Merge tag 'tag-chrome-platform-for-v5.3' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / fs / ocfs2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * journal.c
6  *
7  * Defines functions of journalling api
8  *
9  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
10  */
11
12 #include <linux/fs.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kthread.h>
17 #include <linux/time.h>
18 #include <linux/random.h>
19 #include <linux/delay.h>
20
21 #include <cluster/masklog.h>
22
23 #include "ocfs2.h"
24
25 #include "alloc.h"
26 #include "blockcheck.h"
27 #include "dir.h"
28 #include "dlmglue.h"
29 #include "extent_map.h"
30 #include "heartbeat.h"
31 #include "inode.h"
32 #include "journal.h"
33 #include "localalloc.h"
34 #include "slot_map.h"
35 #include "super.h"
36 #include "sysfile.h"
37 #include "uptodate.h"
38 #include "quota.h"
39 #include "file.h"
40 #include "namei.h"
41
42 #include "buffer_head_io.h"
43 #include "ocfs2_trace.h"
44
45 DEFINE_SPINLOCK(trans_inc_lock);
46
47 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
48
49 static int ocfs2_force_read_journal(struct inode *inode);
50 static int ocfs2_recover_node(struct ocfs2_super *osb,
51                               int node_num, int slot_num);
52 static int __ocfs2_recovery_thread(void *arg);
53 static int ocfs2_commit_cache(struct ocfs2_super *osb);
54 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
55 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
56                                       int dirty, int replayed);
57 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
58                                  int slot_num);
59 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
60                                  int slot,
61                                  enum ocfs2_orphan_reco_type orphan_reco_type);
62 static int ocfs2_commit_thread(void *arg);
63 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
64                                             int slot_num,
65                                             struct ocfs2_dinode *la_dinode,
66                                             struct ocfs2_dinode *tl_dinode,
67                                             struct ocfs2_quota_recovery *qrec,
68                                             enum ocfs2_orphan_reco_type orphan_reco_type);
69
70 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
71 {
72         return __ocfs2_wait_on_mount(osb, 0);
73 }
74
75 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
76 {
77         return __ocfs2_wait_on_mount(osb, 1);
78 }
79
80 /*
81  * This replay_map is to track online/offline slots, so we could recover
82  * offline slots during recovery and mount
83  */
84
85 enum ocfs2_replay_state {
86         REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
87         REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
88         REPLAY_DONE             /* Replay was already queued */
89 };
90
91 struct ocfs2_replay_map {
92         unsigned int rm_slots;
93         enum ocfs2_replay_state rm_state;
94         unsigned char rm_replay_slots[0];
95 };
96
97 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
98 {
99         if (!osb->replay_map)
100                 return;
101
102         /* If we've already queued the replay, we don't have any more to do */
103         if (osb->replay_map->rm_state == REPLAY_DONE)
104                 return;
105
106         osb->replay_map->rm_state = state;
107 }
108
109 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
110 {
111         struct ocfs2_replay_map *replay_map;
112         int i, node_num;
113
114         /* If replay map is already set, we don't do it again */
115         if (osb->replay_map)
116                 return 0;
117
118         replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
119                              (osb->max_slots * sizeof(char)), GFP_KERNEL);
120
121         if (!replay_map) {
122                 mlog_errno(-ENOMEM);
123                 return -ENOMEM;
124         }
125
126         spin_lock(&osb->osb_lock);
127
128         replay_map->rm_slots = osb->max_slots;
129         replay_map->rm_state = REPLAY_UNNEEDED;
130
131         /* set rm_replay_slots for offline slot(s) */
132         for (i = 0; i < replay_map->rm_slots; i++) {
133                 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
134                         replay_map->rm_replay_slots[i] = 1;
135         }
136
137         osb->replay_map = replay_map;
138         spin_unlock(&osb->osb_lock);
139         return 0;
140 }
141
142 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
143                 enum ocfs2_orphan_reco_type orphan_reco_type)
144 {
145         struct ocfs2_replay_map *replay_map = osb->replay_map;
146         int i;
147
148         if (!replay_map)
149                 return;
150
151         if (replay_map->rm_state != REPLAY_NEEDED)
152                 return;
153
154         for (i = 0; i < replay_map->rm_slots; i++)
155                 if (replay_map->rm_replay_slots[i])
156                         ocfs2_queue_recovery_completion(osb->journal, i, NULL,
157                                                         NULL, NULL,
158                                                         orphan_reco_type);
159         replay_map->rm_state = REPLAY_DONE;
160 }
161
162 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
163 {
164         struct ocfs2_replay_map *replay_map = osb->replay_map;
165
166         if (!osb->replay_map)
167                 return;
168
169         kfree(replay_map);
170         osb->replay_map = NULL;
171 }
172
173 int ocfs2_recovery_init(struct ocfs2_super *osb)
174 {
175         struct ocfs2_recovery_map *rm;
176
177         mutex_init(&osb->recovery_lock);
178         osb->disable_recovery = 0;
179         osb->recovery_thread_task = NULL;
180         init_waitqueue_head(&osb->recovery_event);
181
182         rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
183                      osb->max_slots * sizeof(unsigned int),
184                      GFP_KERNEL);
185         if (!rm) {
186                 mlog_errno(-ENOMEM);
187                 return -ENOMEM;
188         }
189
190         rm->rm_entries = (unsigned int *)((char *)rm +
191                                           sizeof(struct ocfs2_recovery_map));
192         osb->recovery_map = rm;
193
194         return 0;
195 }
196
197 /* we can't grab the goofy sem lock from inside wait_event, so we use
198  * memory barriers to make sure that we'll see the null task before
199  * being woken up */
200 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
201 {
202         mb();
203         return osb->recovery_thread_task != NULL;
204 }
205
206 void ocfs2_recovery_exit(struct ocfs2_super *osb)
207 {
208         struct ocfs2_recovery_map *rm;
209
210         /* disable any new recovery threads and wait for any currently
211          * running ones to exit. Do this before setting the vol_state. */
212         mutex_lock(&osb->recovery_lock);
213         osb->disable_recovery = 1;
214         mutex_unlock(&osb->recovery_lock);
215         wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
216
217         /* At this point, we know that no more recovery threads can be
218          * launched, so wait for any recovery completion work to
219          * complete. */
220         flush_workqueue(osb->ocfs2_wq);
221
222         /*
223          * Now that recovery is shut down, and the osb is about to be
224          * freed,  the osb_lock is not taken here.
225          */
226         rm = osb->recovery_map;
227         /* XXX: Should we bug if there are dirty entries? */
228
229         kfree(rm);
230 }
231
232 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
233                                      unsigned int node_num)
234 {
235         int i;
236         struct ocfs2_recovery_map *rm = osb->recovery_map;
237
238         assert_spin_locked(&osb->osb_lock);
239
240         for (i = 0; i < rm->rm_used; i++) {
241                 if (rm->rm_entries[i] == node_num)
242                         return 1;
243         }
244
245         return 0;
246 }
247
248 /* Behaves like test-and-set.  Returns the previous value */
249 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
250                                   unsigned int node_num)
251 {
252         struct ocfs2_recovery_map *rm = osb->recovery_map;
253
254         spin_lock(&osb->osb_lock);
255         if (__ocfs2_recovery_map_test(osb, node_num)) {
256                 spin_unlock(&osb->osb_lock);
257                 return 1;
258         }
259
260         /* XXX: Can this be exploited? Not from o2dlm... */
261         BUG_ON(rm->rm_used >= osb->max_slots);
262
263         rm->rm_entries[rm->rm_used] = node_num;
264         rm->rm_used++;
265         spin_unlock(&osb->osb_lock);
266
267         return 0;
268 }
269
270 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
271                                      unsigned int node_num)
272 {
273         int i;
274         struct ocfs2_recovery_map *rm = osb->recovery_map;
275
276         spin_lock(&osb->osb_lock);
277
278         for (i = 0; i < rm->rm_used; i++) {
279                 if (rm->rm_entries[i] == node_num)
280                         break;
281         }
282
283         if (i < rm->rm_used) {
284                 /* XXX: be careful with the pointer math */
285                 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
286                         (rm->rm_used - i - 1) * sizeof(unsigned int));
287                 rm->rm_used--;
288         }
289
290         spin_unlock(&osb->osb_lock);
291 }
292
293 static int ocfs2_commit_cache(struct ocfs2_super *osb)
294 {
295         int status = 0;
296         unsigned int flushed;
297         struct ocfs2_journal *journal = NULL;
298
299         journal = osb->journal;
300
301         /* Flush all pending commits and checkpoint the journal. */
302         down_write(&journal->j_trans_barrier);
303
304         flushed = atomic_read(&journal->j_num_trans);
305         trace_ocfs2_commit_cache_begin(flushed);
306         if (flushed == 0) {
307                 up_write(&journal->j_trans_barrier);
308                 goto finally;
309         }
310
311         jbd2_journal_lock_updates(journal->j_journal);
312         status = jbd2_journal_flush(journal->j_journal);
313         jbd2_journal_unlock_updates(journal->j_journal);
314         if (status < 0) {
315                 up_write(&journal->j_trans_barrier);
316                 mlog_errno(status);
317                 goto finally;
318         }
319
320         ocfs2_inc_trans_id(journal);
321
322         flushed = atomic_read(&journal->j_num_trans);
323         atomic_set(&journal->j_num_trans, 0);
324         up_write(&journal->j_trans_barrier);
325
326         trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
327
328         ocfs2_wake_downconvert_thread(osb);
329         wake_up(&journal->j_checkpointed);
330 finally:
331         return status;
332 }
333
334 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
335 {
336         journal_t *journal = osb->journal->j_journal;
337         handle_t *handle;
338
339         BUG_ON(!osb || !osb->journal->j_journal);
340
341         if (ocfs2_is_hard_readonly(osb))
342                 return ERR_PTR(-EROFS);
343
344         BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
345         BUG_ON(max_buffs <= 0);
346
347         /* Nested transaction? Just return the handle... */
348         if (journal_current_handle())
349                 return jbd2_journal_start(journal, max_buffs);
350
351         sb_start_intwrite(osb->sb);
352
353         down_read(&osb->journal->j_trans_barrier);
354
355         handle = jbd2_journal_start(journal, max_buffs);
356         if (IS_ERR(handle)) {
357                 up_read(&osb->journal->j_trans_barrier);
358                 sb_end_intwrite(osb->sb);
359
360                 mlog_errno(PTR_ERR(handle));
361
362                 if (is_journal_aborted(journal)) {
363                         ocfs2_abort(osb->sb, "Detected aborted journal\n");
364                         handle = ERR_PTR(-EROFS);
365                 }
366         } else {
367                 if (!ocfs2_mount_local(osb))
368                         atomic_inc(&(osb->journal->j_num_trans));
369         }
370
371         return handle;
372 }
373
374 int ocfs2_commit_trans(struct ocfs2_super *osb,
375                        handle_t *handle)
376 {
377         int ret, nested;
378         struct ocfs2_journal *journal = osb->journal;
379
380         BUG_ON(!handle);
381
382         nested = handle->h_ref > 1;
383         ret = jbd2_journal_stop(handle);
384         if (ret < 0)
385                 mlog_errno(ret);
386
387         if (!nested) {
388                 up_read(&journal->j_trans_barrier);
389                 sb_end_intwrite(osb->sb);
390         }
391
392         return ret;
393 }
394
395 /*
396  * 'nblocks' is what you want to add to the current transaction.
397  *
398  * This might call jbd2_journal_restart() which will commit dirty buffers
399  * and then restart the transaction. Before calling
400  * ocfs2_extend_trans(), any changed blocks should have been
401  * dirtied. After calling it, all blocks which need to be changed must
402  * go through another set of journal_access/journal_dirty calls.
403  *
404  * WARNING: This will not release any semaphores or disk locks taken
405  * during the transaction, so make sure they were taken *before*
406  * start_trans or we'll have ordering deadlocks.
407  *
408  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
409  * good because transaction ids haven't yet been recorded on the
410  * cluster locks associated with this handle.
411  */
412 int ocfs2_extend_trans(handle_t *handle, int nblocks)
413 {
414         int status, old_nblocks;
415
416         BUG_ON(!handle);
417         BUG_ON(nblocks < 0);
418
419         if (!nblocks)
420                 return 0;
421
422         old_nblocks = handle->h_buffer_credits;
423
424         trace_ocfs2_extend_trans(old_nblocks, nblocks);
425
426 #ifdef CONFIG_OCFS2_DEBUG_FS
427         status = 1;
428 #else
429         status = jbd2_journal_extend(handle, nblocks);
430         if (status < 0) {
431                 mlog_errno(status);
432                 goto bail;
433         }
434 #endif
435
436         if (status > 0) {
437                 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
438                 status = jbd2_journal_restart(handle,
439                                               old_nblocks + nblocks);
440                 if (status < 0) {
441                         mlog_errno(status);
442                         goto bail;
443                 }
444         }
445
446         status = 0;
447 bail:
448         return status;
449 }
450
451 /*
452  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
453  * If that fails, restart the transaction & regain write access for the
454  * buffer head which is used for metadata modifications.
455  * Taken from Ext4: extend_or_restart_transaction()
456  */
457 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
458 {
459         int status, old_nblks;
460
461         BUG_ON(!handle);
462
463         old_nblks = handle->h_buffer_credits;
464         trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
465
466         if (old_nblks < thresh)
467                 return 0;
468
469         status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
470         if (status < 0) {
471                 mlog_errno(status);
472                 goto bail;
473         }
474
475         if (status > 0) {
476                 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
477                 if (status < 0)
478                         mlog_errno(status);
479         }
480
481 bail:
482         return status;
483 }
484
485
486 struct ocfs2_triggers {
487         struct jbd2_buffer_trigger_type ot_triggers;
488         int                             ot_offset;
489 };
490
491 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
492 {
493         return container_of(triggers, struct ocfs2_triggers, ot_triggers);
494 }
495
496 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
497                                  struct buffer_head *bh,
498                                  void *data, size_t size)
499 {
500         struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
501
502         /*
503          * We aren't guaranteed to have the superblock here, so we
504          * must unconditionally compute the ecc data.
505          * __ocfs2_journal_access() will only set the triggers if
506          * metaecc is enabled.
507          */
508         ocfs2_block_check_compute(data, size, data + ot->ot_offset);
509 }
510
511 /*
512  * Quota blocks have their own trigger because the struct ocfs2_block_check
513  * offset depends on the blocksize.
514  */
515 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
516                                  struct buffer_head *bh,
517                                  void *data, size_t size)
518 {
519         struct ocfs2_disk_dqtrailer *dqt =
520                 ocfs2_block_dqtrailer(size, data);
521
522         /*
523          * We aren't guaranteed to have the superblock here, so we
524          * must unconditionally compute the ecc data.
525          * __ocfs2_journal_access() will only set the triggers if
526          * metaecc is enabled.
527          */
528         ocfs2_block_check_compute(data, size, &dqt->dq_check);
529 }
530
531 /*
532  * Directory blocks also have their own trigger because the
533  * struct ocfs2_block_check offset depends on the blocksize.
534  */
535 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
536                                  struct buffer_head *bh,
537                                  void *data, size_t size)
538 {
539         struct ocfs2_dir_block_trailer *trailer =
540                 ocfs2_dir_trailer_from_size(size, data);
541
542         /*
543          * We aren't guaranteed to have the superblock here, so we
544          * must unconditionally compute the ecc data.
545          * __ocfs2_journal_access() will only set the triggers if
546          * metaecc is enabled.
547          */
548         ocfs2_block_check_compute(data, size, &trailer->db_check);
549 }
550
551 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
552                                 struct buffer_head *bh)
553 {
554         mlog(ML_ERROR,
555              "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
556              "bh->b_blocknr = %llu\n",
557              (unsigned long)bh,
558              (unsigned long long)bh->b_blocknr);
559
560         ocfs2_error(bh->b_bdev->bd_super,
561                     "JBD2 has aborted our journal, ocfs2 cannot continue\n");
562 }
563
564 static struct ocfs2_triggers di_triggers = {
565         .ot_triggers = {
566                 .t_frozen = ocfs2_frozen_trigger,
567                 .t_abort = ocfs2_abort_trigger,
568         },
569         .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
570 };
571
572 static struct ocfs2_triggers eb_triggers = {
573         .ot_triggers = {
574                 .t_frozen = ocfs2_frozen_trigger,
575                 .t_abort = ocfs2_abort_trigger,
576         },
577         .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
578 };
579
580 static struct ocfs2_triggers rb_triggers = {
581         .ot_triggers = {
582                 .t_frozen = ocfs2_frozen_trigger,
583                 .t_abort = ocfs2_abort_trigger,
584         },
585         .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
586 };
587
588 static struct ocfs2_triggers gd_triggers = {
589         .ot_triggers = {
590                 .t_frozen = ocfs2_frozen_trigger,
591                 .t_abort = ocfs2_abort_trigger,
592         },
593         .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
594 };
595
596 static struct ocfs2_triggers db_triggers = {
597         .ot_triggers = {
598                 .t_frozen = ocfs2_db_frozen_trigger,
599                 .t_abort = ocfs2_abort_trigger,
600         },
601 };
602
603 static struct ocfs2_triggers xb_triggers = {
604         .ot_triggers = {
605                 .t_frozen = ocfs2_frozen_trigger,
606                 .t_abort = ocfs2_abort_trigger,
607         },
608         .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
609 };
610
611 static struct ocfs2_triggers dq_triggers = {
612         .ot_triggers = {
613                 .t_frozen = ocfs2_dq_frozen_trigger,
614                 .t_abort = ocfs2_abort_trigger,
615         },
616 };
617
618 static struct ocfs2_triggers dr_triggers = {
619         .ot_triggers = {
620                 .t_frozen = ocfs2_frozen_trigger,
621                 .t_abort = ocfs2_abort_trigger,
622         },
623         .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
624 };
625
626 static struct ocfs2_triggers dl_triggers = {
627         .ot_triggers = {
628                 .t_frozen = ocfs2_frozen_trigger,
629                 .t_abort = ocfs2_abort_trigger,
630         },
631         .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
632 };
633
634 static int __ocfs2_journal_access(handle_t *handle,
635                                   struct ocfs2_caching_info *ci,
636                                   struct buffer_head *bh,
637                                   struct ocfs2_triggers *triggers,
638                                   int type)
639 {
640         int status;
641         struct ocfs2_super *osb =
642                 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
643
644         BUG_ON(!ci || !ci->ci_ops);
645         BUG_ON(!handle);
646         BUG_ON(!bh);
647
648         trace_ocfs2_journal_access(
649                 (unsigned long long)ocfs2_metadata_cache_owner(ci),
650                 (unsigned long long)bh->b_blocknr, type, bh->b_size);
651
652         /* we can safely remove this assertion after testing. */
653         if (!buffer_uptodate(bh)) {
654                 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
655                 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
656                      (unsigned long long)bh->b_blocknr, bh->b_state);
657
658                 lock_buffer(bh);
659                 /*
660                  * A previous transaction with a couple of buffer heads fail
661                  * to checkpoint, so all the bhs are marked as BH_Write_EIO.
662                  * For current transaction, the bh is just among those error
663                  * bhs which previous transaction handle. We can't just clear
664                  * its BH_Write_EIO and reuse directly, since other bhs are
665                  * not written to disk yet and that will cause metadata
666                  * inconsistency. So we should set fs read-only to avoid
667                  * further damage.
668                  */
669                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
670                         unlock_buffer(bh);
671                         return ocfs2_error(osb->sb, "A previous attempt to "
672                                         "write this buffer head failed\n");
673                 }
674                 unlock_buffer(bh);
675         }
676
677         /* Set the current transaction information on the ci so
678          * that the locking code knows whether it can drop it's locks
679          * on this ci or not. We're protected from the commit
680          * thread updating the current transaction id until
681          * ocfs2_commit_trans() because ocfs2_start_trans() took
682          * j_trans_barrier for us. */
683         ocfs2_set_ci_lock_trans(osb->journal, ci);
684
685         ocfs2_metadata_cache_io_lock(ci);
686         switch (type) {
687         case OCFS2_JOURNAL_ACCESS_CREATE:
688         case OCFS2_JOURNAL_ACCESS_WRITE:
689                 status = jbd2_journal_get_write_access(handle, bh);
690                 break;
691
692         case OCFS2_JOURNAL_ACCESS_UNDO:
693                 status = jbd2_journal_get_undo_access(handle, bh);
694                 break;
695
696         default:
697                 status = -EINVAL;
698                 mlog(ML_ERROR, "Unknown access type!\n");
699         }
700         if (!status && ocfs2_meta_ecc(osb) && triggers)
701                 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
702         ocfs2_metadata_cache_io_unlock(ci);
703
704         if (status < 0)
705                 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
706                      status, type);
707
708         return status;
709 }
710
711 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
712                             struct buffer_head *bh, int type)
713 {
714         return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
715 }
716
717 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
718                             struct buffer_head *bh, int type)
719 {
720         return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
721 }
722
723 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
724                             struct buffer_head *bh, int type)
725 {
726         return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
727                                       type);
728 }
729
730 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
731                             struct buffer_head *bh, int type)
732 {
733         return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
734 }
735
736 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
737                             struct buffer_head *bh, int type)
738 {
739         return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
740 }
741
742 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
743                             struct buffer_head *bh, int type)
744 {
745         return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
746 }
747
748 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
749                             struct buffer_head *bh, int type)
750 {
751         return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
752 }
753
754 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
755                             struct buffer_head *bh, int type)
756 {
757         return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
758 }
759
760 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
761                             struct buffer_head *bh, int type)
762 {
763         return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
764 }
765
766 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
767                          struct buffer_head *bh, int type)
768 {
769         return __ocfs2_journal_access(handle, ci, bh, NULL, type);
770 }
771
772 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
773 {
774         int status;
775
776         trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
777
778         status = jbd2_journal_dirty_metadata(handle, bh);
779         if (status) {
780                 mlog_errno(status);
781                 if (!is_handle_aborted(handle)) {
782                         journal_t *journal = handle->h_transaction->t_journal;
783                         struct super_block *sb = bh->b_bdev->bd_super;
784
785                         mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
786                                         "Aborting transaction and journal.\n");
787                         handle->h_err = status;
788                         jbd2_journal_abort_handle(handle);
789                         jbd2_journal_abort(journal, status);
790                         ocfs2_abort(sb, "Journal already aborted.\n");
791                 }
792         }
793 }
794
795 #define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
796
797 void ocfs2_set_journal_params(struct ocfs2_super *osb)
798 {
799         journal_t *journal = osb->journal->j_journal;
800         unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
801
802         if (osb->osb_commit_interval)
803                 commit_interval = osb->osb_commit_interval;
804
805         write_lock(&journal->j_state_lock);
806         journal->j_commit_interval = commit_interval;
807         if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
808                 journal->j_flags |= JBD2_BARRIER;
809         else
810                 journal->j_flags &= ~JBD2_BARRIER;
811         write_unlock(&journal->j_state_lock);
812 }
813
814 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
815 {
816         int status = -1;
817         struct inode *inode = NULL; /* the journal inode */
818         journal_t *j_journal = NULL;
819         struct ocfs2_dinode *di = NULL;
820         struct buffer_head *bh = NULL;
821         struct ocfs2_super *osb;
822         int inode_lock = 0;
823
824         BUG_ON(!journal);
825
826         osb = journal->j_osb;
827
828         /* already have the inode for our journal */
829         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
830                                             osb->slot_num);
831         if (inode == NULL) {
832                 status = -EACCES;
833                 mlog_errno(status);
834                 goto done;
835         }
836         if (is_bad_inode(inode)) {
837                 mlog(ML_ERROR, "access error (bad inode)\n");
838                 iput(inode);
839                 inode = NULL;
840                 status = -EACCES;
841                 goto done;
842         }
843
844         SET_INODE_JOURNAL(inode);
845         OCFS2_I(inode)->ip_open_count++;
846
847         /* Skip recovery waits here - journal inode metadata never
848          * changes in a live cluster so it can be considered an
849          * exception to the rule. */
850         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
851         if (status < 0) {
852                 if (status != -ERESTARTSYS)
853                         mlog(ML_ERROR, "Could not get lock on journal!\n");
854                 goto done;
855         }
856
857         inode_lock = 1;
858         di = (struct ocfs2_dinode *)bh->b_data;
859
860         if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
861                 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
862                      i_size_read(inode));
863                 status = -EINVAL;
864                 goto done;
865         }
866
867         trace_ocfs2_journal_init(i_size_read(inode),
868                                  (unsigned long long)inode->i_blocks,
869                                  OCFS2_I(inode)->ip_clusters);
870
871         /* call the kernels journal init function now */
872         j_journal = jbd2_journal_init_inode(inode);
873         if (j_journal == NULL) {
874                 mlog(ML_ERROR, "Linux journal layer error\n");
875                 status = -EINVAL;
876                 goto done;
877         }
878
879         trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
880
881         *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
882                   OCFS2_JOURNAL_DIRTY_FL);
883
884         journal->j_journal = j_journal;
885         journal->j_inode = inode;
886         journal->j_bh = bh;
887
888         ocfs2_set_journal_params(osb);
889
890         journal->j_state = OCFS2_JOURNAL_LOADED;
891
892         status = 0;
893 done:
894         if (status < 0) {
895                 if (inode_lock)
896                         ocfs2_inode_unlock(inode, 1);
897                 brelse(bh);
898                 if (inode) {
899                         OCFS2_I(inode)->ip_open_count--;
900                         iput(inode);
901                 }
902         }
903
904         return status;
905 }
906
907 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
908 {
909         le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
910 }
911
912 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
913 {
914         return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
915 }
916
917 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
918                                       int dirty, int replayed)
919 {
920         int status;
921         unsigned int flags;
922         struct ocfs2_journal *journal = osb->journal;
923         struct buffer_head *bh = journal->j_bh;
924         struct ocfs2_dinode *fe;
925
926         fe = (struct ocfs2_dinode *)bh->b_data;
927
928         /* The journal bh on the osb always comes from ocfs2_journal_init()
929          * and was validated there inside ocfs2_inode_lock_full().  It's a
930          * code bug if we mess it up. */
931         BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
932
933         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
934         if (dirty)
935                 flags |= OCFS2_JOURNAL_DIRTY_FL;
936         else
937                 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
938         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
939
940         if (replayed)
941                 ocfs2_bump_recovery_generation(fe);
942
943         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
944         status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
945         if (status < 0)
946                 mlog_errno(status);
947
948         return status;
949 }
950
951 /*
952  * If the journal has been kmalloc'd it needs to be freed after this
953  * call.
954  */
955 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
956 {
957         struct ocfs2_journal *journal = NULL;
958         int status = 0;
959         struct inode *inode = NULL;
960         int num_running_trans = 0;
961
962         BUG_ON(!osb);
963
964         journal = osb->journal;
965         if (!journal)
966                 goto done;
967
968         inode = journal->j_inode;
969
970         if (journal->j_state != OCFS2_JOURNAL_LOADED)
971                 goto done;
972
973         /* need to inc inode use count - jbd2_journal_destroy will iput. */
974         if (!igrab(inode))
975                 BUG();
976
977         num_running_trans = atomic_read(&(osb->journal->j_num_trans));
978         trace_ocfs2_journal_shutdown(num_running_trans);
979
980         /* Do a commit_cache here. It will flush our journal, *and*
981          * release any locks that are still held.
982          * set the SHUTDOWN flag and release the trans lock.
983          * the commit thread will take the trans lock for us below. */
984         journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
985
986         /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
987          * drop the trans_lock (which we want to hold until we
988          * completely destroy the journal. */
989         if (osb->commit_task) {
990                 /* Wait for the commit thread */
991                 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
992                 kthread_stop(osb->commit_task);
993                 osb->commit_task = NULL;
994         }
995
996         BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
997
998         if (ocfs2_mount_local(osb)) {
999                 jbd2_journal_lock_updates(journal->j_journal);
1000                 status = jbd2_journal_flush(journal->j_journal);
1001                 jbd2_journal_unlock_updates(journal->j_journal);
1002                 if (status < 0)
1003                         mlog_errno(status);
1004         }
1005
1006         /* Shutdown the kernel journal system */
1007         if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1008                 /*
1009                  * Do not toggle if flush was unsuccessful otherwise
1010                  * will leave dirty metadata in a "clean" journal
1011                  */
1012                 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1013                 if (status < 0)
1014                         mlog_errno(status);
1015         }
1016         journal->j_journal = NULL;
1017
1018         OCFS2_I(inode)->ip_open_count--;
1019
1020         /* unlock our journal */
1021         ocfs2_inode_unlock(inode, 1);
1022
1023         brelse(journal->j_bh);
1024         journal->j_bh = NULL;
1025
1026         journal->j_state = OCFS2_JOURNAL_FREE;
1027
1028 //      up_write(&journal->j_trans_barrier);
1029 done:
1030         iput(inode);
1031 }
1032
1033 static void ocfs2_clear_journal_error(struct super_block *sb,
1034                                       journal_t *journal,
1035                                       int slot)
1036 {
1037         int olderr;
1038
1039         olderr = jbd2_journal_errno(journal);
1040         if (olderr) {
1041                 mlog(ML_ERROR, "File system error %d recorded in "
1042                      "journal %u.\n", olderr, slot);
1043                 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1044                      sb->s_id);
1045
1046                 jbd2_journal_ack_err(journal);
1047                 jbd2_journal_clear_err(journal);
1048         }
1049 }
1050
1051 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1052 {
1053         int status = 0;
1054         struct ocfs2_super *osb;
1055
1056         BUG_ON(!journal);
1057
1058         osb = journal->j_osb;
1059
1060         status = jbd2_journal_load(journal->j_journal);
1061         if (status < 0) {
1062                 mlog(ML_ERROR, "Failed to load journal!\n");
1063                 goto done;
1064         }
1065
1066         ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1067
1068         status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1069         if (status < 0) {
1070                 mlog_errno(status);
1071                 goto done;
1072         }
1073
1074         /* Launch the commit thread */
1075         if (!local) {
1076                 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1077                                 "ocfs2cmt-%s", osb->uuid_str);
1078                 if (IS_ERR(osb->commit_task)) {
1079                         status = PTR_ERR(osb->commit_task);
1080                         osb->commit_task = NULL;
1081                         mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1082                              "error=%d", status);
1083                         goto done;
1084                 }
1085         } else
1086                 osb->commit_task = NULL;
1087
1088 done:
1089         return status;
1090 }
1091
1092
1093 /* 'full' flag tells us whether we clear out all blocks or if we just
1094  * mark the journal clean */
1095 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1096 {
1097         int status;
1098
1099         BUG_ON(!journal);
1100
1101         status = jbd2_journal_wipe(journal->j_journal, full);
1102         if (status < 0) {
1103                 mlog_errno(status);
1104                 goto bail;
1105         }
1106
1107         status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1108         if (status < 0)
1109                 mlog_errno(status);
1110
1111 bail:
1112         return status;
1113 }
1114
1115 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1116 {
1117         int empty;
1118         struct ocfs2_recovery_map *rm = osb->recovery_map;
1119
1120         spin_lock(&osb->osb_lock);
1121         empty = (rm->rm_used == 0);
1122         spin_unlock(&osb->osb_lock);
1123
1124         return empty;
1125 }
1126
1127 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1128 {
1129         wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1130 }
1131
1132 /*
1133  * JBD Might read a cached version of another nodes journal file. We
1134  * don't want this as this file changes often and we get no
1135  * notification on those changes. The only way to be sure that we've
1136  * got the most up to date version of those blocks then is to force
1137  * read them off disk. Just searching through the buffer cache won't
1138  * work as there may be pages backing this file which are still marked
1139  * up to date. We know things can't change on this file underneath us
1140  * as we have the lock by now :)
1141  */
1142 static int ocfs2_force_read_journal(struct inode *inode)
1143 {
1144         int status = 0;
1145         int i;
1146         u64 v_blkno, p_blkno, p_blocks, num_blocks;
1147         struct buffer_head *bh = NULL;
1148         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1149
1150         num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1151         v_blkno = 0;
1152         while (v_blkno < num_blocks) {
1153                 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1154                                                      &p_blkno, &p_blocks, NULL);
1155                 if (status < 0) {
1156                         mlog_errno(status);
1157                         goto bail;
1158                 }
1159
1160                 for (i = 0; i < p_blocks; i++, p_blkno++) {
1161                         bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1162                                         osb->sb->s_blocksize);
1163                         /* block not cached. */
1164                         if (!bh)
1165                                 continue;
1166
1167                         brelse(bh);
1168                         bh = NULL;
1169                         /* We are reading journal data which should not
1170                          * be put in the uptodate cache.
1171                          */
1172                         status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1173                         if (status < 0) {
1174                                 mlog_errno(status);
1175                                 goto bail;
1176                         }
1177
1178                         brelse(bh);
1179                         bh = NULL;
1180                 }
1181
1182                 v_blkno += p_blocks;
1183         }
1184
1185 bail:
1186         return status;
1187 }
1188
1189 struct ocfs2_la_recovery_item {
1190         struct list_head        lri_list;
1191         int                     lri_slot;
1192         struct ocfs2_dinode     *lri_la_dinode;
1193         struct ocfs2_dinode     *lri_tl_dinode;
1194         struct ocfs2_quota_recovery *lri_qrec;
1195         enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1196 };
1197
1198 /* Does the second half of the recovery process. By this point, the
1199  * node is marked clean and can actually be considered recovered,
1200  * hence it's no longer in the recovery map, but there's still some
1201  * cleanup we can do which shouldn't happen within the recovery thread
1202  * as locking in that context becomes very difficult if we are to take
1203  * recovering nodes into account.
1204  *
1205  * NOTE: This function can and will sleep on recovery of other nodes
1206  * during cluster locking, just like any other ocfs2 process.
1207  */
1208 void ocfs2_complete_recovery(struct work_struct *work)
1209 {
1210         int ret = 0;
1211         struct ocfs2_journal *journal =
1212                 container_of(work, struct ocfs2_journal, j_recovery_work);
1213         struct ocfs2_super *osb = journal->j_osb;
1214         struct ocfs2_dinode *la_dinode, *tl_dinode;
1215         struct ocfs2_la_recovery_item *item, *n;
1216         struct ocfs2_quota_recovery *qrec;
1217         enum ocfs2_orphan_reco_type orphan_reco_type;
1218         LIST_HEAD(tmp_la_list);
1219
1220         trace_ocfs2_complete_recovery(
1221                 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1222
1223         spin_lock(&journal->j_lock);
1224         list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1225         spin_unlock(&journal->j_lock);
1226
1227         list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1228                 list_del_init(&item->lri_list);
1229
1230                 ocfs2_wait_on_quotas(osb);
1231
1232                 la_dinode = item->lri_la_dinode;
1233                 tl_dinode = item->lri_tl_dinode;
1234                 qrec = item->lri_qrec;
1235                 orphan_reco_type = item->lri_orphan_reco_type;
1236
1237                 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1238                         la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1239                         tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1240                         qrec);
1241
1242                 if (la_dinode) {
1243                         ret = ocfs2_complete_local_alloc_recovery(osb,
1244                                                                   la_dinode);
1245                         if (ret < 0)
1246                                 mlog_errno(ret);
1247
1248                         kfree(la_dinode);
1249                 }
1250
1251                 if (tl_dinode) {
1252                         ret = ocfs2_complete_truncate_log_recovery(osb,
1253                                                                    tl_dinode);
1254                         if (ret < 0)
1255                                 mlog_errno(ret);
1256
1257                         kfree(tl_dinode);
1258                 }
1259
1260                 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1261                                 orphan_reco_type);
1262                 if (ret < 0)
1263                         mlog_errno(ret);
1264
1265                 if (qrec) {
1266                         ret = ocfs2_finish_quota_recovery(osb, qrec,
1267                                                           item->lri_slot);
1268                         if (ret < 0)
1269                                 mlog_errno(ret);
1270                         /* Recovery info is already freed now */
1271                 }
1272
1273                 kfree(item);
1274         }
1275
1276         trace_ocfs2_complete_recovery_end(ret);
1277 }
1278
1279 /* NOTE: This function always eats your references to la_dinode and
1280  * tl_dinode, either manually on error, or by passing them to
1281  * ocfs2_complete_recovery */
1282 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1283                                             int slot_num,
1284                                             struct ocfs2_dinode *la_dinode,
1285                                             struct ocfs2_dinode *tl_dinode,
1286                                             struct ocfs2_quota_recovery *qrec,
1287                                             enum ocfs2_orphan_reco_type orphan_reco_type)
1288 {
1289         struct ocfs2_la_recovery_item *item;
1290
1291         item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1292         if (!item) {
1293                 /* Though we wish to avoid it, we are in fact safe in
1294                  * skipping local alloc cleanup as fsck.ocfs2 is more
1295                  * than capable of reclaiming unused space. */
1296                 kfree(la_dinode);
1297                 kfree(tl_dinode);
1298
1299                 if (qrec)
1300                         ocfs2_free_quota_recovery(qrec);
1301
1302                 mlog_errno(-ENOMEM);
1303                 return;
1304         }
1305
1306         INIT_LIST_HEAD(&item->lri_list);
1307         item->lri_la_dinode = la_dinode;
1308         item->lri_slot = slot_num;
1309         item->lri_tl_dinode = tl_dinode;
1310         item->lri_qrec = qrec;
1311         item->lri_orphan_reco_type = orphan_reco_type;
1312
1313         spin_lock(&journal->j_lock);
1314         list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1315         queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1316         spin_unlock(&journal->j_lock);
1317 }
1318
1319 /* Called by the mount code to queue recovery the last part of
1320  * recovery for it's own and offline slot(s). */
1321 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1322 {
1323         struct ocfs2_journal *journal = osb->journal;
1324
1325         if (ocfs2_is_hard_readonly(osb))
1326                 return;
1327
1328         /* No need to queue up our truncate_log as regular cleanup will catch
1329          * that */
1330         ocfs2_queue_recovery_completion(journal, osb->slot_num,
1331                                         osb->local_alloc_copy, NULL, NULL,
1332                                         ORPHAN_NEED_TRUNCATE);
1333         ocfs2_schedule_truncate_log_flush(osb, 0);
1334
1335         osb->local_alloc_copy = NULL;
1336
1337         /* queue to recover orphan slots for all offline slots */
1338         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1339         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1340         ocfs2_free_replay_slots(osb);
1341 }
1342
1343 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1344 {
1345         if (osb->quota_rec) {
1346                 ocfs2_queue_recovery_completion(osb->journal,
1347                                                 osb->slot_num,
1348                                                 NULL,
1349                                                 NULL,
1350                                                 osb->quota_rec,
1351                                                 ORPHAN_NEED_TRUNCATE);
1352                 osb->quota_rec = NULL;
1353         }
1354 }
1355
1356 static int __ocfs2_recovery_thread(void *arg)
1357 {
1358         int status, node_num, slot_num;
1359         struct ocfs2_super *osb = arg;
1360         struct ocfs2_recovery_map *rm = osb->recovery_map;
1361         int *rm_quota = NULL;
1362         int rm_quota_used = 0, i;
1363         struct ocfs2_quota_recovery *qrec;
1364
1365         /* Whether the quota supported. */
1366         int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1367                         OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1368                 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1369                         OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1370
1371         status = ocfs2_wait_on_mount(osb);
1372         if (status < 0) {
1373                 goto bail;
1374         }
1375
1376         if (quota_enabled) {
1377                 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1378                 if (!rm_quota) {
1379                         status = -ENOMEM;
1380                         goto bail;
1381                 }
1382         }
1383 restart:
1384         status = ocfs2_super_lock(osb, 1);
1385         if (status < 0) {
1386                 mlog_errno(status);
1387                 goto bail;
1388         }
1389
1390         status = ocfs2_compute_replay_slots(osb);
1391         if (status < 0)
1392                 mlog_errno(status);
1393
1394         /* queue recovery for our own slot */
1395         ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1396                                         NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1397
1398         spin_lock(&osb->osb_lock);
1399         while (rm->rm_used) {
1400                 /* It's always safe to remove entry zero, as we won't
1401                  * clear it until ocfs2_recover_node() has succeeded. */
1402                 node_num = rm->rm_entries[0];
1403                 spin_unlock(&osb->osb_lock);
1404                 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1405                 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1406                 if (slot_num == -ENOENT) {
1407                         status = 0;
1408                         goto skip_recovery;
1409                 }
1410
1411                 /* It is a bit subtle with quota recovery. We cannot do it
1412                  * immediately because we have to obtain cluster locks from
1413                  * quota files and we also don't want to just skip it because
1414                  * then quota usage would be out of sync until some node takes
1415                  * the slot. So we remember which nodes need quota recovery
1416                  * and when everything else is done, we recover quotas. */
1417                 if (quota_enabled) {
1418                         for (i = 0; i < rm_quota_used
1419                                         && rm_quota[i] != slot_num; i++)
1420                                 ;
1421
1422                         if (i == rm_quota_used)
1423                                 rm_quota[rm_quota_used++] = slot_num;
1424                 }
1425
1426                 status = ocfs2_recover_node(osb, node_num, slot_num);
1427 skip_recovery:
1428                 if (!status) {
1429                         ocfs2_recovery_map_clear(osb, node_num);
1430                 } else {
1431                         mlog(ML_ERROR,
1432                              "Error %d recovering node %d on device (%u,%u)!\n",
1433                              status, node_num,
1434                              MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1435                         mlog(ML_ERROR, "Volume requires unmount.\n");
1436                 }
1437
1438                 spin_lock(&osb->osb_lock);
1439         }
1440         spin_unlock(&osb->osb_lock);
1441         trace_ocfs2_recovery_thread_end(status);
1442
1443         /* Refresh all journal recovery generations from disk */
1444         status = ocfs2_check_journals_nolocks(osb);
1445         status = (status == -EROFS) ? 0 : status;
1446         if (status < 0)
1447                 mlog_errno(status);
1448
1449         /* Now it is right time to recover quotas... We have to do this under
1450          * superblock lock so that no one can start using the slot (and crash)
1451          * before we recover it */
1452         if (quota_enabled) {
1453                 for (i = 0; i < rm_quota_used; i++) {
1454                         qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1455                         if (IS_ERR(qrec)) {
1456                                 status = PTR_ERR(qrec);
1457                                 mlog_errno(status);
1458                                 continue;
1459                         }
1460                         ocfs2_queue_recovery_completion(osb->journal,
1461                                         rm_quota[i],
1462                                         NULL, NULL, qrec,
1463                                         ORPHAN_NEED_TRUNCATE);
1464                 }
1465         }
1466
1467         ocfs2_super_unlock(osb, 1);
1468
1469         /* queue recovery for offline slots */
1470         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1471
1472 bail:
1473         mutex_lock(&osb->recovery_lock);
1474         if (!status && !ocfs2_recovery_completed(osb)) {
1475                 mutex_unlock(&osb->recovery_lock);
1476                 goto restart;
1477         }
1478
1479         ocfs2_free_replay_slots(osb);
1480         osb->recovery_thread_task = NULL;
1481         mb(); /* sync with ocfs2_recovery_thread_running */
1482         wake_up(&osb->recovery_event);
1483
1484         mutex_unlock(&osb->recovery_lock);
1485
1486         if (quota_enabled)
1487                 kfree(rm_quota);
1488
1489         /* no one is callint kthread_stop() for us so the kthread() api
1490          * requires that we call do_exit().  And it isn't exported, but
1491          * complete_and_exit() seems to be a minimal wrapper around it. */
1492         complete_and_exit(NULL, status);
1493 }
1494
1495 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1496 {
1497         mutex_lock(&osb->recovery_lock);
1498
1499         trace_ocfs2_recovery_thread(node_num, osb->node_num,
1500                 osb->disable_recovery, osb->recovery_thread_task,
1501                 osb->disable_recovery ?
1502                 -1 : ocfs2_recovery_map_set(osb, node_num));
1503
1504         if (osb->disable_recovery)
1505                 goto out;
1506
1507         if (osb->recovery_thread_task)
1508                 goto out;
1509
1510         osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1511                         "ocfs2rec-%s", osb->uuid_str);
1512         if (IS_ERR(osb->recovery_thread_task)) {
1513                 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1514                 osb->recovery_thread_task = NULL;
1515         }
1516
1517 out:
1518         mutex_unlock(&osb->recovery_lock);
1519         wake_up(&osb->recovery_event);
1520 }
1521
1522 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1523                                     int slot_num,
1524                                     struct buffer_head **bh,
1525                                     struct inode **ret_inode)
1526 {
1527         int status = -EACCES;
1528         struct inode *inode = NULL;
1529
1530         BUG_ON(slot_num >= osb->max_slots);
1531
1532         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1533                                             slot_num);
1534         if (!inode || is_bad_inode(inode)) {
1535                 mlog_errno(status);
1536                 goto bail;
1537         }
1538         SET_INODE_JOURNAL(inode);
1539
1540         status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1541         if (status < 0) {
1542                 mlog_errno(status);
1543                 goto bail;
1544         }
1545
1546         status = 0;
1547
1548 bail:
1549         if (inode) {
1550                 if (status || !ret_inode)
1551                         iput(inode);
1552                 else
1553                         *ret_inode = inode;
1554         }
1555         return status;
1556 }
1557
1558 /* Does the actual journal replay and marks the journal inode as
1559  * clean. Will only replay if the journal inode is marked dirty. */
1560 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1561                                 int node_num,
1562                                 int slot_num)
1563 {
1564         int status;
1565         int got_lock = 0;
1566         unsigned int flags;
1567         struct inode *inode = NULL;
1568         struct ocfs2_dinode *fe;
1569         journal_t *journal = NULL;
1570         struct buffer_head *bh = NULL;
1571         u32 slot_reco_gen;
1572
1573         status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1574         if (status) {
1575                 mlog_errno(status);
1576                 goto done;
1577         }
1578
1579         fe = (struct ocfs2_dinode *)bh->b_data;
1580         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1581         brelse(bh);
1582         bh = NULL;
1583
1584         /*
1585          * As the fs recovery is asynchronous, there is a small chance that
1586          * another node mounted (and recovered) the slot before the recovery
1587          * thread could get the lock. To handle that, we dirty read the journal
1588          * inode for that slot to get the recovery generation. If it is
1589          * different than what we expected, the slot has been recovered.
1590          * If not, it needs recovery.
1591          */
1592         if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1593                 trace_ocfs2_replay_journal_recovered(slot_num,
1594                      osb->slot_recovery_generations[slot_num], slot_reco_gen);
1595                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1596                 status = -EBUSY;
1597                 goto done;
1598         }
1599
1600         /* Continue with recovery as the journal has not yet been recovered */
1601
1602         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1603         if (status < 0) {
1604                 trace_ocfs2_replay_journal_lock_err(status);
1605                 if (status != -ERESTARTSYS)
1606                         mlog(ML_ERROR, "Could not lock journal!\n");
1607                 goto done;
1608         }
1609         got_lock = 1;
1610
1611         fe = (struct ocfs2_dinode *) bh->b_data;
1612
1613         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1614         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1615
1616         if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1617                 trace_ocfs2_replay_journal_skip(node_num);
1618                 /* Refresh recovery generation for the slot */
1619                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1620                 goto done;
1621         }
1622
1623         /* we need to run complete recovery for offline orphan slots */
1624         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1625
1626         printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1627                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1628                MINOR(osb->sb->s_dev));
1629
1630         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1631
1632         status = ocfs2_force_read_journal(inode);
1633         if (status < 0) {
1634                 mlog_errno(status);
1635                 goto done;
1636         }
1637
1638         journal = jbd2_journal_init_inode(inode);
1639         if (journal == NULL) {
1640                 mlog(ML_ERROR, "Linux journal layer error\n");
1641                 status = -EIO;
1642                 goto done;
1643         }
1644
1645         status = jbd2_journal_load(journal);
1646         if (status < 0) {
1647                 mlog_errno(status);
1648                 if (!igrab(inode))
1649                         BUG();
1650                 jbd2_journal_destroy(journal);
1651                 goto done;
1652         }
1653
1654         ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1655
1656         /* wipe the journal */
1657         jbd2_journal_lock_updates(journal);
1658         status = jbd2_journal_flush(journal);
1659         jbd2_journal_unlock_updates(journal);
1660         if (status < 0)
1661                 mlog_errno(status);
1662
1663         /* This will mark the node clean */
1664         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1665         flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1666         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1667
1668         /* Increment recovery generation to indicate successful recovery */
1669         ocfs2_bump_recovery_generation(fe);
1670         osb->slot_recovery_generations[slot_num] =
1671                                         ocfs2_get_recovery_generation(fe);
1672
1673         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1674         status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1675         if (status < 0)
1676                 mlog_errno(status);
1677
1678         if (!igrab(inode))
1679                 BUG();
1680
1681         jbd2_journal_destroy(journal);
1682
1683         printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1684                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1685                MINOR(osb->sb->s_dev));
1686 done:
1687         /* drop the lock on this nodes journal */
1688         if (got_lock)
1689                 ocfs2_inode_unlock(inode, 1);
1690
1691         iput(inode);
1692         brelse(bh);
1693
1694         return status;
1695 }
1696
1697 /*
1698  * Do the most important parts of node recovery:
1699  *  - Replay it's journal
1700  *  - Stamp a clean local allocator file
1701  *  - Stamp a clean truncate log
1702  *  - Mark the node clean
1703  *
1704  * If this function completes without error, a node in OCFS2 can be
1705  * said to have been safely recovered. As a result, failure during the
1706  * second part of a nodes recovery process (local alloc recovery) is
1707  * far less concerning.
1708  */
1709 static int ocfs2_recover_node(struct ocfs2_super *osb,
1710                               int node_num, int slot_num)
1711 {
1712         int status = 0;
1713         struct ocfs2_dinode *la_copy = NULL;
1714         struct ocfs2_dinode *tl_copy = NULL;
1715
1716         trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1717
1718         /* Should not ever be called to recover ourselves -- in that
1719          * case we should've called ocfs2_journal_load instead. */
1720         BUG_ON(osb->node_num == node_num);
1721
1722         status = ocfs2_replay_journal(osb, node_num, slot_num);
1723         if (status < 0) {
1724                 if (status == -EBUSY) {
1725                         trace_ocfs2_recover_node_skip(slot_num, node_num);
1726                         status = 0;
1727                         goto done;
1728                 }
1729                 mlog_errno(status);
1730                 goto done;
1731         }
1732
1733         /* Stamp a clean local alloc file AFTER recovering the journal... */
1734         status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1735         if (status < 0) {
1736                 mlog_errno(status);
1737                 goto done;
1738         }
1739
1740         /* An error from begin_truncate_log_recovery is not
1741          * serious enough to warrant halting the rest of
1742          * recovery. */
1743         status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1744         if (status < 0)
1745                 mlog_errno(status);
1746
1747         /* Likewise, this would be a strange but ultimately not so
1748          * harmful place to get an error... */
1749         status = ocfs2_clear_slot(osb, slot_num);
1750         if (status < 0)
1751                 mlog_errno(status);
1752
1753         /* This will kfree the memory pointed to by la_copy and tl_copy */
1754         ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1755                                         tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1756
1757         status = 0;
1758 done:
1759
1760         return status;
1761 }
1762
1763 /* Test node liveness by trylocking his journal. If we get the lock,
1764  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1765  * still alive (we couldn't get the lock) and < 0 on error. */
1766 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1767                                  int slot_num)
1768 {
1769         int status, flags;
1770         struct inode *inode = NULL;
1771
1772         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1773                                             slot_num);
1774         if (inode == NULL) {
1775                 mlog(ML_ERROR, "access error\n");
1776                 status = -EACCES;
1777                 goto bail;
1778         }
1779         if (is_bad_inode(inode)) {
1780                 mlog(ML_ERROR, "access error (bad inode)\n");
1781                 iput(inode);
1782                 inode = NULL;
1783                 status = -EACCES;
1784                 goto bail;
1785         }
1786         SET_INODE_JOURNAL(inode);
1787
1788         flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1789         status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1790         if (status < 0) {
1791                 if (status != -EAGAIN)
1792                         mlog_errno(status);
1793                 goto bail;
1794         }
1795
1796         ocfs2_inode_unlock(inode, 1);
1797 bail:
1798         iput(inode);
1799
1800         return status;
1801 }
1802
1803 /* Call this underneath ocfs2_super_lock. It also assumes that the
1804  * slot info struct has been updated from disk. */
1805 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1806 {
1807         unsigned int node_num;
1808         int status, i;
1809         u32 gen;
1810         struct buffer_head *bh = NULL;
1811         struct ocfs2_dinode *di;
1812
1813         /* This is called with the super block cluster lock, so we
1814          * know that the slot map can't change underneath us. */
1815
1816         for (i = 0; i < osb->max_slots; i++) {
1817                 /* Read journal inode to get the recovery generation */
1818                 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1819                 if (status) {
1820                         mlog_errno(status);
1821                         goto bail;
1822                 }
1823                 di = (struct ocfs2_dinode *)bh->b_data;
1824                 gen = ocfs2_get_recovery_generation(di);
1825                 brelse(bh);
1826                 bh = NULL;
1827
1828                 spin_lock(&osb->osb_lock);
1829                 osb->slot_recovery_generations[i] = gen;
1830
1831                 trace_ocfs2_mark_dead_nodes(i,
1832                                             osb->slot_recovery_generations[i]);
1833
1834                 if (i == osb->slot_num) {
1835                         spin_unlock(&osb->osb_lock);
1836                         continue;
1837                 }
1838
1839                 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1840                 if (status == -ENOENT) {
1841                         spin_unlock(&osb->osb_lock);
1842                         continue;
1843                 }
1844
1845                 if (__ocfs2_recovery_map_test(osb, node_num)) {
1846                         spin_unlock(&osb->osb_lock);
1847                         continue;
1848                 }
1849                 spin_unlock(&osb->osb_lock);
1850
1851                 /* Ok, we have a slot occupied by another node which
1852                  * is not in the recovery map. We trylock his journal
1853                  * file here to test if he's alive. */
1854                 status = ocfs2_trylock_journal(osb, i);
1855                 if (!status) {
1856                         /* Since we're called from mount, we know that
1857                          * the recovery thread can't race us on
1858                          * setting / checking the recovery bits. */
1859                         ocfs2_recovery_thread(osb, node_num);
1860                 } else if ((status < 0) && (status != -EAGAIN)) {
1861                         mlog_errno(status);
1862                         goto bail;
1863                 }
1864         }
1865
1866         status = 0;
1867 bail:
1868         return status;
1869 }
1870
1871 /*
1872  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1873  * randomness to the timeout to minimize multple nodes firing the timer at the
1874  * same time.
1875  */
1876 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1877 {
1878         unsigned long time;
1879
1880         get_random_bytes(&time, sizeof(time));
1881         time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1882         return msecs_to_jiffies(time);
1883 }
1884
1885 /*
1886  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1887  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1888  * is done to catch any orphans that are left over in orphan directories.
1889  *
1890  * It scans all slots, even ones that are in use. It does so to handle the
1891  * case described below:
1892  *
1893  *   Node 1 has an inode it was using. The dentry went away due to memory
1894  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1895  *   has the open lock.
1896  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1897  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1898  *   open lock, sees that another node has a PR, and does nothing.
1899  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1900  *   open lock, sees the PR still, and does nothing.
1901  *   Basically, we have to trigger an orphan iput on node 1. The only way
1902  *   for this to happen is if node 1 runs node 2's orphan dir.
1903  *
1904  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1905  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1906  * stored in LVB. If the sequence number has changed, it means some other
1907  * node has done the scan.  This node skips the scan and tracks the
1908  * sequence number.  If the sequence number didn't change, it means a scan
1909  * hasn't happened.  The node queues a scan and increments the
1910  * sequence number in the LVB.
1911  */
1912 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1913 {
1914         struct ocfs2_orphan_scan *os;
1915         int status, i;
1916         u32 seqno = 0;
1917
1918         os = &osb->osb_orphan_scan;
1919
1920         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1921                 goto out;
1922
1923         trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1924                                             atomic_read(&os->os_state));
1925
1926         status = ocfs2_orphan_scan_lock(osb, &seqno);
1927         if (status < 0) {
1928                 if (status != -EAGAIN)
1929                         mlog_errno(status);
1930                 goto out;
1931         }
1932
1933         /* Do no queue the tasks if the volume is being umounted */
1934         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1935                 goto unlock;
1936
1937         if (os->os_seqno != seqno) {
1938                 os->os_seqno = seqno;
1939                 goto unlock;
1940         }
1941
1942         for (i = 0; i < osb->max_slots; i++)
1943                 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1944                                                 NULL, ORPHAN_NO_NEED_TRUNCATE);
1945         /*
1946          * We queued a recovery on orphan slots, increment the sequence
1947          * number and update LVB so other node will skip the scan for a while
1948          */
1949         seqno++;
1950         os->os_count++;
1951         os->os_scantime = ktime_get_seconds();
1952 unlock:
1953         ocfs2_orphan_scan_unlock(osb, seqno);
1954 out:
1955         trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1956                                           atomic_read(&os->os_state));
1957         return;
1958 }
1959
1960 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1961 static void ocfs2_orphan_scan_work(struct work_struct *work)
1962 {
1963         struct ocfs2_orphan_scan *os;
1964         struct ocfs2_super *osb;
1965
1966         os = container_of(work, struct ocfs2_orphan_scan,
1967                           os_orphan_scan_work.work);
1968         osb = os->os_osb;
1969
1970         mutex_lock(&os->os_lock);
1971         ocfs2_queue_orphan_scan(osb);
1972         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1973                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1974                                       ocfs2_orphan_scan_timeout());
1975         mutex_unlock(&os->os_lock);
1976 }
1977
1978 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1979 {
1980         struct ocfs2_orphan_scan *os;
1981
1982         os = &osb->osb_orphan_scan;
1983         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1984                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1985                 mutex_lock(&os->os_lock);
1986                 cancel_delayed_work(&os->os_orphan_scan_work);
1987                 mutex_unlock(&os->os_lock);
1988         }
1989 }
1990
1991 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1992 {
1993         struct ocfs2_orphan_scan *os;
1994
1995         os = &osb->osb_orphan_scan;
1996         os->os_osb = osb;
1997         os->os_count = 0;
1998         os->os_seqno = 0;
1999         mutex_init(&os->os_lock);
2000         INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2001 }
2002
2003 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2004 {
2005         struct ocfs2_orphan_scan *os;
2006
2007         os = &osb->osb_orphan_scan;
2008         os->os_scantime = ktime_get_seconds();
2009         if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2010                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2011         else {
2012                 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2013                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2014                                    ocfs2_orphan_scan_timeout());
2015         }
2016 }
2017
2018 struct ocfs2_orphan_filldir_priv {
2019         struct dir_context      ctx;
2020         struct inode            *head;
2021         struct ocfs2_super      *osb;
2022         enum ocfs2_orphan_reco_type orphan_reco_type;
2023 };
2024
2025 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2026                                 int name_len, loff_t pos, u64 ino,
2027                                 unsigned type)
2028 {
2029         struct ocfs2_orphan_filldir_priv *p =
2030                 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2031         struct inode *iter;
2032
2033         if (name_len == 1 && !strncmp(".", name, 1))
2034                 return 0;
2035         if (name_len == 2 && !strncmp("..", name, 2))
2036                 return 0;
2037
2038         /* do not include dio entry in case of orphan scan */
2039         if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2040                         (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2041                         OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2042                 return 0;
2043
2044         /* Skip bad inodes so that recovery can continue */
2045         iter = ocfs2_iget(p->osb, ino,
2046                           OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2047         if (IS_ERR(iter))
2048                 return 0;
2049
2050         if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2051                         OCFS2_DIO_ORPHAN_PREFIX_LEN))
2052                 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2053
2054         /* Skip inodes which are already added to recover list, since dio may
2055          * happen concurrently with unlink/rename */
2056         if (OCFS2_I(iter)->ip_next_orphan) {
2057                 iput(iter);
2058                 return 0;
2059         }
2060
2061         trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2062         /* No locking is required for the next_orphan queue as there
2063          * is only ever a single process doing orphan recovery. */
2064         OCFS2_I(iter)->ip_next_orphan = p->head;
2065         p->head = iter;
2066
2067         return 0;
2068 }
2069
2070 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2071                                int slot,
2072                                struct inode **head,
2073                                enum ocfs2_orphan_reco_type orphan_reco_type)
2074 {
2075         int status;
2076         struct inode *orphan_dir_inode = NULL;
2077         struct ocfs2_orphan_filldir_priv priv = {
2078                 .ctx.actor = ocfs2_orphan_filldir,
2079                 .osb = osb,
2080                 .head = *head,
2081                 .orphan_reco_type = orphan_reco_type
2082         };
2083
2084         orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2085                                                        ORPHAN_DIR_SYSTEM_INODE,
2086                                                        slot);
2087         if  (!orphan_dir_inode) {
2088                 status = -ENOENT;
2089                 mlog_errno(status);
2090                 return status;
2091         }
2092
2093         inode_lock(orphan_dir_inode);
2094         status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2095         if (status < 0) {
2096                 mlog_errno(status);
2097                 goto out;
2098         }
2099
2100         status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2101         if (status) {
2102                 mlog_errno(status);
2103                 goto out_cluster;
2104         }
2105
2106         *head = priv.head;
2107
2108 out_cluster:
2109         ocfs2_inode_unlock(orphan_dir_inode, 0);
2110 out:
2111         inode_unlock(orphan_dir_inode);
2112         iput(orphan_dir_inode);
2113         return status;
2114 }
2115
2116 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2117                                               int slot)
2118 {
2119         int ret;
2120
2121         spin_lock(&osb->osb_lock);
2122         ret = !osb->osb_orphan_wipes[slot];
2123         spin_unlock(&osb->osb_lock);
2124         return ret;
2125 }
2126
2127 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2128                                              int slot)
2129 {
2130         spin_lock(&osb->osb_lock);
2131         /* Mark ourselves such that new processes in delete_inode()
2132          * know to quit early. */
2133         ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2134         while (osb->osb_orphan_wipes[slot]) {
2135                 /* If any processes are already in the middle of an
2136                  * orphan wipe on this dir, then we need to wait for
2137                  * them. */
2138                 spin_unlock(&osb->osb_lock);
2139                 wait_event_interruptible(osb->osb_wipe_event,
2140                                          ocfs2_orphan_recovery_can_continue(osb, slot));
2141                 spin_lock(&osb->osb_lock);
2142         }
2143         spin_unlock(&osb->osb_lock);
2144 }
2145
2146 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2147                                               int slot)
2148 {
2149         ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2150 }
2151
2152 /*
2153  * Orphan recovery. Each mounted node has it's own orphan dir which we
2154  * must run during recovery. Our strategy here is to build a list of
2155  * the inodes in the orphan dir and iget/iput them. The VFS does
2156  * (most) of the rest of the work.
2157  *
2158  * Orphan recovery can happen at any time, not just mount so we have a
2159  * couple of extra considerations.
2160  *
2161  * - We grab as many inodes as we can under the orphan dir lock -
2162  *   doing iget() outside the orphan dir risks getting a reference on
2163  *   an invalid inode.
2164  * - We must be sure not to deadlock with other processes on the
2165  *   system wanting to run delete_inode(). This can happen when they go
2166  *   to lock the orphan dir and the orphan recovery process attempts to
2167  *   iget() inside the orphan dir lock. This can be avoided by
2168  *   advertising our state to ocfs2_delete_inode().
2169  */
2170 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2171                                  int slot,
2172                                  enum ocfs2_orphan_reco_type orphan_reco_type)
2173 {
2174         int ret = 0;
2175         struct inode *inode = NULL;
2176         struct inode *iter;
2177         struct ocfs2_inode_info *oi;
2178         struct buffer_head *di_bh = NULL;
2179         struct ocfs2_dinode *di = NULL;
2180
2181         trace_ocfs2_recover_orphans(slot);
2182
2183         ocfs2_mark_recovering_orphan_dir(osb, slot);
2184         ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2185         ocfs2_clear_recovering_orphan_dir(osb, slot);
2186
2187         /* Error here should be noted, but we want to continue with as
2188          * many queued inodes as we've got. */
2189         if (ret)
2190                 mlog_errno(ret);
2191
2192         while (inode) {
2193                 oi = OCFS2_I(inode);
2194                 trace_ocfs2_recover_orphans_iput(
2195                                         (unsigned long long)oi->ip_blkno);
2196
2197                 iter = oi->ip_next_orphan;
2198                 oi->ip_next_orphan = NULL;
2199
2200                 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2201                         inode_lock(inode);
2202                         ret = ocfs2_rw_lock(inode, 1);
2203                         if (ret < 0) {
2204                                 mlog_errno(ret);
2205                                 goto unlock_mutex;
2206                         }
2207                         /*
2208                          * We need to take and drop the inode lock to
2209                          * force read inode from disk.
2210                          */
2211                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2212                         if (ret) {
2213                                 mlog_errno(ret);
2214                                 goto unlock_rw;
2215                         }
2216
2217                         di = (struct ocfs2_dinode *)di_bh->b_data;
2218
2219                         if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2220                                 ret = ocfs2_truncate_file(inode, di_bh,
2221                                                 i_size_read(inode));
2222                                 if (ret < 0) {
2223                                         if (ret != -ENOSPC)
2224                                                 mlog_errno(ret);
2225                                         goto unlock_inode;
2226                                 }
2227
2228                                 ret = ocfs2_del_inode_from_orphan(osb, inode,
2229                                                 di_bh, 0, 0);
2230                                 if (ret)
2231                                         mlog_errno(ret);
2232                         }
2233 unlock_inode:
2234                         ocfs2_inode_unlock(inode, 1);
2235                         brelse(di_bh);
2236                         di_bh = NULL;
2237 unlock_rw:
2238                         ocfs2_rw_unlock(inode, 1);
2239 unlock_mutex:
2240                         inode_unlock(inode);
2241
2242                         /* clear dio flag in ocfs2_inode_info */
2243                         oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2244                 } else {
2245                         spin_lock(&oi->ip_lock);
2246                         /* Set the proper information to get us going into
2247                          * ocfs2_delete_inode. */
2248                         oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2249                         spin_unlock(&oi->ip_lock);
2250                 }
2251
2252                 iput(inode);
2253                 inode = iter;
2254         }
2255
2256         return ret;
2257 }
2258
2259 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2260 {
2261         /* This check is good because ocfs2 will wait on our recovery
2262          * thread before changing it to something other than MOUNTED
2263          * or DISABLED. */
2264         wait_event(osb->osb_mount_event,
2265                   (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2266                    atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2267                    atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2268
2269         /* If there's an error on mount, then we may never get to the
2270          * MOUNTED flag, but this is set right before
2271          * dismount_volume() so we can trust it. */
2272         if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2273                 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2274                 mlog(0, "mount error, exiting!\n");
2275                 return -EBUSY;
2276         }
2277
2278         return 0;
2279 }
2280
2281 static int ocfs2_commit_thread(void *arg)
2282 {
2283         int status;
2284         struct ocfs2_super *osb = arg;
2285         struct ocfs2_journal *journal = osb->journal;
2286
2287         /* we can trust j_num_trans here because _should_stop() is only set in
2288          * shutdown and nobody other than ourselves should be able to start
2289          * transactions.  committing on shutdown might take a few iterations
2290          * as final transactions put deleted inodes on the list */
2291         while (!(kthread_should_stop() &&
2292                  atomic_read(&journal->j_num_trans) == 0)) {
2293
2294                 wait_event_interruptible(osb->checkpoint_event,
2295                                          atomic_read(&journal->j_num_trans)
2296                                          || kthread_should_stop());
2297
2298                 status = ocfs2_commit_cache(osb);
2299                 if (status < 0) {
2300                         static unsigned long abort_warn_time;
2301
2302                         /* Warn about this once per minute */
2303                         if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2304                                 mlog(ML_ERROR, "status = %d, journal is "
2305                                                 "already aborted.\n", status);
2306                         /*
2307                          * After ocfs2_commit_cache() fails, j_num_trans has a
2308                          * non-zero value.  Sleep here to avoid a busy-wait
2309                          * loop.
2310                          */
2311                         msleep_interruptible(1000);
2312                 }
2313
2314                 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2315                         mlog(ML_KTHREAD,
2316                              "commit_thread: %u transactions pending on "
2317                              "shutdown\n",
2318                              atomic_read(&journal->j_num_trans));
2319                 }
2320         }
2321
2322         return 0;
2323 }
2324
2325 /* Reads all the journal inodes without taking any cluster locks. Used
2326  * for hard readonly access to determine whether any journal requires
2327  * recovery. Also used to refresh the recovery generation numbers after
2328  * a journal has been recovered by another node.
2329  */
2330 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2331 {
2332         int ret = 0;
2333         unsigned int slot;
2334         struct buffer_head *di_bh = NULL;
2335         struct ocfs2_dinode *di;
2336         int journal_dirty = 0;
2337
2338         for(slot = 0; slot < osb->max_slots; slot++) {
2339                 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2340                 if (ret) {
2341                         mlog_errno(ret);
2342                         goto out;
2343                 }
2344
2345                 di = (struct ocfs2_dinode *) di_bh->b_data;
2346
2347                 osb->slot_recovery_generations[slot] =
2348                                         ocfs2_get_recovery_generation(di);
2349
2350                 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2351                     OCFS2_JOURNAL_DIRTY_FL)
2352                         journal_dirty = 1;
2353
2354                 brelse(di_bh);
2355                 di_bh = NULL;
2356         }
2357
2358 out:
2359         if (journal_dirty)
2360                 ret = -EROFS;
2361         return ret;
2362 }