libnvdimm/region: Introduce NDD_LABELING
[linux-2.6-microblaze.git] / fs / pipe.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27
28 #include <linux/uaccess.h>
29 #include <asm/ioctls.h>
30
31 #include "internal.h"
32
33 /*
34  * The max size that a non-root user is allowed to grow the pipe. Can
35  * be set by root in /proc/sys/fs/pipe-max-size
36  */
37 unsigned int pipe_max_size = 1048576;
38
39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
40  * matches default values.
41  */
42 unsigned long pipe_user_pages_hard;
43 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
44
45 /*
46  * We use head and tail indices that aren't masked off, except at the point of
47  * dereference, but rather they're allowed to wrap naturally.  This means there
48  * isn't a dead spot in the buffer, but the ring has to be a power of two and
49  * <= 2^31.
50  * -- David Howells 2019-09-23.
51  *
52  * Reads with count = 0 should always return 0.
53  * -- Julian Bradfield 1999-06-07.
54  *
55  * FIFOs and Pipes now generate SIGIO for both readers and writers.
56  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
57  *
58  * pipe_read & write cleanup
59  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
60  */
61
62 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
63 {
64         if (pipe->files)
65                 mutex_lock_nested(&pipe->mutex, subclass);
66 }
67
68 void pipe_lock(struct pipe_inode_info *pipe)
69 {
70         /*
71          * pipe_lock() nests non-pipe inode locks (for writing to a file)
72          */
73         pipe_lock_nested(pipe, I_MUTEX_PARENT);
74 }
75 EXPORT_SYMBOL(pipe_lock);
76
77 void pipe_unlock(struct pipe_inode_info *pipe)
78 {
79         if (pipe->files)
80                 mutex_unlock(&pipe->mutex);
81 }
82 EXPORT_SYMBOL(pipe_unlock);
83
84 static inline void __pipe_lock(struct pipe_inode_info *pipe)
85 {
86         mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
87 }
88
89 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
90 {
91         mutex_unlock(&pipe->mutex);
92 }
93
94 void pipe_double_lock(struct pipe_inode_info *pipe1,
95                       struct pipe_inode_info *pipe2)
96 {
97         BUG_ON(pipe1 == pipe2);
98
99         if (pipe1 < pipe2) {
100                 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
101                 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
102         } else {
103                 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
104                 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
105         }
106 }
107
108 /* Drop the inode semaphore and wait for a pipe event, atomically */
109 void pipe_wait(struct pipe_inode_info *pipe)
110 {
111         DEFINE_WAIT(rdwait);
112         DEFINE_WAIT(wrwait);
113
114         /*
115          * Pipes are system-local resources, so sleeping on them
116          * is considered a noninteractive wait:
117          */
118         prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
119         prepare_to_wait(&pipe->wr_wait, &wrwait, TASK_INTERRUPTIBLE);
120         pipe_unlock(pipe);
121         schedule();
122         finish_wait(&pipe->rd_wait, &rdwait);
123         finish_wait(&pipe->wr_wait, &wrwait);
124         pipe_lock(pipe);
125 }
126
127 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
128                                   struct pipe_buffer *buf)
129 {
130         struct page *page = buf->page;
131
132         /*
133          * If nobody else uses this page, and we don't already have a
134          * temporary page, let's keep track of it as a one-deep
135          * allocation cache. (Otherwise just release our reference to it)
136          */
137         if (page_count(page) == 1 && !pipe->tmp_page)
138                 pipe->tmp_page = page;
139         else
140                 put_page(page);
141 }
142
143 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
144                                struct pipe_buffer *buf)
145 {
146         struct page *page = buf->page;
147
148         if (page_count(page) == 1) {
149                 memcg_kmem_uncharge(page, 0);
150                 __SetPageLocked(page);
151                 return 0;
152         }
153         return 1;
154 }
155
156 /**
157  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
158  * @pipe:       the pipe that the buffer belongs to
159  * @buf:        the buffer to attempt to steal
160  *
161  * Description:
162  *      This function attempts to steal the &struct page attached to
163  *      @buf. If successful, this function returns 0 and returns with
164  *      the page locked. The caller may then reuse the page for whatever
165  *      he wishes; the typical use is insertion into a different file
166  *      page cache.
167  */
168 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
169                            struct pipe_buffer *buf)
170 {
171         struct page *page = buf->page;
172
173         /*
174          * A reference of one is golden, that means that the owner of this
175          * page is the only one holding a reference to it. lock the page
176          * and return OK.
177          */
178         if (page_count(page) == 1) {
179                 lock_page(page);
180                 return 0;
181         }
182
183         return 1;
184 }
185 EXPORT_SYMBOL(generic_pipe_buf_steal);
186
187 /**
188  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
189  * @pipe:       the pipe that the buffer belongs to
190  * @buf:        the buffer to get a reference to
191  *
192  * Description:
193  *      This function grabs an extra reference to @buf. It's used in
194  *      in the tee() system call, when we duplicate the buffers in one
195  *      pipe into another.
196  */
197 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
198 {
199         return try_get_page(buf->page);
200 }
201 EXPORT_SYMBOL(generic_pipe_buf_get);
202
203 /**
204  * generic_pipe_buf_confirm - verify contents of the pipe buffer
205  * @info:       the pipe that the buffer belongs to
206  * @buf:        the buffer to confirm
207  *
208  * Description:
209  *      This function does nothing, because the generic pipe code uses
210  *      pages that are always good when inserted into the pipe.
211  */
212 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
213                              struct pipe_buffer *buf)
214 {
215         return 0;
216 }
217 EXPORT_SYMBOL(generic_pipe_buf_confirm);
218
219 /**
220  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
221  * @pipe:       the pipe that the buffer belongs to
222  * @buf:        the buffer to put a reference to
223  *
224  * Description:
225  *      This function releases a reference to @buf.
226  */
227 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
228                               struct pipe_buffer *buf)
229 {
230         put_page(buf->page);
231 }
232 EXPORT_SYMBOL(generic_pipe_buf_release);
233
234 /* New data written to a pipe may be appended to a buffer with this type. */
235 static const struct pipe_buf_operations anon_pipe_buf_ops = {
236         .confirm = generic_pipe_buf_confirm,
237         .release = anon_pipe_buf_release,
238         .steal = anon_pipe_buf_steal,
239         .get = generic_pipe_buf_get,
240 };
241
242 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = {
243         .confirm = generic_pipe_buf_confirm,
244         .release = anon_pipe_buf_release,
245         .steal = anon_pipe_buf_steal,
246         .get = generic_pipe_buf_get,
247 };
248
249 static const struct pipe_buf_operations packet_pipe_buf_ops = {
250         .confirm = generic_pipe_buf_confirm,
251         .release = anon_pipe_buf_release,
252         .steal = anon_pipe_buf_steal,
253         .get = generic_pipe_buf_get,
254 };
255
256 /**
257  * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable
258  * @buf:        the buffer to mark
259  *
260  * Description:
261  *      This function ensures that no future writes will be merged into the
262  *      given &struct pipe_buffer. This is necessary when multiple pipe buffers
263  *      share the same backing page.
264  */
265 void pipe_buf_mark_unmergeable(struct pipe_buffer *buf)
266 {
267         if (buf->ops == &anon_pipe_buf_ops)
268                 buf->ops = &anon_pipe_buf_nomerge_ops;
269 }
270
271 static bool pipe_buf_can_merge(struct pipe_buffer *buf)
272 {
273         return buf->ops == &anon_pipe_buf_ops;
274 }
275
276 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
277 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
278 {
279         unsigned int head = READ_ONCE(pipe->head);
280         unsigned int tail = READ_ONCE(pipe->tail);
281         unsigned int writers = READ_ONCE(pipe->writers);
282
283         return !pipe_empty(head, tail) || !writers;
284 }
285
286 static ssize_t
287 pipe_read(struct kiocb *iocb, struct iov_iter *to)
288 {
289         size_t total_len = iov_iter_count(to);
290         struct file *filp = iocb->ki_filp;
291         struct pipe_inode_info *pipe = filp->private_data;
292         bool was_full, wake_next_reader = false;
293         ssize_t ret;
294
295         /* Null read succeeds. */
296         if (unlikely(total_len == 0))
297                 return 0;
298
299         ret = 0;
300         __pipe_lock(pipe);
301
302         /*
303          * We only wake up writers if the pipe was full when we started
304          * reading in order to avoid unnecessary wakeups.
305          *
306          * But when we do wake up writers, we do so using a sync wakeup
307          * (WF_SYNC), because we want them to get going and generate more
308          * data for us.
309          */
310         was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
311         for (;;) {
312                 unsigned int head = pipe->head;
313                 unsigned int tail = pipe->tail;
314                 unsigned int mask = pipe->ring_size - 1;
315
316                 if (!pipe_empty(head, tail)) {
317                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
318                         size_t chars = buf->len;
319                         size_t written;
320                         int error;
321
322                         if (chars > total_len)
323                                 chars = total_len;
324
325                         error = pipe_buf_confirm(pipe, buf);
326                         if (error) {
327                                 if (!ret)
328                                         ret = error;
329                                 break;
330                         }
331
332                         written = copy_page_to_iter(buf->page, buf->offset, chars, to);
333                         if (unlikely(written < chars)) {
334                                 if (!ret)
335                                         ret = -EFAULT;
336                                 break;
337                         }
338                         ret += chars;
339                         buf->offset += chars;
340                         buf->len -= chars;
341
342                         /* Was it a packet buffer? Clean up and exit */
343                         if (buf->flags & PIPE_BUF_FLAG_PACKET) {
344                                 total_len = chars;
345                                 buf->len = 0;
346                         }
347
348                         if (!buf->len) {
349                                 pipe_buf_release(pipe, buf);
350                                 spin_lock_irq(&pipe->rd_wait.lock);
351                                 tail++;
352                                 pipe->tail = tail;
353                                 spin_unlock_irq(&pipe->rd_wait.lock);
354                         }
355                         total_len -= chars;
356                         if (!total_len)
357                                 break;  /* common path: read succeeded */
358                         if (!pipe_empty(head, tail))    /* More to do? */
359                                 continue;
360                 }
361
362                 if (!pipe->writers)
363                         break;
364                 if (ret)
365                         break;
366                 if (filp->f_flags & O_NONBLOCK) {
367                         ret = -EAGAIN;
368                         break;
369                 }
370                 __pipe_unlock(pipe);
371
372                 /*
373                  * We only get here if we didn't actually read anything.
374                  *
375                  * However, we could have seen (and removed) a zero-sized
376                  * pipe buffer, and might have made space in the buffers
377                  * that way.
378                  *
379                  * You can't make zero-sized pipe buffers by doing an empty
380                  * write (not even in packet mode), but they can happen if
381                  * the writer gets an EFAULT when trying to fill a buffer
382                  * that already got allocated and inserted in the buffer
383                  * array.
384                  *
385                  * So we still need to wake up any pending writers in the
386                  * _very_ unlikely case that the pipe was full, but we got
387                  * no data.
388                  */
389                 if (unlikely(was_full)) {
390                         wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
391                         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
392                 }
393
394                 /*
395                  * But because we didn't read anything, at this point we can
396                  * just return directly with -ERESTARTSYS if we're interrupted,
397                  * since we've done any required wakeups and there's no need
398                  * to mark anything accessed. And we've dropped the lock.
399                  */
400                 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
401                         return -ERESTARTSYS;
402
403                 __pipe_lock(pipe);
404                 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
405                 wake_next_reader = true;
406         }
407         if (pipe_empty(pipe->head, pipe->tail))
408                 wake_next_reader = false;
409         __pipe_unlock(pipe);
410
411         if (was_full) {
412                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
413                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
414         }
415         if (wake_next_reader)
416                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
417         if (ret > 0)
418                 file_accessed(filp);
419         return ret;
420 }
421
422 static inline int is_packetized(struct file *file)
423 {
424         return (file->f_flags & O_DIRECT) != 0;
425 }
426
427 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
428 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
429 {
430         unsigned int head = READ_ONCE(pipe->head);
431         unsigned int tail = READ_ONCE(pipe->tail);
432         unsigned int max_usage = READ_ONCE(pipe->max_usage);
433
434         return !pipe_full(head, tail, max_usage) ||
435                 !READ_ONCE(pipe->readers);
436 }
437
438 static ssize_t
439 pipe_write(struct kiocb *iocb, struct iov_iter *from)
440 {
441         struct file *filp = iocb->ki_filp;
442         struct pipe_inode_info *pipe = filp->private_data;
443         unsigned int head;
444         ssize_t ret = 0;
445         size_t total_len = iov_iter_count(from);
446         ssize_t chars;
447         bool was_empty = false;
448         bool wake_next_writer = false;
449
450         /* Null write succeeds. */
451         if (unlikely(total_len == 0))
452                 return 0;
453
454         __pipe_lock(pipe);
455
456         if (!pipe->readers) {
457                 send_sig(SIGPIPE, current, 0);
458                 ret = -EPIPE;
459                 goto out;
460         }
461
462         /*
463          * Only wake up if the pipe started out empty, since
464          * otherwise there should be no readers waiting.
465          *
466          * If it wasn't empty we try to merge new data into
467          * the last buffer.
468          *
469          * That naturally merges small writes, but it also
470          * page-aligs the rest of the writes for large writes
471          * spanning multiple pages.
472          */
473         head = pipe->head;
474         was_empty = pipe_empty(head, pipe->tail);
475         chars = total_len & (PAGE_SIZE-1);
476         if (chars && !was_empty) {
477                 unsigned int mask = pipe->ring_size - 1;
478                 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
479                 int offset = buf->offset + buf->len;
480
481                 if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) {
482                         ret = pipe_buf_confirm(pipe, buf);
483                         if (ret)
484                                 goto out;
485
486                         ret = copy_page_from_iter(buf->page, offset, chars, from);
487                         if (unlikely(ret < chars)) {
488                                 ret = -EFAULT;
489                                 goto out;
490                         }
491
492                         buf->len += ret;
493                         if (!iov_iter_count(from))
494                                 goto out;
495                 }
496         }
497
498         for (;;) {
499                 if (!pipe->readers) {
500                         send_sig(SIGPIPE, current, 0);
501                         if (!ret)
502                                 ret = -EPIPE;
503                         break;
504                 }
505
506                 head = pipe->head;
507                 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
508                         unsigned int mask = pipe->ring_size - 1;
509                         struct pipe_buffer *buf = &pipe->bufs[head & mask];
510                         struct page *page = pipe->tmp_page;
511                         int copied;
512
513                         if (!page) {
514                                 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
515                                 if (unlikely(!page)) {
516                                         ret = ret ? : -ENOMEM;
517                                         break;
518                                 }
519                                 pipe->tmp_page = page;
520                         }
521
522                         /* Allocate a slot in the ring in advance and attach an
523                          * empty buffer.  If we fault or otherwise fail to use
524                          * it, either the reader will consume it or it'll still
525                          * be there for the next write.
526                          */
527                         spin_lock_irq(&pipe->rd_wait.lock);
528
529                         head = pipe->head;
530                         if (pipe_full(head, pipe->tail, pipe->max_usage)) {
531                                 spin_unlock_irq(&pipe->rd_wait.lock);
532                                 continue;
533                         }
534
535                         pipe->head = head + 1;
536                         spin_unlock_irq(&pipe->rd_wait.lock);
537
538                         /* Insert it into the buffer array */
539                         buf = &pipe->bufs[head & mask];
540                         buf->page = page;
541                         buf->ops = &anon_pipe_buf_ops;
542                         buf->offset = 0;
543                         buf->len = 0;
544                         buf->flags = 0;
545                         if (is_packetized(filp)) {
546                                 buf->ops = &packet_pipe_buf_ops;
547                                 buf->flags = PIPE_BUF_FLAG_PACKET;
548                         }
549                         pipe->tmp_page = NULL;
550
551                         copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
552                         if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
553                                 if (!ret)
554                                         ret = -EFAULT;
555                                 break;
556                         }
557                         ret += copied;
558                         buf->offset = 0;
559                         buf->len = copied;
560
561                         if (!iov_iter_count(from))
562                                 break;
563                 }
564
565                 if (!pipe_full(head, pipe->tail, pipe->max_usage))
566                         continue;
567
568                 /* Wait for buffer space to become available. */
569                 if (filp->f_flags & O_NONBLOCK) {
570                         if (!ret)
571                                 ret = -EAGAIN;
572                         break;
573                 }
574                 if (signal_pending(current)) {
575                         if (!ret)
576                                 ret = -ERESTARTSYS;
577                         break;
578                 }
579
580                 /*
581                  * We're going to release the pipe lock and wait for more
582                  * space. We wake up any readers if necessary, and then
583                  * after waiting we need to re-check whether the pipe
584                  * become empty while we dropped the lock.
585                  */
586                 __pipe_unlock(pipe);
587                 if (was_empty) {
588                         wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
589                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
590                 }
591                 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
592                 __pipe_lock(pipe);
593                 was_empty = pipe_empty(pipe->head, pipe->tail);
594                 wake_next_writer = true;
595         }
596 out:
597         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
598                 wake_next_writer = false;
599         __pipe_unlock(pipe);
600
601         /*
602          * If we do do a wakeup event, we do a 'sync' wakeup, because we
603          * want the reader to start processing things asap, rather than
604          * leave the data pending.
605          *
606          * This is particularly important for small writes, because of
607          * how (for example) the GNU make jobserver uses small writes to
608          * wake up pending jobs
609          */
610         if (was_empty) {
611                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
612                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
613         }
614         if (wake_next_writer)
615                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
616         if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
617                 int err = file_update_time(filp);
618                 if (err)
619                         ret = err;
620                 sb_end_write(file_inode(filp)->i_sb);
621         }
622         return ret;
623 }
624
625 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
626 {
627         struct pipe_inode_info *pipe = filp->private_data;
628         int count, head, tail, mask;
629
630         switch (cmd) {
631                 case FIONREAD:
632                         __pipe_lock(pipe);
633                         count = 0;
634                         head = pipe->head;
635                         tail = pipe->tail;
636                         mask = pipe->ring_size - 1;
637
638                         while (tail != head) {
639                                 count += pipe->bufs[tail & mask].len;
640                                 tail++;
641                         }
642                         __pipe_unlock(pipe);
643
644                         return put_user(count, (int __user *)arg);
645                 default:
646                         return -ENOIOCTLCMD;
647         }
648 }
649
650 /* No kernel lock held - fine */
651 static __poll_t
652 pipe_poll(struct file *filp, poll_table *wait)
653 {
654         __poll_t mask;
655         struct pipe_inode_info *pipe = filp->private_data;
656         unsigned int head, tail;
657
658         /*
659          * Reading pipe state only -- no need for acquiring the semaphore.
660          *
661          * But because this is racy, the code has to add the
662          * entry to the poll table _first_ ..
663          */
664         if (filp->f_mode & FMODE_READ)
665                 poll_wait(filp, &pipe->rd_wait, wait);
666         if (filp->f_mode & FMODE_WRITE)
667                 poll_wait(filp, &pipe->wr_wait, wait);
668
669         /*
670          * .. and only then can you do the racy tests. That way,
671          * if something changes and you got it wrong, the poll
672          * table entry will wake you up and fix it.
673          */
674         head = READ_ONCE(pipe->head);
675         tail = READ_ONCE(pipe->tail);
676
677         mask = 0;
678         if (filp->f_mode & FMODE_READ) {
679                 if (!pipe_empty(head, tail))
680                         mask |= EPOLLIN | EPOLLRDNORM;
681                 if (!pipe->writers && filp->f_version != pipe->w_counter)
682                         mask |= EPOLLHUP;
683         }
684
685         if (filp->f_mode & FMODE_WRITE) {
686                 if (!pipe_full(head, tail, pipe->max_usage))
687                         mask |= EPOLLOUT | EPOLLWRNORM;
688                 /*
689                  * Most Unices do not set EPOLLERR for FIFOs but on Linux they
690                  * behave exactly like pipes for poll().
691                  */
692                 if (!pipe->readers)
693                         mask |= EPOLLERR;
694         }
695
696         return mask;
697 }
698
699 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
700 {
701         int kill = 0;
702
703         spin_lock(&inode->i_lock);
704         if (!--pipe->files) {
705                 inode->i_pipe = NULL;
706                 kill = 1;
707         }
708         spin_unlock(&inode->i_lock);
709
710         if (kill)
711                 free_pipe_info(pipe);
712 }
713
714 static int
715 pipe_release(struct inode *inode, struct file *file)
716 {
717         struct pipe_inode_info *pipe = file->private_data;
718
719         __pipe_lock(pipe);
720         if (file->f_mode & FMODE_READ)
721                 pipe->readers--;
722         if (file->f_mode & FMODE_WRITE)
723                 pipe->writers--;
724
725         if (pipe->readers || pipe->writers) {
726                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLHUP);
727                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM | EPOLLERR | EPOLLHUP);
728                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
729                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
730         }
731         __pipe_unlock(pipe);
732
733         put_pipe_info(inode, pipe);
734         return 0;
735 }
736
737 static int
738 pipe_fasync(int fd, struct file *filp, int on)
739 {
740         struct pipe_inode_info *pipe = filp->private_data;
741         int retval = 0;
742
743         __pipe_lock(pipe);
744         if (filp->f_mode & FMODE_READ)
745                 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
746         if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
747                 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
748                 if (retval < 0 && (filp->f_mode & FMODE_READ))
749                         /* this can happen only if on == T */
750                         fasync_helper(-1, filp, 0, &pipe->fasync_readers);
751         }
752         __pipe_unlock(pipe);
753         return retval;
754 }
755
756 static unsigned long account_pipe_buffers(struct user_struct *user,
757                                  unsigned long old, unsigned long new)
758 {
759         return atomic_long_add_return(new - old, &user->pipe_bufs);
760 }
761
762 static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
763 {
764         unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
765
766         return soft_limit && user_bufs > soft_limit;
767 }
768
769 static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
770 {
771         unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
772
773         return hard_limit && user_bufs > hard_limit;
774 }
775
776 static bool is_unprivileged_user(void)
777 {
778         return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
779 }
780
781 struct pipe_inode_info *alloc_pipe_info(void)
782 {
783         struct pipe_inode_info *pipe;
784         unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
785         struct user_struct *user = get_current_user();
786         unsigned long user_bufs;
787         unsigned int max_size = READ_ONCE(pipe_max_size);
788
789         pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
790         if (pipe == NULL)
791                 goto out_free_uid;
792
793         if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
794                 pipe_bufs = max_size >> PAGE_SHIFT;
795
796         user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
797
798         if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
799                 user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
800                 pipe_bufs = 1;
801         }
802
803         if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
804                 goto out_revert_acct;
805
806         pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
807                              GFP_KERNEL_ACCOUNT);
808
809         if (pipe->bufs) {
810                 init_waitqueue_head(&pipe->rd_wait);
811                 init_waitqueue_head(&pipe->wr_wait);
812                 pipe->r_counter = pipe->w_counter = 1;
813                 pipe->max_usage = pipe_bufs;
814                 pipe->ring_size = pipe_bufs;
815                 pipe->user = user;
816                 mutex_init(&pipe->mutex);
817                 return pipe;
818         }
819
820 out_revert_acct:
821         (void) account_pipe_buffers(user, pipe_bufs, 0);
822         kfree(pipe);
823 out_free_uid:
824         free_uid(user);
825         return NULL;
826 }
827
828 void free_pipe_info(struct pipe_inode_info *pipe)
829 {
830         int i;
831
832         (void) account_pipe_buffers(pipe->user, pipe->ring_size, 0);
833         free_uid(pipe->user);
834         for (i = 0; i < pipe->ring_size; i++) {
835                 struct pipe_buffer *buf = pipe->bufs + i;
836                 if (buf->ops)
837                         pipe_buf_release(pipe, buf);
838         }
839         if (pipe->tmp_page)
840                 __free_page(pipe->tmp_page);
841         kfree(pipe->bufs);
842         kfree(pipe);
843 }
844
845 static struct vfsmount *pipe_mnt __read_mostly;
846
847 /*
848  * pipefs_dname() is called from d_path().
849  */
850 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
851 {
852         return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
853                                 d_inode(dentry)->i_ino);
854 }
855
856 static const struct dentry_operations pipefs_dentry_operations = {
857         .d_dname        = pipefs_dname,
858 };
859
860 static struct inode * get_pipe_inode(void)
861 {
862         struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
863         struct pipe_inode_info *pipe;
864
865         if (!inode)
866                 goto fail_inode;
867
868         inode->i_ino = get_next_ino();
869
870         pipe = alloc_pipe_info();
871         if (!pipe)
872                 goto fail_iput;
873
874         inode->i_pipe = pipe;
875         pipe->files = 2;
876         pipe->readers = pipe->writers = 1;
877         inode->i_fop = &pipefifo_fops;
878
879         /*
880          * Mark the inode dirty from the very beginning,
881          * that way it will never be moved to the dirty
882          * list because "mark_inode_dirty()" will think
883          * that it already _is_ on the dirty list.
884          */
885         inode->i_state = I_DIRTY;
886         inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
887         inode->i_uid = current_fsuid();
888         inode->i_gid = current_fsgid();
889         inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
890
891         return inode;
892
893 fail_iput:
894         iput(inode);
895
896 fail_inode:
897         return NULL;
898 }
899
900 int create_pipe_files(struct file **res, int flags)
901 {
902         struct inode *inode = get_pipe_inode();
903         struct file *f;
904
905         if (!inode)
906                 return -ENFILE;
907
908         f = alloc_file_pseudo(inode, pipe_mnt, "",
909                                 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
910                                 &pipefifo_fops);
911         if (IS_ERR(f)) {
912                 free_pipe_info(inode->i_pipe);
913                 iput(inode);
914                 return PTR_ERR(f);
915         }
916
917         f->private_data = inode->i_pipe;
918
919         res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
920                                   &pipefifo_fops);
921         if (IS_ERR(res[0])) {
922                 put_pipe_info(inode, inode->i_pipe);
923                 fput(f);
924                 return PTR_ERR(res[0]);
925         }
926         res[0]->private_data = inode->i_pipe;
927         res[1] = f;
928         stream_open(inode, res[0]);
929         stream_open(inode, res[1]);
930         return 0;
931 }
932
933 static int __do_pipe_flags(int *fd, struct file **files, int flags)
934 {
935         int error;
936         int fdw, fdr;
937
938         if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
939                 return -EINVAL;
940
941         error = create_pipe_files(files, flags);
942         if (error)
943                 return error;
944
945         error = get_unused_fd_flags(flags);
946         if (error < 0)
947                 goto err_read_pipe;
948         fdr = error;
949
950         error = get_unused_fd_flags(flags);
951         if (error < 0)
952                 goto err_fdr;
953         fdw = error;
954
955         audit_fd_pair(fdr, fdw);
956         fd[0] = fdr;
957         fd[1] = fdw;
958         return 0;
959
960  err_fdr:
961         put_unused_fd(fdr);
962  err_read_pipe:
963         fput(files[0]);
964         fput(files[1]);
965         return error;
966 }
967
968 int do_pipe_flags(int *fd, int flags)
969 {
970         struct file *files[2];
971         int error = __do_pipe_flags(fd, files, flags);
972         if (!error) {
973                 fd_install(fd[0], files[0]);
974                 fd_install(fd[1], files[1]);
975         }
976         return error;
977 }
978
979 /*
980  * sys_pipe() is the normal C calling standard for creating
981  * a pipe. It's not the way Unix traditionally does this, though.
982  */
983 static int do_pipe2(int __user *fildes, int flags)
984 {
985         struct file *files[2];
986         int fd[2];
987         int error;
988
989         error = __do_pipe_flags(fd, files, flags);
990         if (!error) {
991                 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
992                         fput(files[0]);
993                         fput(files[1]);
994                         put_unused_fd(fd[0]);
995                         put_unused_fd(fd[1]);
996                         error = -EFAULT;
997                 } else {
998                         fd_install(fd[0], files[0]);
999                         fd_install(fd[1], files[1]);
1000                 }
1001         }
1002         return error;
1003 }
1004
1005 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1006 {
1007         return do_pipe2(fildes, flags);
1008 }
1009
1010 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1011 {
1012         return do_pipe2(fildes, 0);
1013 }
1014
1015 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1016 {
1017         int cur = *cnt;
1018
1019         while (cur == *cnt) {
1020                 pipe_wait(pipe);
1021                 if (signal_pending(current))
1022                         break;
1023         }
1024         return cur == *cnt ? -ERESTARTSYS : 0;
1025 }
1026
1027 static void wake_up_partner(struct pipe_inode_info *pipe)
1028 {
1029         wake_up_interruptible(&pipe->rd_wait);
1030         wake_up_interruptible(&pipe->wr_wait);
1031 }
1032
1033 static int fifo_open(struct inode *inode, struct file *filp)
1034 {
1035         struct pipe_inode_info *pipe;
1036         bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1037         int ret;
1038
1039         filp->f_version = 0;
1040
1041         spin_lock(&inode->i_lock);
1042         if (inode->i_pipe) {
1043                 pipe = inode->i_pipe;
1044                 pipe->files++;
1045                 spin_unlock(&inode->i_lock);
1046         } else {
1047                 spin_unlock(&inode->i_lock);
1048                 pipe = alloc_pipe_info();
1049                 if (!pipe)
1050                         return -ENOMEM;
1051                 pipe->files = 1;
1052                 spin_lock(&inode->i_lock);
1053                 if (unlikely(inode->i_pipe)) {
1054                         inode->i_pipe->files++;
1055                         spin_unlock(&inode->i_lock);
1056                         free_pipe_info(pipe);
1057                         pipe = inode->i_pipe;
1058                 } else {
1059                         inode->i_pipe = pipe;
1060                         spin_unlock(&inode->i_lock);
1061                 }
1062         }
1063         filp->private_data = pipe;
1064         /* OK, we have a pipe and it's pinned down */
1065
1066         __pipe_lock(pipe);
1067
1068         /* We can only do regular read/write on fifos */
1069         stream_open(inode, filp);
1070
1071         switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1072         case FMODE_READ:
1073         /*
1074          *  O_RDONLY
1075          *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1076          *  opened, even when there is no process writing the FIFO.
1077          */
1078                 pipe->r_counter++;
1079                 if (pipe->readers++ == 0)
1080                         wake_up_partner(pipe);
1081
1082                 if (!is_pipe && !pipe->writers) {
1083                         if ((filp->f_flags & O_NONBLOCK)) {
1084                                 /* suppress EPOLLHUP until we have
1085                                  * seen a writer */
1086                                 filp->f_version = pipe->w_counter;
1087                         } else {
1088                                 if (wait_for_partner(pipe, &pipe->w_counter))
1089                                         goto err_rd;
1090                         }
1091                 }
1092                 break;
1093
1094         case FMODE_WRITE:
1095         /*
1096          *  O_WRONLY
1097          *  POSIX.1 says that O_NONBLOCK means return -1 with
1098          *  errno=ENXIO when there is no process reading the FIFO.
1099          */
1100                 ret = -ENXIO;
1101                 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1102                         goto err;
1103
1104                 pipe->w_counter++;
1105                 if (!pipe->writers++)
1106                         wake_up_partner(pipe);
1107
1108                 if (!is_pipe && !pipe->readers) {
1109                         if (wait_for_partner(pipe, &pipe->r_counter))
1110                                 goto err_wr;
1111                 }
1112                 break;
1113
1114         case FMODE_READ | FMODE_WRITE:
1115         /*
1116          *  O_RDWR
1117          *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1118          *  This implementation will NEVER block on a O_RDWR open, since
1119          *  the process can at least talk to itself.
1120          */
1121
1122                 pipe->readers++;
1123                 pipe->writers++;
1124                 pipe->r_counter++;
1125                 pipe->w_counter++;
1126                 if (pipe->readers == 1 || pipe->writers == 1)
1127                         wake_up_partner(pipe);
1128                 break;
1129
1130         default:
1131                 ret = -EINVAL;
1132                 goto err;
1133         }
1134
1135         /* Ok! */
1136         __pipe_unlock(pipe);
1137         return 0;
1138
1139 err_rd:
1140         if (!--pipe->readers)
1141                 wake_up_interruptible(&pipe->wr_wait);
1142         ret = -ERESTARTSYS;
1143         goto err;
1144
1145 err_wr:
1146         if (!--pipe->writers)
1147                 wake_up_interruptible(&pipe->rd_wait);
1148         ret = -ERESTARTSYS;
1149         goto err;
1150
1151 err:
1152         __pipe_unlock(pipe);
1153
1154         put_pipe_info(inode, pipe);
1155         return ret;
1156 }
1157
1158 const struct file_operations pipefifo_fops = {
1159         .open           = fifo_open,
1160         .llseek         = no_llseek,
1161         .read_iter      = pipe_read,
1162         .write_iter     = pipe_write,
1163         .poll           = pipe_poll,
1164         .unlocked_ioctl = pipe_ioctl,
1165         .release        = pipe_release,
1166         .fasync         = pipe_fasync,
1167 };
1168
1169 /*
1170  * Currently we rely on the pipe array holding a power-of-2 number
1171  * of pages. Returns 0 on error.
1172  */
1173 unsigned int round_pipe_size(unsigned long size)
1174 {
1175         if (size > (1U << 31))
1176                 return 0;
1177
1178         /* Minimum pipe size, as required by POSIX */
1179         if (size < PAGE_SIZE)
1180                 return PAGE_SIZE;
1181
1182         return roundup_pow_of_two(size);
1183 }
1184
1185 /*
1186  * Allocate a new array of pipe buffers and copy the info over. Returns the
1187  * pipe size if successful, or return -ERROR on error.
1188  */
1189 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1190 {
1191         struct pipe_buffer *bufs;
1192         unsigned int size, nr_slots, head, tail, mask, n;
1193         unsigned long user_bufs;
1194         long ret = 0;
1195
1196         size = round_pipe_size(arg);
1197         nr_slots = size >> PAGE_SHIFT;
1198
1199         if (!nr_slots)
1200                 return -EINVAL;
1201
1202         /*
1203          * If trying to increase the pipe capacity, check that an
1204          * unprivileged user is not trying to exceed various limits
1205          * (soft limit check here, hard limit check just below).
1206          * Decreasing the pipe capacity is always permitted, even
1207          * if the user is currently over a limit.
1208          */
1209         if (nr_slots > pipe->ring_size &&
1210                         size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1211                 return -EPERM;
1212
1213         user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots);
1214
1215         if (nr_slots > pipe->ring_size &&
1216                         (too_many_pipe_buffers_hard(user_bufs) ||
1217                          too_many_pipe_buffers_soft(user_bufs)) &&
1218                         is_unprivileged_user()) {
1219                 ret = -EPERM;
1220                 goto out_revert_acct;
1221         }
1222
1223         /*
1224          * We can shrink the pipe, if arg is greater than the ring occupancy.
1225          * Since we don't expect a lot of shrink+grow operations, just free and
1226          * allocate again like we would do for growing.  If the pipe currently
1227          * contains more buffers than arg, then return busy.
1228          */
1229         mask = pipe->ring_size - 1;
1230         head = pipe->head;
1231         tail = pipe->tail;
1232         n = pipe_occupancy(pipe->head, pipe->tail);
1233         if (nr_slots < n) {
1234                 ret = -EBUSY;
1235                 goto out_revert_acct;
1236         }
1237
1238         bufs = kcalloc(nr_slots, sizeof(*bufs),
1239                        GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1240         if (unlikely(!bufs)) {
1241                 ret = -ENOMEM;
1242                 goto out_revert_acct;
1243         }
1244
1245         /*
1246          * The pipe array wraps around, so just start the new one at zero
1247          * and adjust the indices.
1248          */
1249         if (n > 0) {
1250                 unsigned int h = head & mask;
1251                 unsigned int t = tail & mask;
1252                 if (h > t) {
1253                         memcpy(bufs, pipe->bufs + t,
1254                                n * sizeof(struct pipe_buffer));
1255                 } else {
1256                         unsigned int tsize = pipe->ring_size - t;
1257                         if (h > 0)
1258                                 memcpy(bufs + tsize, pipe->bufs,
1259                                        h * sizeof(struct pipe_buffer));
1260                         memcpy(bufs, pipe->bufs + t,
1261                                tsize * sizeof(struct pipe_buffer));
1262                 }
1263         }
1264
1265         head = n;
1266         tail = 0;
1267
1268         kfree(pipe->bufs);
1269         pipe->bufs = bufs;
1270         pipe->ring_size = nr_slots;
1271         pipe->max_usage = nr_slots;
1272         pipe->tail = tail;
1273         pipe->head = head;
1274         wake_up_interruptible_all(&pipe->rd_wait);
1275         wake_up_interruptible_all(&pipe->wr_wait);
1276         return pipe->max_usage * PAGE_SIZE;
1277
1278 out_revert_acct:
1279         (void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size);
1280         return ret;
1281 }
1282
1283 /*
1284  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1285  * location, so checking ->i_pipe is not enough to verify that this is a
1286  * pipe.
1287  */
1288 struct pipe_inode_info *get_pipe_info(struct file *file)
1289 {
1290         return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1291 }
1292
1293 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1294 {
1295         struct pipe_inode_info *pipe;
1296         long ret;
1297
1298         pipe = get_pipe_info(file);
1299         if (!pipe)
1300                 return -EBADF;
1301
1302         __pipe_lock(pipe);
1303
1304         switch (cmd) {
1305         case F_SETPIPE_SZ:
1306                 ret = pipe_set_size(pipe, arg);
1307                 break;
1308         case F_GETPIPE_SZ:
1309                 ret = pipe->max_usage * PAGE_SIZE;
1310                 break;
1311         default:
1312                 ret = -EINVAL;
1313                 break;
1314         }
1315
1316         __pipe_unlock(pipe);
1317         return ret;
1318 }
1319
1320 static const struct super_operations pipefs_ops = {
1321         .destroy_inode = free_inode_nonrcu,
1322         .statfs = simple_statfs,
1323 };
1324
1325 /*
1326  * pipefs should _never_ be mounted by userland - too much of security hassle,
1327  * no real gain from having the whole whorehouse mounted. So we don't need
1328  * any operations on the root directory. However, we need a non-trivial
1329  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1330  */
1331
1332 static int pipefs_init_fs_context(struct fs_context *fc)
1333 {
1334         struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1335         if (!ctx)
1336                 return -ENOMEM;
1337         ctx->ops = &pipefs_ops;
1338         ctx->dops = &pipefs_dentry_operations;
1339         return 0;
1340 }
1341
1342 static struct file_system_type pipe_fs_type = {
1343         .name           = "pipefs",
1344         .init_fs_context = pipefs_init_fs_context,
1345         .kill_sb        = kill_anon_super,
1346 };
1347
1348 static int __init init_pipe_fs(void)
1349 {
1350         int err = register_filesystem(&pipe_fs_type);
1351
1352         if (!err) {
1353                 pipe_mnt = kern_mount(&pipe_fs_type);
1354                 if (IS_ERR(pipe_mnt)) {
1355                         err = PTR_ERR(pipe_mnt);
1356                         unregister_filesystem(&pipe_fs_type);
1357                 }
1358         }
1359         return err;
1360 }
1361
1362 fs_initcall(init_pipe_fs);