Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6-microblaze.git] / fs / pipe.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27
28 #include <linux/uaccess.h>
29 #include <asm/ioctls.h>
30
31 #include "internal.h"
32
33 /*
34  * The max size that a non-root user is allowed to grow the pipe. Can
35  * be set by root in /proc/sys/fs/pipe-max-size
36  */
37 unsigned int pipe_max_size = 1048576;
38
39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
40  * matches default values.
41  */
42 unsigned long pipe_user_pages_hard;
43 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
44
45 /*
46  * We use head and tail indices that aren't masked off, except at the point of
47  * dereference, but rather they're allowed to wrap naturally.  This means there
48  * isn't a dead spot in the buffer, but the ring has to be a power of two and
49  * <= 2^31.
50  * -- David Howells 2019-09-23.
51  *
52  * Reads with count = 0 should always return 0.
53  * -- Julian Bradfield 1999-06-07.
54  *
55  * FIFOs and Pipes now generate SIGIO for both readers and writers.
56  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
57  *
58  * pipe_read & write cleanup
59  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
60  */
61
62 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
63 {
64         if (pipe->files)
65                 mutex_lock_nested(&pipe->mutex, subclass);
66 }
67
68 void pipe_lock(struct pipe_inode_info *pipe)
69 {
70         /*
71          * pipe_lock() nests non-pipe inode locks (for writing to a file)
72          */
73         pipe_lock_nested(pipe, I_MUTEX_PARENT);
74 }
75 EXPORT_SYMBOL(pipe_lock);
76
77 void pipe_unlock(struct pipe_inode_info *pipe)
78 {
79         if (pipe->files)
80                 mutex_unlock(&pipe->mutex);
81 }
82 EXPORT_SYMBOL(pipe_unlock);
83
84 static inline void __pipe_lock(struct pipe_inode_info *pipe)
85 {
86         mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
87 }
88
89 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
90 {
91         mutex_unlock(&pipe->mutex);
92 }
93
94 void pipe_double_lock(struct pipe_inode_info *pipe1,
95                       struct pipe_inode_info *pipe2)
96 {
97         BUG_ON(pipe1 == pipe2);
98
99         if (pipe1 < pipe2) {
100                 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
101                 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
102         } else {
103                 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
104                 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
105         }
106 }
107
108 /* Drop the inode semaphore and wait for a pipe event, atomically */
109 void pipe_wait(struct pipe_inode_info *pipe)
110 {
111         DEFINE_WAIT(wait);
112
113         /*
114          * Pipes are system-local resources, so sleeping on them
115          * is considered a noninteractive wait:
116          */
117         prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
118         pipe_unlock(pipe);
119         schedule();
120         finish_wait(&pipe->wait, &wait);
121         pipe_lock(pipe);
122 }
123
124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
125                                   struct pipe_buffer *buf)
126 {
127         struct page *page = buf->page;
128
129         /*
130          * If nobody else uses this page, and we don't already have a
131          * temporary page, let's keep track of it as a one-deep
132          * allocation cache. (Otherwise just release our reference to it)
133          */
134         if (page_count(page) == 1 && !pipe->tmp_page)
135                 pipe->tmp_page = page;
136         else
137                 put_page(page);
138 }
139
140 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
141                                struct pipe_buffer *buf)
142 {
143         struct page *page = buf->page;
144
145         if (page_count(page) == 1) {
146                 memcg_kmem_uncharge(page, 0);
147                 __SetPageLocked(page);
148                 return 0;
149         }
150         return 1;
151 }
152
153 /**
154  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
155  * @pipe:       the pipe that the buffer belongs to
156  * @buf:        the buffer to attempt to steal
157  *
158  * Description:
159  *      This function attempts to steal the &struct page attached to
160  *      @buf. If successful, this function returns 0 and returns with
161  *      the page locked. The caller may then reuse the page for whatever
162  *      he wishes; the typical use is insertion into a different file
163  *      page cache.
164  */
165 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
166                            struct pipe_buffer *buf)
167 {
168         struct page *page = buf->page;
169
170         /*
171          * A reference of one is golden, that means that the owner of this
172          * page is the only one holding a reference to it. lock the page
173          * and return OK.
174          */
175         if (page_count(page) == 1) {
176                 lock_page(page);
177                 return 0;
178         }
179
180         return 1;
181 }
182 EXPORT_SYMBOL(generic_pipe_buf_steal);
183
184 /**
185  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
186  * @pipe:       the pipe that the buffer belongs to
187  * @buf:        the buffer to get a reference to
188  *
189  * Description:
190  *      This function grabs an extra reference to @buf. It's used in
191  *      in the tee() system call, when we duplicate the buffers in one
192  *      pipe into another.
193  */
194 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
195 {
196         return try_get_page(buf->page);
197 }
198 EXPORT_SYMBOL(generic_pipe_buf_get);
199
200 /**
201  * generic_pipe_buf_confirm - verify contents of the pipe buffer
202  * @info:       the pipe that the buffer belongs to
203  * @buf:        the buffer to confirm
204  *
205  * Description:
206  *      This function does nothing, because the generic pipe code uses
207  *      pages that are always good when inserted into the pipe.
208  */
209 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
210                              struct pipe_buffer *buf)
211 {
212         return 0;
213 }
214 EXPORT_SYMBOL(generic_pipe_buf_confirm);
215
216 /**
217  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
218  * @pipe:       the pipe that the buffer belongs to
219  * @buf:        the buffer to put a reference to
220  *
221  * Description:
222  *      This function releases a reference to @buf.
223  */
224 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
225                               struct pipe_buffer *buf)
226 {
227         put_page(buf->page);
228 }
229 EXPORT_SYMBOL(generic_pipe_buf_release);
230
231 /* New data written to a pipe may be appended to a buffer with this type. */
232 static const struct pipe_buf_operations anon_pipe_buf_ops = {
233         .confirm = generic_pipe_buf_confirm,
234         .release = anon_pipe_buf_release,
235         .steal = anon_pipe_buf_steal,
236         .get = generic_pipe_buf_get,
237 };
238
239 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = {
240         .confirm = generic_pipe_buf_confirm,
241         .release = anon_pipe_buf_release,
242         .steal = anon_pipe_buf_steal,
243         .get = generic_pipe_buf_get,
244 };
245
246 static const struct pipe_buf_operations packet_pipe_buf_ops = {
247         .confirm = generic_pipe_buf_confirm,
248         .release = anon_pipe_buf_release,
249         .steal = anon_pipe_buf_steal,
250         .get = generic_pipe_buf_get,
251 };
252
253 /**
254  * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable
255  * @buf:        the buffer to mark
256  *
257  * Description:
258  *      This function ensures that no future writes will be merged into the
259  *      given &struct pipe_buffer. This is necessary when multiple pipe buffers
260  *      share the same backing page.
261  */
262 void pipe_buf_mark_unmergeable(struct pipe_buffer *buf)
263 {
264         if (buf->ops == &anon_pipe_buf_ops)
265                 buf->ops = &anon_pipe_buf_nomerge_ops;
266 }
267
268 static bool pipe_buf_can_merge(struct pipe_buffer *buf)
269 {
270         return buf->ops == &anon_pipe_buf_ops;
271 }
272
273 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
274 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
275 {
276         unsigned int head = READ_ONCE(pipe->head);
277         unsigned int tail = READ_ONCE(pipe->tail);
278         unsigned int writers = READ_ONCE(pipe->writers);
279
280         return !pipe_empty(head, tail) || !writers;
281 }
282
283 static ssize_t
284 pipe_read(struct kiocb *iocb, struct iov_iter *to)
285 {
286         size_t total_len = iov_iter_count(to);
287         struct file *filp = iocb->ki_filp;
288         struct pipe_inode_info *pipe = filp->private_data;
289         bool was_full;
290         ssize_t ret;
291
292         /* Null read succeeds. */
293         if (unlikely(total_len == 0))
294                 return 0;
295
296         ret = 0;
297         __pipe_lock(pipe);
298
299         /*
300          * We only wake up writers if the pipe was full when we started
301          * reading in order to avoid unnecessary wakeups.
302          *
303          * But when we do wake up writers, we do so using a sync wakeup
304          * (WF_SYNC), because we want them to get going and generate more
305          * data for us.
306          */
307         was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
308         for (;;) {
309                 unsigned int head = pipe->head;
310                 unsigned int tail = pipe->tail;
311                 unsigned int mask = pipe->ring_size - 1;
312
313                 if (!pipe_empty(head, tail)) {
314                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
315                         size_t chars = buf->len;
316                         size_t written;
317                         int error;
318
319                         if (chars > total_len)
320                                 chars = total_len;
321
322                         error = pipe_buf_confirm(pipe, buf);
323                         if (error) {
324                                 if (!ret)
325                                         ret = error;
326                                 break;
327                         }
328
329                         written = copy_page_to_iter(buf->page, buf->offset, chars, to);
330                         if (unlikely(written < chars)) {
331                                 if (!ret)
332                                         ret = -EFAULT;
333                                 break;
334                         }
335                         ret += chars;
336                         buf->offset += chars;
337                         buf->len -= chars;
338
339                         /* Was it a packet buffer? Clean up and exit */
340                         if (buf->flags & PIPE_BUF_FLAG_PACKET) {
341                                 total_len = chars;
342                                 buf->len = 0;
343                         }
344
345                         if (!buf->len) {
346                                 pipe_buf_release(pipe, buf);
347                                 spin_lock_irq(&pipe->wait.lock);
348                                 tail++;
349                                 pipe->tail = tail;
350                                 spin_unlock_irq(&pipe->wait.lock);
351                         }
352                         total_len -= chars;
353                         if (!total_len)
354                                 break;  /* common path: read succeeded */
355                         if (!pipe_empty(head, tail))    /* More to do? */
356                                 continue;
357                 }
358
359                 if (!pipe->writers)
360                         break;
361                 if (ret)
362                         break;
363                 if (filp->f_flags & O_NONBLOCK) {
364                         ret = -EAGAIN;
365                         break;
366                 }
367                 if (signal_pending(current)) {
368                         if (!ret)
369                                 ret = -ERESTARTSYS;
370                         break;
371                 }
372                 __pipe_unlock(pipe);
373                 if (was_full) {
374                         wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
375                         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
376                 }
377                 wait_event_interruptible(pipe->wait, pipe_readable(pipe));
378                 __pipe_lock(pipe);
379                 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
380         }
381         __pipe_unlock(pipe);
382
383         if (was_full) {
384                 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
385                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
386         }
387         if (ret > 0)
388                 file_accessed(filp);
389         return ret;
390 }
391
392 static inline int is_packetized(struct file *file)
393 {
394         return (file->f_flags & O_DIRECT) != 0;
395 }
396
397 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
398 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
399 {
400         unsigned int head = READ_ONCE(pipe->head);
401         unsigned int tail = READ_ONCE(pipe->tail);
402         unsigned int max_usage = READ_ONCE(pipe->max_usage);
403
404         return !pipe_full(head, tail, max_usage) ||
405                 !READ_ONCE(pipe->readers);
406 }
407
408 static ssize_t
409 pipe_write(struct kiocb *iocb, struct iov_iter *from)
410 {
411         struct file *filp = iocb->ki_filp;
412         struct pipe_inode_info *pipe = filp->private_data;
413         unsigned int head;
414         ssize_t ret = 0;
415         size_t total_len = iov_iter_count(from);
416         ssize_t chars;
417         bool was_empty = false;
418
419         /* Null write succeeds. */
420         if (unlikely(total_len == 0))
421                 return 0;
422
423         __pipe_lock(pipe);
424
425         if (!pipe->readers) {
426                 send_sig(SIGPIPE, current, 0);
427                 ret = -EPIPE;
428                 goto out;
429         }
430
431         /*
432          * Only wake up if the pipe started out empty, since
433          * otherwise there should be no readers waiting.
434          *
435          * If it wasn't empty we try to merge new data into
436          * the last buffer.
437          *
438          * That naturally merges small writes, but it also
439          * page-aligs the rest of the writes for large writes
440          * spanning multiple pages.
441          */
442         head = pipe->head;
443         was_empty = pipe_empty(head, pipe->tail);
444         chars = total_len & (PAGE_SIZE-1);
445         if (chars && !was_empty) {
446                 unsigned int mask = pipe->ring_size - 1;
447                 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
448                 int offset = buf->offset + buf->len;
449
450                 if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) {
451                         ret = pipe_buf_confirm(pipe, buf);
452                         if (ret)
453                                 goto out;
454
455                         ret = copy_page_from_iter(buf->page, offset, chars, from);
456                         if (unlikely(ret < chars)) {
457                                 ret = -EFAULT;
458                                 goto out;
459                         }
460
461                         buf->len += ret;
462                         if (!iov_iter_count(from))
463                                 goto out;
464                 }
465         }
466
467         for (;;) {
468                 if (!pipe->readers) {
469                         send_sig(SIGPIPE, current, 0);
470                         if (!ret)
471                                 ret = -EPIPE;
472                         break;
473                 }
474
475                 head = pipe->head;
476                 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
477                         unsigned int mask = pipe->ring_size - 1;
478                         struct pipe_buffer *buf = &pipe->bufs[head & mask];
479                         struct page *page = pipe->tmp_page;
480                         int copied;
481
482                         if (!page) {
483                                 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
484                                 if (unlikely(!page)) {
485                                         ret = ret ? : -ENOMEM;
486                                         break;
487                                 }
488                                 pipe->tmp_page = page;
489                         }
490
491                         /* Allocate a slot in the ring in advance and attach an
492                          * empty buffer.  If we fault or otherwise fail to use
493                          * it, either the reader will consume it or it'll still
494                          * be there for the next write.
495                          */
496                         spin_lock_irq(&pipe->wait.lock);
497
498                         head = pipe->head;
499                         if (pipe_full(head, pipe->tail, pipe->max_usage)) {
500                                 spin_unlock_irq(&pipe->wait.lock);
501                                 continue;
502                         }
503
504                         pipe->head = head + 1;
505                         spin_unlock_irq(&pipe->wait.lock);
506
507                         /* Insert it into the buffer array */
508                         buf = &pipe->bufs[head & mask];
509                         buf->page = page;
510                         buf->ops = &anon_pipe_buf_ops;
511                         buf->offset = 0;
512                         buf->len = 0;
513                         buf->flags = 0;
514                         if (is_packetized(filp)) {
515                                 buf->ops = &packet_pipe_buf_ops;
516                                 buf->flags = PIPE_BUF_FLAG_PACKET;
517                         }
518                         pipe->tmp_page = NULL;
519
520                         copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
521                         if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
522                                 if (!ret)
523                                         ret = -EFAULT;
524                                 break;
525                         }
526                         ret += copied;
527                         buf->offset = 0;
528                         buf->len = copied;
529
530                         if (!iov_iter_count(from))
531                                 break;
532                 }
533
534                 if (!pipe_full(head, pipe->tail, pipe->max_usage))
535                         continue;
536
537                 /* Wait for buffer space to become available. */
538                 if (filp->f_flags & O_NONBLOCK) {
539                         if (!ret)
540                                 ret = -EAGAIN;
541                         break;
542                 }
543                 if (signal_pending(current)) {
544                         if (!ret)
545                                 ret = -ERESTARTSYS;
546                         break;
547                 }
548
549                 /*
550                  * We're going to release the pipe lock and wait for more
551                  * space. We wake up any readers if necessary, and then
552                  * after waiting we need to re-check whether the pipe
553                  * become empty while we dropped the lock.
554                  */
555                 __pipe_unlock(pipe);
556                 if (was_empty) {
557                         wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
558                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
559                 }
560                 wait_event_interruptible(pipe->wait, pipe_writable(pipe));
561                 __pipe_lock(pipe);
562                 was_empty = pipe_empty(head, pipe->tail);
563         }
564 out:
565         __pipe_unlock(pipe);
566
567         /*
568          * If we do do a wakeup event, we do a 'sync' wakeup, because we
569          * want the reader to start processing things asap, rather than
570          * leave the data pending.
571          *
572          * This is particularly important for small writes, because of
573          * how (for example) the GNU make jobserver uses small writes to
574          * wake up pending jobs
575          */
576         if (was_empty) {
577                 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
578                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
579         }
580         if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
581                 int err = file_update_time(filp);
582                 if (err)
583                         ret = err;
584                 sb_end_write(file_inode(filp)->i_sb);
585         }
586         return ret;
587 }
588
589 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
590 {
591         struct pipe_inode_info *pipe = filp->private_data;
592         int count, head, tail, mask;
593
594         switch (cmd) {
595                 case FIONREAD:
596                         __pipe_lock(pipe);
597                         count = 0;
598                         head = pipe->head;
599                         tail = pipe->tail;
600                         mask = pipe->ring_size - 1;
601
602                         while (tail != head) {
603                                 count += pipe->bufs[tail & mask].len;
604                                 tail++;
605                         }
606                         __pipe_unlock(pipe);
607
608                         return put_user(count, (int __user *)arg);
609                 default:
610                         return -ENOIOCTLCMD;
611         }
612 }
613
614 /* No kernel lock held - fine */
615 static __poll_t
616 pipe_poll(struct file *filp, poll_table *wait)
617 {
618         __poll_t mask;
619         struct pipe_inode_info *pipe = filp->private_data;
620         unsigned int head, tail;
621
622         /*
623          * Reading only -- no need for acquiring the semaphore.
624          *
625          * But because this is racy, the code has to add the
626          * entry to the poll table _first_ ..
627          */
628         poll_wait(filp, &pipe->wait, wait);
629
630         /*
631          * .. and only then can you do the racy tests. That way,
632          * if something changes and you got it wrong, the poll
633          * table entry will wake you up and fix it.
634          */
635         head = READ_ONCE(pipe->head);
636         tail = READ_ONCE(pipe->tail);
637
638         mask = 0;
639         if (filp->f_mode & FMODE_READ) {
640                 if (!pipe_empty(head, tail))
641                         mask |= EPOLLIN | EPOLLRDNORM;
642                 if (!pipe->writers && filp->f_version != pipe->w_counter)
643                         mask |= EPOLLHUP;
644         }
645
646         if (filp->f_mode & FMODE_WRITE) {
647                 if (!pipe_full(head, tail, pipe->max_usage))
648                         mask |= EPOLLOUT | EPOLLWRNORM;
649                 /*
650                  * Most Unices do not set EPOLLERR for FIFOs but on Linux they
651                  * behave exactly like pipes for poll().
652                  */
653                 if (!pipe->readers)
654                         mask |= EPOLLERR;
655         }
656
657         return mask;
658 }
659
660 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
661 {
662         int kill = 0;
663
664         spin_lock(&inode->i_lock);
665         if (!--pipe->files) {
666                 inode->i_pipe = NULL;
667                 kill = 1;
668         }
669         spin_unlock(&inode->i_lock);
670
671         if (kill)
672                 free_pipe_info(pipe);
673 }
674
675 static int
676 pipe_release(struct inode *inode, struct file *file)
677 {
678         struct pipe_inode_info *pipe = file->private_data;
679
680         __pipe_lock(pipe);
681         if (file->f_mode & FMODE_READ)
682                 pipe->readers--;
683         if (file->f_mode & FMODE_WRITE)
684                 pipe->writers--;
685
686         if (pipe->readers || pipe->writers) {
687                 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP);
688                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
689                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
690         }
691         __pipe_unlock(pipe);
692
693         put_pipe_info(inode, pipe);
694         return 0;
695 }
696
697 static int
698 pipe_fasync(int fd, struct file *filp, int on)
699 {
700         struct pipe_inode_info *pipe = filp->private_data;
701         int retval = 0;
702
703         __pipe_lock(pipe);
704         if (filp->f_mode & FMODE_READ)
705                 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
706         if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
707                 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
708                 if (retval < 0 && (filp->f_mode & FMODE_READ))
709                         /* this can happen only if on == T */
710                         fasync_helper(-1, filp, 0, &pipe->fasync_readers);
711         }
712         __pipe_unlock(pipe);
713         return retval;
714 }
715
716 static unsigned long account_pipe_buffers(struct user_struct *user,
717                                  unsigned long old, unsigned long new)
718 {
719         return atomic_long_add_return(new - old, &user->pipe_bufs);
720 }
721
722 static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
723 {
724         unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
725
726         return soft_limit && user_bufs > soft_limit;
727 }
728
729 static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
730 {
731         unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
732
733         return hard_limit && user_bufs > hard_limit;
734 }
735
736 static bool is_unprivileged_user(void)
737 {
738         return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
739 }
740
741 struct pipe_inode_info *alloc_pipe_info(void)
742 {
743         struct pipe_inode_info *pipe;
744         unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
745         struct user_struct *user = get_current_user();
746         unsigned long user_bufs;
747         unsigned int max_size = READ_ONCE(pipe_max_size);
748
749         pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
750         if (pipe == NULL)
751                 goto out_free_uid;
752
753         if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
754                 pipe_bufs = max_size >> PAGE_SHIFT;
755
756         user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
757
758         if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
759                 user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
760                 pipe_bufs = 1;
761         }
762
763         if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
764                 goto out_revert_acct;
765
766         pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
767                              GFP_KERNEL_ACCOUNT);
768
769         if (pipe->bufs) {
770                 init_waitqueue_head(&pipe->wait);
771                 pipe->r_counter = pipe->w_counter = 1;
772                 pipe->max_usage = pipe_bufs;
773                 pipe->ring_size = pipe_bufs;
774                 pipe->user = user;
775                 mutex_init(&pipe->mutex);
776                 return pipe;
777         }
778
779 out_revert_acct:
780         (void) account_pipe_buffers(user, pipe_bufs, 0);
781         kfree(pipe);
782 out_free_uid:
783         free_uid(user);
784         return NULL;
785 }
786
787 void free_pipe_info(struct pipe_inode_info *pipe)
788 {
789         int i;
790
791         (void) account_pipe_buffers(pipe->user, pipe->ring_size, 0);
792         free_uid(pipe->user);
793         for (i = 0; i < pipe->ring_size; i++) {
794                 struct pipe_buffer *buf = pipe->bufs + i;
795                 if (buf->ops)
796                         pipe_buf_release(pipe, buf);
797         }
798         if (pipe->tmp_page)
799                 __free_page(pipe->tmp_page);
800         kfree(pipe->bufs);
801         kfree(pipe);
802 }
803
804 static struct vfsmount *pipe_mnt __read_mostly;
805
806 /*
807  * pipefs_dname() is called from d_path().
808  */
809 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
810 {
811         return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
812                                 d_inode(dentry)->i_ino);
813 }
814
815 static const struct dentry_operations pipefs_dentry_operations = {
816         .d_dname        = pipefs_dname,
817 };
818
819 static struct inode * get_pipe_inode(void)
820 {
821         struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
822         struct pipe_inode_info *pipe;
823
824         if (!inode)
825                 goto fail_inode;
826
827         inode->i_ino = get_next_ino();
828
829         pipe = alloc_pipe_info();
830         if (!pipe)
831                 goto fail_iput;
832
833         inode->i_pipe = pipe;
834         pipe->files = 2;
835         pipe->readers = pipe->writers = 1;
836         inode->i_fop = &pipefifo_fops;
837
838         /*
839          * Mark the inode dirty from the very beginning,
840          * that way it will never be moved to the dirty
841          * list because "mark_inode_dirty()" will think
842          * that it already _is_ on the dirty list.
843          */
844         inode->i_state = I_DIRTY;
845         inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
846         inode->i_uid = current_fsuid();
847         inode->i_gid = current_fsgid();
848         inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
849
850         return inode;
851
852 fail_iput:
853         iput(inode);
854
855 fail_inode:
856         return NULL;
857 }
858
859 int create_pipe_files(struct file **res, int flags)
860 {
861         struct inode *inode = get_pipe_inode();
862         struct file *f;
863
864         if (!inode)
865                 return -ENFILE;
866
867         f = alloc_file_pseudo(inode, pipe_mnt, "",
868                                 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
869                                 &pipefifo_fops);
870         if (IS_ERR(f)) {
871                 free_pipe_info(inode->i_pipe);
872                 iput(inode);
873                 return PTR_ERR(f);
874         }
875
876         f->private_data = inode->i_pipe;
877
878         res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
879                                   &pipefifo_fops);
880         if (IS_ERR(res[0])) {
881                 put_pipe_info(inode, inode->i_pipe);
882                 fput(f);
883                 return PTR_ERR(res[0]);
884         }
885         res[0]->private_data = inode->i_pipe;
886         res[1] = f;
887         stream_open(inode, res[0]);
888         stream_open(inode, res[1]);
889         return 0;
890 }
891
892 static int __do_pipe_flags(int *fd, struct file **files, int flags)
893 {
894         int error;
895         int fdw, fdr;
896
897         if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
898                 return -EINVAL;
899
900         error = create_pipe_files(files, flags);
901         if (error)
902                 return error;
903
904         error = get_unused_fd_flags(flags);
905         if (error < 0)
906                 goto err_read_pipe;
907         fdr = error;
908
909         error = get_unused_fd_flags(flags);
910         if (error < 0)
911                 goto err_fdr;
912         fdw = error;
913
914         audit_fd_pair(fdr, fdw);
915         fd[0] = fdr;
916         fd[1] = fdw;
917         return 0;
918
919  err_fdr:
920         put_unused_fd(fdr);
921  err_read_pipe:
922         fput(files[0]);
923         fput(files[1]);
924         return error;
925 }
926
927 int do_pipe_flags(int *fd, int flags)
928 {
929         struct file *files[2];
930         int error = __do_pipe_flags(fd, files, flags);
931         if (!error) {
932                 fd_install(fd[0], files[0]);
933                 fd_install(fd[1], files[1]);
934         }
935         return error;
936 }
937
938 /*
939  * sys_pipe() is the normal C calling standard for creating
940  * a pipe. It's not the way Unix traditionally does this, though.
941  */
942 static int do_pipe2(int __user *fildes, int flags)
943 {
944         struct file *files[2];
945         int fd[2];
946         int error;
947
948         error = __do_pipe_flags(fd, files, flags);
949         if (!error) {
950                 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
951                         fput(files[0]);
952                         fput(files[1]);
953                         put_unused_fd(fd[0]);
954                         put_unused_fd(fd[1]);
955                         error = -EFAULT;
956                 } else {
957                         fd_install(fd[0], files[0]);
958                         fd_install(fd[1], files[1]);
959                 }
960         }
961         return error;
962 }
963
964 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
965 {
966         return do_pipe2(fildes, flags);
967 }
968
969 SYSCALL_DEFINE1(pipe, int __user *, fildes)
970 {
971         return do_pipe2(fildes, 0);
972 }
973
974 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
975 {
976         int cur = *cnt;
977
978         while (cur == *cnt) {
979                 pipe_wait(pipe);
980                 if (signal_pending(current))
981                         break;
982         }
983         return cur == *cnt ? -ERESTARTSYS : 0;
984 }
985
986 static void wake_up_partner(struct pipe_inode_info *pipe)
987 {
988         wake_up_interruptible(&pipe->wait);
989 }
990
991 static int fifo_open(struct inode *inode, struct file *filp)
992 {
993         struct pipe_inode_info *pipe;
994         bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
995         int ret;
996
997         filp->f_version = 0;
998
999         spin_lock(&inode->i_lock);
1000         if (inode->i_pipe) {
1001                 pipe = inode->i_pipe;
1002                 pipe->files++;
1003                 spin_unlock(&inode->i_lock);
1004         } else {
1005                 spin_unlock(&inode->i_lock);
1006                 pipe = alloc_pipe_info();
1007                 if (!pipe)
1008                         return -ENOMEM;
1009                 pipe->files = 1;
1010                 spin_lock(&inode->i_lock);
1011                 if (unlikely(inode->i_pipe)) {
1012                         inode->i_pipe->files++;
1013                         spin_unlock(&inode->i_lock);
1014                         free_pipe_info(pipe);
1015                         pipe = inode->i_pipe;
1016                 } else {
1017                         inode->i_pipe = pipe;
1018                         spin_unlock(&inode->i_lock);
1019                 }
1020         }
1021         filp->private_data = pipe;
1022         /* OK, we have a pipe and it's pinned down */
1023
1024         __pipe_lock(pipe);
1025
1026         /* We can only do regular read/write on fifos */
1027         stream_open(inode, filp);
1028
1029         switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1030         case FMODE_READ:
1031         /*
1032          *  O_RDONLY
1033          *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1034          *  opened, even when there is no process writing the FIFO.
1035          */
1036                 pipe->r_counter++;
1037                 if (pipe->readers++ == 0)
1038                         wake_up_partner(pipe);
1039
1040                 if (!is_pipe && !pipe->writers) {
1041                         if ((filp->f_flags & O_NONBLOCK)) {
1042                                 /* suppress EPOLLHUP until we have
1043                                  * seen a writer */
1044                                 filp->f_version = pipe->w_counter;
1045                         } else {
1046                                 if (wait_for_partner(pipe, &pipe->w_counter))
1047                                         goto err_rd;
1048                         }
1049                 }
1050                 break;
1051
1052         case FMODE_WRITE:
1053         /*
1054          *  O_WRONLY
1055          *  POSIX.1 says that O_NONBLOCK means return -1 with
1056          *  errno=ENXIO when there is no process reading the FIFO.
1057          */
1058                 ret = -ENXIO;
1059                 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1060                         goto err;
1061
1062                 pipe->w_counter++;
1063                 if (!pipe->writers++)
1064                         wake_up_partner(pipe);
1065
1066                 if (!is_pipe && !pipe->readers) {
1067                         if (wait_for_partner(pipe, &pipe->r_counter))
1068                                 goto err_wr;
1069                 }
1070                 break;
1071
1072         case FMODE_READ | FMODE_WRITE:
1073         /*
1074          *  O_RDWR
1075          *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1076          *  This implementation will NEVER block on a O_RDWR open, since
1077          *  the process can at least talk to itself.
1078          */
1079
1080                 pipe->readers++;
1081                 pipe->writers++;
1082                 pipe->r_counter++;
1083                 pipe->w_counter++;
1084                 if (pipe->readers == 1 || pipe->writers == 1)
1085                         wake_up_partner(pipe);
1086                 break;
1087
1088         default:
1089                 ret = -EINVAL;
1090                 goto err;
1091         }
1092
1093         /* Ok! */
1094         __pipe_unlock(pipe);
1095         return 0;
1096
1097 err_rd:
1098         if (!--pipe->readers)
1099                 wake_up_interruptible(&pipe->wait);
1100         ret = -ERESTARTSYS;
1101         goto err;
1102
1103 err_wr:
1104         if (!--pipe->writers)
1105                 wake_up_interruptible(&pipe->wait);
1106         ret = -ERESTARTSYS;
1107         goto err;
1108
1109 err:
1110         __pipe_unlock(pipe);
1111
1112         put_pipe_info(inode, pipe);
1113         return ret;
1114 }
1115
1116 const struct file_operations pipefifo_fops = {
1117         .open           = fifo_open,
1118         .llseek         = no_llseek,
1119         .read_iter      = pipe_read,
1120         .write_iter     = pipe_write,
1121         .poll           = pipe_poll,
1122         .unlocked_ioctl = pipe_ioctl,
1123         .release        = pipe_release,
1124         .fasync         = pipe_fasync,
1125 };
1126
1127 /*
1128  * Currently we rely on the pipe array holding a power-of-2 number
1129  * of pages. Returns 0 on error.
1130  */
1131 unsigned int round_pipe_size(unsigned long size)
1132 {
1133         if (size > (1U << 31))
1134                 return 0;
1135
1136         /* Minimum pipe size, as required by POSIX */
1137         if (size < PAGE_SIZE)
1138                 return PAGE_SIZE;
1139
1140         return roundup_pow_of_two(size);
1141 }
1142
1143 /*
1144  * Allocate a new array of pipe buffers and copy the info over. Returns the
1145  * pipe size if successful, or return -ERROR on error.
1146  */
1147 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1148 {
1149         struct pipe_buffer *bufs;
1150         unsigned int size, nr_slots, head, tail, mask, n;
1151         unsigned long user_bufs;
1152         long ret = 0;
1153
1154         size = round_pipe_size(arg);
1155         nr_slots = size >> PAGE_SHIFT;
1156
1157         if (!nr_slots)
1158                 return -EINVAL;
1159
1160         /*
1161          * If trying to increase the pipe capacity, check that an
1162          * unprivileged user is not trying to exceed various limits
1163          * (soft limit check here, hard limit check just below).
1164          * Decreasing the pipe capacity is always permitted, even
1165          * if the user is currently over a limit.
1166          */
1167         if (nr_slots > pipe->ring_size &&
1168                         size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1169                 return -EPERM;
1170
1171         user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots);
1172
1173         if (nr_slots > pipe->ring_size &&
1174                         (too_many_pipe_buffers_hard(user_bufs) ||
1175                          too_many_pipe_buffers_soft(user_bufs)) &&
1176                         is_unprivileged_user()) {
1177                 ret = -EPERM;
1178                 goto out_revert_acct;
1179         }
1180
1181         /*
1182          * We can shrink the pipe, if arg is greater than the ring occupancy.
1183          * Since we don't expect a lot of shrink+grow operations, just free and
1184          * allocate again like we would do for growing.  If the pipe currently
1185          * contains more buffers than arg, then return busy.
1186          */
1187         mask = pipe->ring_size - 1;
1188         head = pipe->head;
1189         tail = pipe->tail;
1190         n = pipe_occupancy(pipe->head, pipe->tail);
1191         if (nr_slots < n) {
1192                 ret = -EBUSY;
1193                 goto out_revert_acct;
1194         }
1195
1196         bufs = kcalloc(nr_slots, sizeof(*bufs),
1197                        GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1198         if (unlikely(!bufs)) {
1199                 ret = -ENOMEM;
1200                 goto out_revert_acct;
1201         }
1202
1203         /*
1204          * The pipe array wraps around, so just start the new one at zero
1205          * and adjust the indices.
1206          */
1207         if (n > 0) {
1208                 unsigned int h = head & mask;
1209                 unsigned int t = tail & mask;
1210                 if (h > t) {
1211                         memcpy(bufs, pipe->bufs + t,
1212                                n * sizeof(struct pipe_buffer));
1213                 } else {
1214                         unsigned int tsize = pipe->ring_size - t;
1215                         if (h > 0)
1216                                 memcpy(bufs + tsize, pipe->bufs,
1217                                        h * sizeof(struct pipe_buffer));
1218                         memcpy(bufs, pipe->bufs + t,
1219                                tsize * sizeof(struct pipe_buffer));
1220                 }
1221         }
1222
1223         head = n;
1224         tail = 0;
1225
1226         kfree(pipe->bufs);
1227         pipe->bufs = bufs;
1228         pipe->ring_size = nr_slots;
1229         pipe->max_usage = nr_slots;
1230         pipe->tail = tail;
1231         pipe->head = head;
1232         wake_up_interruptible_all(&pipe->wait);
1233         return pipe->max_usage * PAGE_SIZE;
1234
1235 out_revert_acct:
1236         (void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size);
1237         return ret;
1238 }
1239
1240 /*
1241  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1242  * location, so checking ->i_pipe is not enough to verify that this is a
1243  * pipe.
1244  */
1245 struct pipe_inode_info *get_pipe_info(struct file *file)
1246 {
1247         return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1248 }
1249
1250 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1251 {
1252         struct pipe_inode_info *pipe;
1253         long ret;
1254
1255         pipe = get_pipe_info(file);
1256         if (!pipe)
1257                 return -EBADF;
1258
1259         __pipe_lock(pipe);
1260
1261         switch (cmd) {
1262         case F_SETPIPE_SZ:
1263                 ret = pipe_set_size(pipe, arg);
1264                 break;
1265         case F_GETPIPE_SZ:
1266                 ret = pipe->max_usage * PAGE_SIZE;
1267                 break;
1268         default:
1269                 ret = -EINVAL;
1270                 break;
1271         }
1272
1273         __pipe_unlock(pipe);
1274         return ret;
1275 }
1276
1277 static const struct super_operations pipefs_ops = {
1278         .destroy_inode = free_inode_nonrcu,
1279         .statfs = simple_statfs,
1280 };
1281
1282 /*
1283  * pipefs should _never_ be mounted by userland - too much of security hassle,
1284  * no real gain from having the whole whorehouse mounted. So we don't need
1285  * any operations on the root directory. However, we need a non-trivial
1286  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1287  */
1288
1289 static int pipefs_init_fs_context(struct fs_context *fc)
1290 {
1291         struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1292         if (!ctx)
1293                 return -ENOMEM;
1294         ctx->ops = &pipefs_ops;
1295         ctx->dops = &pipefs_dentry_operations;
1296         return 0;
1297 }
1298
1299 static struct file_system_type pipe_fs_type = {
1300         .name           = "pipefs",
1301         .init_fs_context = pipefs_init_fs_context,
1302         .kill_sb        = kill_anon_super,
1303 };
1304
1305 static int __init init_pipe_fs(void)
1306 {
1307         int err = register_filesystem(&pipe_fs_type);
1308
1309         if (!err) {
1310                 pipe_mnt = kern_mount(&pipe_fs_type);
1311                 if (IS_ERR(pipe_mnt)) {
1312                         err = PTR_ERR(pipe_mnt);
1313                         unregister_filesystem(&pipe_fs_type);
1314                 }
1315         }
1316         return err;
1317 }
1318
1319 fs_initcall(init_pipe_fs);