Merge tag 'efi-urgent-for-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27
28 #define SEQ_PUT_DEC(str, val) \
29                 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32         unsigned long text, lib, swap, anon, file, shmem;
33         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35         anon = get_mm_counter(mm, MM_ANONPAGES);
36         file = get_mm_counter(mm, MM_FILEPAGES);
37         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39         /*
40          * Note: to minimize their overhead, mm maintains hiwater_vm and
41          * hiwater_rss only when about to *lower* total_vm or rss.  Any
42          * collector of these hiwater stats must therefore get total_vm
43          * and rss too, which will usually be the higher.  Barriers? not
44          * worth the effort, such snapshots can always be inconsistent.
45          */
46         hiwater_vm = total_vm = mm->total_vm;
47         if (hiwater_vm < mm->hiwater_vm)
48                 hiwater_vm = mm->hiwater_vm;
49         hiwater_rss = total_rss = anon + file + shmem;
50         if (hiwater_rss < mm->hiwater_rss)
51                 hiwater_rss = mm->hiwater_rss;
52
53         /* split executable areas between text and lib */
54         text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55         text = min(text, mm->exec_vm << PAGE_SHIFT);
56         lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58         swap = get_mm_counter(mm, MM_SWAPENTS);
59         SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60         SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61         SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62         SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63         SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64         SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65         SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66         SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67         SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68         SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69         SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70         seq_put_decimal_ull_width(m,
71                     " kB\nVmExe:\t", text >> 10, 8);
72         seq_put_decimal_ull_width(m,
73                     " kB\nVmLib:\t", lib >> 10, 8);
74         seq_put_decimal_ull_width(m,
75                     " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76         SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77         seq_puts(m, " kB\n");
78         hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84         return PAGE_SIZE * mm->total_vm;
85 }
86
87 unsigned long task_statm(struct mm_struct *mm,
88                          unsigned long *shared, unsigned long *text,
89                          unsigned long *data, unsigned long *resident)
90 {
91         *shared = get_mm_counter(mm, MM_FILEPAGES) +
92                         get_mm_counter(mm, MM_SHMEMPAGES);
93         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94                                                                 >> PAGE_SHIFT;
95         *data = mm->data_vm + mm->stack_vm;
96         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97         return mm->total_vm;
98 }
99
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106         struct task_struct *task = priv->task;
107
108         task_lock(task);
109         priv->task_mempolicy = get_task_policy(task);
110         mpol_get(priv->task_mempolicy);
111         task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115         mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125
126 static void *m_start(struct seq_file *m, loff_t *ppos)
127 {
128         struct proc_maps_private *priv = m->private;
129         unsigned long last_addr = *ppos;
130         struct mm_struct *mm;
131         struct vm_area_struct *vma;
132
133         /* See m_next(). Zero at the start or after lseek. */
134         if (last_addr == -1UL)
135                 return NULL;
136
137         priv->task = get_proc_task(priv->inode);
138         if (!priv->task)
139                 return ERR_PTR(-ESRCH);
140
141         mm = priv->mm;
142         if (!mm || !mmget_not_zero(mm)) {
143                 put_task_struct(priv->task);
144                 priv->task = NULL;
145                 return NULL;
146         }
147
148         if (mmap_read_lock_killable(mm)) {
149                 mmput(mm);
150                 put_task_struct(priv->task);
151                 priv->task = NULL;
152                 return ERR_PTR(-EINTR);
153         }
154
155         hold_task_mempolicy(priv);
156         priv->tail_vma = get_gate_vma(mm);
157
158         vma = find_vma(mm, last_addr);
159         if (vma)
160                 return vma;
161
162         return priv->tail_vma;
163 }
164
165 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
166 {
167         struct proc_maps_private *priv = m->private;
168         struct vm_area_struct *next, *vma = v;
169
170         if (vma == priv->tail_vma)
171                 next = NULL;
172         else if (vma->vm_next)
173                 next = vma->vm_next;
174         else
175                 next = priv->tail_vma;
176
177         *ppos = next ? next->vm_start : -1UL;
178
179         return next;
180 }
181
182 static void m_stop(struct seq_file *m, void *v)
183 {
184         struct proc_maps_private *priv = m->private;
185         struct mm_struct *mm = priv->mm;
186
187         if (!priv->task)
188                 return;
189
190         release_task_mempolicy(priv);
191         mmap_read_unlock(mm);
192         mmput(mm);
193         put_task_struct(priv->task);
194         priv->task = NULL;
195 }
196
197 static int proc_maps_open(struct inode *inode, struct file *file,
198                         const struct seq_operations *ops, int psize)
199 {
200         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
201
202         if (!priv)
203                 return -ENOMEM;
204
205         priv->inode = inode;
206         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
207         if (IS_ERR(priv->mm)) {
208                 int err = PTR_ERR(priv->mm);
209
210                 seq_release_private(inode, file);
211                 return err;
212         }
213
214         return 0;
215 }
216
217 static int proc_map_release(struct inode *inode, struct file *file)
218 {
219         struct seq_file *seq = file->private_data;
220         struct proc_maps_private *priv = seq->private;
221
222         if (priv->mm)
223                 mmdrop(priv->mm);
224
225         return seq_release_private(inode, file);
226 }
227
228 static int do_maps_open(struct inode *inode, struct file *file,
229                         const struct seq_operations *ops)
230 {
231         return proc_maps_open(inode, file, ops,
232                                 sizeof(struct proc_maps_private));
233 }
234
235 /*
236  * Indicate if the VMA is a stack for the given task; for
237  * /proc/PID/maps that is the stack of the main task.
238  */
239 static int is_stack(struct vm_area_struct *vma)
240 {
241         /*
242          * We make no effort to guess what a given thread considers to be
243          * its "stack".  It's not even well-defined for programs written
244          * languages like Go.
245          */
246         return vma->vm_start <= vma->vm_mm->start_stack &&
247                 vma->vm_end >= vma->vm_mm->start_stack;
248 }
249
250 static void show_vma_header_prefix(struct seq_file *m,
251                                    unsigned long start, unsigned long end,
252                                    vm_flags_t flags, unsigned long long pgoff,
253                                    dev_t dev, unsigned long ino)
254 {
255         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
256         seq_put_hex_ll(m, NULL, start, 8);
257         seq_put_hex_ll(m, "-", end, 8);
258         seq_putc(m, ' ');
259         seq_putc(m, flags & VM_READ ? 'r' : '-');
260         seq_putc(m, flags & VM_WRITE ? 'w' : '-');
261         seq_putc(m, flags & VM_EXEC ? 'x' : '-');
262         seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
263         seq_put_hex_ll(m, " ", pgoff, 8);
264         seq_put_hex_ll(m, " ", MAJOR(dev), 2);
265         seq_put_hex_ll(m, ":", MINOR(dev), 2);
266         seq_put_decimal_ull(m, " ", ino);
267         seq_putc(m, ' ');
268 }
269
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
272 {
273         struct mm_struct *mm = vma->vm_mm;
274         struct file *file = vma->vm_file;
275         vm_flags_t flags = vma->vm_flags;
276         unsigned long ino = 0;
277         unsigned long long pgoff = 0;
278         unsigned long start, end;
279         dev_t dev = 0;
280         const char *name = NULL;
281
282         if (file) {
283                 struct inode *inode = file_inode(vma->vm_file);
284                 dev = inode->i_sb->s_dev;
285                 ino = inode->i_ino;
286                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287         }
288
289         start = vma->vm_start;
290         end = vma->vm_end;
291         show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
292
293         /*
294          * Print the dentry name for named mappings, and a
295          * special [heap] marker for the heap:
296          */
297         if (file) {
298                 seq_pad(m, ' ');
299                 seq_file_path(m, file, "\n");
300                 goto done;
301         }
302
303         if (vma->vm_ops && vma->vm_ops->name) {
304                 name = vma->vm_ops->name(vma);
305                 if (name)
306                         goto done;
307         }
308
309         name = arch_vma_name(vma);
310         if (!name) {
311                 if (!mm) {
312                         name = "[vdso]";
313                         goto done;
314                 }
315
316                 if (vma->vm_start <= mm->brk &&
317                     vma->vm_end >= mm->start_brk) {
318                         name = "[heap]";
319                         goto done;
320                 }
321
322                 if (is_stack(vma))
323                         name = "[stack]";
324         }
325
326 done:
327         if (name) {
328                 seq_pad(m, ' ');
329                 seq_puts(m, name);
330         }
331         seq_putc(m, '\n');
332 }
333
334 static int show_map(struct seq_file *m, void *v)
335 {
336         show_map_vma(m, v);
337         return 0;
338 }
339
340 static const struct seq_operations proc_pid_maps_op = {
341         .start  = m_start,
342         .next   = m_next,
343         .stop   = m_stop,
344         .show   = show_map
345 };
346
347 static int pid_maps_open(struct inode *inode, struct file *file)
348 {
349         return do_maps_open(inode, file, &proc_pid_maps_op);
350 }
351
352 const struct file_operations proc_pid_maps_operations = {
353         .open           = pid_maps_open,
354         .read           = seq_read,
355         .llseek         = seq_lseek,
356         .release        = proc_map_release,
357 };
358
359 /*
360  * Proportional Set Size(PSS): my share of RSS.
361  *
362  * PSS of a process is the count of pages it has in memory, where each
363  * page is divided by the number of processes sharing it.  So if a
364  * process has 1000 pages all to itself, and 1000 shared with one other
365  * process, its PSS will be 1500.
366  *
367  * To keep (accumulated) division errors low, we adopt a 64bit
368  * fixed-point pss counter to minimize division errors. So (pss >>
369  * PSS_SHIFT) would be the real byte count.
370  *
371  * A shift of 12 before division means (assuming 4K page size):
372  *      - 1M 3-user-pages add up to 8KB errors;
373  *      - supports mapcount up to 2^24, or 16M;
374  *      - supports PSS up to 2^52 bytes, or 4PB.
375  */
376 #define PSS_SHIFT 12
377
378 #ifdef CONFIG_PROC_PAGE_MONITOR
379 struct mem_size_stats {
380         unsigned long resident;
381         unsigned long shared_clean;
382         unsigned long shared_dirty;
383         unsigned long private_clean;
384         unsigned long private_dirty;
385         unsigned long referenced;
386         unsigned long anonymous;
387         unsigned long lazyfree;
388         unsigned long anonymous_thp;
389         unsigned long shmem_thp;
390         unsigned long file_thp;
391         unsigned long swap;
392         unsigned long shared_hugetlb;
393         unsigned long private_hugetlb;
394         u64 pss;
395         u64 pss_anon;
396         u64 pss_file;
397         u64 pss_shmem;
398         u64 pss_locked;
399         u64 swap_pss;
400         bool check_shmem_swap;
401 };
402
403 static void smaps_page_accumulate(struct mem_size_stats *mss,
404                 struct page *page, unsigned long size, unsigned long pss,
405                 bool dirty, bool locked, bool private)
406 {
407         mss->pss += pss;
408
409         if (PageAnon(page))
410                 mss->pss_anon += pss;
411         else if (PageSwapBacked(page))
412                 mss->pss_shmem += pss;
413         else
414                 mss->pss_file += pss;
415
416         if (locked)
417                 mss->pss_locked += pss;
418
419         if (dirty || PageDirty(page)) {
420                 if (private)
421                         mss->private_dirty += size;
422                 else
423                         mss->shared_dirty += size;
424         } else {
425                 if (private)
426                         mss->private_clean += size;
427                 else
428                         mss->shared_clean += size;
429         }
430 }
431
432 static void smaps_account(struct mem_size_stats *mss, struct page *page,
433                 bool compound, bool young, bool dirty, bool locked)
434 {
435         int i, nr = compound ? compound_nr(page) : 1;
436         unsigned long size = nr * PAGE_SIZE;
437
438         /*
439          * First accumulate quantities that depend only on |size| and the type
440          * of the compound page.
441          */
442         if (PageAnon(page)) {
443                 mss->anonymous += size;
444                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
445                         mss->lazyfree += size;
446         }
447
448         mss->resident += size;
449         /* Accumulate the size in pages that have been accessed. */
450         if (young || page_is_young(page) || PageReferenced(page))
451                 mss->referenced += size;
452
453         /*
454          * Then accumulate quantities that may depend on sharing, or that may
455          * differ page-by-page.
456          *
457          * page_count(page) == 1 guarantees the page is mapped exactly once.
458          * If any subpage of the compound page mapped with PTE it would elevate
459          * page_count().
460          */
461         if (page_count(page) == 1) {
462                 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
463                         locked, true);
464                 return;
465         }
466         for (i = 0; i < nr; i++, page++) {
467                 int mapcount = page_mapcount(page);
468                 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
469                 if (mapcount >= 2)
470                         pss /= mapcount;
471                 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
472                                       mapcount < 2);
473         }
474 }
475
476 #ifdef CONFIG_SHMEM
477 static int smaps_pte_hole(unsigned long addr, unsigned long end,
478                           __always_unused int depth, struct mm_walk *walk)
479 {
480         struct mem_size_stats *mss = walk->private;
481
482         mss->swap += shmem_partial_swap_usage(
483                         walk->vma->vm_file->f_mapping, addr, end);
484
485         return 0;
486 }
487 #else
488 #define smaps_pte_hole          NULL
489 #endif /* CONFIG_SHMEM */
490
491 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
492                 struct mm_walk *walk)
493 {
494         struct mem_size_stats *mss = walk->private;
495         struct vm_area_struct *vma = walk->vma;
496         bool locked = !!(vma->vm_flags & VM_LOCKED);
497         struct page *page = NULL;
498
499         if (pte_present(*pte)) {
500                 page = vm_normal_page(vma, addr, *pte);
501         } else if (is_swap_pte(*pte)) {
502                 swp_entry_t swpent = pte_to_swp_entry(*pte);
503
504                 if (!non_swap_entry(swpent)) {
505                         int mapcount;
506
507                         mss->swap += PAGE_SIZE;
508                         mapcount = swp_swapcount(swpent);
509                         if (mapcount >= 2) {
510                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
511
512                                 do_div(pss_delta, mapcount);
513                                 mss->swap_pss += pss_delta;
514                         } else {
515                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
516                         }
517                 } else if (is_migration_entry(swpent))
518                         page = migration_entry_to_page(swpent);
519                 else if (is_device_private_entry(swpent))
520                         page = device_private_entry_to_page(swpent);
521         } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
522                                                         && pte_none(*pte))) {
523                 page = xa_load(&vma->vm_file->f_mapping->i_pages,
524                                                 linear_page_index(vma, addr));
525                 if (xa_is_value(page))
526                         mss->swap += PAGE_SIZE;
527                 return;
528         }
529
530         if (!page)
531                 return;
532
533         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
534 }
535
536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
537 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
538                 struct mm_walk *walk)
539 {
540         struct mem_size_stats *mss = walk->private;
541         struct vm_area_struct *vma = walk->vma;
542         bool locked = !!(vma->vm_flags & VM_LOCKED);
543         struct page *page = NULL;
544
545         if (pmd_present(*pmd)) {
546                 /* FOLL_DUMP will return -EFAULT on huge zero page */
547                 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
548         } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
549                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
550
551                 if (is_migration_entry(entry))
552                         page = migration_entry_to_page(entry);
553         }
554         if (IS_ERR_OR_NULL(page))
555                 return;
556         if (PageAnon(page))
557                 mss->anonymous_thp += HPAGE_PMD_SIZE;
558         else if (PageSwapBacked(page))
559                 mss->shmem_thp += HPAGE_PMD_SIZE;
560         else if (is_zone_device_page(page))
561                 /* pass */;
562         else
563                 mss->file_thp += HPAGE_PMD_SIZE;
564         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
565 }
566 #else
567 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
568                 struct mm_walk *walk)
569 {
570 }
571 #endif
572
573 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
574                            struct mm_walk *walk)
575 {
576         struct vm_area_struct *vma = walk->vma;
577         pte_t *pte;
578         spinlock_t *ptl;
579
580         ptl = pmd_trans_huge_lock(pmd, vma);
581         if (ptl) {
582                 smaps_pmd_entry(pmd, addr, walk);
583                 spin_unlock(ptl);
584                 goto out;
585         }
586
587         if (pmd_trans_unstable(pmd))
588                 goto out;
589         /*
590          * The mmap_lock held all the way back in m_start() is what
591          * keeps khugepaged out of here and from collapsing things
592          * in here.
593          */
594         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
595         for (; addr != end; pte++, addr += PAGE_SIZE)
596                 smaps_pte_entry(pte, addr, walk);
597         pte_unmap_unlock(pte - 1, ptl);
598 out:
599         cond_resched();
600         return 0;
601 }
602
603 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
604 {
605         /*
606          * Don't forget to update Documentation/ on changes.
607          */
608         static const char mnemonics[BITS_PER_LONG][2] = {
609                 /*
610                  * In case if we meet a flag we don't know about.
611                  */
612                 [0 ... (BITS_PER_LONG-1)] = "??",
613
614                 [ilog2(VM_READ)]        = "rd",
615                 [ilog2(VM_WRITE)]       = "wr",
616                 [ilog2(VM_EXEC)]        = "ex",
617                 [ilog2(VM_SHARED)]      = "sh",
618                 [ilog2(VM_MAYREAD)]     = "mr",
619                 [ilog2(VM_MAYWRITE)]    = "mw",
620                 [ilog2(VM_MAYEXEC)]     = "me",
621                 [ilog2(VM_MAYSHARE)]    = "ms",
622                 [ilog2(VM_GROWSDOWN)]   = "gd",
623                 [ilog2(VM_PFNMAP)]      = "pf",
624                 [ilog2(VM_DENYWRITE)]   = "dw",
625                 [ilog2(VM_LOCKED)]      = "lo",
626                 [ilog2(VM_IO)]          = "io",
627                 [ilog2(VM_SEQ_READ)]    = "sr",
628                 [ilog2(VM_RAND_READ)]   = "rr",
629                 [ilog2(VM_DONTCOPY)]    = "dc",
630                 [ilog2(VM_DONTEXPAND)]  = "de",
631                 [ilog2(VM_ACCOUNT)]     = "ac",
632                 [ilog2(VM_NORESERVE)]   = "nr",
633                 [ilog2(VM_HUGETLB)]     = "ht",
634                 [ilog2(VM_SYNC)]        = "sf",
635                 [ilog2(VM_ARCH_1)]      = "ar",
636                 [ilog2(VM_WIPEONFORK)]  = "wf",
637                 [ilog2(VM_DONTDUMP)]    = "dd",
638 #ifdef CONFIG_ARM64_BTI
639                 [ilog2(VM_ARM64_BTI)]   = "bt",
640 #endif
641 #ifdef CONFIG_MEM_SOFT_DIRTY
642                 [ilog2(VM_SOFTDIRTY)]   = "sd",
643 #endif
644                 [ilog2(VM_MIXEDMAP)]    = "mm",
645                 [ilog2(VM_HUGEPAGE)]    = "hg",
646                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
647                 [ilog2(VM_MERGEABLE)]   = "mg",
648                 [ilog2(VM_UFFD_MISSING)]= "um",
649                 [ilog2(VM_UFFD_WP)]     = "uw",
650 #ifdef CONFIG_ARM64_MTE
651                 [ilog2(VM_MTE)]         = "mt",
652                 [ilog2(VM_MTE_ALLOWED)] = "",
653 #endif
654 #ifdef CONFIG_ARCH_HAS_PKEYS
655                 /* These come out via ProtectionKey: */
656                 [ilog2(VM_PKEY_BIT0)]   = "",
657                 [ilog2(VM_PKEY_BIT1)]   = "",
658                 [ilog2(VM_PKEY_BIT2)]   = "",
659                 [ilog2(VM_PKEY_BIT3)]   = "",
660 #if VM_PKEY_BIT4
661                 [ilog2(VM_PKEY_BIT4)]   = "",
662 #endif
663 #endif /* CONFIG_ARCH_HAS_PKEYS */
664         };
665         size_t i;
666
667         seq_puts(m, "VmFlags: ");
668         for (i = 0; i < BITS_PER_LONG; i++) {
669                 if (!mnemonics[i][0])
670                         continue;
671                 if (vma->vm_flags & (1UL << i)) {
672                         seq_putc(m, mnemonics[i][0]);
673                         seq_putc(m, mnemonics[i][1]);
674                         seq_putc(m, ' ');
675                 }
676         }
677         seq_putc(m, '\n');
678 }
679
680 #ifdef CONFIG_HUGETLB_PAGE
681 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
682                                  unsigned long addr, unsigned long end,
683                                  struct mm_walk *walk)
684 {
685         struct mem_size_stats *mss = walk->private;
686         struct vm_area_struct *vma = walk->vma;
687         struct page *page = NULL;
688
689         if (pte_present(*pte)) {
690                 page = vm_normal_page(vma, addr, *pte);
691         } else if (is_swap_pte(*pte)) {
692                 swp_entry_t swpent = pte_to_swp_entry(*pte);
693
694                 if (is_migration_entry(swpent))
695                         page = migration_entry_to_page(swpent);
696                 else if (is_device_private_entry(swpent))
697                         page = device_private_entry_to_page(swpent);
698         }
699         if (page) {
700                 int mapcount = page_mapcount(page);
701
702                 if (mapcount >= 2)
703                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
704                 else
705                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
706         }
707         return 0;
708 }
709 #else
710 #define smaps_hugetlb_range     NULL
711 #endif /* HUGETLB_PAGE */
712
713 static const struct mm_walk_ops smaps_walk_ops = {
714         .pmd_entry              = smaps_pte_range,
715         .hugetlb_entry          = smaps_hugetlb_range,
716 };
717
718 static const struct mm_walk_ops smaps_shmem_walk_ops = {
719         .pmd_entry              = smaps_pte_range,
720         .hugetlb_entry          = smaps_hugetlb_range,
721         .pte_hole               = smaps_pte_hole,
722 };
723
724 /*
725  * Gather mem stats from @vma with the indicated beginning
726  * address @start, and keep them in @mss.
727  *
728  * Use vm_start of @vma as the beginning address if @start is 0.
729  */
730 static void smap_gather_stats(struct vm_area_struct *vma,
731                 struct mem_size_stats *mss, unsigned long start)
732 {
733         const struct mm_walk_ops *ops = &smaps_walk_ops;
734
735         /* Invalid start */
736         if (start >= vma->vm_end)
737                 return;
738
739 #ifdef CONFIG_SHMEM
740         /* In case of smaps_rollup, reset the value from previous vma */
741         mss->check_shmem_swap = false;
742         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
743                 /*
744                  * For shared or readonly shmem mappings we know that all
745                  * swapped out pages belong to the shmem object, and we can
746                  * obtain the swap value much more efficiently. For private
747                  * writable mappings, we might have COW pages that are
748                  * not affected by the parent swapped out pages of the shmem
749                  * object, so we have to distinguish them during the page walk.
750                  * Unless we know that the shmem object (or the part mapped by
751                  * our VMA) has no swapped out pages at all.
752                  */
753                 unsigned long shmem_swapped = shmem_swap_usage(vma);
754
755                 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
756                                         !(vma->vm_flags & VM_WRITE))) {
757                         mss->swap += shmem_swapped;
758                 } else {
759                         mss->check_shmem_swap = true;
760                         ops = &smaps_shmem_walk_ops;
761                 }
762         }
763 #endif
764         /* mmap_lock is held in m_start */
765         if (!start)
766                 walk_page_vma(vma, ops, mss);
767         else
768                 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
769 }
770
771 #define SEQ_PUT_DEC(str, val) \
772                 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
773
774 /* Show the contents common for smaps and smaps_rollup */
775 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
776         bool rollup_mode)
777 {
778         SEQ_PUT_DEC("Rss:            ", mss->resident);
779         SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
780         if (rollup_mode) {
781                 /*
782                  * These are meaningful only for smaps_rollup, otherwise two of
783                  * them are zero, and the other one is the same as Pss.
784                  */
785                 SEQ_PUT_DEC(" kB\nPss_Anon:       ",
786                         mss->pss_anon >> PSS_SHIFT);
787                 SEQ_PUT_DEC(" kB\nPss_File:       ",
788                         mss->pss_file >> PSS_SHIFT);
789                 SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
790                         mss->pss_shmem >> PSS_SHIFT);
791         }
792         SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
793         SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
794         SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
795         SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
796         SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
797         SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
798         SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
799         SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
800         SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
801         SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
802         SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
803         seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
804                                   mss->private_hugetlb >> 10, 7);
805         SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
806         SEQ_PUT_DEC(" kB\nSwapPss:        ",
807                                         mss->swap_pss >> PSS_SHIFT);
808         SEQ_PUT_DEC(" kB\nLocked:         ",
809                                         mss->pss_locked >> PSS_SHIFT);
810         seq_puts(m, " kB\n");
811 }
812
813 static int show_smap(struct seq_file *m, void *v)
814 {
815         struct vm_area_struct *vma = v;
816         struct mem_size_stats mss;
817
818         memset(&mss, 0, sizeof(mss));
819
820         smap_gather_stats(vma, &mss, 0);
821
822         show_map_vma(m, vma);
823
824         SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
825         SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
826         SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
827         seq_puts(m, " kB\n");
828
829         __show_smap(m, &mss, false);
830
831         seq_printf(m, "THPeligible:    %d\n",
832                    transparent_hugepage_enabled(vma));
833
834         if (arch_pkeys_enabled())
835                 seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
836         show_smap_vma_flags(m, vma);
837
838         return 0;
839 }
840
841 static int show_smaps_rollup(struct seq_file *m, void *v)
842 {
843         struct proc_maps_private *priv = m->private;
844         struct mem_size_stats mss;
845         struct mm_struct *mm;
846         struct vm_area_struct *vma;
847         unsigned long last_vma_end = 0;
848         int ret = 0;
849
850         priv->task = get_proc_task(priv->inode);
851         if (!priv->task)
852                 return -ESRCH;
853
854         mm = priv->mm;
855         if (!mm || !mmget_not_zero(mm)) {
856                 ret = -ESRCH;
857                 goto out_put_task;
858         }
859
860         memset(&mss, 0, sizeof(mss));
861
862         ret = mmap_read_lock_killable(mm);
863         if (ret)
864                 goto out_put_mm;
865
866         hold_task_mempolicy(priv);
867
868         for (vma = priv->mm->mmap; vma;) {
869                 smap_gather_stats(vma, &mss, 0);
870                 last_vma_end = vma->vm_end;
871
872                 /*
873                  * Release mmap_lock temporarily if someone wants to
874                  * access it for write request.
875                  */
876                 if (mmap_lock_is_contended(mm)) {
877                         mmap_read_unlock(mm);
878                         ret = mmap_read_lock_killable(mm);
879                         if (ret) {
880                                 release_task_mempolicy(priv);
881                                 goto out_put_mm;
882                         }
883
884                         /*
885                          * After dropping the lock, there are four cases to
886                          * consider. See the following example for explanation.
887                          *
888                          *   +------+------+-----------+
889                          *   | VMA1 | VMA2 | VMA3      |
890                          *   +------+------+-----------+
891                          *   |      |      |           |
892                          *  4k     8k     16k         400k
893                          *
894                          * Suppose we drop the lock after reading VMA2 due to
895                          * contention, then we get:
896                          *
897                          *      last_vma_end = 16k
898                          *
899                          * 1) VMA2 is freed, but VMA3 exists:
900                          *
901                          *    find_vma(mm, 16k - 1) will return VMA3.
902                          *    In this case, just continue from VMA3.
903                          *
904                          * 2) VMA2 still exists:
905                          *
906                          *    find_vma(mm, 16k - 1) will return VMA2.
907                          *    Iterate the loop like the original one.
908                          *
909                          * 3) No more VMAs can be found:
910                          *
911                          *    find_vma(mm, 16k - 1) will return NULL.
912                          *    No more things to do, just break.
913                          *
914                          * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
915                          *
916                          *    find_vma(mm, 16k - 1) will return VMA' whose range
917                          *    contains last_vma_end.
918                          *    Iterate VMA' from last_vma_end.
919                          */
920                         vma = find_vma(mm, last_vma_end - 1);
921                         /* Case 3 above */
922                         if (!vma)
923                                 break;
924
925                         /* Case 1 above */
926                         if (vma->vm_start >= last_vma_end)
927                                 continue;
928
929                         /* Case 4 above */
930                         if (vma->vm_end > last_vma_end)
931                                 smap_gather_stats(vma, &mss, last_vma_end);
932                 }
933                 /* Case 2 above */
934                 vma = vma->vm_next;
935         }
936
937         show_vma_header_prefix(m, priv->mm->mmap->vm_start,
938                                last_vma_end, 0, 0, 0, 0);
939         seq_pad(m, ' ');
940         seq_puts(m, "[rollup]\n");
941
942         __show_smap(m, &mss, true);
943
944         release_task_mempolicy(priv);
945         mmap_read_unlock(mm);
946
947 out_put_mm:
948         mmput(mm);
949 out_put_task:
950         put_task_struct(priv->task);
951         priv->task = NULL;
952
953         return ret;
954 }
955 #undef SEQ_PUT_DEC
956
957 static const struct seq_operations proc_pid_smaps_op = {
958         .start  = m_start,
959         .next   = m_next,
960         .stop   = m_stop,
961         .show   = show_smap
962 };
963
964 static int pid_smaps_open(struct inode *inode, struct file *file)
965 {
966         return do_maps_open(inode, file, &proc_pid_smaps_op);
967 }
968
969 static int smaps_rollup_open(struct inode *inode, struct file *file)
970 {
971         int ret;
972         struct proc_maps_private *priv;
973
974         priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
975         if (!priv)
976                 return -ENOMEM;
977
978         ret = single_open(file, show_smaps_rollup, priv);
979         if (ret)
980                 goto out_free;
981
982         priv->inode = inode;
983         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
984         if (IS_ERR(priv->mm)) {
985                 ret = PTR_ERR(priv->mm);
986
987                 single_release(inode, file);
988                 goto out_free;
989         }
990
991         return 0;
992
993 out_free:
994         kfree(priv);
995         return ret;
996 }
997
998 static int smaps_rollup_release(struct inode *inode, struct file *file)
999 {
1000         struct seq_file *seq = file->private_data;
1001         struct proc_maps_private *priv = seq->private;
1002
1003         if (priv->mm)
1004                 mmdrop(priv->mm);
1005
1006         kfree(priv);
1007         return single_release(inode, file);
1008 }
1009
1010 const struct file_operations proc_pid_smaps_operations = {
1011         .open           = pid_smaps_open,
1012         .read           = seq_read,
1013         .llseek         = seq_lseek,
1014         .release        = proc_map_release,
1015 };
1016
1017 const struct file_operations proc_pid_smaps_rollup_operations = {
1018         .open           = smaps_rollup_open,
1019         .read           = seq_read,
1020         .llseek         = seq_lseek,
1021         .release        = smaps_rollup_release,
1022 };
1023
1024 enum clear_refs_types {
1025         CLEAR_REFS_ALL = 1,
1026         CLEAR_REFS_ANON,
1027         CLEAR_REFS_MAPPED,
1028         CLEAR_REFS_SOFT_DIRTY,
1029         CLEAR_REFS_MM_HIWATER_RSS,
1030         CLEAR_REFS_LAST,
1031 };
1032
1033 struct clear_refs_private {
1034         enum clear_refs_types type;
1035 };
1036
1037 #ifdef CONFIG_MEM_SOFT_DIRTY
1038
1039 #define is_cow_mapping(flags) (((flags) & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE)
1040
1041 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1042 {
1043         struct page *page;
1044
1045         if (!pte_write(pte))
1046                 return false;
1047         if (!is_cow_mapping(vma->vm_flags))
1048                 return false;
1049         if (likely(!atomic_read(&vma->vm_mm->has_pinned)))
1050                 return false;
1051         page = vm_normal_page(vma, addr, pte);
1052         if (!page)
1053                 return false;
1054         return page_maybe_dma_pinned(page);
1055 }
1056
1057 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1058                 unsigned long addr, pte_t *pte)
1059 {
1060         /*
1061          * The soft-dirty tracker uses #PF-s to catch writes
1062          * to pages, so write-protect the pte as well. See the
1063          * Documentation/admin-guide/mm/soft-dirty.rst for full description
1064          * of how soft-dirty works.
1065          */
1066         pte_t ptent = *pte;
1067
1068         if (pte_present(ptent)) {
1069                 pte_t old_pte;
1070
1071                 if (pte_is_pinned(vma, addr, ptent))
1072                         return;
1073                 old_pte = ptep_modify_prot_start(vma, addr, pte);
1074                 ptent = pte_wrprotect(old_pte);
1075                 ptent = pte_clear_soft_dirty(ptent);
1076                 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1077         } else if (is_swap_pte(ptent)) {
1078                 ptent = pte_swp_clear_soft_dirty(ptent);
1079                 set_pte_at(vma->vm_mm, addr, pte, ptent);
1080         }
1081 }
1082 #else
1083 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1084                 unsigned long addr, pte_t *pte)
1085 {
1086 }
1087 #endif
1088
1089 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1090 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1091                 unsigned long addr, pmd_t *pmdp)
1092 {
1093         pmd_t old, pmd = *pmdp;
1094
1095         if (pmd_present(pmd)) {
1096                 /* See comment in change_huge_pmd() */
1097                 old = pmdp_invalidate(vma, addr, pmdp);
1098                 if (pmd_dirty(old))
1099                         pmd = pmd_mkdirty(pmd);
1100                 if (pmd_young(old))
1101                         pmd = pmd_mkyoung(pmd);
1102
1103                 pmd = pmd_wrprotect(pmd);
1104                 pmd = pmd_clear_soft_dirty(pmd);
1105
1106                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1107         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1108                 pmd = pmd_swp_clear_soft_dirty(pmd);
1109                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1110         }
1111 }
1112 #else
1113 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1114                 unsigned long addr, pmd_t *pmdp)
1115 {
1116 }
1117 #endif
1118
1119 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1120                                 unsigned long end, struct mm_walk *walk)
1121 {
1122         struct clear_refs_private *cp = walk->private;
1123         struct vm_area_struct *vma = walk->vma;
1124         pte_t *pte, ptent;
1125         spinlock_t *ptl;
1126         struct page *page;
1127
1128         ptl = pmd_trans_huge_lock(pmd, vma);
1129         if (ptl) {
1130                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1131                         clear_soft_dirty_pmd(vma, addr, pmd);
1132                         goto out;
1133                 }
1134
1135                 if (!pmd_present(*pmd))
1136                         goto out;
1137
1138                 page = pmd_page(*pmd);
1139
1140                 /* Clear accessed and referenced bits. */
1141                 pmdp_test_and_clear_young(vma, addr, pmd);
1142                 test_and_clear_page_young(page);
1143                 ClearPageReferenced(page);
1144 out:
1145                 spin_unlock(ptl);
1146                 return 0;
1147         }
1148
1149         if (pmd_trans_unstable(pmd))
1150                 return 0;
1151
1152         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1153         for (; addr != end; pte++, addr += PAGE_SIZE) {
1154                 ptent = *pte;
1155
1156                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1157                         clear_soft_dirty(vma, addr, pte);
1158                         continue;
1159                 }
1160
1161                 if (!pte_present(ptent))
1162                         continue;
1163
1164                 page = vm_normal_page(vma, addr, ptent);
1165                 if (!page)
1166                         continue;
1167
1168                 /* Clear accessed and referenced bits. */
1169                 ptep_test_and_clear_young(vma, addr, pte);
1170                 test_and_clear_page_young(page);
1171                 ClearPageReferenced(page);
1172         }
1173         pte_unmap_unlock(pte - 1, ptl);
1174         cond_resched();
1175         return 0;
1176 }
1177
1178 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1179                                 struct mm_walk *walk)
1180 {
1181         struct clear_refs_private *cp = walk->private;
1182         struct vm_area_struct *vma = walk->vma;
1183
1184         if (vma->vm_flags & VM_PFNMAP)
1185                 return 1;
1186
1187         /*
1188          * Writing 1 to /proc/pid/clear_refs affects all pages.
1189          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1190          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1191          * Writing 4 to /proc/pid/clear_refs affects all pages.
1192          */
1193         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1194                 return 1;
1195         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1196                 return 1;
1197         return 0;
1198 }
1199
1200 static const struct mm_walk_ops clear_refs_walk_ops = {
1201         .pmd_entry              = clear_refs_pte_range,
1202         .test_walk              = clear_refs_test_walk,
1203 };
1204
1205 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1206                                 size_t count, loff_t *ppos)
1207 {
1208         struct task_struct *task;
1209         char buffer[PROC_NUMBUF];
1210         struct mm_struct *mm;
1211         struct vm_area_struct *vma;
1212         enum clear_refs_types type;
1213         struct mmu_gather tlb;
1214         int itype;
1215         int rv;
1216
1217         memset(buffer, 0, sizeof(buffer));
1218         if (count > sizeof(buffer) - 1)
1219                 count = sizeof(buffer) - 1;
1220         if (copy_from_user(buffer, buf, count))
1221                 return -EFAULT;
1222         rv = kstrtoint(strstrip(buffer), 10, &itype);
1223         if (rv < 0)
1224                 return rv;
1225         type = (enum clear_refs_types)itype;
1226         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1227                 return -EINVAL;
1228
1229         task = get_proc_task(file_inode(file));
1230         if (!task)
1231                 return -ESRCH;
1232         mm = get_task_mm(task);
1233         if (mm) {
1234                 struct mmu_notifier_range range;
1235                 struct clear_refs_private cp = {
1236                         .type = type,
1237                 };
1238
1239                 if (mmap_write_lock_killable(mm)) {
1240                         count = -EINTR;
1241                         goto out_mm;
1242                 }
1243                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1244                         /*
1245                          * Writing 5 to /proc/pid/clear_refs resets the peak
1246                          * resident set size to this mm's current rss value.
1247                          */
1248                         reset_mm_hiwater_rss(mm);
1249                         goto out_unlock;
1250                 }
1251
1252                 tlb_gather_mmu(&tlb, mm, 0, -1);
1253                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1254                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1255                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1256                                         continue;
1257                                 vma->vm_flags &= ~VM_SOFTDIRTY;
1258                                 vma_set_page_prot(vma);
1259                         }
1260
1261                         mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1262                                                 0, NULL, mm, 0, -1UL);
1263                         mmu_notifier_invalidate_range_start(&range);
1264                 }
1265                 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1266                                 &cp);
1267                 if (type == CLEAR_REFS_SOFT_DIRTY)
1268                         mmu_notifier_invalidate_range_end(&range);
1269                 tlb_finish_mmu(&tlb, 0, -1);
1270 out_unlock:
1271                 mmap_write_unlock(mm);
1272 out_mm:
1273                 mmput(mm);
1274         }
1275         put_task_struct(task);
1276
1277         return count;
1278 }
1279
1280 const struct file_operations proc_clear_refs_operations = {
1281         .write          = clear_refs_write,
1282         .llseek         = noop_llseek,
1283 };
1284
1285 typedef struct {
1286         u64 pme;
1287 } pagemap_entry_t;
1288
1289 struct pagemapread {
1290         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1291         pagemap_entry_t *buffer;
1292         bool show_pfn;
1293 };
1294
1295 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1296 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1297
1298 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1299 #define PM_PFRAME_BITS          55
1300 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1301 #define PM_SOFT_DIRTY           BIT_ULL(55)
1302 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1303 #define PM_FILE                 BIT_ULL(61)
1304 #define PM_SWAP                 BIT_ULL(62)
1305 #define PM_PRESENT              BIT_ULL(63)
1306
1307 #define PM_END_OF_BUFFER    1
1308
1309 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1310 {
1311         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1312 }
1313
1314 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1315                           struct pagemapread *pm)
1316 {
1317         pm->buffer[pm->pos++] = *pme;
1318         if (pm->pos >= pm->len)
1319                 return PM_END_OF_BUFFER;
1320         return 0;
1321 }
1322
1323 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1324                             __always_unused int depth, struct mm_walk *walk)
1325 {
1326         struct pagemapread *pm = walk->private;
1327         unsigned long addr = start;
1328         int err = 0;
1329
1330         while (addr < end) {
1331                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1332                 pagemap_entry_t pme = make_pme(0, 0);
1333                 /* End of address space hole, which we mark as non-present. */
1334                 unsigned long hole_end;
1335
1336                 if (vma)
1337                         hole_end = min(end, vma->vm_start);
1338                 else
1339                         hole_end = end;
1340
1341                 for (; addr < hole_end; addr += PAGE_SIZE) {
1342                         err = add_to_pagemap(addr, &pme, pm);
1343                         if (err)
1344                                 goto out;
1345                 }
1346
1347                 if (!vma)
1348                         break;
1349
1350                 /* Addresses in the VMA. */
1351                 if (vma->vm_flags & VM_SOFTDIRTY)
1352                         pme = make_pme(0, PM_SOFT_DIRTY);
1353                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1354                         err = add_to_pagemap(addr, &pme, pm);
1355                         if (err)
1356                                 goto out;
1357                 }
1358         }
1359 out:
1360         return err;
1361 }
1362
1363 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1364                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1365 {
1366         u64 frame = 0, flags = 0;
1367         struct page *page = NULL;
1368
1369         if (pte_present(pte)) {
1370                 if (pm->show_pfn)
1371                         frame = pte_pfn(pte);
1372                 flags |= PM_PRESENT;
1373                 page = vm_normal_page(vma, addr, pte);
1374                 if (pte_soft_dirty(pte))
1375                         flags |= PM_SOFT_DIRTY;
1376         } else if (is_swap_pte(pte)) {
1377                 swp_entry_t entry;
1378                 if (pte_swp_soft_dirty(pte))
1379                         flags |= PM_SOFT_DIRTY;
1380                 entry = pte_to_swp_entry(pte);
1381                 if (pm->show_pfn)
1382                         frame = swp_type(entry) |
1383                                 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1384                 flags |= PM_SWAP;
1385                 if (is_migration_entry(entry))
1386                         page = migration_entry_to_page(entry);
1387
1388                 if (is_device_private_entry(entry))
1389                         page = device_private_entry_to_page(entry);
1390         }
1391
1392         if (page && !PageAnon(page))
1393                 flags |= PM_FILE;
1394         if (page && page_mapcount(page) == 1)
1395                 flags |= PM_MMAP_EXCLUSIVE;
1396         if (vma->vm_flags & VM_SOFTDIRTY)
1397                 flags |= PM_SOFT_DIRTY;
1398
1399         return make_pme(frame, flags);
1400 }
1401
1402 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1403                              struct mm_walk *walk)
1404 {
1405         struct vm_area_struct *vma = walk->vma;
1406         struct pagemapread *pm = walk->private;
1407         spinlock_t *ptl;
1408         pte_t *pte, *orig_pte;
1409         int err = 0;
1410
1411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412         ptl = pmd_trans_huge_lock(pmdp, vma);
1413         if (ptl) {
1414                 u64 flags = 0, frame = 0;
1415                 pmd_t pmd = *pmdp;
1416                 struct page *page = NULL;
1417
1418                 if (vma->vm_flags & VM_SOFTDIRTY)
1419                         flags |= PM_SOFT_DIRTY;
1420
1421                 if (pmd_present(pmd)) {
1422                         page = pmd_page(pmd);
1423
1424                         flags |= PM_PRESENT;
1425                         if (pmd_soft_dirty(pmd))
1426                                 flags |= PM_SOFT_DIRTY;
1427                         if (pm->show_pfn)
1428                                 frame = pmd_pfn(pmd) +
1429                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1430                 }
1431 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1432                 else if (is_swap_pmd(pmd)) {
1433                         swp_entry_t entry = pmd_to_swp_entry(pmd);
1434                         unsigned long offset;
1435
1436                         if (pm->show_pfn) {
1437                                 offset = swp_offset(entry) +
1438                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1439                                 frame = swp_type(entry) |
1440                                         (offset << MAX_SWAPFILES_SHIFT);
1441                         }
1442                         flags |= PM_SWAP;
1443                         if (pmd_swp_soft_dirty(pmd))
1444                                 flags |= PM_SOFT_DIRTY;
1445                         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1446                         page = migration_entry_to_page(entry);
1447                 }
1448 #endif
1449
1450                 if (page && page_mapcount(page) == 1)
1451                         flags |= PM_MMAP_EXCLUSIVE;
1452
1453                 for (; addr != end; addr += PAGE_SIZE) {
1454                         pagemap_entry_t pme = make_pme(frame, flags);
1455
1456                         err = add_to_pagemap(addr, &pme, pm);
1457                         if (err)
1458                                 break;
1459                         if (pm->show_pfn) {
1460                                 if (flags & PM_PRESENT)
1461                                         frame++;
1462                                 else if (flags & PM_SWAP)
1463                                         frame += (1 << MAX_SWAPFILES_SHIFT);
1464                         }
1465                 }
1466                 spin_unlock(ptl);
1467                 return err;
1468         }
1469
1470         if (pmd_trans_unstable(pmdp))
1471                 return 0;
1472 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1473
1474         /*
1475          * We can assume that @vma always points to a valid one and @end never
1476          * goes beyond vma->vm_end.
1477          */
1478         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1479         for (; addr < end; pte++, addr += PAGE_SIZE) {
1480                 pagemap_entry_t pme;
1481
1482                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1483                 err = add_to_pagemap(addr, &pme, pm);
1484                 if (err)
1485                         break;
1486         }
1487         pte_unmap_unlock(orig_pte, ptl);
1488
1489         cond_resched();
1490
1491         return err;
1492 }
1493
1494 #ifdef CONFIG_HUGETLB_PAGE
1495 /* This function walks within one hugetlb entry in the single call */
1496 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1497                                  unsigned long addr, unsigned long end,
1498                                  struct mm_walk *walk)
1499 {
1500         struct pagemapread *pm = walk->private;
1501         struct vm_area_struct *vma = walk->vma;
1502         u64 flags = 0, frame = 0;
1503         int err = 0;
1504         pte_t pte;
1505
1506         if (vma->vm_flags & VM_SOFTDIRTY)
1507                 flags |= PM_SOFT_DIRTY;
1508
1509         pte = huge_ptep_get(ptep);
1510         if (pte_present(pte)) {
1511                 struct page *page = pte_page(pte);
1512
1513                 if (!PageAnon(page))
1514                         flags |= PM_FILE;
1515
1516                 if (page_mapcount(page) == 1)
1517                         flags |= PM_MMAP_EXCLUSIVE;
1518
1519                 flags |= PM_PRESENT;
1520                 if (pm->show_pfn)
1521                         frame = pte_pfn(pte) +
1522                                 ((addr & ~hmask) >> PAGE_SHIFT);
1523         }
1524
1525         for (; addr != end; addr += PAGE_SIZE) {
1526                 pagemap_entry_t pme = make_pme(frame, flags);
1527
1528                 err = add_to_pagemap(addr, &pme, pm);
1529                 if (err)
1530                         return err;
1531                 if (pm->show_pfn && (flags & PM_PRESENT))
1532                         frame++;
1533         }
1534
1535         cond_resched();
1536
1537         return err;
1538 }
1539 #else
1540 #define pagemap_hugetlb_range   NULL
1541 #endif /* HUGETLB_PAGE */
1542
1543 static const struct mm_walk_ops pagemap_ops = {
1544         .pmd_entry      = pagemap_pmd_range,
1545         .pte_hole       = pagemap_pte_hole,
1546         .hugetlb_entry  = pagemap_hugetlb_range,
1547 };
1548
1549 /*
1550  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1551  *
1552  * For each page in the address space, this file contains one 64-bit entry
1553  * consisting of the following:
1554  *
1555  * Bits 0-54  page frame number (PFN) if present
1556  * Bits 0-4   swap type if swapped
1557  * Bits 5-54  swap offset if swapped
1558  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1559  * Bit  56    page exclusively mapped
1560  * Bits 57-60 zero
1561  * Bit  61    page is file-page or shared-anon
1562  * Bit  62    page swapped
1563  * Bit  63    page present
1564  *
1565  * If the page is not present but in swap, then the PFN contains an
1566  * encoding of the swap file number and the page's offset into the
1567  * swap. Unmapped pages return a null PFN. This allows determining
1568  * precisely which pages are mapped (or in swap) and comparing mapped
1569  * pages between processes.
1570  *
1571  * Efficient users of this interface will use /proc/pid/maps to
1572  * determine which areas of memory are actually mapped and llseek to
1573  * skip over unmapped regions.
1574  */
1575 static ssize_t pagemap_read(struct file *file, char __user *buf,
1576                             size_t count, loff_t *ppos)
1577 {
1578         struct mm_struct *mm = file->private_data;
1579         struct pagemapread pm;
1580         unsigned long src;
1581         unsigned long svpfn;
1582         unsigned long start_vaddr;
1583         unsigned long end_vaddr;
1584         int ret = 0, copied = 0;
1585
1586         if (!mm || !mmget_not_zero(mm))
1587                 goto out;
1588
1589         ret = -EINVAL;
1590         /* file position must be aligned */
1591         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1592                 goto out_mm;
1593
1594         ret = 0;
1595         if (!count)
1596                 goto out_mm;
1597
1598         /* do not disclose physical addresses: attack vector */
1599         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1600
1601         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1602         pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1603         ret = -ENOMEM;
1604         if (!pm.buffer)
1605                 goto out_mm;
1606
1607         src = *ppos;
1608         svpfn = src / PM_ENTRY_BYTES;
1609         end_vaddr = mm->task_size;
1610
1611         /* watch out for wraparound */
1612         start_vaddr = end_vaddr;
1613         if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1614                 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1615
1616         /* Ensure the address is inside the task */
1617         if (start_vaddr > mm->task_size)
1618                 start_vaddr = end_vaddr;
1619
1620         /*
1621          * The odds are that this will stop walking way
1622          * before end_vaddr, because the length of the
1623          * user buffer is tracked in "pm", and the walk
1624          * will stop when we hit the end of the buffer.
1625          */
1626         ret = 0;
1627         while (count && (start_vaddr < end_vaddr)) {
1628                 int len;
1629                 unsigned long end;
1630
1631                 pm.pos = 0;
1632                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1633                 /* overflow ? */
1634                 if (end < start_vaddr || end > end_vaddr)
1635                         end = end_vaddr;
1636                 ret = mmap_read_lock_killable(mm);
1637                 if (ret)
1638                         goto out_free;
1639                 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1640                 mmap_read_unlock(mm);
1641                 start_vaddr = end;
1642
1643                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1644                 if (copy_to_user(buf, pm.buffer, len)) {
1645                         ret = -EFAULT;
1646                         goto out_free;
1647                 }
1648                 copied += len;
1649                 buf += len;
1650                 count -= len;
1651         }
1652         *ppos += copied;
1653         if (!ret || ret == PM_END_OF_BUFFER)
1654                 ret = copied;
1655
1656 out_free:
1657         kfree(pm.buffer);
1658 out_mm:
1659         mmput(mm);
1660 out:
1661         return ret;
1662 }
1663
1664 static int pagemap_open(struct inode *inode, struct file *file)
1665 {
1666         struct mm_struct *mm;
1667
1668         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1669         if (IS_ERR(mm))
1670                 return PTR_ERR(mm);
1671         file->private_data = mm;
1672         return 0;
1673 }
1674
1675 static int pagemap_release(struct inode *inode, struct file *file)
1676 {
1677         struct mm_struct *mm = file->private_data;
1678
1679         if (mm)
1680                 mmdrop(mm);
1681         return 0;
1682 }
1683
1684 const struct file_operations proc_pagemap_operations = {
1685         .llseek         = mem_lseek, /* borrow this */
1686         .read           = pagemap_read,
1687         .open           = pagemap_open,
1688         .release        = pagemap_release,
1689 };
1690 #endif /* CONFIG_PROC_PAGE_MONITOR */
1691
1692 #ifdef CONFIG_NUMA
1693
1694 struct numa_maps {
1695         unsigned long pages;
1696         unsigned long anon;
1697         unsigned long active;
1698         unsigned long writeback;
1699         unsigned long mapcount_max;
1700         unsigned long dirty;
1701         unsigned long swapcache;
1702         unsigned long node[MAX_NUMNODES];
1703 };
1704
1705 struct numa_maps_private {
1706         struct proc_maps_private proc_maps;
1707         struct numa_maps md;
1708 };
1709
1710 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1711                         unsigned long nr_pages)
1712 {
1713         int count = page_mapcount(page);
1714
1715         md->pages += nr_pages;
1716         if (pte_dirty || PageDirty(page))
1717                 md->dirty += nr_pages;
1718
1719         if (PageSwapCache(page))
1720                 md->swapcache += nr_pages;
1721
1722         if (PageActive(page) || PageUnevictable(page))
1723                 md->active += nr_pages;
1724
1725         if (PageWriteback(page))
1726                 md->writeback += nr_pages;
1727
1728         if (PageAnon(page))
1729                 md->anon += nr_pages;
1730
1731         if (count > md->mapcount_max)
1732                 md->mapcount_max = count;
1733
1734         md->node[page_to_nid(page)] += nr_pages;
1735 }
1736
1737 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1738                 unsigned long addr)
1739 {
1740         struct page *page;
1741         int nid;
1742
1743         if (!pte_present(pte))
1744                 return NULL;
1745
1746         page = vm_normal_page(vma, addr, pte);
1747         if (!page)
1748                 return NULL;
1749
1750         if (PageReserved(page))
1751                 return NULL;
1752
1753         nid = page_to_nid(page);
1754         if (!node_isset(nid, node_states[N_MEMORY]))
1755                 return NULL;
1756
1757         return page;
1758 }
1759
1760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1761 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1762                                               struct vm_area_struct *vma,
1763                                               unsigned long addr)
1764 {
1765         struct page *page;
1766         int nid;
1767
1768         if (!pmd_present(pmd))
1769                 return NULL;
1770
1771         page = vm_normal_page_pmd(vma, addr, pmd);
1772         if (!page)
1773                 return NULL;
1774
1775         if (PageReserved(page))
1776                 return NULL;
1777
1778         nid = page_to_nid(page);
1779         if (!node_isset(nid, node_states[N_MEMORY]))
1780                 return NULL;
1781
1782         return page;
1783 }
1784 #endif
1785
1786 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1787                 unsigned long end, struct mm_walk *walk)
1788 {
1789         struct numa_maps *md = walk->private;
1790         struct vm_area_struct *vma = walk->vma;
1791         spinlock_t *ptl;
1792         pte_t *orig_pte;
1793         pte_t *pte;
1794
1795 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1796         ptl = pmd_trans_huge_lock(pmd, vma);
1797         if (ptl) {
1798                 struct page *page;
1799
1800                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1801                 if (page)
1802                         gather_stats(page, md, pmd_dirty(*pmd),
1803                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1804                 spin_unlock(ptl);
1805                 return 0;
1806         }
1807
1808         if (pmd_trans_unstable(pmd))
1809                 return 0;
1810 #endif
1811         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1812         do {
1813                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1814                 if (!page)
1815                         continue;
1816                 gather_stats(page, md, pte_dirty(*pte), 1);
1817
1818         } while (pte++, addr += PAGE_SIZE, addr != end);
1819         pte_unmap_unlock(orig_pte, ptl);
1820         cond_resched();
1821         return 0;
1822 }
1823 #ifdef CONFIG_HUGETLB_PAGE
1824 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1825                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1826 {
1827         pte_t huge_pte = huge_ptep_get(pte);
1828         struct numa_maps *md;
1829         struct page *page;
1830
1831         if (!pte_present(huge_pte))
1832                 return 0;
1833
1834         page = pte_page(huge_pte);
1835         if (!page)
1836                 return 0;
1837
1838         md = walk->private;
1839         gather_stats(page, md, pte_dirty(huge_pte), 1);
1840         return 0;
1841 }
1842
1843 #else
1844 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1845                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1846 {
1847         return 0;
1848 }
1849 #endif
1850
1851 static const struct mm_walk_ops show_numa_ops = {
1852         .hugetlb_entry = gather_hugetlb_stats,
1853         .pmd_entry = gather_pte_stats,
1854 };
1855
1856 /*
1857  * Display pages allocated per node and memory policy via /proc.
1858  */
1859 static int show_numa_map(struct seq_file *m, void *v)
1860 {
1861         struct numa_maps_private *numa_priv = m->private;
1862         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1863         struct vm_area_struct *vma = v;
1864         struct numa_maps *md = &numa_priv->md;
1865         struct file *file = vma->vm_file;
1866         struct mm_struct *mm = vma->vm_mm;
1867         struct mempolicy *pol;
1868         char buffer[64];
1869         int nid;
1870
1871         if (!mm)
1872                 return 0;
1873
1874         /* Ensure we start with an empty set of numa_maps statistics. */
1875         memset(md, 0, sizeof(*md));
1876
1877         pol = __get_vma_policy(vma, vma->vm_start);
1878         if (pol) {
1879                 mpol_to_str(buffer, sizeof(buffer), pol);
1880                 mpol_cond_put(pol);
1881         } else {
1882                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1883         }
1884
1885         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1886
1887         if (file) {
1888                 seq_puts(m, " file=");
1889                 seq_file_path(m, file, "\n\t= ");
1890         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1891                 seq_puts(m, " heap");
1892         } else if (is_stack(vma)) {
1893                 seq_puts(m, " stack");
1894         }
1895
1896         if (is_vm_hugetlb_page(vma))
1897                 seq_puts(m, " huge");
1898
1899         /* mmap_lock is held by m_start */
1900         walk_page_vma(vma, &show_numa_ops, md);
1901
1902         if (!md->pages)
1903                 goto out;
1904
1905         if (md->anon)
1906                 seq_printf(m, " anon=%lu", md->anon);
1907
1908         if (md->dirty)
1909                 seq_printf(m, " dirty=%lu", md->dirty);
1910
1911         if (md->pages != md->anon && md->pages != md->dirty)
1912                 seq_printf(m, " mapped=%lu", md->pages);
1913
1914         if (md->mapcount_max > 1)
1915                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1916
1917         if (md->swapcache)
1918                 seq_printf(m, " swapcache=%lu", md->swapcache);
1919
1920         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1921                 seq_printf(m, " active=%lu", md->active);
1922
1923         if (md->writeback)
1924                 seq_printf(m, " writeback=%lu", md->writeback);
1925
1926         for_each_node_state(nid, N_MEMORY)
1927                 if (md->node[nid])
1928                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1929
1930         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1931 out:
1932         seq_putc(m, '\n');
1933         return 0;
1934 }
1935
1936 static const struct seq_operations proc_pid_numa_maps_op = {
1937         .start  = m_start,
1938         .next   = m_next,
1939         .stop   = m_stop,
1940         .show   = show_numa_map,
1941 };
1942
1943 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1944 {
1945         return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1946                                 sizeof(struct numa_maps_private));
1947 }
1948
1949 const struct file_operations proc_pid_numa_maps_operations = {
1950         .open           = pid_numa_maps_open,
1951         .read           = seq_read,
1952         .llseek         = seq_lseek,
1953         .release        = proc_map_release,
1954 };
1955
1956 #endif /* CONFIG_NUMA */