file,
198                         const struct seq_operations *ops, int psize)
199 {
200         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
201
202         if (!priv)
203                 return -ENOMEM;
204
205         priv->inode = inode;
206         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
207         if (IS_ERR(priv->mm)) {
208                 int err = PTR_ERR(priv->mm);
209
210                 seq_release_private(inode, file);
211                 return err;
212         }
213
214         return 0;
215 }
216
217 static int proc_map_release(struct inode *inode, struct file *file)
218 {
219         struct seq_file *seq = file->private_data;
220         struct proc_maps_private *priv = seq->private;
221
222         if (priv->mm)
223                 mmdrop(priv->mm);
224
225         return seq_release_private(inode, file);
226 }
227
228 static int do_maps_open(struct inode *inode, struct file *file,
229                         const struct seq_operations *ops)
230 {
231         return proc_maps_open(inode, file, ops,
232                                 sizeof(struct proc_maps_private));
233 }
234
235 /*
236  * Indicate if the VMA is a stack for the given task; for
237  * /proc/PID/maps that is the stack of the main task.
238  */
239 static int is_stack(struct vm_area_struct *vma)
240 {
241         /*
242          * We make no effort to guess what a given thread considers to be
243          * its "stack".  It's not even well-defined for programs written
244          * languages like Go.
245          */
246         return vma->vm_start <= vma->vm_mm->start_stack &&
247                 vma->vm_end >= vma->vm_mm->start_stack;
248 }
249
250 static void show_vma_header_prefix(struct seq_file *m,
251                                    unsigned long start, unsigned long end,
252                                    vm_flags_t flags, unsigned long long pgoff,
253                                    dev_t dev, unsigned long ino)
254 {
255         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
256         seq_put_hex_ll(m, NULL, start, 8);
257         seq_put_hex_ll(m, "-", end, 8);
258         seq_putc(m, ' ');
259         seq_putc(m, flags & VM_READ ? 'r' : '-');
260         seq_putc(m, flags & VM_WRITE ? 'w' : '-');
261         seq_putc(m, flags & VM_EXEC ? 'x' : '-');
262         seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
263         seq_put_hex_ll(m, " ", pgoff, 8);
264         seq_put_hex_ll(m, " ", MAJOR(dev), 2);
265         seq_put_hex_ll(m, ":", MINOR(dev), 2);
266         seq_put_decimal_ull(m, " ", ino);
267         seq_putc(m, ' ');
268 }
269
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
272 {
273         struct mm_struct *mm = vma->vm_mm;
274         struct file *file = vma->vm_file;
275         vm_flags_t flags = vma->vm_flags;
276         unsigned long ino = 0;
277         unsigned long long pgoff = 0;
278         unsigned long start, end;
279         dev_t dev = 0;
280         const char *name = NULL;
281
282         if (file) {
283                 struct inode *inode = file_inode(vma->vm_file);
284                 dev = inode->i_sb->s_dev;
285                 ino = inode->i_ino;
286                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287         }
288
289         start = vma->vm_start;
290         end = vma->vm_end;
291         show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
292
293         /*
294          * Print the dentry name for named mappings, and a
295          * special [heap] marker for the heap:
296          */
297         if (file) {
298                 seq_pad(m, ' ');
299                 seq_file_path(m, file, "\n");
300                 goto done;
301         }
302
303         if (vma->vm_ops && vma->vm_ops->name) {
304                 name = vma->vm_ops->name(vma);
305                 if (name)
306                         goto done;
307         }
308
309         name = arch_vma_name(vma);
310         if (!name) {
311                 if (!mm) {
312                         name = "[vdso]";
313                         goto done;
314                 }
315
316                 if (vma->vm_start <= mm->brk &&
317                     vma->vm_end >= mm->start_brk) {
318                         name = "[heap]";
319                         goto done;
320                 }
321
322                 if (is_stack(vma))
323                         name = "[stack]";
324         }
325
326 done:
327         if (name) {
328                 seq_pad(m, ' ');
329                 seq_puts(m, name);
330         }
331         seq_putc(m, '\n');
332 }
333
334 static int show_map(struct seq_file *m, void *v)
335 {
336         show_map_vma(m, v);
337         return 0;
338 }
339
340 static const struct seq_operations proc_pid_maps_op = {
341         .start  = m_start,
342         .next   = m_next,
343         .stop   = m_stop,
344         .show   = show_map
345 };
346
347 static int pid_maps_open(struct inode *inode, struct file *file)
348 {
349         return do_maps_open(inode, file, &proc_pid_maps_op);
350 }
351
352 const struct file_operations proc_pid_maps_operations = {
353         .open           = pid_maps_open,
354         .read           = seq_read,
355         .llseek         = seq_lseek,
356         .release        = proc_map_release,
357 };
358
359 /*
360  * Proportional Set Size(PSS): my share of RSS.
361  *
362  * PSS of a process is the count of pages it has in memory, where each
363  * page is divided by the number of processes sharing it.  So if a
364  * process has 1000 pages all to itself, and 1000 shared with one other
365  * process, its PSS will be 1500.
366  *
367  * To keep (accumulated) division errors low, we adopt a 64bit
368  * fixed-point pss counter to minimize division errors. So (pss >>
369  * PSS_SHIFT) would be the real byte count.
370  *
371  * A shift of 12 before division means (assuming 4K page size):
372  *      - 1M 3-user-pages add up to 8KB errors;
373  *      - supports mapcount up to 2^24, or 16M;
374  *      - supports PSS up to 2^52 bytes, or 4PB.
375  */
376 #define PSS_SHIFT 12
377
378 #ifdef CONFIG_PROC_PAGE_MONITOR
379 struct mem_size_stats {
380         unsigned long resident;
381         unsigned long shared_clean;
382         unsigned long shared_dirty;
383         unsigned long private_clean;
384         unsigned long private_dirty;
385         unsigned long referenced;
386         unsigned long anonymous;
387         unsigned long lazyfree;
388         unsigned long anonymous_thp;
389         unsigned long shmem_thp;
390         unsigned long file_thp;
391         unsigned long swap;
392         unsigned long shared_hugetlb;
393         unsigned long private_hugetlb;
394         u64 pss;
395         u64 pss_anon;
396         u64 pss_file;
397         u64 pss_shmem;
398         u64 pss_locked;
399         u64 swap_pss;
400         bool check_shmem_swap;
401 };
402
403 static void smaps_page_accumulate(struct mem_size_stats *mss,
404                 struct page *page, unsigned long size, unsigned long pss,
405                 bool dirty, bool locked, bool private)
406 {
407         mss->pss += pss;
408
409         if (PageAnon(page))
410                 mss->pss_anon += pss;
411         else if (PageSwapBacked(page))
412                 mss->pss_shmem += pss;
413         else
414                 mss->pss_file += pss;
415
416         if (locked)
417                 mss->pss_locked += pss;
418
419         if (dirty || PageDirty(page)) {
420                 if (private)
421                         mss->private_dirty += size;
422                 else
423                         mss->shared_dirty += size;
424         } else {
425                 if (private)
426                         mss->private_clean += size;
427                 else
428                         mss->shared_clean += size;
429         }
430 }
431
432 static void smaps_account(struct mem_size_stats *mss, struct page *page,
433                 bool compound, bool young, bool dirty, bool locked)
434 {
435         int i, nr = compound ? compound_nr(page) : 1;
436         unsigned long size = nr * PAGE_SIZE;
437
438         /*
439          * First accumulate quantities that depend only on |size| and the type
440          * of the compound page.
441          */
442         if (PageAnon(page)) {
443                 mss->anonymous += size;
444                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
445                         mss->lazyfree += size;
446         }
447
448         mss->resident += size;
449         /* Accumulate the size in pages that have been accessed. */
450         if (young || page_is_young(page) || PageReferenced(page))
451                 mss->referenced += size;
452
453         /*
454          * Then accumulate quantities that may depend on sharing, or that may
455          * differ page-by-page.
456          *
457          * page_count(page) == 1 guarantees the page is mapped exactly once.
458          * If any subpage of the compound page mapped with PTE it would elevate
459          * page_count().
460          */
461         if (page_count(page) == 1) {
462                 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
463                         locked, true);
464                 return;
465         }
466         for (i = 0; i < nr; i++, page++) {
467                 int mapcount = page_mapcount(page);
468                 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
469                 if (mapcount >= 2)
470                         pss /= mapcount;
471                 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
472                                       mapcount < 2);
473         }
474 }
475
476 #ifdef CONFIG_SHMEM
477 static int smaps_pte_hole(unsigned long addr, unsigned long end,
478                           __always_unused int depth, struct mm_walk *walk)
479 {
480         struct mem_size_stats *mss = walk->private;
481
482         mss->swap += shmem_partial_swap_usage(
483                         walk->vma->vm_file->f_mapping, addr, end);
484
485         return 0;
486 }
487 #else
488 #define smaps_pte_hole          NULL
489 #endif /* CONFIG_SHMEM */
490
491 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
492                 struct mm_walk *walk)
493 {
494         struct mem_size_stats *mss = walk->private;
495         struct vm_area_struct *vma = walk->vma;
496         bool locked = !!(vma->vm_flags & VM_LOCKED);
497         struct page *page = NULL;
498
499         if (pte_present(*pte)) {
500                 page = vm_normal_page(vma, addr, *pte);
501         } else if (is_swap_pte(*pte)) {
502                 swp_entry_t swpent = pte_to_swp_entry(*pte);
503
504                 if (!non_swap_entry(swpent)) {
505                         int mapcount;
506
507                         mss->swap += PAGE_SIZE;
508                         mapcount = swp_swapcount(swpent);
509                         if (mapcount >= 2) {
510                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
511
512                                 do_div(pss_delta, mapcount);
513                                 mss->swap_pss += pss_delta;
514                         } else {
515                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
516                         }
517                 } else if (is_migration_entry(swpent))
518                         page = migration_entry_to_page(swpent);
519                 else if (is_device_private_entry(swpent))
520                         page = device_private_entry_to_page(swpent);
521         } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
522                                                         && pte_none(*pte))) {
523                 page = find_get_entry(vma->vm_file->f_mapping,
524                                                 linear_page_index(vma, addr));
525                 if (!page)
526                         return;
527
528                 if (xa_is_value(page))
529                         mss->swap += PAGE_SIZE;
530                 else
531                         put_page(page);
532
533                 return;
534         }
535
536         if (!page)
537                 return;
538
539         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
540 }
541
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
544                 struct mm_walk *walk)
545 {
546         struct mem_size_stats *mss = walk->private;
547         struct vm_area_struct *vma = walk->vma;
548         bool locked = !!(vma->vm_flags & VM_LOCKED);
549         struct page *page = NULL;
550
551         if (pmd_present(*pmd)) {
552                 /* FOLL_DUMP will return -EFAULT on huge zero page */
553                 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
554         } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
555                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
556
557                 if (is_migration_entry(entry))
558                         page = migration_entry_to_page(entry);
559         }
560         if (IS_ERR_OR_NULL(page))
561                 return;
562         if (PageAnon(page))
563                 mss->anonymous_thp += HPAGE_PMD_SIZE;
564         else if (PageSwapBacked(page))
565                 mss->shmem_thp += HPAGE_PMD_SIZE;
566         else if (is_zone_device_page(page))
567                 /* pass */;
568         else
569                 mss->file_thp += HPAGE_PMD_SIZE;
570         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
571 }
572 #else
573 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
574                 struct mm_walk *walk)
575 {
576 }
577 #endif
578
579 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
580                            struct mm_walk *walk)
581 {
582         struct vm_area_struct *vma = walk->vma;
583         pte_t *pte;
584         spinlock_t *ptl;
585
586         ptl = pmd_trans_huge_lock(pmd, vma);
587         if (ptl) {
588                 smaps_pmd_entry(pmd, addr, walk);
589                 spin_unlock(ptl);
590                 goto out;
591         }
592
593         if (pmd_trans_unstable(pmd))
594                 goto out;
595         /*
596          * The mmap_sem held all the way back in m_start() is what
597          * keeps khugepaged out of here and from collapsing things
598          * in here.
599          */
600         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
601         for (; addr != end; pte++, addr += PAGE_SIZE)
602                 smaps_pte_entry(pte, addr, walk);
603         pte_unmap_unlock(pte - 1, ptl);
604 out:
605         cond_resched();
606         return 0;
607 }
608
609 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
610 {
611         /*
612          * Don't forget to update Documentation/ on changes.
613          */
614         static const char mnemonics[BITS_PER_LONG][2] = {
615                 /*
616                  * In case if we meet a flag we don't know about.
617                  */
618                 [0 ... (BITS_PER_LONG-1)] = "??",
619
620                 [ilog2(VM_READ)]        = "rd",
621                 [ilog2(VM_WRITE)]       = "wr",
622                 [ilog2(VM_EXEC)]        = "ex",
623                 [ilog2(VM_SHARED)]      = "sh",
624                 [ilog2(VM_MAYREAD)]     = "mr",
625                 [ilog2(VM_MAYWRITE)]    = "mw",
626                 [ilog2(VM_MAYEXEC)]     = "me",
627                 [ilog2(VM_MAYSHARE)]    = "ms",
628                 [ilog2(VM_GROWSDOWN)]   = "gd",
629                 [ilog2(VM_PFNMAP)]      = "pf",
630                 [ilog2(VM_DENYWRITE)]   = "dw",
631                 [ilog2(VM_LOCKED)]      = "lo",
632                 [ilog2(VM_IO)]          = "io",
633                 [ilog2(VM_SEQ_READ)]    = "sr",
634                 [ilog2(VM_RAND_READ)]   = "rr",
635                 [ilog2(VM_DONTCOPY)]    = "dc",
636                 [ilog2(VM_DONTEXPAND)]  = "de",
637                 [ilog2(VM_ACCOUNT)]     = "ac",
638                 [ilog2(VM_NORESERVE)]   = "nr",
639                 [ilog2(VM_HUGETLB)]     = "ht",
640                 [ilog2(VM_SYNC)]        = "sf",
641                 [ilog2(VM_ARCH_1)]      = "ar",
642                 [ilog2(VM_WIPEONFORK)]  = "wf",
643                 [ilog2(VM_DONTDUMP)]    = "dd",
644 #ifdef CONFIG_ARM64_BTI
645                 [ilog2(VM_ARM64_BTI)]   = "bt",
646 #endif
647 #ifdef CONFIG_MEM_SOFT_DIRTY
648                 [ilog2(VM_SOFTDIRTY)]   = "sd",
649 #endif
650                 [ilog2(VM_MIXEDMAP)]    = "mm",
651                 [ilog2(VM_HUGEPAGE)]    = "hg",
652                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
653                 [ilog2(VM_MERGEABLE)]   = "mg",
654                 [ilog2(VM_UFFD_MISSING)]= "um",
655                 [ilog2(VM_UFFD_WP)]     = "uw",
656 #ifdef CONFIG_ARCH_HAS_PKEYS
657                 /* These come out via ProtectionKey: */
658                 [ilog2(VM_PKEY_BIT0)]   = "",
659                 [ilog2(VM_PKEY_BIT1)]   = "",
660                 [ilog2(VM_PKEY_BIT2)]   = "",
661                 [ilog2(VM_PKEY_BIT3)]   = "",
662 #if VM_PKEY_BIT4
663                 [ilog2(VM_PKEY_BIT4)]   = "",
664 #endif
665 #endif /* CONFIG_ARCH_HAS_PKEYS */
666         };
667         size_t i;
668
669         seq_puts(m, "VmFlags: ");
670         for (i = 0; i < BITS_PER_LONG; i++) {
671                 if (!mnemonics[i][0])
672                         continue;
673                 if (vma->vm_flags & (1UL << i)) {
674                         seq_putc(m, mnemonics[i][0]);
675                         seq_putc(m, mnemonics[i][1]);
676                         seq_putc(m, ' ');
677                 }
678         }
679         seq_putc(m, '\n');
680 }
681
682 #ifdef CONFIG_HUGETLB_PAGE
683 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
684                                  unsigned long addr, unsigned long end,
685                                  struct mm_walk *walk)
686 {
687         struct mem_size_stats *mss = walk->private;
688         struct vm_area_struct *vma = walk->vma;
689         struct page *page = NULL;
690
691         if (pte_present(*pte)) {
692                 page = vm_normal_page(vma, addr, *pte);
693         } else if (is_swap_pte(*pte)) {
694                 swp_entry_t swpent = pte_to_swp_entry(*pte);
695
696                 if (is_migration_entry(swpent))
697                         page = migration_entry_to_page(swpent);
698                 else if (is_device_private_entry(swpent))
699                         page = device_private_entry_to_page(swpent);
700         }
701         if (page) {
702                 int mapcount = page_mapcount(page);
703
704                 if (mapcount >= 2)
705                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
706                 else
707                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
708         }
709         return 0;
710 }
711 #else
712 #define smaps_hugetlb_range     NULL
713 #endif /* HUGETLB_PAGE */
714
715 static const struct mm_walk_ops smaps_walk_ops = {
716         .pmd_entry              = smaps_pte_range,
717         .hugetlb_entry          = smaps_hugetlb_range,
718 };
719
720 static const struct mm_walk_ops smaps_shmem_walk_ops = {
721         .pmd_entry              = smaps_pte_range,
722         .hugetlb_entry          = smaps_hugetlb_range,
723         .pte_hole               = smaps_pte_hole,
724 };
725
726 static void smap_gather_stats(struct vm_area_struct *vma,
727                              struct mem_size_stats *mss)
728 {
729 #ifdef CONFIG_SHMEM
730         /* In case of smaps_rollup, reset the value from previous vma */
731         mss->check_shmem_swap = false;
732         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
733                 /*
734                  * For shared or readonly shmem mappings we know that all
735                  * swapped out pages belong to the shmem object, and we can
736                  * obtain the swap value much more efficiently. For private
737                  * writable mappings, we might have COW pages that are
738                  * not affected by the parent swapped out pages of the shmem
739                  * object, so we have to distinguish them during the page walk.
740                  * Unless we know that the shmem object (or the part mapped by
741                  * our VMA) has no swapped out pages at all.
742                  */
743                 unsigned long shmem_swapped = shmem_swap_usage(vma);
744
745                 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
746                                         !(vma->vm_flags & VM_WRITE)) {
747                         mss->swap += shmem_swapped;
748                 } else {
749                         mss->check_shmem_swap = true;
750                         walk_page_vma(vma, &smaps_shmem_walk_ops, mss);
751                         return;
752                 }
753         }
754 #endif
755         /* mmap_sem is held in m_start */
756         walk_page_vma(vma, &smaps_walk_ops, mss);
757 }
758
759 #define SEQ_PUT_DEC(str, val) \
760                 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
761
762 /* Show the contents common for smaps and smaps_rollup */
763 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
764         bool rollup_mode)
765 {
766         SEQ_PUT_DEC("Rss:            ", mss->resident);
767         SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
768         if (rollup_mode) {
769                 /*
770                  * These are meaningful only for smaps_rollup, otherwise two of
771                  * them are zero, and the other one is the same as Pss.
772                  */
773                 SEQ_PUT_DEC(" kB\nPss_Anon:       ",
774                         mss->pss_anon >> PSS_SHIFT);
775                 SEQ_PUT_DEC(" kB\nPss_File:       ",
776                         mss->pss_file >> PSS_SHIFT);
777                 SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
778                         mss->pss_shmem >> PSS_SHIFT);
779         }
780         SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
781         SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
782         SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
783         SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
784         SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
785         SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
786         SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
787         SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
788         SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
789         SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
790         SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
791         seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
792                                   mss->private_hugetlb >> 10, 7);
793         SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
794         SEQ_PUT_DEC(" kB\nSwapPss:        ",
795                                         mss->swap_pss >> PSS_SHIFT);
796         SEQ_PUT_DEC(" kB\nLocked:         ",
797                                         mss->pss_locked >> PSS_SHIFT);
798         seq_puts(m, " kB\n");
799 }
800
801 static int show_smap(struct seq_file *m, void *v)
802 {
803         struct vm_area_struct *vma = v;
804         struct mem_size_stats mss;
805
806         memset(&mss, 0, sizeof(mss));
807
808         smap_gather_stats(vma, &mss);
809
810         show_map_vma(m, vma);
811
812         SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
813         SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
814         SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
815         seq_puts(m, " kB\n");
816
817         __show_smap(m, &mss, false);
818
819         seq_printf(m, "THPeligible:             %d\n",
820                    transparent_hugepage_enabled(vma));
821
822         if (arch_pkeys_enabled())
823                 seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
824         show_smap_vma_flags(m, vma);
825
826         return 0;
827 }
828
829 static int show_smaps_rollup(struct seq_file *m, void *v)
830 {
831         struct proc_maps_private *priv = m->private;
832         struct mem_size_stats mss;
833         struct mm_struct *mm;
834         struct vm_area_struct *vma;
835         unsigned long last_vma_end = 0;
836         int ret = 0;
837
838         priv->task = get_proc_task(priv->inode);
839         if (!priv->task)
840                 return -ESRCH;
841
842         mm = priv->mm;
843         if (!mm || !mmget_not_zero(mm)) {
844                 ret = -ESRCH;
845                 goto out_put_task;
846         }
847
848         memset(&mss, 0, sizeof(mss));
849
850         ret = mmap_read_lock_killable(mm);
851         if (ret)
852                 goto out_put_mm;
853
854         hold_task_mempolicy(priv);
855
856         for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
857                 smap_gather_stats(vma, &mss);
858                 last_vma_end = vma->vm_end;
859         }
860
861         show_vma_header_prefix(m, priv->mm->mmap->vm_start,
862                                last_vma_end, 0, 0, 0, 0);
863         seq_pad(m, ' ');
864         seq_puts(m, "[rollup]\n");
865
866         __show_smap(m, &mss, true);
867
868         release_task_mempolicy(priv);
869         mmap_read_unlock(mm);
870
871 out_put_mm:
872         mmput(mm);
873 out_put_task:
874         put_task_struct(priv->task);
875         priv->task = NULL;
876
877         return ret;
878 }
879 #undef SEQ_PUT_DEC
880
881 static const struct seq_operations proc_pid_smaps_op = {
882         .start  = m_start,
883         .next   = m_next,
884         .stop   = m_stop,
885         .show   = show_smap
886 };
887
888 static int pid_smaps_open(struct inode *inode, struct file *file)
889 {
890         return do_maps_open(inode, file, &proc_pid_smaps_op);
891 }
892
893 static int smaps_rollup_open(struct inode *inode, struct file *file)
894 {
895         int ret;
896         struct proc_maps_private *priv;
897
898         priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
899         if (!priv)
900                 return -ENOMEM;
901
902         ret = single_open(file, show_smaps_rollup, priv);
903         if (ret)
904                 goto out_free;
905
906         priv->inode = inode;
907         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
908         if (IS_ERR(priv->mm)) {
909                 ret = PTR_ERR(priv->mm);
910
911                 single_release(inode, file);
912                 goto out_free;
913         }
914
915         return 0;
916
917 out_free:
918         kfree(priv);
919         return ret;
920 }
921
922 static int smaps_rollup_release(struct inode *inode, struct file *file)
923 {
924         struct seq_file *seq = file->private_data;
925         struct proc_maps_private *priv = seq->private;
926
927         if (priv->mm)
928                 mmdrop(priv->mm);
929
930         kfree(priv);
931         return single_release(inode, file);
932 }
933
934 const struct file_operations proc_pid_smaps_operations = {
935         .open           = pid_smaps_open,
936         .read           = seq_read,
937         .llseek         = seq_lseek,
938         .release        = proc_map_release,
939 };
940
941 const struct file_operations proc_pid_smaps_rollup_operations = {
942         .open           = smaps_rollup_open,
943         .read           = seq_read,
944         .llseek         = seq_lseek,
945         .release        = smaps_rollup_release,
946 };
947
948 enum clear_refs_types {
949         CLEAR_REFS_ALL = 1,
950         CLEAR_REFS_ANON,
951         CLEAR_REFS_MAPPED,
952         CLEAR_REFS_SOFT_DIRTY,
953         CLEAR_REFS_MM_HIWATER_RSS,
954         CLEAR_REFS_LAST,
955 };
956
957 struct clear_refs_private {
958         enum clear_refs_types type;
959 };
960
961 #ifdef CONFIG_MEM_SOFT_DIRTY
962 static inline void clear_soft_dirty(struct vm_area_struct *vma,
963                 unsigned long addr, pte_t *pte)
964 {
965         /*
966          * The soft-dirty tracker uses #PF-s to catch writes
967          * to pages, so write-protect the pte as well. See the
968          * Documentation/admin-guide/mm/soft-dirty.rst for full description
969          * of how soft-dirty works.
970          */
971         pte_t ptent = *pte;
972
973         if (pte_present(ptent)) {
974                 pte_t old_pte;
975
976                 old_pte = ptep_modify_prot_start(vma, addr, pte);
977                 ptent = pte_wrprotect(old_pte);
978                 ptent = pte_clear_soft_dirty(ptent);
979                 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
980         } else if (is_swap_pte(ptent)) {
981                 ptent = pte_swp_clear_soft_dirty(ptent);
982                 set_pte_at(vma->vm_mm, addr, pte, ptent);
983         }
984 }
985 #else
986 static inline void clear_soft_dirty(struct vm_area_struct *vma,
987                 unsigned long addr, pte_t *pte)
988 {
989 }
990 #endif
991
992 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
993 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
994                 unsigned long addr, pmd_t *pmdp)
995 {
996         pmd_t old, pmd = *pmdp;
997
998         if (pmd_present(pmd)) {
999                 /* See comment in change_huge_pmd() */
1000                 old = pmdp_invalidate(vma, addr, pmdp);
1001                 if (pmd_dirty(old))
1002                         pmd = pmd_mkdirty(pmd);
1003                 if (pmd_young(old))
1004                         pmd = pmd_mkyoung(pmd);
1005
1006                 pmd = pmd_wrprotect(pmd);
1007                 pmd = pmd_clear_soft_dirty(pmd);
1008
1009                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1010         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1011                 pmd = pmd_swp_clear_soft_dirty(pmd);
1012                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1013         }
1014 }
1015 #else
1016 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1017                 unsigned long addr, pmd_t *pmdp)
1018 {
1019 }
1020 #endif
1021
1022 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1023                                 unsigned long end, struct mm_walk *walk)
1024 {
1025         struct clear_refs_private *cp = walk->private;
1026         struct vm_area_struct *vma = walk->vma;
1027         pte_t *pte, ptent;
1028         spinlock_t *ptl;
1029         struct page *page;
1030
1031         ptl = pmd_trans_huge_lock(pmd, vma);
1032         if (ptl) {
1033                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1034                         clear_soft_dirty_pmd(vma, addr, pmd);
1035                         goto out;
1036                 }
1037
1038                 if (!pmd_present(*pmd))
1039                         goto out;
1040
1041                 page = pmd_page(*pmd);
1042
1043                 /* Clear accessed and referenced bits. */
1044                 pmdp_test_and_clear_young(vma, addr, pmd);
1045                 test_and_clear_page_young(page);
1046                 ClearPageReferenced(page);
1047 out:
1048                 spin_unlock(ptl);
1049                 return 0;
1050         }
1051
1052         if (pmd_trans_unstable(pmd))
1053                 return 0;
1054
1055         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1056         for (; addr != end; pte++, addr += PAGE_SIZE) {
1057                 ptent = *pte;
1058
1059                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1060                         clear_soft_dirty(vma, addr, pte);
1061                         continue;
1062                 }
1063
1064                 if (!pte_present(ptent))
1065                         continue;
1066
1067                 page = vm_normal_page(vma, addr, ptent);
1068                 if (!page)
1069                         continue;
1070
1071                 /* Clear accessed and referenced bits. */
1072                 ptep_test_and_clear_young(vma, addr, pte);
1073                 test_and_clear_page_young(page);
1074                 ClearPageReferenced(page);
1075         }
1076         pte_unmap_unlock(pte - 1, ptl);
1077         cond_resched();
1078         return 0;
1079 }
1080
1081 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1082                                 struct mm_walk *walk)
1083 {
1084         struct clear_refs_private *cp = walk->private;
1085         struct vm_area_struct *vma = walk->vma;
1086
1087         if (vma->vm_flags & VM_PFNMAP)
1088                 return 1;
1089
1090         /*
1091          * Writing 1 to /proc/pid/clear_refs affects all pages.
1092          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1093          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1094          * Writing 4 to /proc/pid/clear_refs affects all pages.
1095          */
1096         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1097                 return 1;
1098         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1099                 return 1;
1100         return 0;
1101 }
1102
1103 static const struct mm_walk_ops clear_refs_walk_ops = {
1104         .pmd_entry              = clear_refs_pte_range,
1105         .test_walk              = clear_refs_test_walk,
1106 };
1107
1108 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1109                                 size_t count, loff_t *ppos)
1110 {
1111         struct task_struct *task;
1112         char buffer[PROC_NUMBUF];
1113         struct mm_struct *mm;
1114         struct vm_area_struct *vma;
1115         enum clear_refs_types type;
1116         struct mmu_gather tlb;
1117         int itype;
1118         int rv;
1119
1120         memset(buffer, 0, sizeof(buffer));
1121         if (count > sizeof(buffer) - 1)
1122                 count = sizeof(buffer) - 1;
1123         if (copy_from_user(buffer, buf, count))
1124                 return -EFAULT;
1125         rv = kstrtoint(strstrip(buffer), 10, &itype);
1126         if (rv < 0)
1127                 return rv;
1128         type = (enum clear_refs_types)itype;
1129         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1130                 return -EINVAL;
1131
1132         task = get_proc_task(file_inode(file));
1133         if (!task)
1134                 return -ESRCH;
1135         mm = get_task_mm(task);
1136         if (mm) {
1137                 struct mmu_notifier_range range;
1138                 struct clear_refs_private cp = {
1139                         .type = type,
1140                 };
1141
1142                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1143                         if (mmap_write_lock_killable(mm)) {
1144                                 count = -EINTR;
1145                                 goto out_mm;
1146                         }
1147
1148                         /*
1149                          * Writing 5 to /proc/pid/clear_refs resets the peak
1150                          * resident set size to this mm's current rss value.
1151                          */
1152                         reset_mm_hiwater_rss(mm);
1153                         mmap_write_unlock(mm);
1154                         goto out_mm;
1155                 }
1156
1157                 if (mmap_read_lock_killable(mm)) {
1158                         count = -EINTR;
1159                         goto out_mm;
1160                 }
1161                 tlb_gather_mmu(&tlb, mm, 0, -1);
1162                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1163                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1164                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1165                                         continue;
1166                                 mmap_read_unlock(mm);
1167                                 if (mmap_write_lock_killable(mm)) {
1168                                         count = -EINTR;
1169                                         goto out_mm;
1170                                 }
1171                                 /*
1172                                  * Avoid to modify vma->vm_flags
1173                                  * without locked ops while the
1174                                  * coredump reads the vm_flags.
1175                                  */
1176                                 if (!mmget_still_valid(mm)) {
1177                                         /*
1178                                          * Silently return "count"
1179                                          * like if get_task_mm()
1180                                          * failed. FIXME: should this
1181                                          * function have returned
1182                                          * -ESRCH if get_task_mm()
1183                                          * failed like if
1184                                          * get_proc_task() fails?
1185                                          */
1186                                         mmap_write_unlock(mm);
1187                                         goto out_mm;
1188                                 }
1189                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1190                                         vma->vm_flags &= ~VM_SOFTDIRTY;
1191                                         vma_set_page_prot(vma);
1192                                 }
1193                                 mmap_write_downgrade(mm);
1194                                 break;
1195                         }
1196
1197                         mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1198                                                 0, NULL, mm, 0, -1UL);
1199                         mmu_notifier_invalidate_range_start(&range);
1200                 }
1201                 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1202                                 &cp);
1203                 if (type == CLEAR_REFS_SOFT_DIRTY)
1204                         mmu_notifier_invalidate_range_end(&range);
1205                 tlb_finish_mmu(&tlb, 0, -1);
1206                 mmap_read_unlock(mm);
1207 out_mm:
1208                 mmput(mm);
1209         }
1210         put_task_struct(task);
1211
1212         return count;
1213 }
1214
1215 const struct file_operations proc_clear_refs_operations = {
1216         .write          = clear_refs_write,
1217         .llseek         = noop_llseek,
1218 };
1219
1220 typedef struct {
1221         u64 pme;
1222 } pagemap_entry_t;
1223
1224 struct pagemapread {
1225         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1226         pagemap_entry_t *buffer;
1227         bool show_pfn;
1228 };
1229
1230 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1231 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1232
1233 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1234 #define PM_PFRAME_BITS          55
1235 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1236 #define PM_SOFT_DIRTY           BIT_ULL(55)
1237 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1238 #define PM_FILE                 BIT_ULL(61)
1239 #define PM_SWAP                 BIT_ULL(62)
1240 #define PM_PRESENT              BIT_ULL(63)
1241
1242 #define PM_END_OF_BUFFER    1
1243
1244 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1245 {
1246         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1247 }
1248
1249 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1250                           struct pagemapread *pm)
1251 {
1252         pm->buffer[pm->pos++] = *pme;
1253         if (pm->pos >= pm->len)
1254                 return PM_END_OF_BUFFER;
1255         return 0;
1256 }
1257
1258 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1259                             __always_unused int depth, struct mm_walk *walk)
1260 {
1261         struct pagemapread *pm = walk->private;
1262         unsigned long addr = start;
1263         int err = 0;
1264
1265         while (addr < end) {
1266                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1267                 pagemap_entry_t pme = make_pme(0, 0);
1268                 /* End of address space hole, which we mark as non-present. */
1269                 unsigned long hole_end;
1270
1271                 if (vma)
1272                         hole_end = min(end, vma->vm_start);
1273                 else
1274                         hole_end = end;
1275
1276                 for (; addr < hole_end; addr += PAGE_SIZE) {
1277                         err = add_to_pagemap(addr, &pme, pm);
1278                         if (err)
1279                                 goto out;
1280                 }
1281
1282                 if (!vma)
1283                         break;
1284
1285                 /* Addresses in the VMA. */
1286                 if (vma->vm_flags & VM_SOFTDIRTY)
1287                         pme = make_pme(0, PM_SOFT_DIRTY);
1288                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1289                         err = add_to_pagemap(addr, &pme, pm);
1290                         if (err)
1291                                 goto out;
1292                 }
1293         }
1294 out:
1295         return err;
1296 }
1297
1298 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1299                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1300 {
1301         u64 frame = 0, flags = 0;
1302         struct page *page = NULL;
1303
1304         if (pte_present(pte)) {
1305                 if (pm->show_pfn)
1306                         frame = pte_pfn(pte);
1307                 flags |= PM_PRESENT;
1308                 page = vm_normal_page(vma, addr, pte);
1309                 if (pte_soft_dirty(pte))
1310                         flags |= PM_SOFT_DIRTY;
1311         } else if (is_swap_pte(pte)) {
1312                 swp_entry_t entry;
1313                 if (pte_swp_soft_dirty(pte))
1314                         flags |= PM_SOFT_DIRTY;
1315                 entry = pte_to_swp_entry(pte);
1316                 if (pm->show_pfn)
1317                         frame = swp_type(entry) |
1318                                 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1319                 flags |= PM_SWAP;
1320                 if (is_migration_entry(entry))
1321                         page = migration_entry_to_page(entry);
1322
1323                 if (is_device_private_entry(entry))
1324                         page = device_private_entry_to_page(entry);
1325         }
1326
1327         if (page && !PageAnon(page))
1328                 flags |= PM_FILE;
1329         if (page && page_mapcount(page) == 1)
1330                 flags |= PM_MMAP_EXCLUSIVE;
1331         if (vma->vm_flags & VM_SOFTDIRTY)
1332                 flags |= PM_SOFT_DIRTY;
1333
1334         return make_pme(frame, flags);
1335 }
1336
1337 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1338                              struct mm_walk *walk)
1339 {
1340         struct vm_area_struct *vma = walk->vma;
1341         struct pagemapread *pm = walk->private;
1342         spinlock_t *ptl;
1343         pte_t *pte, *orig_pte;
1344         int err = 0;
1345
1346 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1347         ptl = pmd_trans_huge_lock(pmdp, vma);
1348         if (ptl) {
1349                 u64 flags = 0, frame = 0;
1350                 pmd_t pmd = *pmdp;
1351                 struct page *page = NULL;
1352
1353                 if (vma->vm_flags & VM_SOFTDIRTY)
1354                         flags |= PM_SOFT_DIRTY;
1355
1356                 if (pmd_present(pmd)) {
1357                         page = pmd_page(pmd);
1358
1359                         flags |= PM_PRESENT;
1360                         if (pmd_soft_dirty(pmd))
1361                                 flags |= PM_SOFT_DIRTY;
1362                         if (pm->show_pfn)
1363                                 frame = pmd_pfn(pmd) +
1364                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1365                 }
1366 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1367                 else if (is_swap_pmd(pmd)) {
1368                         swp_entry_t entry = pmd_to_swp_entry(pmd);
1369                         unsigned long offset;
1370
1371                         if (pm->show_pfn) {
1372                                 offset = swp_offset(entry) +
1373                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1374                                 frame = swp_type(entry) |
1375                                         (offset << MAX_SWAPFILES_SHIFT);
1376                         }
1377                         flags |= PM_SWAP;
1378                         if (pmd_swp_soft_dirty(pmd))
1379                                 flags |= PM_SOFT_DIRTY;
1380                         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1381                         page = migration_entry_to_page(entry);
1382                 }
1383 #endif
1384
1385                 if (page && page_mapcount(page) == 1)
1386                         flags |= PM_MMAP_EXCLUSIVE;
1387
1388                 for (; addr != end; addr += PAGE_SIZE) {
1389                         pagemap_entry_t pme = make_pme(frame, flags);
1390
1391                         err = add_to_pagemap(addr, &pme, pm);
1392                         if (err)
1393                                 break;
1394                         if (pm->show_pfn) {
1395                                 if (flags & PM_PRESENT)
1396                                         frame++;
1397                                 else if (flags & PM_SWAP)
1398                                         frame += (1 << MAX_SWAPFILES_SHIFT);
1399                         }
1400                 }
1401                 spin_unlock(ptl);
1402                 return err;
1403         }
1404
1405         if (pmd_trans_unstable(pmdp))
1406                 return 0;
1407 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1408
1409         /*
1410          * We can assume that @vma always points to a valid one and @end never
1411          * goes beyond vma->vm_end.
1412          */
1413         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1414         for (; addr < end; pte++, addr += PAGE_SIZE) {
1415                 pagemap_entry_t pme;
1416
1417                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1418                 err = add_to_pagemap(addr, &pme, pm);
1419                 if (err)
1420                         break;
1421         }
1422         pte_unmap_unlock(orig_pte, ptl);
1423
1424         cond_resched();
1425
1426         return err;
1427 }
1428
1429 #ifdef CONFIG_HUGETLB_PAGE
1430 /* This function walks within one hugetlb entry in the single call */
1431 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1432                                  unsigned long addr, unsigned long end,
1433                                  struct mm_walk *walk)
1434 {
1435         struct pagemapread *pm = walk->private;
1436         struct vm_area_struct *vma = walk->vma;
1437         u64 flags = 0, frame = 0;
1438         int err = 0;
1439         pte_t pte;
1440
1441         if (vma->vm_flags & VM_SOFTDIRTY)
1442                 flags |= PM_SOFT_DIRTY;
1443
1444         pte = huge_ptep_get(ptep);
1445         if (pte_present(pte)) {
1446                 struct page *page = pte_page(pte);
1447
1448                 if (!PageAnon(page))
1449                         flags |= PM_FILE;
1450
1451                 if (page_mapcount(page) == 1)
1452                         flags |= PM_MMAP_EXCLUSIVE;
1453
1454                 flags |= PM_PRESENT;
1455                 if (pm->show_pfn)
1456                         frame = pte_pfn(pte) +
1457                                 ((addr & ~hmask) >> PAGE_SHIFT);
1458         }
1459
1460         for (; addr != end; addr += PAGE_SIZE) {
1461                 pagemap_entry_t pme = make_pme(frame, flags);
1462
1463                 err = add_to_pagemap(addr, &pme, pm);
1464                 if (err)
1465                         return err;
1466                 if (pm->show_pfn && (flags & PM_PRESENT))
1467                         frame++;
1468         }
1469
1470         cond_resched();
1471
1472         return err;
1473 }
1474 #else
1475 #define pagemap_hugetlb_range   NULL
1476 #endif /* HUGETLB_PAGE */
1477
1478 static const struct mm_walk_ops pagemap_ops = {
1479         .pmd_entry      = pagemap_pmd_range,
1480         .pte_hole       = pagemap_pte_hole,
1481         .hugetlb_entry  = pagemap_hugetlb_range,
1482 };
1483
1484 /*
1485  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1486  *
1487  * For each page in the address space, this file contains one 64-bit entry
1488  * consisting of the following:
1489  *
1490  * Bits 0-54  page frame number (PFN) if present
1491  * Bits 0-4   swap type if swapped
1492  * Bits 5-54  swap offset if swapped
1493  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1494  * Bit  56    page exclusively mapped
1495  * Bits 57-60 zero
1496  * Bit  61    page is file-page or shared-anon
1497  * Bit  62    page swapped
1498  * Bit  63    page present
1499  *
1500  * If the page is not present but in swap, then the PFN contains an
1501  * encoding of the swap file number and the page's offset into the
1502  * swap. Unmapped pages return a null PFN. This allows determining
1503  * precisely which pages are mapped (or in swap) and comparing mapped
1504  * pages between processes.
1505  *
1506  * Efficient users of this interface will use /proc/pid/maps to
1507  * determine which areas of memory are actually mapped and llseek to
1508  * skip over unmapped regions.
1509  */
1510 static ssize_t pagemap_read(struct file *file, char __user *buf,
1511                             size_t count, loff_t *ppos)
1512 {
1513         struct mm_struct *mm = file->private_data;
1514         struct pagemapread pm;
1515         unsigned long src;
1516         unsigned long svpfn;
1517         unsigned long start_vaddr;
1518         unsigned long end_vaddr;
1519         int ret = 0, copied = 0;
1520
1521         if (!mm || !mmget_not_zero(mm))
1522                 goto out;
1523
1524         ret = -EINVAL;
1525         /* file position must be aligned */
1526         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1527                 goto out_mm;
1528
1529         ret = 0;
1530         if (!count)
1531                 goto out_mm;
1532
1533         /* do not disclose physical addresses: attack vector */
1534         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1535
1536         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1537         pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1538         ret = -ENOMEM;
1539         if (!pm.buffer)
1540                 goto out_mm;
1541
1542         src = *ppos;
1543         svpfn = src / PM_ENTRY_BYTES;
1544         start_vaddr = svpfn << PAGE_SHIFT;
1545         end_vaddr = mm->task_size;
1546
1547         /* watch out for wraparound */
1548         if (svpfn > mm->task_size >> PAGE_SHIFT)
1549                 start_vaddr = end_vaddr;
1550
1551         /*
1552          * The odds are that this will stop walking way
1553          * before end_vaddr, because the length of the
1554          * user buffer is tracked in "pm", and the walk
1555          * will stop when we hit the end of the buffer.
1556          */
1557         ret = 0;
1558         while (count && (start_vaddr < end_vaddr)) {
1559                 int len;
1560                 unsigned long end;
1561
1562                 pm.pos = 0;
1563                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1564                 /* overflow ? */
1565                 if (end < start_vaddr || end > end_vaddr)
1566                         end = end_vaddr;
1567                 ret = mmap_read_lock_killable(mm);
1568                 if (ret)
1569                         goto out_free;
1570                 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1571                 mmap_read_unlock(mm);
1572                 start_vaddr = end;
1573
1574                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1575                 if (copy_to_user(buf, pm.buffer, len)) {
1576                         ret = -EFAULT;
1577                         goto out_free;
1578                 }
1579                 copied += len;
1580                 buf += len;
1581                 count -= len;
1582         }
1583         *ppos += copied;
1584         if (!ret || ret == PM_END_OF_BUFFER)
1585                 ret = copied;
1586
1587 out_free:
1588         kfree(pm.buffer);
1589 out_mm:
1590         mmput(mm);
1591 out:
1592         return ret;
1593 }
1594
1595 static int pagemap_open(struct inode *inode, struct file *file)
1596 {
1597         struct mm_struct *mm;
1598
1599         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1600         if (IS_ERR(mm))
1601                 return PTR_ERR(mm);
1602         file->private_data = mm;
1603         return 0;
1604 }
1605
1606 static int pagemap_release(struct inode *inode, struct file *file)
1607 {
1608         struct mm_struct *mm = file->private_data;
1609
1610         if (mm)
1611                 mmdrop(mm);
1612         return 0;
1613 }
1614
1615 const struct file_operations proc_pagemap_operations = {
1616         .llseek         = mem_lseek, /* borrow this */
1617         .read           = pagemap_read,
1618         .open           = pagemap_open,
1619         .release        = pagemap_release,
1620 };
1621 #endif /* CONFIG_PROC_PAGE_MONITOR */
1622
1623 #ifdef CONFIG_NUMA
1624
1625 struct numa_maps {
1626         unsigned long pages;
1627         unsigned long anon;
1628         unsigned long active;
1629         unsigned long writeback;
1630         unsigned long mapcount_max;
1631         unsigned long dirty;
1632         unsigned long swapcache;
1633         unsigned long node[MAX_NUMNODES];
1634 };
1635
1636 struct numa_maps_private {
1637         struct proc_maps_private proc_maps;
1638         struct numa_maps md;
1639 };
1640
1641 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1642                         unsigned long nr_pages)
1643 {
1644         int count = page_mapcount(page);
1645
1646         md->pages += nr_pages;
1647         if (pte_dirty || PageDirty(page))
1648                 md->dirty += nr_pages;
1649
1650         if (PageSwapCache(page))
1651                 md->swapcache += nr_pages;
1652
1653         if (PageActive(page) || PageUnevictable(page))
1654                 md->active += nr_pages;
1655
1656         if (PageWriteback(page))
1657                 md->writeback += nr_pages;
1658
1659         if (PageAnon(page))
1660                 md->anon += nr_pages;
1661
1662         if (count > md->mapcount_max)
1663                 md->mapcount_max = count;
1664
1665         md->node[page_to_nid(page)] += nr_pages;
1666 }
1667
1668 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1669                 unsigned long addr)
1670 {
1671         struct page *page;
1672         int nid;
1673
1674         if (!pte_present(pte))
1675                 return NULL;
1676
1677         page = vm_normal_page(vma, addr, pte);
1678         if (!page)
1679                 return NULL;
1680
1681         if (PageReserved(page))
1682                 return NULL;
1683
1684         nid = page_to_nid(page);
1685         if (!node_isset(nid, node_states[N_MEMORY]))
1686                 return NULL;
1687
1688         return page;
1689 }
1690
1691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1692 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1693                                               struct vm_area_struct *vma,
1694                                               unsigned long addr)
1695 {
1696         struct page *page;
1697         int nid;
1698
1699         if (!pmd_present(pmd))
1700                 return NULL;
1701
1702         page = vm_normal_page_pmd(vma, addr, pmd);
1703         if (!page)
1704                 return NULL;
1705
1706         if (PageReserved(page))
1707                 return NULL;
1708
1709         nid = page_to_nid(page);
1710         if (!node_isset(nid, node_states[N_MEMORY]))
1711                 return NULL;
1712
1713         return page;
1714 }
1715 #endif
1716
1717 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1718                 unsigned long end, struct mm_walk *walk)
1719 {
1720         struct numa_maps *md = walk->private;
1721         struct vm_area_struct *vma = walk->vma;
1722         spinlock_t *ptl;
1723         pte_t *orig_pte;
1724         pte_t *pte;
1725
1726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1727         ptl = pmd_trans_huge_lock(pmd, vma);
1728         if (ptl) {
1729                 struct page *page;
1730
1731                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1732                 if (page)
1733                         gather_stats(page, md, pmd_dirty(*pmd),
1734                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1735                 spin_unlock(ptl);
1736                 return 0;
1737         }
1738
1739         if (pmd_trans_unstable(pmd))
1740                 return 0;
1741 #endif
1742         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1743         do {
1744                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1745                 if (!page)
1746                         continue;
1747                 gather_stats(page, md, pte_dirty(*pte), 1);
1748
1749         } while (pte++, addr += PAGE_SIZE, addr != end);
1750         pte_unmap_unlock(orig_pte, ptl);
1751         cond_resched();
1752         return 0;
1753 }
1754 #ifdef CONFIG_HUGETLB_PAGE
1755 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1756                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1757 {
1758         pte_t huge_pte = huge_ptep_get(pte);
1759         struct numa_maps *md;
1760         struct page *page;
1761
1762         if (!pte_present(huge_pte))
1763                 return 0;
1764
1765         page = pte_page(huge_pte);
1766         if (!page)
1767                 return 0;
1768
1769         md = walk->private;
1770         gather_stats(page, md, pte_dirty(huge_pte), 1);
1771         return 0;
1772 }
1773
1774 #else
1775 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1776                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1777 {
1778         return 0;
1779 }
1780 #endif
1781
1782 static const struct mm_walk_ops show_numa_ops = {
1783         .hugetlb_entry = gather_hugetlb_stats,
1784         .pmd_entry = gather_pte_stats,
1785 };
1786
1787 /*
1788  * Display pages allocated per node and memory policy via /proc.
1789  */
1790 static int show_numa_map(struct seq_file *m, void *v)
1791 {
1792         struct numa_maps_private *numa_priv = m->private;
1793         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1794         struct vm_area_struct *vma = v;
1795         struct numa_maps *md = &numa_priv->md;
1796         struct file *file = vma->vm_file;
1797         struct mm_struct *mm = vma->vm_mm;
1798         struct mempolicy *pol;
1799         char buffer[64];
1800         int nid;
1801
1802         if (!mm)
1803                 return 0;
1804
1805         /* Ensure we start with an empty set of numa_maps statistics. */
1806         memset(md, 0, sizeof(*md));
1807
1808         pol = __get_vma_policy(vma, vma->vm_start);
1809         if (pol) {
1810                 mpol_to_str(buffer, sizeof(buffer), pol);
1811                 mpol_cond_put(pol);
1812         } else {
1813                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1814         }
1815
1816         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1817
1818         if (file) {
1819                 seq_puts(m, " file=");
1820                 seq_file_path(m, file, "\n\t= ");
1821         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1822                 seq_puts(m, " heap");
1823         } else if (is_stack(vma)) {
1824                 seq_puts(m, " stack");
1825         }
1826
1827         if (is_vm_hugetlb_page(vma))
1828                 seq_puts(m, " huge");
1829
1830         /* mmap_sem is held by m_start */
1831         walk_page_vma(vma, &show_numa_ops, md);
1832
1833         if (!md->pages)
1834                 goto out;
1835
1836         if (md->anon)
1837                 seq_printf(m, " anon=%lu", md->anon);
1838
1839         if (md->dirty)
1840                 seq_printf(m, " dirty=%lu", md->dirty);
1841
1842         if (md->pages != md->anon && md->pages != md->dirty)
1843                 seq_printf(m, " mapped=%lu", md->pages);
1844
1845         if (md->mapcount_max > 1)
1846                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1847
1848         if (md->swapcache)
1849                 seq_printf(m, " swapcache=%lu", md->swapcache);
1850
1851         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1852                 seq_printf(m, " active=%lu", md->active);
1853
1854         if (md->writeback)
1855                 seq_printf(m, " writeback=%lu", md->writeback);
1856
1857         for_each_node_state(nid, N_MEMORY)
1858                 if (md->node[nid])
1859                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1860
1861         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1862 out:
1863         seq_putc(m, '\n');
1864         return 0;
1865 }
1866
1867 static const struct seq_operations proc_pid_numa_maps_op = {
1868         .start  = m_start,
1869         .next   = m_next,
1870         .stop   = m_stop,
1871         .show   = show_numa_map,
1872 };
1873
1874 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1875 {
1876         return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1877                                 sizeof(struct numa_maps_private));
1878 }
1879
1880 const struct file_operations proc_pid_numa_maps_operations = {
1881         .open           = pid_numa_maps_open,
1882         .read           = seq_read,
1883         .llseek         = seq_lseek,
1884         .release        = proc_map_release,
1885 };
1886
1887 #endif /* CONFIG_NUMA */