5988b83836fb111e6929d1b67ac0a58775b0378b
[linux-2.6-microblaze.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17
18 #include <asm/elf.h>
19 #include <asm/uaccess.h>
20 #include <asm/tlbflush.h>
21 #include "internal.h"
22
23 void task_mem(struct seq_file *m, struct mm_struct *mm)
24 {
25         unsigned long data, text, lib, swap, ptes, pmds;
26         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
27
28         /*
29          * Note: to minimize their overhead, mm maintains hiwater_vm and
30          * hiwater_rss only when about to *lower* total_vm or rss.  Any
31          * collector of these hiwater stats must therefore get total_vm
32          * and rss too, which will usually be the higher.  Barriers? not
33          * worth the effort, such snapshots can always be inconsistent.
34          */
35         hiwater_vm = total_vm = mm->total_vm;
36         if (hiwater_vm < mm->hiwater_vm)
37                 hiwater_vm = mm->hiwater_vm;
38         hiwater_rss = total_rss = get_mm_rss(mm);
39         if (hiwater_rss < mm->hiwater_rss)
40                 hiwater_rss = mm->hiwater_rss;
41
42         data = mm->total_vm - mm->shared_vm - mm->stack_vm;
43         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
44         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
45         swap = get_mm_counter(mm, MM_SWAPENTS);
46         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
47         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
48         seq_printf(m,
49                 "VmPeak:\t%8lu kB\n"
50                 "VmSize:\t%8lu kB\n"
51                 "VmLck:\t%8lu kB\n"
52                 "VmPin:\t%8lu kB\n"
53                 "VmHWM:\t%8lu kB\n"
54                 "VmRSS:\t%8lu kB\n"
55                 "VmData:\t%8lu kB\n"
56                 "VmStk:\t%8lu kB\n"
57                 "VmExe:\t%8lu kB\n"
58                 "VmLib:\t%8lu kB\n"
59                 "VmPTE:\t%8lu kB\n"
60                 "VmPMD:\t%8lu kB\n"
61                 "VmSwap:\t%8lu kB\n",
62                 hiwater_vm << (PAGE_SHIFT-10),
63                 total_vm << (PAGE_SHIFT-10),
64                 mm->locked_vm << (PAGE_SHIFT-10),
65                 mm->pinned_vm << (PAGE_SHIFT-10),
66                 hiwater_rss << (PAGE_SHIFT-10),
67                 total_rss << (PAGE_SHIFT-10),
68                 data << (PAGE_SHIFT-10),
69                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
70                 ptes >> 10,
71                 pmds >> 10,
72                 swap << (PAGE_SHIFT-10));
73 }
74
75 unsigned long task_vsize(struct mm_struct *mm)
76 {
77         return PAGE_SIZE * mm->total_vm;
78 }
79
80 unsigned long task_statm(struct mm_struct *mm,
81                          unsigned long *shared, unsigned long *text,
82                          unsigned long *data, unsigned long *resident)
83 {
84         *shared = get_mm_counter(mm, MM_FILEPAGES);
85         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
86                                                                 >> PAGE_SHIFT;
87         *data = mm->total_vm - mm->shared_vm;
88         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
89         return mm->total_vm;
90 }
91
92 #ifdef CONFIG_NUMA
93 /*
94  * Save get_task_policy() for show_numa_map().
95  */
96 static void hold_task_mempolicy(struct proc_maps_private *priv)
97 {
98         struct task_struct *task = priv->task;
99
100         task_lock(task);
101         priv->task_mempolicy = get_task_policy(task);
102         mpol_get(priv->task_mempolicy);
103         task_unlock(task);
104 }
105 static void release_task_mempolicy(struct proc_maps_private *priv)
106 {
107         mpol_put(priv->task_mempolicy);
108 }
109 #else
110 static void hold_task_mempolicy(struct proc_maps_private *priv)
111 {
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 }
116 #endif
117
118 static void vma_stop(struct proc_maps_private *priv)
119 {
120         struct mm_struct *mm = priv->mm;
121
122         release_task_mempolicy(priv);
123         up_read(&mm->mmap_sem);
124         mmput(mm);
125 }
126
127 static struct vm_area_struct *
128 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
129 {
130         if (vma == priv->tail_vma)
131                 return NULL;
132         return vma->vm_next ?: priv->tail_vma;
133 }
134
135 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
136 {
137         if (m->count < m->size) /* vma is copied successfully */
138                 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
139 }
140
141 static void *m_start(struct seq_file *m, loff_t *ppos)
142 {
143         struct proc_maps_private *priv = m->private;
144         unsigned long last_addr = m->version;
145         struct mm_struct *mm;
146         struct vm_area_struct *vma;
147         unsigned int pos = *ppos;
148
149         /* See m_cache_vma(). Zero at the start or after lseek. */
150         if (last_addr == -1UL)
151                 return NULL;
152
153         priv->task = get_proc_task(priv->inode);
154         if (!priv->task)
155                 return ERR_PTR(-ESRCH);
156
157         mm = priv->mm;
158         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
159                 return NULL;
160
161         down_read(&mm->mmap_sem);
162         hold_task_mempolicy(priv);
163         priv->tail_vma = get_gate_vma(mm);
164
165         if (last_addr) {
166                 vma = find_vma(mm, last_addr);
167                 if (vma && (vma = m_next_vma(priv, vma)))
168                         return vma;
169         }
170
171         m->version = 0;
172         if (pos < mm->map_count) {
173                 for (vma = mm->mmap; pos; pos--) {
174                         m->version = vma->vm_start;
175                         vma = vma->vm_next;
176                 }
177                 return vma;
178         }
179
180         /* we do not bother to update m->version in this case */
181         if (pos == mm->map_count && priv->tail_vma)
182                 return priv->tail_vma;
183
184         vma_stop(priv);
185         return NULL;
186 }
187
188 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
189 {
190         struct proc_maps_private *priv = m->private;
191         struct vm_area_struct *next;
192
193         (*pos)++;
194         next = m_next_vma(priv, v);
195         if (!next)
196                 vma_stop(priv);
197         return next;
198 }
199
200 static void m_stop(struct seq_file *m, void *v)
201 {
202         struct proc_maps_private *priv = m->private;
203
204         if (!IS_ERR_OR_NULL(v))
205                 vma_stop(priv);
206         if (priv->task) {
207                 put_task_struct(priv->task);
208                 priv->task = NULL;
209         }
210 }
211
212 static int proc_maps_open(struct inode *inode, struct file *file,
213                         const struct seq_operations *ops, int psize)
214 {
215         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
216
217         if (!priv)
218                 return -ENOMEM;
219
220         priv->inode = inode;
221         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
222         if (IS_ERR(priv->mm)) {
223                 int err = PTR_ERR(priv->mm);
224
225                 seq_release_private(inode, file);
226                 return err;
227         }
228
229         return 0;
230 }
231
232 static int proc_map_release(struct inode *inode, struct file *file)
233 {
234         struct seq_file *seq = file->private_data;
235         struct proc_maps_private *priv = seq->private;
236
237         if (priv->mm)
238                 mmdrop(priv->mm);
239
240         return seq_release_private(inode, file);
241 }
242
243 static int do_maps_open(struct inode *inode, struct file *file,
244                         const struct seq_operations *ops)
245 {
246         return proc_maps_open(inode, file, ops,
247                                 sizeof(struct proc_maps_private));
248 }
249
250 static pid_t pid_of_stack(struct proc_maps_private *priv,
251                                 struct vm_area_struct *vma, bool is_pid)
252 {
253         struct inode *inode = priv->inode;
254         struct task_struct *task;
255         pid_t ret = 0;
256
257         rcu_read_lock();
258         task = pid_task(proc_pid(inode), PIDTYPE_PID);
259         if (task) {
260                 task = task_of_stack(task, vma, is_pid);
261                 if (task)
262                         ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
263         }
264         rcu_read_unlock();
265
266         return ret;
267 }
268
269 static void
270 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
271 {
272         struct mm_struct *mm = vma->vm_mm;
273         struct file *file = vma->vm_file;
274         struct proc_maps_private *priv = m->private;
275         vm_flags_t flags = vma->vm_flags;
276         unsigned long ino = 0;
277         unsigned long long pgoff = 0;
278         unsigned long start, end;
279         dev_t dev = 0;
280         const char *name = NULL;
281
282         if (file) {
283                 struct inode *inode = file_inode(vma->vm_file);
284                 dev = inode->i_sb->s_dev;
285                 ino = inode->i_ino;
286                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287         }
288
289         /* We don't show the stack guard page in /proc/maps */
290         start = vma->vm_start;
291         if (stack_guard_page_start(vma, start))
292                 start += PAGE_SIZE;
293         end = vma->vm_end;
294         if (stack_guard_page_end(vma, end))
295                 end -= PAGE_SIZE;
296
297         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
298         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
299                         start,
300                         end,
301                         flags & VM_READ ? 'r' : '-',
302                         flags & VM_WRITE ? 'w' : '-',
303                         flags & VM_EXEC ? 'x' : '-',
304                         flags & VM_MAYSHARE ? 's' : 'p',
305                         pgoff,
306                         MAJOR(dev), MINOR(dev), ino);
307
308         /*
309          * Print the dentry name for named mappings, and a
310          * special [heap] marker for the heap:
311          */
312         if (file) {
313                 seq_pad(m, ' ');
314                 seq_file_path(m, file, "\n");
315                 goto done;
316         }
317
318         if (vma->vm_ops && vma->vm_ops->name) {
319                 name = vma->vm_ops->name(vma);
320                 if (name)
321                         goto done;
322         }
323
324         name = arch_vma_name(vma);
325         if (!name) {
326                 pid_t tid;
327
328                 if (!mm) {
329                         name = "[vdso]";
330                         goto done;
331                 }
332
333                 if (vma->vm_start <= mm->brk &&
334                     vma->vm_end >= mm->start_brk) {
335                         name = "[heap]";
336                         goto done;
337                 }
338
339                 tid = pid_of_stack(priv, vma, is_pid);
340                 if (tid != 0) {
341                         /*
342                          * Thread stack in /proc/PID/task/TID/maps or
343                          * the main process stack.
344                          */
345                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
346                             vma->vm_end >= mm->start_stack)) {
347                                 name = "[stack]";
348                         } else {
349                                 /* Thread stack in /proc/PID/maps */
350                                 seq_pad(m, ' ');
351                                 seq_printf(m, "[stack:%d]", tid);
352                         }
353                 }
354         }
355
356 done:
357         if (name) {
358                 seq_pad(m, ' ');
359                 seq_puts(m, name);
360         }
361         seq_putc(m, '\n');
362 }
363
364 static int show_map(struct seq_file *m, void *v, int is_pid)
365 {
366         show_map_vma(m, v, is_pid);
367         m_cache_vma(m, v);
368         return 0;
369 }
370
371 static int show_pid_map(struct seq_file *m, void *v)
372 {
373         return show_map(m, v, 1);
374 }
375
376 static int show_tid_map(struct seq_file *m, void *v)
377 {
378         return show_map(m, v, 0);
379 }
380
381 static const struct seq_operations proc_pid_maps_op = {
382         .start  = m_start,
383         .next   = m_next,
384         .stop   = m_stop,
385         .show   = show_pid_map
386 };
387
388 static const struct seq_operations proc_tid_maps_op = {
389         .start  = m_start,
390         .next   = m_next,
391         .stop   = m_stop,
392         .show   = show_tid_map
393 };
394
395 static int pid_maps_open(struct inode *inode, struct file *file)
396 {
397         return do_maps_open(inode, file, &proc_pid_maps_op);
398 }
399
400 static int tid_maps_open(struct inode *inode, struct file *file)
401 {
402         return do_maps_open(inode, file, &proc_tid_maps_op);
403 }
404
405 const struct file_operations proc_pid_maps_operations = {
406         .open           = pid_maps_open,
407         .read           = seq_read,
408         .llseek         = seq_lseek,
409         .release        = proc_map_release,
410 };
411
412 const struct file_operations proc_tid_maps_operations = {
413         .open           = tid_maps_open,
414         .read           = seq_read,
415         .llseek         = seq_lseek,
416         .release        = proc_map_release,
417 };
418
419 /*
420  * Proportional Set Size(PSS): my share of RSS.
421  *
422  * PSS of a process is the count of pages it has in memory, where each
423  * page is divided by the number of processes sharing it.  So if a
424  * process has 1000 pages all to itself, and 1000 shared with one other
425  * process, its PSS will be 1500.
426  *
427  * To keep (accumulated) division errors low, we adopt a 64bit
428  * fixed-point pss counter to minimize division errors. So (pss >>
429  * PSS_SHIFT) would be the real byte count.
430  *
431  * A shift of 12 before division means (assuming 4K page size):
432  *      - 1M 3-user-pages add up to 8KB errors;
433  *      - supports mapcount up to 2^24, or 16M;
434  *      - supports PSS up to 2^52 bytes, or 4PB.
435  */
436 #define PSS_SHIFT 12
437
438 #ifdef CONFIG_PROC_PAGE_MONITOR
439 struct mem_size_stats {
440         unsigned long resident;
441         unsigned long shared_clean;
442         unsigned long shared_dirty;
443         unsigned long private_clean;
444         unsigned long private_dirty;
445         unsigned long referenced;
446         unsigned long anonymous;
447         unsigned long anonymous_thp;
448         unsigned long swap;
449         unsigned long shared_hugetlb;
450         unsigned long private_hugetlb;
451         u64 pss;
452         u64 swap_pss;
453 };
454
455 static void smaps_account(struct mem_size_stats *mss, struct page *page,
456                 unsigned long size, bool young, bool dirty)
457 {
458         int mapcount;
459
460         if (PageAnon(page))
461                 mss->anonymous += size;
462
463         mss->resident += size;
464         /* Accumulate the size in pages that have been accessed. */
465         if (young || page_is_young(page) || PageReferenced(page))
466                 mss->referenced += size;
467         mapcount = page_mapcount(page);
468         if (mapcount >= 2) {
469                 u64 pss_delta;
470
471                 if (dirty || PageDirty(page))
472                         mss->shared_dirty += size;
473                 else
474                         mss->shared_clean += size;
475                 pss_delta = (u64)size << PSS_SHIFT;
476                 do_div(pss_delta, mapcount);
477                 mss->pss += pss_delta;
478         } else {
479                 if (dirty || PageDirty(page))
480                         mss->private_dirty += size;
481                 else
482                         mss->private_clean += size;
483                 mss->pss += (u64)size << PSS_SHIFT;
484         }
485 }
486
487 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
488                 struct mm_walk *walk)
489 {
490         struct mem_size_stats *mss = walk->private;
491         struct vm_area_struct *vma = walk->vma;
492         struct page *page = NULL;
493
494         if (pte_present(*pte)) {
495                 page = vm_normal_page(vma, addr, *pte);
496         } else if (is_swap_pte(*pte)) {
497                 swp_entry_t swpent = pte_to_swp_entry(*pte);
498
499                 if (!non_swap_entry(swpent)) {
500                         int mapcount;
501
502                         mss->swap += PAGE_SIZE;
503                         mapcount = swp_swapcount(swpent);
504                         if (mapcount >= 2) {
505                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
506
507                                 do_div(pss_delta, mapcount);
508                                 mss->swap_pss += pss_delta;
509                         } else {
510                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
511                         }
512                 } else if (is_migration_entry(swpent))
513                         page = migration_entry_to_page(swpent);
514         }
515
516         if (!page)
517                 return;
518         smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
519 }
520
521 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
522 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
523                 struct mm_walk *walk)
524 {
525         struct mem_size_stats *mss = walk->private;
526         struct vm_area_struct *vma = walk->vma;
527         struct page *page;
528
529         /* FOLL_DUMP will return -EFAULT on huge zero page */
530         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
531         if (IS_ERR_OR_NULL(page))
532                 return;
533         mss->anonymous_thp += HPAGE_PMD_SIZE;
534         smaps_account(mss, page, HPAGE_PMD_SIZE,
535                         pmd_young(*pmd), pmd_dirty(*pmd));
536 }
537 #else
538 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
539                 struct mm_walk *walk)
540 {
541 }
542 #endif
543
544 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
545                            struct mm_walk *walk)
546 {
547         struct vm_area_struct *vma = walk->vma;
548         pte_t *pte;
549         spinlock_t *ptl;
550
551         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
552                 smaps_pmd_entry(pmd, addr, walk);
553                 spin_unlock(ptl);
554                 return 0;
555         }
556
557         if (pmd_trans_unstable(pmd))
558                 return 0;
559         /*
560          * The mmap_sem held all the way back in m_start() is what
561          * keeps khugepaged out of here and from collapsing things
562          * in here.
563          */
564         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
565         for (; addr != end; pte++, addr += PAGE_SIZE)
566                 smaps_pte_entry(pte, addr, walk);
567         pte_unmap_unlock(pte - 1, ptl);
568         cond_resched();
569         return 0;
570 }
571
572 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
573 {
574         /*
575          * Don't forget to update Documentation/ on changes.
576          */
577         static const char mnemonics[BITS_PER_LONG][2] = {
578                 /*
579                  * In case if we meet a flag we don't know about.
580                  */
581                 [0 ... (BITS_PER_LONG-1)] = "??",
582
583                 [ilog2(VM_READ)]        = "rd",
584                 [ilog2(VM_WRITE)]       = "wr",
585                 [ilog2(VM_EXEC)]        = "ex",
586                 [ilog2(VM_SHARED)]      = "sh",
587                 [ilog2(VM_MAYREAD)]     = "mr",
588                 [ilog2(VM_MAYWRITE)]    = "mw",
589                 [ilog2(VM_MAYEXEC)]     = "me",
590                 [ilog2(VM_MAYSHARE)]    = "ms",
591                 [ilog2(VM_GROWSDOWN)]   = "gd",
592                 [ilog2(VM_PFNMAP)]      = "pf",
593                 [ilog2(VM_DENYWRITE)]   = "dw",
594 #ifdef CONFIG_X86_INTEL_MPX
595                 [ilog2(VM_MPX)]         = "mp",
596 #endif
597                 [ilog2(VM_LOCKED)]      = "lo",
598                 [ilog2(VM_IO)]          = "io",
599                 [ilog2(VM_SEQ_READ)]    = "sr",
600                 [ilog2(VM_RAND_READ)]   = "rr",
601                 [ilog2(VM_DONTCOPY)]    = "dc",
602                 [ilog2(VM_DONTEXPAND)]  = "de",
603                 [ilog2(VM_ACCOUNT)]     = "ac",
604                 [ilog2(VM_NORESERVE)]   = "nr",
605                 [ilog2(VM_HUGETLB)]     = "ht",
606                 [ilog2(VM_ARCH_1)]      = "ar",
607                 [ilog2(VM_DONTDUMP)]    = "dd",
608 #ifdef CONFIG_MEM_SOFT_DIRTY
609                 [ilog2(VM_SOFTDIRTY)]   = "sd",
610 #endif
611                 [ilog2(VM_MIXEDMAP)]    = "mm",
612                 [ilog2(VM_HUGEPAGE)]    = "hg",
613                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
614                 [ilog2(VM_MERGEABLE)]   = "mg",
615                 [ilog2(VM_UFFD_MISSING)]= "um",
616                 [ilog2(VM_UFFD_WP)]     = "uw",
617         };
618         size_t i;
619
620         seq_puts(m, "VmFlags: ");
621         for (i = 0; i < BITS_PER_LONG; i++) {
622                 if (vma->vm_flags & (1UL << i)) {
623                         seq_printf(m, "%c%c ",
624                                    mnemonics[i][0], mnemonics[i][1]);
625                 }
626         }
627         seq_putc(m, '\n');
628 }
629
630 #ifdef CONFIG_HUGETLB_PAGE
631 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
632                                  unsigned long addr, unsigned long end,
633                                  struct mm_walk *walk)
634 {
635         struct mem_size_stats *mss = walk->private;
636         struct vm_area_struct *vma = walk->vma;
637         struct page *page = NULL;
638
639         if (pte_present(*pte)) {
640                 page = vm_normal_page(vma, addr, *pte);
641         } else if (is_swap_pte(*pte)) {
642                 swp_entry_t swpent = pte_to_swp_entry(*pte);
643
644                 if (is_migration_entry(swpent))
645                         page = migration_entry_to_page(swpent);
646         }
647         if (page) {
648                 int mapcount = page_mapcount(page);
649
650                 if (mapcount >= 2)
651                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
652                 else
653                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
654         }
655         return 0;
656 }
657 #endif /* HUGETLB_PAGE */
658
659 static int show_smap(struct seq_file *m, void *v, int is_pid)
660 {
661         struct vm_area_struct *vma = v;
662         struct mem_size_stats mss;
663         struct mm_walk smaps_walk = {
664                 .pmd_entry = smaps_pte_range,
665 #ifdef CONFIG_HUGETLB_PAGE
666                 .hugetlb_entry = smaps_hugetlb_range,
667 #endif
668                 .mm = vma->vm_mm,
669                 .private = &mss,
670         };
671
672         memset(&mss, 0, sizeof mss);
673         /* mmap_sem is held in m_start */
674         walk_page_vma(vma, &smaps_walk);
675
676         show_map_vma(m, vma, is_pid);
677
678         seq_printf(m,
679                    "Size:           %8lu kB\n"
680                    "Rss:            %8lu kB\n"
681                    "Pss:            %8lu kB\n"
682                    "Shared_Clean:   %8lu kB\n"
683                    "Shared_Dirty:   %8lu kB\n"
684                    "Private_Clean:  %8lu kB\n"
685                    "Private_Dirty:  %8lu kB\n"
686                    "Referenced:     %8lu kB\n"
687                    "Anonymous:      %8lu kB\n"
688                    "AnonHugePages:  %8lu kB\n"
689                    "Shared_Hugetlb: %8lu kB\n"
690                    "Private_Hugetlb: %7lu kB\n"
691                    "Swap:           %8lu kB\n"
692                    "SwapPss:        %8lu kB\n"
693                    "KernelPageSize: %8lu kB\n"
694                    "MMUPageSize:    %8lu kB\n"
695                    "Locked:         %8lu kB\n",
696                    (vma->vm_end - vma->vm_start) >> 10,
697                    mss.resident >> 10,
698                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
699                    mss.shared_clean  >> 10,
700                    mss.shared_dirty  >> 10,
701                    mss.private_clean >> 10,
702                    mss.private_dirty >> 10,
703                    mss.referenced >> 10,
704                    mss.anonymous >> 10,
705                    mss.anonymous_thp >> 10,
706                    mss.shared_hugetlb >> 10,
707                    mss.private_hugetlb >> 10,
708                    mss.swap >> 10,
709                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
710                    vma_kernel_pagesize(vma) >> 10,
711                    vma_mmu_pagesize(vma) >> 10,
712                    (vma->vm_flags & VM_LOCKED) ?
713                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
714
715         show_smap_vma_flags(m, vma);
716         m_cache_vma(m, vma);
717         return 0;
718 }
719
720 static int show_pid_smap(struct seq_file *m, void *v)
721 {
722         return show_smap(m, v, 1);
723 }
724
725 static int show_tid_smap(struct seq_file *m, void *v)
726 {
727         return show_smap(m, v, 0);
728 }
729
730 static const struct seq_operations proc_pid_smaps_op = {
731         .start  = m_start,
732         .next   = m_next,
733         .stop   = m_stop,
734         .show   = show_pid_smap
735 };
736
737 static const struct seq_operations proc_tid_smaps_op = {
738         .start  = m_start,
739         .next   = m_next,
740         .stop   = m_stop,
741         .show   = show_tid_smap
742 };
743
744 static int pid_smaps_open(struct inode *inode, struct file *file)
745 {
746         return do_maps_open(inode, file, &proc_pid_smaps_op);
747 }
748
749 static int tid_smaps_open(struct inode *inode, struct file *file)
750 {
751         return do_maps_open(inode, file, &proc_tid_smaps_op);
752 }
753
754 const struct file_operations proc_pid_smaps_operations = {
755         .open           = pid_smaps_open,
756         .read           = seq_read,
757         .llseek         = seq_lseek,
758         .release        = proc_map_release,
759 };
760
761 const struct file_operations proc_tid_smaps_operations = {
762         .open           = tid_smaps_open,
763         .read           = seq_read,
764         .llseek         = seq_lseek,
765         .release        = proc_map_release,
766 };
767
768 enum clear_refs_types {
769         CLEAR_REFS_ALL = 1,
770         CLEAR_REFS_ANON,
771         CLEAR_REFS_MAPPED,
772         CLEAR_REFS_SOFT_DIRTY,
773         CLEAR_REFS_MM_HIWATER_RSS,
774         CLEAR_REFS_LAST,
775 };
776
777 struct clear_refs_private {
778         enum clear_refs_types type;
779 };
780
781 #ifdef CONFIG_MEM_SOFT_DIRTY
782 static inline void clear_soft_dirty(struct vm_area_struct *vma,
783                 unsigned long addr, pte_t *pte)
784 {
785         /*
786          * The soft-dirty tracker uses #PF-s to catch writes
787          * to pages, so write-protect the pte as well. See the
788          * Documentation/vm/soft-dirty.txt for full description
789          * of how soft-dirty works.
790          */
791         pte_t ptent = *pte;
792
793         if (pte_present(ptent)) {
794                 ptent = pte_wrprotect(ptent);
795                 ptent = pte_clear_soft_dirty(ptent);
796         } else if (is_swap_pte(ptent)) {
797                 ptent = pte_swp_clear_soft_dirty(ptent);
798         }
799
800         set_pte_at(vma->vm_mm, addr, pte, ptent);
801 }
802
803 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
804                 unsigned long addr, pmd_t *pmdp)
805 {
806         pmd_t pmd = *pmdp;
807
808         pmd = pmd_wrprotect(pmd);
809         pmd = pmd_clear_soft_dirty(pmd);
810
811         if (vma->vm_flags & VM_SOFTDIRTY)
812                 vma->vm_flags &= ~VM_SOFTDIRTY;
813
814         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
815 }
816
817 #else
818
819 static inline void clear_soft_dirty(struct vm_area_struct *vma,
820                 unsigned long addr, pte_t *pte)
821 {
822 }
823
824 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
825                 unsigned long addr, pmd_t *pmdp)
826 {
827 }
828 #endif
829
830 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
831                                 unsigned long end, struct mm_walk *walk)
832 {
833         struct clear_refs_private *cp = walk->private;
834         struct vm_area_struct *vma = walk->vma;
835         pte_t *pte, ptent;
836         spinlock_t *ptl;
837         struct page *page;
838
839         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
840                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
841                         clear_soft_dirty_pmd(vma, addr, pmd);
842                         goto out;
843                 }
844
845                 page = pmd_page(*pmd);
846
847                 /* Clear accessed and referenced bits. */
848                 pmdp_test_and_clear_young(vma, addr, pmd);
849                 test_and_clear_page_young(page);
850                 ClearPageReferenced(page);
851 out:
852                 spin_unlock(ptl);
853                 return 0;
854         }
855
856         if (pmd_trans_unstable(pmd))
857                 return 0;
858
859         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
860         for (; addr != end; pte++, addr += PAGE_SIZE) {
861                 ptent = *pte;
862
863                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
864                         clear_soft_dirty(vma, addr, pte);
865                         continue;
866                 }
867
868                 if (!pte_present(ptent))
869                         continue;
870
871                 page = vm_normal_page(vma, addr, ptent);
872                 if (!page)
873                         continue;
874
875                 /* Clear accessed and referenced bits. */
876                 ptep_test_and_clear_young(vma, addr, pte);
877                 test_and_clear_page_young(page);
878                 ClearPageReferenced(page);
879         }
880         pte_unmap_unlock(pte - 1, ptl);
881         cond_resched();
882         return 0;
883 }
884
885 static int clear_refs_test_walk(unsigned long start, unsigned long end,
886                                 struct mm_walk *walk)
887 {
888         struct clear_refs_private *cp = walk->private;
889         struct vm_area_struct *vma = walk->vma;
890
891         if (vma->vm_flags & VM_PFNMAP)
892                 return 1;
893
894         /*
895          * Writing 1 to /proc/pid/clear_refs affects all pages.
896          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
897          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
898          * Writing 4 to /proc/pid/clear_refs affects all pages.
899          */
900         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
901                 return 1;
902         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
903                 return 1;
904         return 0;
905 }
906
907 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
908                                 size_t count, loff_t *ppos)
909 {
910         struct task_struct *task;
911         char buffer[PROC_NUMBUF];
912         struct mm_struct *mm;
913         struct vm_area_struct *vma;
914         enum clear_refs_types type;
915         int itype;
916         int rv;
917
918         memset(buffer, 0, sizeof(buffer));
919         if (count > sizeof(buffer) - 1)
920                 count = sizeof(buffer) - 1;
921         if (copy_from_user(buffer, buf, count))
922                 return -EFAULT;
923         rv = kstrtoint(strstrip(buffer), 10, &itype);
924         if (rv < 0)
925                 return rv;
926         type = (enum clear_refs_types)itype;
927         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
928                 return -EINVAL;
929
930         task = get_proc_task(file_inode(file));
931         if (!task)
932                 return -ESRCH;
933         mm = get_task_mm(task);
934         if (mm) {
935                 struct clear_refs_private cp = {
936                         .type = type,
937                 };
938                 struct mm_walk clear_refs_walk = {
939                         .pmd_entry = clear_refs_pte_range,
940                         .test_walk = clear_refs_test_walk,
941                         .mm = mm,
942                         .private = &cp,
943                 };
944
945                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
946                         /*
947                          * Writing 5 to /proc/pid/clear_refs resets the peak
948                          * resident set size to this mm's current rss value.
949                          */
950                         down_write(&mm->mmap_sem);
951                         reset_mm_hiwater_rss(mm);
952                         up_write(&mm->mmap_sem);
953                         goto out_mm;
954                 }
955
956                 down_read(&mm->mmap_sem);
957                 if (type == CLEAR_REFS_SOFT_DIRTY) {
958                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
959                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
960                                         continue;
961                                 up_read(&mm->mmap_sem);
962                                 down_write(&mm->mmap_sem);
963                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
964                                         vma->vm_flags &= ~VM_SOFTDIRTY;
965                                         vma_set_page_prot(vma);
966                                 }
967                                 downgrade_write(&mm->mmap_sem);
968                                 break;
969                         }
970                         mmu_notifier_invalidate_range_start(mm, 0, -1);
971                 }
972                 walk_page_range(0, ~0UL, &clear_refs_walk);
973                 if (type == CLEAR_REFS_SOFT_DIRTY)
974                         mmu_notifier_invalidate_range_end(mm, 0, -1);
975                 flush_tlb_mm(mm);
976                 up_read(&mm->mmap_sem);
977 out_mm:
978                 mmput(mm);
979         }
980         put_task_struct(task);
981
982         return count;
983 }
984
985 const struct file_operations proc_clear_refs_operations = {
986         .write          = clear_refs_write,
987         .llseek         = noop_llseek,
988 };
989
990 typedef struct {
991         u64 pme;
992 } pagemap_entry_t;
993
994 struct pagemapread {
995         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
996         pagemap_entry_t *buffer;
997         bool show_pfn;
998 };
999
1000 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1001 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1002
1003 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1004 #define PM_PFRAME_BITS          55
1005 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1006 #define PM_SOFT_DIRTY           BIT_ULL(55)
1007 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1008 #define PM_FILE                 BIT_ULL(61)
1009 #define PM_SWAP                 BIT_ULL(62)
1010 #define PM_PRESENT              BIT_ULL(63)
1011
1012 #define PM_END_OF_BUFFER    1
1013
1014 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1015 {
1016         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1017 }
1018
1019 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1020                           struct pagemapread *pm)
1021 {
1022         pm->buffer[pm->pos++] = *pme;
1023         if (pm->pos >= pm->len)
1024                 return PM_END_OF_BUFFER;
1025         return 0;
1026 }
1027
1028 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1029                                 struct mm_walk *walk)
1030 {
1031         struct pagemapread *pm = walk->private;
1032         unsigned long addr = start;
1033         int err = 0;
1034
1035         while (addr < end) {
1036                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1037                 pagemap_entry_t pme = make_pme(0, 0);
1038                 /* End of address space hole, which we mark as non-present. */
1039                 unsigned long hole_end;
1040
1041                 if (vma)
1042                         hole_end = min(end, vma->vm_start);
1043                 else
1044                         hole_end = end;
1045
1046                 for (; addr < hole_end; addr += PAGE_SIZE) {
1047                         err = add_to_pagemap(addr, &pme, pm);
1048                         if (err)
1049                                 goto out;
1050                 }
1051
1052                 if (!vma)
1053                         break;
1054
1055                 /* Addresses in the VMA. */
1056                 if (vma->vm_flags & VM_SOFTDIRTY)
1057                         pme = make_pme(0, PM_SOFT_DIRTY);
1058                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1059                         err = add_to_pagemap(addr, &pme, pm);
1060                         if (err)
1061                                 goto out;
1062                 }
1063         }
1064 out:
1065         return err;
1066 }
1067
1068 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1069                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1070 {
1071         u64 frame = 0, flags = 0;
1072         struct page *page = NULL;
1073
1074         if (pte_present(pte)) {
1075                 if (pm->show_pfn)
1076                         frame = pte_pfn(pte);
1077                 flags |= PM_PRESENT;
1078                 page = vm_normal_page(vma, addr, pte);
1079                 if (pte_soft_dirty(pte))
1080                         flags |= PM_SOFT_DIRTY;
1081         } else if (is_swap_pte(pte)) {
1082                 swp_entry_t entry;
1083                 if (pte_swp_soft_dirty(pte))
1084                         flags |= PM_SOFT_DIRTY;
1085                 entry = pte_to_swp_entry(pte);
1086                 frame = swp_type(entry) |
1087                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1088                 flags |= PM_SWAP;
1089                 if (is_migration_entry(entry))
1090                         page = migration_entry_to_page(entry);
1091         }
1092
1093         if (page && !PageAnon(page))
1094                 flags |= PM_FILE;
1095         if (page && page_mapcount(page) == 1)
1096                 flags |= PM_MMAP_EXCLUSIVE;
1097         if (vma->vm_flags & VM_SOFTDIRTY)
1098                 flags |= PM_SOFT_DIRTY;
1099
1100         return make_pme(frame, flags);
1101 }
1102
1103 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1104                              struct mm_walk *walk)
1105 {
1106         struct vm_area_struct *vma = walk->vma;
1107         struct pagemapread *pm = walk->private;
1108         spinlock_t *ptl;
1109         pte_t *pte, *orig_pte;
1110         int err = 0;
1111
1112 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1113         if (pmd_trans_huge_lock(pmdp, vma, &ptl) == 1) {
1114                 u64 flags = 0, frame = 0;
1115                 pmd_t pmd = *pmdp;
1116
1117                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1118                         flags |= PM_SOFT_DIRTY;
1119
1120                 /*
1121                  * Currently pmd for thp is always present because thp
1122                  * can not be swapped-out, migrated, or HWPOISONed
1123                  * (split in such cases instead.)
1124                  * This if-check is just to prepare for future implementation.
1125                  */
1126                 if (pmd_present(pmd)) {
1127                         struct page *page = pmd_page(pmd);
1128
1129                         if (page_mapcount(page) == 1)
1130                                 flags |= PM_MMAP_EXCLUSIVE;
1131
1132                         flags |= PM_PRESENT;
1133                         if (pm->show_pfn)
1134                                 frame = pmd_pfn(pmd) +
1135                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1136                 }
1137
1138                 for (; addr != end; addr += PAGE_SIZE) {
1139                         pagemap_entry_t pme = make_pme(frame, flags);
1140
1141                         err = add_to_pagemap(addr, &pme, pm);
1142                         if (err)
1143                                 break;
1144                         if (pm->show_pfn && (flags & PM_PRESENT))
1145                                 frame++;
1146                 }
1147                 spin_unlock(ptl);
1148                 return err;
1149         }
1150
1151         if (pmd_trans_unstable(pmdp))
1152                 return 0;
1153 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1154
1155         /*
1156          * We can assume that @vma always points to a valid one and @end never
1157          * goes beyond vma->vm_end.
1158          */
1159         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1160         for (; addr < end; pte++, addr += PAGE_SIZE) {
1161                 pagemap_entry_t pme;
1162
1163                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1164                 err = add_to_pagemap(addr, &pme, pm);
1165                 if (err)
1166                         break;
1167         }
1168         pte_unmap_unlock(orig_pte, ptl);
1169
1170         cond_resched();
1171
1172         return err;
1173 }
1174
1175 #ifdef CONFIG_HUGETLB_PAGE
1176 /* This function walks within one hugetlb entry in the single call */
1177 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1178                                  unsigned long addr, unsigned long end,
1179                                  struct mm_walk *walk)
1180 {
1181         struct pagemapread *pm = walk->private;
1182         struct vm_area_struct *vma = walk->vma;
1183         u64 flags = 0, frame = 0;
1184         int err = 0;
1185         pte_t pte;
1186
1187         if (vma->vm_flags & VM_SOFTDIRTY)
1188                 flags |= PM_SOFT_DIRTY;
1189
1190         pte = huge_ptep_get(ptep);
1191         if (pte_present(pte)) {
1192                 struct page *page = pte_page(pte);
1193
1194                 if (!PageAnon(page))
1195                         flags |= PM_FILE;
1196
1197                 if (page_mapcount(page) == 1)
1198                         flags |= PM_MMAP_EXCLUSIVE;
1199
1200                 flags |= PM_PRESENT;
1201                 if (pm->show_pfn)
1202                         frame = pte_pfn(pte) +
1203                                 ((addr & ~hmask) >> PAGE_SHIFT);
1204         }
1205
1206         for (; addr != end; addr += PAGE_SIZE) {
1207                 pagemap_entry_t pme = make_pme(frame, flags);
1208
1209                 err = add_to_pagemap(addr, &pme, pm);
1210                 if (err)
1211                         return err;
1212                 if (pm->show_pfn && (flags & PM_PRESENT))
1213                         frame++;
1214         }
1215
1216         cond_resched();
1217
1218         return err;
1219 }
1220 #endif /* HUGETLB_PAGE */
1221
1222 /*
1223  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1224  *
1225  * For each page in the address space, this file contains one 64-bit entry
1226  * consisting of the following:
1227  *
1228  * Bits 0-54  page frame number (PFN) if present
1229  * Bits 0-4   swap type if swapped
1230  * Bits 5-54  swap offset if swapped
1231  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1232  * Bit  56    page exclusively mapped
1233  * Bits 57-60 zero
1234  * Bit  61    page is file-page or shared-anon
1235  * Bit  62    page swapped
1236  * Bit  63    page present
1237  *
1238  * If the page is not present but in swap, then the PFN contains an
1239  * encoding of the swap file number and the page's offset into the
1240  * swap. Unmapped pages return a null PFN. This allows determining
1241  * precisely which pages are mapped (or in swap) and comparing mapped
1242  * pages between processes.
1243  *
1244  * Efficient users of this interface will use /proc/pid/maps to
1245  * determine which areas of memory are actually mapped and llseek to
1246  * skip over unmapped regions.
1247  */
1248 static ssize_t pagemap_read(struct file *file, char __user *buf,
1249                             size_t count, loff_t *ppos)
1250 {
1251         struct mm_struct *mm = file->private_data;
1252         struct pagemapread pm;
1253         struct mm_walk pagemap_walk = {};
1254         unsigned long src;
1255         unsigned long svpfn;
1256         unsigned long start_vaddr;
1257         unsigned long end_vaddr;
1258         int ret = 0, copied = 0;
1259
1260         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1261                 goto out;
1262
1263         ret = -EINVAL;
1264         /* file position must be aligned */
1265         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1266                 goto out_mm;
1267
1268         ret = 0;
1269         if (!count)
1270                 goto out_mm;
1271
1272         /* do not disclose physical addresses: attack vector */
1273         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1274
1275         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1276         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1277         ret = -ENOMEM;
1278         if (!pm.buffer)
1279                 goto out_mm;
1280
1281         pagemap_walk.pmd_entry = pagemap_pmd_range;
1282         pagemap_walk.pte_hole = pagemap_pte_hole;
1283 #ifdef CONFIG_HUGETLB_PAGE
1284         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1285 #endif
1286         pagemap_walk.mm = mm;
1287         pagemap_walk.private = &pm;
1288
1289         src = *ppos;
1290         svpfn = src / PM_ENTRY_BYTES;
1291         start_vaddr = svpfn << PAGE_SHIFT;
1292         end_vaddr = mm->task_size;
1293
1294         /* watch out for wraparound */
1295         if (svpfn > mm->task_size >> PAGE_SHIFT)
1296                 start_vaddr = end_vaddr;
1297
1298         /*
1299          * The odds are that this will stop walking way
1300          * before end_vaddr, because the length of the
1301          * user buffer is tracked in "pm", and the walk
1302          * will stop when we hit the end of the buffer.
1303          */
1304         ret = 0;
1305         while (count && (start_vaddr < end_vaddr)) {
1306                 int len;
1307                 unsigned long end;
1308
1309                 pm.pos = 0;
1310                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1311                 /* overflow ? */
1312                 if (end < start_vaddr || end > end_vaddr)
1313                         end = end_vaddr;
1314                 down_read(&mm->mmap_sem);
1315                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1316                 up_read(&mm->mmap_sem);
1317                 start_vaddr = end;
1318
1319                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1320                 if (copy_to_user(buf, pm.buffer, len)) {
1321                         ret = -EFAULT;
1322                         goto out_free;
1323                 }
1324                 copied += len;
1325                 buf += len;
1326                 count -= len;
1327         }
1328         *ppos += copied;
1329         if (!ret || ret == PM_END_OF_BUFFER)
1330                 ret = copied;
1331
1332 out_free:
1333         kfree(pm.buffer);
1334 out_mm:
1335         mmput(mm);
1336 out:
1337         return ret;
1338 }
1339
1340 static int pagemap_open(struct inode *inode, struct file *file)
1341 {
1342         struct mm_struct *mm;
1343
1344         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1345         if (IS_ERR(mm))
1346                 return PTR_ERR(mm);
1347         file->private_data = mm;
1348         return 0;
1349 }
1350
1351 static int pagemap_release(struct inode *inode, struct file *file)
1352 {
1353         struct mm_struct *mm = file->private_data;
1354
1355         if (mm)
1356                 mmdrop(mm);
1357         return 0;
1358 }
1359
1360 const struct file_operations proc_pagemap_operations = {
1361         .llseek         = mem_lseek, /* borrow this */
1362         .read           = pagemap_read,
1363         .open           = pagemap_open,
1364         .release        = pagemap_release,
1365 };
1366 #endif /* CONFIG_PROC_PAGE_MONITOR */
1367
1368 #ifdef CONFIG_NUMA
1369
1370 struct numa_maps {
1371         unsigned long pages;
1372         unsigned long anon;
1373         unsigned long active;
1374         unsigned long writeback;
1375         unsigned long mapcount_max;
1376         unsigned long dirty;
1377         unsigned long swapcache;
1378         unsigned long node[MAX_NUMNODES];
1379 };
1380
1381 struct numa_maps_private {
1382         struct proc_maps_private proc_maps;
1383         struct numa_maps md;
1384 };
1385
1386 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1387                         unsigned long nr_pages)
1388 {
1389         int count = page_mapcount(page);
1390
1391         md->pages += nr_pages;
1392         if (pte_dirty || PageDirty(page))
1393                 md->dirty += nr_pages;
1394
1395         if (PageSwapCache(page))
1396                 md->swapcache += nr_pages;
1397
1398         if (PageActive(page) || PageUnevictable(page))
1399                 md->active += nr_pages;
1400
1401         if (PageWriteback(page))
1402                 md->writeback += nr_pages;
1403
1404         if (PageAnon(page))
1405                 md->anon += nr_pages;
1406
1407         if (count > md->mapcount_max)
1408                 md->mapcount_max = count;
1409
1410         md->node[page_to_nid(page)] += nr_pages;
1411 }
1412
1413 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1414                 unsigned long addr)
1415 {
1416         struct page *page;
1417         int nid;
1418
1419         if (!pte_present(pte))
1420                 return NULL;
1421
1422         page = vm_normal_page(vma, addr, pte);
1423         if (!page)
1424                 return NULL;
1425
1426         if (PageReserved(page))
1427                 return NULL;
1428
1429         nid = page_to_nid(page);
1430         if (!node_isset(nid, node_states[N_MEMORY]))
1431                 return NULL;
1432
1433         return page;
1434 }
1435
1436 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1437                 unsigned long end, struct mm_walk *walk)
1438 {
1439         struct numa_maps *md = walk->private;
1440         struct vm_area_struct *vma = walk->vma;
1441         spinlock_t *ptl;
1442         pte_t *orig_pte;
1443         pte_t *pte;
1444
1445         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1446                 pte_t huge_pte = *(pte_t *)pmd;
1447                 struct page *page;
1448
1449                 page = can_gather_numa_stats(huge_pte, vma, addr);
1450                 if (page)
1451                         gather_stats(page, md, pte_dirty(huge_pte),
1452                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1453                 spin_unlock(ptl);
1454                 return 0;
1455         }
1456
1457         if (pmd_trans_unstable(pmd))
1458                 return 0;
1459         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1460         do {
1461                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1462                 if (!page)
1463                         continue;
1464                 gather_stats(page, md, pte_dirty(*pte), 1);
1465
1466         } while (pte++, addr += PAGE_SIZE, addr != end);
1467         pte_unmap_unlock(orig_pte, ptl);
1468         return 0;
1469 }
1470 #ifdef CONFIG_HUGETLB_PAGE
1471 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1472                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1473 {
1474         struct numa_maps *md;
1475         struct page *page;
1476
1477         if (!pte_present(*pte))
1478                 return 0;
1479
1480         page = pte_page(*pte);
1481         if (!page)
1482                 return 0;
1483
1484         md = walk->private;
1485         gather_stats(page, md, pte_dirty(*pte), 1);
1486         return 0;
1487 }
1488
1489 #else
1490 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1491                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1492 {
1493         return 0;
1494 }
1495 #endif
1496
1497 /*
1498  * Display pages allocated per node and memory policy via /proc.
1499  */
1500 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1501 {
1502         struct numa_maps_private *numa_priv = m->private;
1503         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1504         struct vm_area_struct *vma = v;
1505         struct numa_maps *md = &numa_priv->md;
1506         struct file *file = vma->vm_file;
1507         struct mm_struct *mm = vma->vm_mm;
1508         struct mm_walk walk = {
1509                 .hugetlb_entry = gather_hugetlb_stats,
1510                 .pmd_entry = gather_pte_stats,
1511                 .private = md,
1512                 .mm = mm,
1513         };
1514         struct mempolicy *pol;
1515         char buffer[64];
1516         int nid;
1517
1518         if (!mm)
1519                 return 0;
1520
1521         /* Ensure we start with an empty set of numa_maps statistics. */
1522         memset(md, 0, sizeof(*md));
1523
1524         pol = __get_vma_policy(vma, vma->vm_start);
1525         if (pol) {
1526                 mpol_to_str(buffer, sizeof(buffer), pol);
1527                 mpol_cond_put(pol);
1528         } else {
1529                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1530         }
1531
1532         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1533
1534         if (file) {
1535                 seq_puts(m, " file=");
1536                 seq_file_path(m, file, "\n\t= ");
1537         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1538                 seq_puts(m, " heap");
1539         } else {
1540                 pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1541                 if (tid != 0) {
1542                         /*
1543                          * Thread stack in /proc/PID/task/TID/maps or
1544                          * the main process stack.
1545                          */
1546                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
1547                             vma->vm_end >= mm->start_stack))
1548                                 seq_puts(m, " stack");
1549                         else
1550                                 seq_printf(m, " stack:%d", tid);
1551                 }
1552         }
1553
1554         if (is_vm_hugetlb_page(vma))
1555                 seq_puts(m, " huge");
1556
1557         /* mmap_sem is held by m_start */
1558         walk_page_vma(vma, &walk);
1559
1560         if (!md->pages)
1561                 goto out;
1562
1563         if (md->anon)
1564                 seq_printf(m, " anon=%lu", md->anon);
1565
1566         if (md->dirty)
1567                 seq_printf(m, " dirty=%lu", md->dirty);
1568
1569         if (md->pages != md->anon && md->pages != md->dirty)
1570                 seq_printf(m, " mapped=%lu", md->pages);
1571
1572         if (md->mapcount_max > 1)
1573                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1574
1575         if (md->swapcache)
1576                 seq_printf(m, " swapcache=%lu", md->swapcache);
1577
1578         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1579                 seq_printf(m, " active=%lu", md->active);
1580
1581         if (md->writeback)
1582                 seq_printf(m, " writeback=%lu", md->writeback);
1583
1584         for_each_node_state(nid, N_MEMORY)
1585                 if (md->node[nid])
1586                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1587
1588         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1589 out:
1590         seq_putc(m, '\n');
1591         m_cache_vma(m, vma);
1592         return 0;
1593 }
1594
1595 static int show_pid_numa_map(struct seq_file *m, void *v)
1596 {
1597         return show_numa_map(m, v, 1);
1598 }
1599
1600 static int show_tid_numa_map(struct seq_file *m, void *v)
1601 {
1602         return show_numa_map(m, v, 0);
1603 }
1604
1605 static const struct seq_operations proc_pid_numa_maps_op = {
1606         .start  = m_start,
1607         .next   = m_next,
1608         .stop   = m_stop,
1609         .show   = show_pid_numa_map,
1610 };
1611
1612 static const struct seq_operations proc_tid_numa_maps_op = {
1613         .start  = m_start,
1614         .next   = m_next,
1615         .stop   = m_stop,
1616         .show   = show_tid_numa_map,
1617 };
1618
1619 static int numa_maps_open(struct inode *inode, struct file *file,
1620                           const struct seq_operations *ops)
1621 {
1622         return proc_maps_open(inode, file, ops,
1623                                 sizeof(struct numa_maps_private));
1624 }
1625
1626 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1627 {
1628         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1629 }
1630
1631 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1632 {
1633         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1634 }
1635
1636 const struct file_operations proc_pid_numa_maps_operations = {
1637         .open           = pid_numa_maps_open,
1638         .read           = seq_read,
1639         .llseek         = seq_lseek,
1640         .release        = proc_map_release,
1641 };
1642
1643 const struct file_operations proc_tid_numa_maps_operations = {
1644         .open           = tid_numa_maps_open,
1645         .read           = seq_read,
1646         .llseek         = seq_lseek,
1647         .release        = proc_map_release,
1648 };
1649 #endif /* CONFIG_NUMA */