clk: Drop the rate range on clk_put()
[linux-2.6-microblaze.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/mm_inline.h>
5 #include <linux/hugetlb.h>
6 #include <linux/huge_mm.h>
7 #include <linux/mount.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23
24 #include <asm/elf.h>
25 #include <asm/tlb.h>
26 #include <asm/tlbflush.h>
27 #include "internal.h"
28
29 #define SEQ_PUT_DEC(str, val) \
30                 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
31 void task_mem(struct seq_file *m, struct mm_struct *mm)
32 {
33         unsigned long text, lib, swap, anon, file, shmem;
34         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
35
36         anon = get_mm_counter(mm, MM_ANONPAGES);
37         file = get_mm_counter(mm, MM_FILEPAGES);
38         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
39
40         /*
41          * Note: to minimize their overhead, mm maintains hiwater_vm and
42          * hiwater_rss only when about to *lower* total_vm or rss.  Any
43          * collector of these hiwater stats must therefore get total_vm
44          * and rss too, which will usually be the higher.  Barriers? not
45          * worth the effort, such snapshots can always be inconsistent.
46          */
47         hiwater_vm = total_vm = mm->total_vm;
48         if (hiwater_vm < mm->hiwater_vm)
49                 hiwater_vm = mm->hiwater_vm;
50         hiwater_rss = total_rss = anon + file + shmem;
51         if (hiwater_rss < mm->hiwater_rss)
52                 hiwater_rss = mm->hiwater_rss;
53
54         /* split executable areas between text and lib */
55         text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
56         text = min(text, mm->exec_vm << PAGE_SHIFT);
57         lib = (mm->exec_vm << PAGE_SHIFT) - text;
58
59         swap = get_mm_counter(mm, MM_SWAPENTS);
60         SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
61         SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
62         SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
63         SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
64         SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
65         SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
66         SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
67         SEQ_PUT_DEC(" kB\nRssFile:\t", file);
68         SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
69         SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
70         SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
71         seq_put_decimal_ull_width(m,
72                     " kB\nVmExe:\t", text >> 10, 8);
73         seq_put_decimal_ull_width(m,
74                     " kB\nVmLib:\t", lib >> 10, 8);
75         seq_put_decimal_ull_width(m,
76                     " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
77         SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
78         seq_puts(m, " kB\n");
79         hugetlb_report_usage(m, mm);
80 }
81 #undef SEQ_PUT_DEC
82
83 unsigned long task_vsize(struct mm_struct *mm)
84 {
85         return PAGE_SIZE * mm->total_vm;
86 }
87
88 unsigned long task_statm(struct mm_struct *mm,
89                          unsigned long *shared, unsigned long *text,
90                          unsigned long *data, unsigned long *resident)
91 {
92         *shared = get_mm_counter(mm, MM_FILEPAGES) +
93                         get_mm_counter(mm, MM_SHMEMPAGES);
94         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
95                                                                 >> PAGE_SHIFT;
96         *data = mm->data_vm + mm->stack_vm;
97         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
98         return mm->total_vm;
99 }
100
101 #ifdef CONFIG_NUMA
102 /*
103  * Save get_task_policy() for show_numa_map().
104  */
105 static void hold_task_mempolicy(struct proc_maps_private *priv)
106 {
107         struct task_struct *task = priv->task;
108
109         task_lock(task);
110         priv->task_mempolicy = get_task_policy(task);
111         mpol_get(priv->task_mempolicy);
112         task_unlock(task);
113 }
114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116         mpol_put(priv->task_mempolicy);
117 }
118 #else
119 static void hold_task_mempolicy(struct proc_maps_private *priv)
120 {
121 }
122 static void release_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 #endif
126
127 static void *m_start(struct seq_file *m, loff_t *ppos)
128 {
129         struct proc_maps_private *priv = m->private;
130         unsigned long last_addr = *ppos;
131         struct mm_struct *mm;
132         struct vm_area_struct *vma;
133
134         /* See m_next(). Zero at the start or after lseek. */
135         if (last_addr == -1UL)
136                 return NULL;
137
138         priv->task = get_proc_task(priv->inode);
139         if (!priv->task)
140                 return ERR_PTR(-ESRCH);
141
142         mm = priv->mm;
143         if (!mm || !mmget_not_zero(mm)) {
144                 put_task_struct(priv->task);
145                 priv->task = NULL;
146                 return NULL;
147         }
148
149         if (mmap_read_lock_killable(mm)) {
150                 mmput(mm);
151                 put_task_struct(priv->task);
152                 priv->task = NULL;
153                 return ERR_PTR(-EINTR);
154         }
155
156         hold_task_mempolicy(priv);
157         priv->tail_vma = get_gate_vma(mm);
158
159         vma = find_vma(mm, last_addr);
160         if (vma)
161                 return vma;
162
163         return priv->tail_vma;
164 }
165
166 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
167 {
168         struct proc_maps_private *priv = m->private;
169         struct vm_area_struct *next, *vma = v;
170
171         if (vma == priv->tail_vma)
172                 next = NULL;
173         else if (vma->vm_next)
174                 next = vma->vm_next;
175         else
176                 next = priv->tail_vma;
177
178         *ppos = next ? next->vm_start : -1UL;
179
180         return next;
181 }
182
183 static void m_stop(struct seq_file *m, void *v)
184 {
185         struct proc_maps_private *priv = m->private;
186         struct mm_struct *mm = priv->mm;
187
188         if (!priv->task)
189                 return;
190
191         release_task_mempolicy(priv);
192         mmap_read_unlock(mm);
193         mmput(mm);
194         put_task_struct(priv->task);
195         priv->task = NULL;
196 }
197
198 static int proc_maps_open(struct inode *inode, struct file *file,
199                         const struct seq_operations *ops, int psize)
200 {
201         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
202
203         if (!priv)
204                 return -ENOMEM;
205
206         priv->inode = inode;
207         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
208         if (IS_ERR(priv->mm)) {
209                 int err = PTR_ERR(priv->mm);
210
211                 seq_release_private(inode, file);
212                 return err;
213         }
214
215         return 0;
216 }
217
218 static int proc_map_release(struct inode *inode, struct file *file)
219 {
220         struct seq_file *seq = file->private_data;
221         struct proc_maps_private *priv = seq->private;
222
223         if (priv->mm)
224                 mmdrop(priv->mm);
225
226         return seq_release_private(inode, file);
227 }
228
229 static int do_maps_open(struct inode *inode, struct file *file,
230                         const struct seq_operations *ops)
231 {
232         return proc_maps_open(inode, file, ops,
233                                 sizeof(struct proc_maps_private));
234 }
235
236 /*
237  * Indicate if the VMA is a stack for the given task; for
238  * /proc/PID/maps that is the stack of the main task.
239  */
240 static int is_stack(struct vm_area_struct *vma)
241 {
242         /*
243          * We make no effort to guess what a given thread considers to be
244          * its "stack".  It's not even well-defined for programs written
245          * languages like Go.
246          */
247         return vma->vm_start <= vma->vm_mm->start_stack &&
248                 vma->vm_end >= vma->vm_mm->start_stack;
249 }
250
251 static void show_vma_header_prefix(struct seq_file *m,
252                                    unsigned long start, unsigned long end,
253                                    vm_flags_t flags, unsigned long long pgoff,
254                                    dev_t dev, unsigned long ino)
255 {
256         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
257         seq_put_hex_ll(m, NULL, start, 8);
258         seq_put_hex_ll(m, "-", end, 8);
259         seq_putc(m, ' ');
260         seq_putc(m, flags & VM_READ ? 'r' : '-');
261         seq_putc(m, flags & VM_WRITE ? 'w' : '-');
262         seq_putc(m, flags & VM_EXEC ? 'x' : '-');
263         seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
264         seq_put_hex_ll(m, " ", pgoff, 8);
265         seq_put_hex_ll(m, " ", MAJOR(dev), 2);
266         seq_put_hex_ll(m, ":", MINOR(dev), 2);
267         seq_put_decimal_ull(m, " ", ino);
268         seq_putc(m, ' ');
269 }
270
271 static void
272 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
273 {
274         struct mm_struct *mm = vma->vm_mm;
275         struct file *file = vma->vm_file;
276         vm_flags_t flags = vma->vm_flags;
277         unsigned long ino = 0;
278         unsigned long long pgoff = 0;
279         unsigned long start, end;
280         dev_t dev = 0;
281         const char *name = NULL;
282
283         if (file) {
284                 struct inode *inode = file_inode(vma->vm_file);
285                 dev = inode->i_sb->s_dev;
286                 ino = inode->i_ino;
287                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
288         }
289
290         start = vma->vm_start;
291         end = vma->vm_end;
292         show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
293
294         /*
295          * Print the dentry name for named mappings, and a
296          * special [heap] marker for the heap:
297          */
298         if (file) {
299                 seq_pad(m, ' ');
300                 seq_file_path(m, file, "\n");
301                 goto done;
302         }
303
304         if (vma->vm_ops && vma->vm_ops->name) {
305                 name = vma->vm_ops->name(vma);
306                 if (name)
307                         goto done;
308         }
309
310         name = arch_vma_name(vma);
311         if (!name) {
312                 const char *anon_name;
313
314                 if (!mm) {
315                         name = "[vdso]";
316                         goto done;
317                 }
318
319                 if (vma->vm_start <= mm->brk &&
320                     vma->vm_end >= mm->start_brk) {
321                         name = "[heap]";
322                         goto done;
323                 }
324
325                 if (is_stack(vma)) {
326                         name = "[stack]";
327                         goto done;
328                 }
329
330                 anon_name = vma_anon_name(vma);
331                 if (anon_name) {
332                         seq_pad(m, ' ');
333                         seq_printf(m, "[anon:%s]", anon_name);
334                 }
335         }
336
337 done:
338         if (name) {
339                 seq_pad(m, ' ');
340                 seq_puts(m, name);
341         }
342         seq_putc(m, '\n');
343 }
344
345 static int show_map(struct seq_file *m, void *v)
346 {
347         show_map_vma(m, v);
348         return 0;
349 }
350
351 static const struct seq_operations proc_pid_maps_op = {
352         .start  = m_start,
353         .next   = m_next,
354         .stop   = m_stop,
355         .show   = show_map
356 };
357
358 static int pid_maps_open(struct inode *inode, struct file *file)
359 {
360         return do_maps_open(inode, file, &proc_pid_maps_op);
361 }
362
363 const struct file_operations proc_pid_maps_operations = {
364         .open           = pid_maps_open,
365         .read           = seq_read,
366         .llseek         = seq_lseek,
367         .release        = proc_map_release,
368 };
369
370 /*
371  * Proportional Set Size(PSS): my share of RSS.
372  *
373  * PSS of a process is the count of pages it has in memory, where each
374  * page is divided by the number of processes sharing it.  So if a
375  * process has 1000 pages all to itself, and 1000 shared with one other
376  * process, its PSS will be 1500.
377  *
378  * To keep (accumulated) division errors low, we adopt a 64bit
379  * fixed-point pss counter to minimize division errors. So (pss >>
380  * PSS_SHIFT) would be the real byte count.
381  *
382  * A shift of 12 before division means (assuming 4K page size):
383  *      - 1M 3-user-pages add up to 8KB errors;
384  *      - supports mapcount up to 2^24, or 16M;
385  *      - supports PSS up to 2^52 bytes, or 4PB.
386  */
387 #define PSS_SHIFT 12
388
389 #ifdef CONFIG_PROC_PAGE_MONITOR
390 struct mem_size_stats {
391         unsigned long resident;
392         unsigned long shared_clean;
393         unsigned long shared_dirty;
394         unsigned long private_clean;
395         unsigned long private_dirty;
396         unsigned long referenced;
397         unsigned long anonymous;
398         unsigned long lazyfree;
399         unsigned long anonymous_thp;
400         unsigned long shmem_thp;
401         unsigned long file_thp;
402         unsigned long swap;
403         unsigned long shared_hugetlb;
404         unsigned long private_hugetlb;
405         u64 pss;
406         u64 pss_anon;
407         u64 pss_file;
408         u64 pss_shmem;
409         u64 pss_locked;
410         u64 swap_pss;
411 };
412
413 static void smaps_page_accumulate(struct mem_size_stats *mss,
414                 struct page *page, unsigned long size, unsigned long pss,
415                 bool dirty, bool locked, bool private)
416 {
417         mss->pss += pss;
418
419         if (PageAnon(page))
420                 mss->pss_anon += pss;
421         else if (PageSwapBacked(page))
422                 mss->pss_shmem += pss;
423         else
424                 mss->pss_file += pss;
425
426         if (locked)
427                 mss->pss_locked += pss;
428
429         if (dirty || PageDirty(page)) {
430                 if (private)
431                         mss->private_dirty += size;
432                 else
433                         mss->shared_dirty += size;
434         } else {
435                 if (private)
436                         mss->private_clean += size;
437                 else
438                         mss->shared_clean += size;
439         }
440 }
441
442 static void smaps_account(struct mem_size_stats *mss, struct page *page,
443                 bool compound, bool young, bool dirty, bool locked)
444 {
445         int i, nr = compound ? compound_nr(page) : 1;
446         unsigned long size = nr * PAGE_SIZE;
447
448         /*
449          * First accumulate quantities that depend only on |size| and the type
450          * of the compound page.
451          */
452         if (PageAnon(page)) {
453                 mss->anonymous += size;
454                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
455                         mss->lazyfree += size;
456         }
457
458         mss->resident += size;
459         /* Accumulate the size in pages that have been accessed. */
460         if (young || page_is_young(page) || PageReferenced(page))
461                 mss->referenced += size;
462
463         /*
464          * Then accumulate quantities that may depend on sharing, or that may
465          * differ page-by-page.
466          *
467          * page_count(page) == 1 guarantees the page is mapped exactly once.
468          * If any subpage of the compound page mapped with PTE it would elevate
469          * page_count().
470          */
471         if (page_count(page) == 1) {
472                 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
473                         locked, true);
474                 return;
475         }
476         for (i = 0; i < nr; i++, page++) {
477                 int mapcount = page_mapcount(page);
478                 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
479                 if (mapcount >= 2)
480                         pss /= mapcount;
481                 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
482                                       mapcount < 2);
483         }
484 }
485
486 #ifdef CONFIG_SHMEM
487 static int smaps_pte_hole(unsigned long addr, unsigned long end,
488                           __always_unused int depth, struct mm_walk *walk)
489 {
490         struct mem_size_stats *mss = walk->private;
491         struct vm_area_struct *vma = walk->vma;
492
493         mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
494                                               linear_page_index(vma, addr),
495                                               linear_page_index(vma, end));
496
497         return 0;
498 }
499 #else
500 #define smaps_pte_hole          NULL
501 #endif /* CONFIG_SHMEM */
502
503 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
504 {
505 #ifdef CONFIG_SHMEM
506         if (walk->ops->pte_hole) {
507                 /* depth is not used */
508                 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
509         }
510 #endif
511 }
512
513 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
514                 struct mm_walk *walk)
515 {
516         struct mem_size_stats *mss = walk->private;
517         struct vm_area_struct *vma = walk->vma;
518         bool locked = !!(vma->vm_flags & VM_LOCKED);
519         struct page *page = NULL;
520
521         if (pte_present(*pte)) {
522                 page = vm_normal_page(vma, addr, *pte);
523         } else if (is_swap_pte(*pte)) {
524                 swp_entry_t swpent = pte_to_swp_entry(*pte);
525
526                 if (!non_swap_entry(swpent)) {
527                         int mapcount;
528
529                         mss->swap += PAGE_SIZE;
530                         mapcount = swp_swapcount(swpent);
531                         if (mapcount >= 2) {
532                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
533
534                                 do_div(pss_delta, mapcount);
535                                 mss->swap_pss += pss_delta;
536                         } else {
537                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
538                         }
539                 } else if (is_pfn_swap_entry(swpent))
540                         page = pfn_swap_entry_to_page(swpent);
541         } else {
542                 smaps_pte_hole_lookup(addr, walk);
543                 return;
544         }
545
546         if (!page)
547                 return;
548
549         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
550 }
551
552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
553 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
554                 struct mm_walk *walk)
555 {
556         struct mem_size_stats *mss = walk->private;
557         struct vm_area_struct *vma = walk->vma;
558         bool locked = !!(vma->vm_flags & VM_LOCKED);
559         struct page *page = NULL;
560
561         if (pmd_present(*pmd)) {
562                 /* FOLL_DUMP will return -EFAULT on huge zero page */
563                 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
564         } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
565                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
566
567                 if (is_migration_entry(entry))
568                         page = pfn_swap_entry_to_page(entry);
569         }
570         if (IS_ERR_OR_NULL(page))
571                 return;
572         if (PageAnon(page))
573                 mss->anonymous_thp += HPAGE_PMD_SIZE;
574         else if (PageSwapBacked(page))
575                 mss->shmem_thp += HPAGE_PMD_SIZE;
576         else if (is_zone_device_page(page))
577                 /* pass */;
578         else
579                 mss->file_thp += HPAGE_PMD_SIZE;
580         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
581 }
582 #else
583 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
584                 struct mm_walk *walk)
585 {
586 }
587 #endif
588
589 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
590                            struct mm_walk *walk)
591 {
592         struct vm_area_struct *vma = walk->vma;
593         pte_t *pte;
594         spinlock_t *ptl;
595
596         ptl = pmd_trans_huge_lock(pmd, vma);
597         if (ptl) {
598                 smaps_pmd_entry(pmd, addr, walk);
599                 spin_unlock(ptl);
600                 goto out;
601         }
602
603         if (pmd_trans_unstable(pmd))
604                 goto out;
605         /*
606          * The mmap_lock held all the way back in m_start() is what
607          * keeps khugepaged out of here and from collapsing things
608          * in here.
609          */
610         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
611         for (; addr != end; pte++, addr += PAGE_SIZE)
612                 smaps_pte_entry(pte, addr, walk);
613         pte_unmap_unlock(pte - 1, ptl);
614 out:
615         cond_resched();
616         return 0;
617 }
618
619 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
620 {
621         /*
622          * Don't forget to update Documentation/ on changes.
623          */
624         static const char mnemonics[BITS_PER_LONG][2] = {
625                 /*
626                  * In case if we meet a flag we don't know about.
627                  */
628                 [0 ... (BITS_PER_LONG-1)] = "??",
629
630                 [ilog2(VM_READ)]        = "rd",
631                 [ilog2(VM_WRITE)]       = "wr",
632                 [ilog2(VM_EXEC)]        = "ex",
633                 [ilog2(VM_SHARED)]      = "sh",
634                 [ilog2(VM_MAYREAD)]     = "mr",
635                 [ilog2(VM_MAYWRITE)]    = "mw",
636                 [ilog2(VM_MAYEXEC)]     = "me",
637                 [ilog2(VM_MAYSHARE)]    = "ms",
638                 [ilog2(VM_GROWSDOWN)]   = "gd",
639                 [ilog2(VM_PFNMAP)]      = "pf",
640                 [ilog2(VM_LOCKED)]      = "lo",
641                 [ilog2(VM_IO)]          = "io",
642                 [ilog2(VM_SEQ_READ)]    = "sr",
643                 [ilog2(VM_RAND_READ)]   = "rr",
644                 [ilog2(VM_DONTCOPY)]    = "dc",
645                 [ilog2(VM_DONTEXPAND)]  = "de",
646                 [ilog2(VM_ACCOUNT)]     = "ac",
647                 [ilog2(VM_NORESERVE)]   = "nr",
648                 [ilog2(VM_HUGETLB)]     = "ht",
649                 [ilog2(VM_SYNC)]        = "sf",
650                 [ilog2(VM_ARCH_1)]      = "ar",
651                 [ilog2(VM_WIPEONFORK)]  = "wf",
652                 [ilog2(VM_DONTDUMP)]    = "dd",
653 #ifdef CONFIG_ARM64_BTI
654                 [ilog2(VM_ARM64_BTI)]   = "bt",
655 #endif
656 #ifdef CONFIG_MEM_SOFT_DIRTY
657                 [ilog2(VM_SOFTDIRTY)]   = "sd",
658 #endif
659                 [ilog2(VM_MIXEDMAP)]    = "mm",
660                 [ilog2(VM_HUGEPAGE)]    = "hg",
661                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
662                 [ilog2(VM_MERGEABLE)]   = "mg",
663                 [ilog2(VM_UFFD_MISSING)]= "um",
664                 [ilog2(VM_UFFD_WP)]     = "uw",
665 #ifdef CONFIG_ARM64_MTE
666                 [ilog2(VM_MTE)]         = "mt",
667                 [ilog2(VM_MTE_ALLOWED)] = "",
668 #endif
669 #ifdef CONFIG_ARCH_HAS_PKEYS
670                 /* These come out via ProtectionKey: */
671                 [ilog2(VM_PKEY_BIT0)]   = "",
672                 [ilog2(VM_PKEY_BIT1)]   = "",
673                 [ilog2(VM_PKEY_BIT2)]   = "",
674                 [ilog2(VM_PKEY_BIT3)]   = "",
675 #if VM_PKEY_BIT4
676                 [ilog2(VM_PKEY_BIT4)]   = "",
677 #endif
678 #endif /* CONFIG_ARCH_HAS_PKEYS */
679 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
680                 [ilog2(VM_UFFD_MINOR)]  = "ui",
681 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
682         };
683         size_t i;
684
685         seq_puts(m, "VmFlags: ");
686         for (i = 0; i < BITS_PER_LONG; i++) {
687                 if (!mnemonics[i][0])
688                         continue;
689                 if (vma->vm_flags & (1UL << i)) {
690                         seq_putc(m, mnemonics[i][0]);
691                         seq_putc(m, mnemonics[i][1]);
692                         seq_putc(m, ' ');
693                 }
694         }
695         seq_putc(m, '\n');
696 }
697
698 #ifdef CONFIG_HUGETLB_PAGE
699 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
700                                  unsigned long addr, unsigned long end,
701                                  struct mm_walk *walk)
702 {
703         struct mem_size_stats *mss = walk->private;
704         struct vm_area_struct *vma = walk->vma;
705         struct page *page = NULL;
706
707         if (pte_present(*pte)) {
708                 page = vm_normal_page(vma, addr, *pte);
709         } else if (is_swap_pte(*pte)) {
710                 swp_entry_t swpent = pte_to_swp_entry(*pte);
711
712                 if (is_pfn_swap_entry(swpent))
713                         page = pfn_swap_entry_to_page(swpent);
714         }
715         if (page) {
716                 int mapcount = page_mapcount(page);
717
718                 if (mapcount >= 2)
719                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
720                 else
721                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
722         }
723         return 0;
724 }
725 #else
726 #define smaps_hugetlb_range     NULL
727 #endif /* HUGETLB_PAGE */
728
729 static const struct mm_walk_ops smaps_walk_ops = {
730         .pmd_entry              = smaps_pte_range,
731         .hugetlb_entry          = smaps_hugetlb_range,
732 };
733
734 static const struct mm_walk_ops smaps_shmem_walk_ops = {
735         .pmd_entry              = smaps_pte_range,
736         .hugetlb_entry          = smaps_hugetlb_range,
737         .pte_hole               = smaps_pte_hole,
738 };
739
740 /*
741  * Gather mem stats from @vma with the indicated beginning
742  * address @start, and keep them in @mss.
743  *
744  * Use vm_start of @vma as the beginning address if @start is 0.
745  */
746 static void smap_gather_stats(struct vm_area_struct *vma,
747                 struct mem_size_stats *mss, unsigned long start)
748 {
749         const struct mm_walk_ops *ops = &smaps_walk_ops;
750
751         /* Invalid start */
752         if (start >= vma->vm_end)
753                 return;
754
755 #ifdef CONFIG_SHMEM
756         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
757                 /*
758                  * For shared or readonly shmem mappings we know that all
759                  * swapped out pages belong to the shmem object, and we can
760                  * obtain the swap value much more efficiently. For private
761                  * writable mappings, we might have COW pages that are
762                  * not affected by the parent swapped out pages of the shmem
763                  * object, so we have to distinguish them during the page walk.
764                  * Unless we know that the shmem object (or the part mapped by
765                  * our VMA) has no swapped out pages at all.
766                  */
767                 unsigned long shmem_swapped = shmem_swap_usage(vma);
768
769                 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
770                                         !(vma->vm_flags & VM_WRITE))) {
771                         mss->swap += shmem_swapped;
772                 } else {
773                         ops = &smaps_shmem_walk_ops;
774                 }
775         }
776 #endif
777         /* mmap_lock is held in m_start */
778         if (!start)
779                 walk_page_vma(vma, ops, mss);
780         else
781                 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
782 }
783
784 #define SEQ_PUT_DEC(str, val) \
785                 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
786
787 /* Show the contents common for smaps and smaps_rollup */
788 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
789         bool rollup_mode)
790 {
791         SEQ_PUT_DEC("Rss:            ", mss->resident);
792         SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
793         if (rollup_mode) {
794                 /*
795                  * These are meaningful only for smaps_rollup, otherwise two of
796                  * them are zero, and the other one is the same as Pss.
797                  */
798                 SEQ_PUT_DEC(" kB\nPss_Anon:       ",
799                         mss->pss_anon >> PSS_SHIFT);
800                 SEQ_PUT_DEC(" kB\nPss_File:       ",
801                         mss->pss_file >> PSS_SHIFT);
802                 SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
803                         mss->pss_shmem >> PSS_SHIFT);
804         }
805         SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
806         SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
807         SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
808         SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
809         SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
810         SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
811         SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
812         SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
813         SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
814         SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
815         SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
816         seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
817                                   mss->private_hugetlb >> 10, 7);
818         SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
819         SEQ_PUT_DEC(" kB\nSwapPss:        ",
820                                         mss->swap_pss >> PSS_SHIFT);
821         SEQ_PUT_DEC(" kB\nLocked:         ",
822                                         mss->pss_locked >> PSS_SHIFT);
823         seq_puts(m, " kB\n");
824 }
825
826 static int show_smap(struct seq_file *m, void *v)
827 {
828         struct vm_area_struct *vma = v;
829         struct mem_size_stats mss;
830
831         memset(&mss, 0, sizeof(mss));
832
833         smap_gather_stats(vma, &mss, 0);
834
835         show_map_vma(m, vma);
836
837         SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
838         SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
839         SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
840         seq_puts(m, " kB\n");
841
842         __show_smap(m, &mss, false);
843
844         seq_printf(m, "THPeligible:    %d\n",
845                    transparent_hugepage_active(vma));
846
847         if (arch_pkeys_enabled())
848                 seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
849         show_smap_vma_flags(m, vma);
850
851         return 0;
852 }
853
854 static int show_smaps_rollup(struct seq_file *m, void *v)
855 {
856         struct proc_maps_private *priv = m->private;
857         struct mem_size_stats mss;
858         struct mm_struct *mm;
859         struct vm_area_struct *vma;
860         unsigned long last_vma_end = 0;
861         int ret = 0;
862
863         priv->task = get_proc_task(priv->inode);
864         if (!priv->task)
865                 return -ESRCH;
866
867         mm = priv->mm;
868         if (!mm || !mmget_not_zero(mm)) {
869                 ret = -ESRCH;
870                 goto out_put_task;
871         }
872
873         memset(&mss, 0, sizeof(mss));
874
875         ret = mmap_read_lock_killable(mm);
876         if (ret)
877                 goto out_put_mm;
878
879         hold_task_mempolicy(priv);
880
881         for (vma = priv->mm->mmap; vma;) {
882                 smap_gather_stats(vma, &mss, 0);
883                 last_vma_end = vma->vm_end;
884
885                 /*
886                  * Release mmap_lock temporarily if someone wants to
887                  * access it for write request.
888                  */
889                 if (mmap_lock_is_contended(mm)) {
890                         mmap_read_unlock(mm);
891                         ret = mmap_read_lock_killable(mm);
892                         if (ret) {
893                                 release_task_mempolicy(priv);
894                                 goto out_put_mm;
895                         }
896
897                         /*
898                          * After dropping the lock, there are four cases to
899                          * consider. See the following example for explanation.
900                          *
901                          *   +------+------+-----------+
902                          *   | VMA1 | VMA2 | VMA3      |
903                          *   +------+------+-----------+
904                          *   |      |      |           |
905                          *  4k     8k     16k         400k
906                          *
907                          * Suppose we drop the lock after reading VMA2 due to
908                          * contention, then we get:
909                          *
910                          *      last_vma_end = 16k
911                          *
912                          * 1) VMA2 is freed, but VMA3 exists:
913                          *
914                          *    find_vma(mm, 16k - 1) will return VMA3.
915                          *    In this case, just continue from VMA3.
916                          *
917                          * 2) VMA2 still exists:
918                          *
919                          *    find_vma(mm, 16k - 1) will return VMA2.
920                          *    Iterate the loop like the original one.
921                          *
922                          * 3) No more VMAs can be found:
923                          *
924                          *    find_vma(mm, 16k - 1) will return NULL.
925                          *    No more things to do, just break.
926                          *
927                          * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
928                          *
929                          *    find_vma(mm, 16k - 1) will return VMA' whose range
930                          *    contains last_vma_end.
931                          *    Iterate VMA' from last_vma_end.
932                          */
933                         vma = find_vma(mm, last_vma_end - 1);
934                         /* Case 3 above */
935                         if (!vma)
936                                 break;
937
938                         /* Case 1 above */
939                         if (vma->vm_start >= last_vma_end)
940                                 continue;
941
942                         /* Case 4 above */
943                         if (vma->vm_end > last_vma_end)
944                                 smap_gather_stats(vma, &mss, last_vma_end);
945                 }
946                 /* Case 2 above */
947                 vma = vma->vm_next;
948         }
949
950         show_vma_header_prefix(m, priv->mm->mmap->vm_start,
951                                last_vma_end, 0, 0, 0, 0);
952         seq_pad(m, ' ');
953         seq_puts(m, "[rollup]\n");
954
955         __show_smap(m, &mss, true);
956
957         release_task_mempolicy(priv);
958         mmap_read_unlock(mm);
959
960 out_put_mm:
961         mmput(mm);
962 out_put_task:
963         put_task_struct(priv->task);
964         priv->task = NULL;
965
966         return ret;
967 }
968 #undef SEQ_PUT_DEC
969
970 static const struct seq_operations proc_pid_smaps_op = {
971         .start  = m_start,
972         .next   = m_next,
973         .stop   = m_stop,
974         .show   = show_smap
975 };
976
977 static int pid_smaps_open(struct inode *inode, struct file *file)
978 {
979         return do_maps_open(inode, file, &proc_pid_smaps_op);
980 }
981
982 static int smaps_rollup_open(struct inode *inode, struct file *file)
983 {
984         int ret;
985         struct proc_maps_private *priv;
986
987         priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
988         if (!priv)
989                 return -ENOMEM;
990
991         ret = single_open(file, show_smaps_rollup, priv);
992         if (ret)
993                 goto out_free;
994
995         priv->inode = inode;
996         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
997         if (IS_ERR(priv->mm)) {
998                 ret = PTR_ERR(priv->mm);
999
1000                 single_release(inode, file);
1001                 goto out_free;
1002         }
1003
1004         return 0;
1005
1006 out_free:
1007         kfree(priv);
1008         return ret;
1009 }
1010
1011 static int smaps_rollup_release(struct inode *inode, struct file *file)
1012 {
1013         struct seq_file *seq = file->private_data;
1014         struct proc_maps_private *priv = seq->private;
1015
1016         if (priv->mm)
1017                 mmdrop(priv->mm);
1018
1019         kfree(priv);
1020         return single_release(inode, file);
1021 }
1022
1023 const struct file_operations proc_pid_smaps_operations = {
1024         .open           = pid_smaps_open,
1025         .read           = seq_read,
1026         .llseek         = seq_lseek,
1027         .release        = proc_map_release,
1028 };
1029
1030 const struct file_operations proc_pid_smaps_rollup_operations = {
1031         .open           = smaps_rollup_open,
1032         .read           = seq_read,
1033         .llseek         = seq_lseek,
1034         .release        = smaps_rollup_release,
1035 };
1036
1037 enum clear_refs_types {
1038         CLEAR_REFS_ALL = 1,
1039         CLEAR_REFS_ANON,
1040         CLEAR_REFS_MAPPED,
1041         CLEAR_REFS_SOFT_DIRTY,
1042         CLEAR_REFS_MM_HIWATER_RSS,
1043         CLEAR_REFS_LAST,
1044 };
1045
1046 struct clear_refs_private {
1047         enum clear_refs_types type;
1048 };
1049
1050 #ifdef CONFIG_MEM_SOFT_DIRTY
1051
1052 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1053 {
1054         struct page *page;
1055
1056         if (!pte_write(pte))
1057                 return false;
1058         if (!is_cow_mapping(vma->vm_flags))
1059                 return false;
1060         if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1061                 return false;
1062         page = vm_normal_page(vma, addr, pte);
1063         if (!page)
1064                 return false;
1065         return page_maybe_dma_pinned(page);
1066 }
1067
1068 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1069                 unsigned long addr, pte_t *pte)
1070 {
1071         /*
1072          * The soft-dirty tracker uses #PF-s to catch writes
1073          * to pages, so write-protect the pte as well. See the
1074          * Documentation/admin-guide/mm/soft-dirty.rst for full description
1075          * of how soft-dirty works.
1076          */
1077         pte_t ptent = *pte;
1078
1079         if (pte_present(ptent)) {
1080                 pte_t old_pte;
1081
1082                 if (pte_is_pinned(vma, addr, ptent))
1083                         return;
1084                 old_pte = ptep_modify_prot_start(vma, addr, pte);
1085                 ptent = pte_wrprotect(old_pte);
1086                 ptent = pte_clear_soft_dirty(ptent);
1087                 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1088         } else if (is_swap_pte(ptent)) {
1089                 ptent = pte_swp_clear_soft_dirty(ptent);
1090                 set_pte_at(vma->vm_mm, addr, pte, ptent);
1091         }
1092 }
1093 #else
1094 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1095                 unsigned long addr, pte_t *pte)
1096 {
1097 }
1098 #endif
1099
1100 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1101 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1102                 unsigned long addr, pmd_t *pmdp)
1103 {
1104         pmd_t old, pmd = *pmdp;
1105
1106         if (pmd_present(pmd)) {
1107                 /* See comment in change_huge_pmd() */
1108                 old = pmdp_invalidate(vma, addr, pmdp);
1109                 if (pmd_dirty(old))
1110                         pmd = pmd_mkdirty(pmd);
1111                 if (pmd_young(old))
1112                         pmd = pmd_mkyoung(pmd);
1113
1114                 pmd = pmd_wrprotect(pmd);
1115                 pmd = pmd_clear_soft_dirty(pmd);
1116
1117                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1118         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1119                 pmd = pmd_swp_clear_soft_dirty(pmd);
1120                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1121         }
1122 }
1123 #else
1124 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1125                 unsigned long addr, pmd_t *pmdp)
1126 {
1127 }
1128 #endif
1129
1130 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1131                                 unsigned long end, struct mm_walk *walk)
1132 {
1133         struct clear_refs_private *cp = walk->private;
1134         struct vm_area_struct *vma = walk->vma;
1135         pte_t *pte, ptent;
1136         spinlock_t *ptl;
1137         struct page *page;
1138
1139         ptl = pmd_trans_huge_lock(pmd, vma);
1140         if (ptl) {
1141                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1142                         clear_soft_dirty_pmd(vma, addr, pmd);
1143                         goto out;
1144                 }
1145
1146                 if (!pmd_present(*pmd))
1147                         goto out;
1148
1149                 page = pmd_page(*pmd);
1150
1151                 /* Clear accessed and referenced bits. */
1152                 pmdp_test_and_clear_young(vma, addr, pmd);
1153                 test_and_clear_page_young(page);
1154                 ClearPageReferenced(page);
1155 out:
1156                 spin_unlock(ptl);
1157                 return 0;
1158         }
1159
1160         if (pmd_trans_unstable(pmd))
1161                 return 0;
1162
1163         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1164         for (; addr != end; pte++, addr += PAGE_SIZE) {
1165                 ptent = *pte;
1166
1167                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1168                         clear_soft_dirty(vma, addr, pte);
1169                         continue;
1170                 }
1171
1172                 if (!pte_present(ptent))
1173                         continue;
1174
1175                 page = vm_normal_page(vma, addr, ptent);
1176                 if (!page)
1177                         continue;
1178
1179                 /* Clear accessed and referenced bits. */
1180                 ptep_test_and_clear_young(vma, addr, pte);
1181                 test_and_clear_page_young(page);
1182                 ClearPageReferenced(page);
1183         }
1184         pte_unmap_unlock(pte - 1, ptl);
1185         cond_resched();
1186         return 0;
1187 }
1188
1189 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1190                                 struct mm_walk *walk)
1191 {
1192         struct clear_refs_private *cp = walk->private;
1193         struct vm_area_struct *vma = walk->vma;
1194
1195         if (vma->vm_flags & VM_PFNMAP)
1196                 return 1;
1197
1198         /*
1199          * Writing 1 to /proc/pid/clear_refs affects all pages.
1200          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1201          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1202          * Writing 4 to /proc/pid/clear_refs affects all pages.
1203          */
1204         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1205                 return 1;
1206         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1207                 return 1;
1208         return 0;
1209 }
1210
1211 static const struct mm_walk_ops clear_refs_walk_ops = {
1212         .pmd_entry              = clear_refs_pte_range,
1213         .test_walk              = clear_refs_test_walk,
1214 };
1215
1216 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1217                                 size_t count, loff_t *ppos)
1218 {
1219         struct task_struct *task;
1220         char buffer[PROC_NUMBUF];
1221         struct mm_struct *mm;
1222         struct vm_area_struct *vma;
1223         enum clear_refs_types type;
1224         int itype;
1225         int rv;
1226
1227         memset(buffer, 0, sizeof(buffer));
1228         if (count > sizeof(buffer) - 1)
1229                 count = sizeof(buffer) - 1;
1230         if (copy_from_user(buffer, buf, count))
1231                 return -EFAULT;
1232         rv = kstrtoint(strstrip(buffer), 10, &itype);
1233         if (rv < 0)
1234                 return rv;
1235         type = (enum clear_refs_types)itype;
1236         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1237                 return -EINVAL;
1238
1239         task = get_proc_task(file_inode(file));
1240         if (!task)
1241                 return -ESRCH;
1242         mm = get_task_mm(task);
1243         if (mm) {
1244                 struct mmu_notifier_range range;
1245                 struct clear_refs_private cp = {
1246                         .type = type,
1247                 };
1248
1249                 if (mmap_write_lock_killable(mm)) {
1250                         count = -EINTR;
1251                         goto out_mm;
1252                 }
1253                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1254                         /*
1255                          * Writing 5 to /proc/pid/clear_refs resets the peak
1256                          * resident set size to this mm's current rss value.
1257                          */
1258                         reset_mm_hiwater_rss(mm);
1259                         goto out_unlock;
1260                 }
1261
1262                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1263                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1264                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1265                                         continue;
1266                                 vma->vm_flags &= ~VM_SOFTDIRTY;
1267                                 vma_set_page_prot(vma);
1268                         }
1269
1270                         inc_tlb_flush_pending(mm);
1271                         mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1272                                                 0, NULL, mm, 0, -1UL);
1273                         mmu_notifier_invalidate_range_start(&range);
1274                 }
1275                 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1276                                 &cp);
1277                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1278                         mmu_notifier_invalidate_range_end(&range);
1279                         flush_tlb_mm(mm);
1280                         dec_tlb_flush_pending(mm);
1281                 }
1282 out_unlock:
1283                 mmap_write_unlock(mm);
1284 out_mm:
1285                 mmput(mm);
1286         }
1287         put_task_struct(task);
1288
1289         return count;
1290 }
1291
1292 const struct file_operations proc_clear_refs_operations = {
1293         .write          = clear_refs_write,
1294         .llseek         = noop_llseek,
1295 };
1296
1297 typedef struct {
1298         u64 pme;
1299 } pagemap_entry_t;
1300
1301 struct pagemapread {
1302         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1303         pagemap_entry_t *buffer;
1304         bool show_pfn;
1305 };
1306
1307 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1308 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1309
1310 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1311 #define PM_PFRAME_BITS          55
1312 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1313 #define PM_SOFT_DIRTY           BIT_ULL(55)
1314 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1315 #define PM_UFFD_WP              BIT_ULL(57)
1316 #define PM_FILE                 BIT_ULL(61)
1317 #define PM_SWAP                 BIT_ULL(62)
1318 #define PM_PRESENT              BIT_ULL(63)
1319
1320 #define PM_END_OF_BUFFER    1
1321
1322 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1323 {
1324         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1325 }
1326
1327 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1328                           struct pagemapread *pm)
1329 {
1330         pm->buffer[pm->pos++] = *pme;
1331         if (pm->pos >= pm->len)
1332                 return PM_END_OF_BUFFER;
1333         return 0;
1334 }
1335
1336 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1337                             __always_unused int depth, struct mm_walk *walk)
1338 {
1339         struct pagemapread *pm = walk->private;
1340         unsigned long addr = start;
1341         int err = 0;
1342
1343         while (addr < end) {
1344                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1345                 pagemap_entry_t pme = make_pme(0, 0);
1346                 /* End of address space hole, which we mark as non-present. */
1347                 unsigned long hole_end;
1348
1349                 if (vma)
1350                         hole_end = min(end, vma->vm_start);
1351                 else
1352                         hole_end = end;
1353
1354                 for (; addr < hole_end; addr += PAGE_SIZE) {
1355                         err = add_to_pagemap(addr, &pme, pm);
1356                         if (err)
1357                                 goto out;
1358                 }
1359
1360                 if (!vma)
1361                         break;
1362
1363                 /* Addresses in the VMA. */
1364                 if (vma->vm_flags & VM_SOFTDIRTY)
1365                         pme = make_pme(0, PM_SOFT_DIRTY);
1366                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1367                         err = add_to_pagemap(addr, &pme, pm);
1368                         if (err)
1369                                 goto out;
1370                 }
1371         }
1372 out:
1373         return err;
1374 }
1375
1376 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1377                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1378 {
1379         u64 frame = 0, flags = 0;
1380         struct page *page = NULL;
1381
1382         if (pte_present(pte)) {
1383                 if (pm->show_pfn)
1384                         frame = pte_pfn(pte);
1385                 flags |= PM_PRESENT;
1386                 page = vm_normal_page(vma, addr, pte);
1387                 if (pte_soft_dirty(pte))
1388                         flags |= PM_SOFT_DIRTY;
1389                 if (pte_uffd_wp(pte))
1390                         flags |= PM_UFFD_WP;
1391         } else if (is_swap_pte(pte)) {
1392                 swp_entry_t entry;
1393                 if (pte_swp_soft_dirty(pte))
1394                         flags |= PM_SOFT_DIRTY;
1395                 if (pte_swp_uffd_wp(pte))
1396                         flags |= PM_UFFD_WP;
1397                 entry = pte_to_swp_entry(pte);
1398                 if (pm->show_pfn)
1399                         frame = swp_type(entry) |
1400                                 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1401                 flags |= PM_SWAP;
1402                 if (is_pfn_swap_entry(entry))
1403                         page = pfn_swap_entry_to_page(entry);
1404         }
1405
1406         if (page && !PageAnon(page))
1407                 flags |= PM_FILE;
1408         if (page && page_mapcount(page) == 1)
1409                 flags |= PM_MMAP_EXCLUSIVE;
1410         if (vma->vm_flags & VM_SOFTDIRTY)
1411                 flags |= PM_SOFT_DIRTY;
1412
1413         return make_pme(frame, flags);
1414 }
1415
1416 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1417                              struct mm_walk *walk)
1418 {
1419         struct vm_area_struct *vma = walk->vma;
1420         struct pagemapread *pm = walk->private;
1421         spinlock_t *ptl;
1422         pte_t *pte, *orig_pte;
1423         int err = 0;
1424
1425 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1426         ptl = pmd_trans_huge_lock(pmdp, vma);
1427         if (ptl) {
1428                 u64 flags = 0, frame = 0;
1429                 pmd_t pmd = *pmdp;
1430                 struct page *page = NULL;
1431
1432                 if (vma->vm_flags & VM_SOFTDIRTY)
1433                         flags |= PM_SOFT_DIRTY;
1434
1435                 if (pmd_present(pmd)) {
1436                         page = pmd_page(pmd);
1437
1438                         flags |= PM_PRESENT;
1439                         if (pmd_soft_dirty(pmd))
1440                                 flags |= PM_SOFT_DIRTY;
1441                         if (pmd_uffd_wp(pmd))
1442                                 flags |= PM_UFFD_WP;
1443                         if (pm->show_pfn)
1444                                 frame = pmd_pfn(pmd) +
1445                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1446                 }
1447 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1448                 else if (is_swap_pmd(pmd)) {
1449                         swp_entry_t entry = pmd_to_swp_entry(pmd);
1450                         unsigned long offset;
1451
1452                         if (pm->show_pfn) {
1453                                 offset = swp_offset(entry) +
1454                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1455                                 frame = swp_type(entry) |
1456                                         (offset << MAX_SWAPFILES_SHIFT);
1457                         }
1458                         flags |= PM_SWAP;
1459                         if (pmd_swp_soft_dirty(pmd))
1460                                 flags |= PM_SOFT_DIRTY;
1461                         if (pmd_swp_uffd_wp(pmd))
1462                                 flags |= PM_UFFD_WP;
1463                         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1464                         page = pfn_swap_entry_to_page(entry);
1465                 }
1466 #endif
1467
1468                 if (page && page_mapcount(page) == 1)
1469                         flags |= PM_MMAP_EXCLUSIVE;
1470
1471                 for (; addr != end; addr += PAGE_SIZE) {
1472                         pagemap_entry_t pme = make_pme(frame, flags);
1473
1474                         err = add_to_pagemap(addr, &pme, pm);
1475                         if (err)
1476                                 break;
1477                         if (pm->show_pfn) {
1478                                 if (flags & PM_PRESENT)
1479                                         frame++;
1480                                 else if (flags & PM_SWAP)
1481                                         frame += (1 << MAX_SWAPFILES_SHIFT);
1482                         }
1483                 }
1484                 spin_unlock(ptl);
1485                 return err;
1486         }
1487
1488         if (pmd_trans_unstable(pmdp))
1489                 return 0;
1490 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1491
1492         /*
1493          * We can assume that @vma always points to a valid one and @end never
1494          * goes beyond vma->vm_end.
1495          */
1496         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1497         for (; addr < end; pte++, addr += PAGE_SIZE) {
1498                 pagemap_entry_t pme;
1499
1500                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1501                 err = add_to_pagemap(addr, &pme, pm);
1502                 if (err)
1503                         break;
1504         }
1505         pte_unmap_unlock(orig_pte, ptl);
1506
1507         cond_resched();
1508
1509         return err;
1510 }
1511
1512 #ifdef CONFIG_HUGETLB_PAGE
1513 /* This function walks within one hugetlb entry in the single call */
1514 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1515                                  unsigned long addr, unsigned long end,
1516                                  struct mm_walk *walk)
1517 {
1518         struct pagemapread *pm = walk->private;
1519         struct vm_area_struct *vma = walk->vma;
1520         u64 flags = 0, frame = 0;
1521         int err = 0;
1522         pte_t pte;
1523
1524         if (vma->vm_flags & VM_SOFTDIRTY)
1525                 flags |= PM_SOFT_DIRTY;
1526
1527         pte = huge_ptep_get(ptep);
1528         if (pte_present(pte)) {
1529                 struct page *page = pte_page(pte);
1530
1531                 if (!PageAnon(page))
1532                         flags |= PM_FILE;
1533
1534                 if (page_mapcount(page) == 1)
1535                         flags |= PM_MMAP_EXCLUSIVE;
1536
1537                 flags |= PM_PRESENT;
1538                 if (pm->show_pfn)
1539                         frame = pte_pfn(pte) +
1540                                 ((addr & ~hmask) >> PAGE_SHIFT);
1541         }
1542
1543         for (; addr != end; addr += PAGE_SIZE) {
1544                 pagemap_entry_t pme = make_pme(frame, flags);
1545
1546                 err = add_to_pagemap(addr, &pme, pm);
1547                 if (err)
1548                         return err;
1549                 if (pm->show_pfn && (flags & PM_PRESENT))
1550                         frame++;
1551         }
1552
1553         cond_resched();
1554
1555         return err;
1556 }
1557 #else
1558 #define pagemap_hugetlb_range   NULL
1559 #endif /* HUGETLB_PAGE */
1560
1561 static const struct mm_walk_ops pagemap_ops = {
1562         .pmd_entry      = pagemap_pmd_range,
1563         .pte_hole       = pagemap_pte_hole,
1564         .hugetlb_entry  = pagemap_hugetlb_range,
1565 };
1566
1567 /*
1568  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1569  *
1570  * For each page in the address space, this file contains one 64-bit entry
1571  * consisting of the following:
1572  *
1573  * Bits 0-54  page frame number (PFN) if present
1574  * Bits 0-4   swap type if swapped
1575  * Bits 5-54  swap offset if swapped
1576  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1577  * Bit  56    page exclusively mapped
1578  * Bits 57-60 zero
1579  * Bit  61    page is file-page or shared-anon
1580  * Bit  62    page swapped
1581  * Bit  63    page present
1582  *
1583  * If the page is not present but in swap, then the PFN contains an
1584  * encoding of the swap file number and the page's offset into the
1585  * swap. Unmapped pages return a null PFN. This allows determining
1586  * precisely which pages are mapped (or in swap) and comparing mapped
1587  * pages between processes.
1588  *
1589  * Efficient users of this interface will use /proc/pid/maps to
1590  * determine which areas of memory are actually mapped and llseek to
1591  * skip over unmapped regions.
1592  */
1593 static ssize_t pagemap_read(struct file *file, char __user *buf,
1594                             size_t count, loff_t *ppos)
1595 {
1596         struct mm_struct *mm = file->private_data;
1597         struct pagemapread pm;
1598         unsigned long src;
1599         unsigned long svpfn;
1600         unsigned long start_vaddr;
1601         unsigned long end_vaddr;
1602         int ret = 0, copied = 0;
1603
1604         if (!mm || !mmget_not_zero(mm))
1605                 goto out;
1606
1607         ret = -EINVAL;
1608         /* file position must be aligned */
1609         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1610                 goto out_mm;
1611
1612         ret = 0;
1613         if (!count)
1614                 goto out_mm;
1615
1616         /* do not disclose physical addresses: attack vector */
1617         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1618
1619         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1620         pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1621         ret = -ENOMEM;
1622         if (!pm.buffer)
1623                 goto out_mm;
1624
1625         src = *ppos;
1626         svpfn = src / PM_ENTRY_BYTES;
1627         end_vaddr = mm->task_size;
1628
1629         /* watch out for wraparound */
1630         start_vaddr = end_vaddr;
1631         if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1632                 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1633
1634         /* Ensure the address is inside the task */
1635         if (start_vaddr > mm->task_size)
1636                 start_vaddr = end_vaddr;
1637
1638         /*
1639          * The odds are that this will stop walking way
1640          * before end_vaddr, because the length of the
1641          * user buffer is tracked in "pm", and the walk
1642          * will stop when we hit the end of the buffer.
1643          */
1644         ret = 0;
1645         while (count && (start_vaddr < end_vaddr)) {
1646                 int len;
1647                 unsigned long end;
1648
1649                 pm.pos = 0;
1650                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1651                 /* overflow ? */
1652                 if (end < start_vaddr || end > end_vaddr)
1653                         end = end_vaddr;
1654                 ret = mmap_read_lock_killable(mm);
1655                 if (ret)
1656                         goto out_free;
1657                 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1658                 mmap_read_unlock(mm);
1659                 start_vaddr = end;
1660
1661                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1662                 if (copy_to_user(buf, pm.buffer, len)) {
1663                         ret = -EFAULT;
1664                         goto out_free;
1665                 }
1666                 copied += len;
1667                 buf += len;
1668                 count -= len;
1669         }
1670         *ppos += copied;
1671         if (!ret || ret == PM_END_OF_BUFFER)
1672                 ret = copied;
1673
1674 out_free:
1675         kfree(pm.buffer);
1676 out_mm:
1677         mmput(mm);
1678 out:
1679         return ret;
1680 }
1681
1682 static int pagemap_open(struct inode *inode, struct file *file)
1683 {
1684         struct mm_struct *mm;
1685
1686         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1687         if (IS_ERR(mm))
1688                 return PTR_ERR(mm);
1689         file->private_data = mm;
1690         return 0;
1691 }
1692
1693 static int pagemap_release(struct inode *inode, struct file *file)
1694 {
1695         struct mm_struct *mm = file->private_data;
1696
1697         if (mm)
1698                 mmdrop(mm);
1699         return 0;
1700 }
1701
1702 const struct file_operations proc_pagemap_operations = {
1703         .llseek         = mem_lseek, /* borrow this */
1704         .read           = pagemap_read,
1705         .open           = pagemap_open,
1706         .release        = pagemap_release,
1707 };
1708 #endif /* CONFIG_PROC_PAGE_MONITOR */
1709
1710 #ifdef CONFIG_NUMA
1711
1712 struct numa_maps {
1713         unsigned long pages;
1714         unsigned long anon;
1715         unsigned long active;
1716         unsigned long writeback;
1717         unsigned long mapcount_max;
1718         unsigned long dirty;
1719         unsigned long swapcache;
1720         unsigned long node[MAX_NUMNODES];
1721 };
1722
1723 struct numa_maps_private {
1724         struct proc_maps_private proc_maps;
1725         struct numa_maps md;
1726 };
1727
1728 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1729                         unsigned long nr_pages)
1730 {
1731         int count = page_mapcount(page);
1732
1733         md->pages += nr_pages;
1734         if (pte_dirty || PageDirty(page))
1735                 md->dirty += nr_pages;
1736
1737         if (PageSwapCache(page))
1738                 md->swapcache += nr_pages;
1739
1740         if (PageActive(page) || PageUnevictable(page))
1741                 md->active += nr_pages;
1742
1743         if (PageWriteback(page))
1744                 md->writeback += nr_pages;
1745
1746         if (PageAnon(page))
1747                 md->anon += nr_pages;
1748
1749         if (count > md->mapcount_max)
1750                 md->mapcount_max = count;
1751
1752         md->node[page_to_nid(page)] += nr_pages;
1753 }
1754
1755 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1756                 unsigned long addr)
1757 {
1758         struct page *page;
1759         int nid;
1760
1761         if (!pte_present(pte))
1762                 return NULL;
1763
1764         page = vm_normal_page(vma, addr, pte);
1765         if (!page)
1766                 return NULL;
1767
1768         if (PageReserved(page))
1769                 return NULL;
1770
1771         nid = page_to_nid(page);
1772         if (!node_isset(nid, node_states[N_MEMORY]))
1773                 return NULL;
1774
1775         return page;
1776 }
1777
1778 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1779 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1780                                               struct vm_area_struct *vma,
1781                                               unsigned long addr)
1782 {
1783         struct page *page;
1784         int nid;
1785
1786         if (!pmd_present(pmd))
1787                 return NULL;
1788
1789         page = vm_normal_page_pmd(vma, addr, pmd);
1790         if (!page)
1791                 return NULL;
1792
1793         if (PageReserved(page))
1794                 return NULL;
1795
1796         nid = page_to_nid(page);
1797         if (!node_isset(nid, node_states[N_MEMORY]))
1798                 return NULL;
1799
1800         return page;
1801 }
1802 #endif
1803
1804 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1805                 unsigned long end, struct mm_walk *walk)
1806 {
1807         struct numa_maps *md = walk->private;
1808         struct vm_area_struct *vma = walk->vma;
1809         spinlock_t *ptl;
1810         pte_t *orig_pte;
1811         pte_t *pte;
1812
1813 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1814         ptl = pmd_trans_huge_lock(pmd, vma);
1815         if (ptl) {
1816                 struct page *page;
1817
1818                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1819                 if (page)
1820                         gather_stats(page, md, pmd_dirty(*pmd),
1821                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1822                 spin_unlock(ptl);
1823                 return 0;
1824         }
1825
1826         if (pmd_trans_unstable(pmd))
1827                 return 0;
1828 #endif
1829         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1830         do {
1831                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1832                 if (!page)
1833                         continue;
1834                 gather_stats(page, md, pte_dirty(*pte), 1);
1835
1836         } while (pte++, addr += PAGE_SIZE, addr != end);
1837         pte_unmap_unlock(orig_pte, ptl);
1838         cond_resched();
1839         return 0;
1840 }
1841 #ifdef CONFIG_HUGETLB_PAGE
1842 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1843                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1844 {
1845         pte_t huge_pte = huge_ptep_get(pte);
1846         struct numa_maps *md;
1847         struct page *page;
1848
1849         if (!pte_present(huge_pte))
1850                 return 0;
1851
1852         page = pte_page(huge_pte);
1853         if (!page)
1854                 return 0;
1855
1856         md = walk->private;
1857         gather_stats(page, md, pte_dirty(huge_pte), 1);
1858         return 0;
1859 }
1860
1861 #else
1862 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1863                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1864 {
1865         return 0;
1866 }
1867 #endif
1868
1869 static const struct mm_walk_ops show_numa_ops = {
1870         .hugetlb_entry = gather_hugetlb_stats,
1871         .pmd_entry = gather_pte_stats,
1872 };
1873
1874 /*
1875  * Display pages allocated per node and memory policy via /proc.
1876  */
1877 static int show_numa_map(struct seq_file *m, void *v)
1878 {
1879         struct numa_maps_private *numa_priv = m->private;
1880         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1881         struct vm_area_struct *vma = v;
1882         struct numa_maps *md = &numa_priv->md;
1883         struct file *file = vma->vm_file;
1884         struct mm_struct *mm = vma->vm_mm;
1885         struct mempolicy *pol;
1886         char buffer[64];
1887         int nid;
1888
1889         if (!mm)
1890                 return 0;
1891
1892         /* Ensure we start with an empty set of numa_maps statistics. */
1893         memset(md, 0, sizeof(*md));
1894
1895         pol = __get_vma_policy(vma, vma->vm_start);
1896         if (pol) {
1897                 mpol_to_str(buffer, sizeof(buffer), pol);
1898                 mpol_cond_put(pol);
1899         } else {
1900                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1901         }
1902
1903         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1904
1905         if (file) {
1906                 seq_puts(m, " file=");
1907                 seq_file_path(m, file, "\n\t= ");
1908         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1909                 seq_puts(m, " heap");
1910         } else if (is_stack(vma)) {
1911                 seq_puts(m, " stack");
1912         }
1913
1914         if (is_vm_hugetlb_page(vma))
1915                 seq_puts(m, " huge");
1916
1917         /* mmap_lock is held by m_start */
1918         walk_page_vma(vma, &show_numa_ops, md);
1919
1920         if (!md->pages)
1921                 goto out;
1922
1923         if (md->anon)
1924                 seq_printf(m, " anon=%lu", md->anon);
1925
1926         if (md->dirty)
1927                 seq_printf(m, " dirty=%lu", md->dirty);
1928
1929         if (md->pages != md->anon && md->pages != md->dirty)
1930                 seq_printf(m, " mapped=%lu", md->pages);
1931
1932         if (md->mapcount_max > 1)
1933                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1934
1935         if (md->swapcache)
1936                 seq_printf(m, " swapcache=%lu", md->swapcache);
1937
1938         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1939                 seq_printf(m, " active=%lu", md->active);
1940
1941         if (md->writeback)
1942                 seq_printf(m, " writeback=%lu", md->writeback);
1943
1944         for_each_node_state(nid, N_MEMORY)
1945                 if (md->node[nid])
1946                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1947
1948         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1949 out:
1950         seq_putc(m, '\n');
1951         return 0;
1952 }
1953
1954 static const struct seq_operations proc_pid_numa_maps_op = {
1955         .start  = m_start,
1956         .next   = m_next,
1957         .stop   = m_stop,
1958         .show   = show_numa_map,
1959 };
1960
1961 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1962 {
1963         return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1964                                 sizeof(struct numa_maps_private));
1965 }
1966
1967 const struct file_operations proc_pid_numa_maps_operations = {
1968         .open           = pid_numa_maps_open,
1969         .read           = seq_read,
1970         .llseek         = seq_lseek,
1971         .release        = proc_map_release,
1972 };
1973
1974 #endif /* CONFIG_NUMA */