Linux 6.9-rc1
[linux-2.6-microblaze.git] / fs / ocfs2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * journal.c
4  *
5  * Defines functions of journalling api
6  *
7  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
8  */
9
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18 #include <linux/writeback.h>
19
20 #include <cluster/masklog.h>
21
22 #include "ocfs2.h"
23
24 #include "alloc.h"
25 #include "blockcheck.h"
26 #include "dir.h"
27 #include "dlmglue.h"
28 #include "extent_map.h"
29 #include "heartbeat.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "localalloc.h"
33 #include "slot_map.h"
34 #include "super.h"
35 #include "sysfile.h"
36 #include "uptodate.h"
37 #include "quota.h"
38 #include "file.h"
39 #include "namei.h"
40
41 #include "buffer_head_io.h"
42 #include "ocfs2_trace.h"
43
44 DEFINE_SPINLOCK(trans_inc_lock);
45
46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
47
48 static int ocfs2_force_read_journal(struct inode *inode);
49 static int ocfs2_recover_node(struct ocfs2_super *osb,
50                               int node_num, int slot_num);
51 static int __ocfs2_recovery_thread(void *arg);
52 static int ocfs2_commit_cache(struct ocfs2_super *osb);
53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
55                                       int dirty, int replayed);
56 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
57                                  int slot_num);
58 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
59                                  int slot,
60                                  enum ocfs2_orphan_reco_type orphan_reco_type);
61 static int ocfs2_commit_thread(void *arg);
62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
63                                             int slot_num,
64                                             struct ocfs2_dinode *la_dinode,
65                                             struct ocfs2_dinode *tl_dinode,
66                                             struct ocfs2_quota_recovery *qrec,
67                                             enum ocfs2_orphan_reco_type orphan_reco_type);
68
69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
70 {
71         return __ocfs2_wait_on_mount(osb, 0);
72 }
73
74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
75 {
76         return __ocfs2_wait_on_mount(osb, 1);
77 }
78
79 /*
80  * This replay_map is to track online/offline slots, so we could recover
81  * offline slots during recovery and mount
82  */
83
84 enum ocfs2_replay_state {
85         REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
86         REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
87         REPLAY_DONE             /* Replay was already queued */
88 };
89
90 struct ocfs2_replay_map {
91         unsigned int rm_slots;
92         enum ocfs2_replay_state rm_state;
93         unsigned char rm_replay_slots[] __counted_by(rm_slots);
94 };
95
96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
97 {
98         if (!osb->replay_map)
99                 return;
100
101         /* If we've already queued the replay, we don't have any more to do */
102         if (osb->replay_map->rm_state == REPLAY_DONE)
103                 return;
104
105         osb->replay_map->rm_state = state;
106 }
107
108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
109 {
110         struct ocfs2_replay_map *replay_map;
111         int i, node_num;
112
113         /* If replay map is already set, we don't do it again */
114         if (osb->replay_map)
115                 return 0;
116
117         replay_map = kzalloc(struct_size(replay_map, rm_replay_slots,
118                                          osb->max_slots),
119                              GFP_KERNEL);
120         if (!replay_map) {
121                 mlog_errno(-ENOMEM);
122                 return -ENOMEM;
123         }
124
125         spin_lock(&osb->osb_lock);
126
127         replay_map->rm_slots = osb->max_slots;
128         replay_map->rm_state = REPLAY_UNNEEDED;
129
130         /* set rm_replay_slots for offline slot(s) */
131         for (i = 0; i < replay_map->rm_slots; i++) {
132                 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
133                         replay_map->rm_replay_slots[i] = 1;
134         }
135
136         osb->replay_map = replay_map;
137         spin_unlock(&osb->osb_lock);
138         return 0;
139 }
140
141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
142                 enum ocfs2_orphan_reco_type orphan_reco_type)
143 {
144         struct ocfs2_replay_map *replay_map = osb->replay_map;
145         int i;
146
147         if (!replay_map)
148                 return;
149
150         if (replay_map->rm_state != REPLAY_NEEDED)
151                 return;
152
153         for (i = 0; i < replay_map->rm_slots; i++)
154                 if (replay_map->rm_replay_slots[i])
155                         ocfs2_queue_recovery_completion(osb->journal, i, NULL,
156                                                         NULL, NULL,
157                                                         orphan_reco_type);
158         replay_map->rm_state = REPLAY_DONE;
159 }
160
161 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
162 {
163         struct ocfs2_replay_map *replay_map = osb->replay_map;
164
165         if (!osb->replay_map)
166                 return;
167
168         kfree(replay_map);
169         osb->replay_map = NULL;
170 }
171
172 int ocfs2_recovery_init(struct ocfs2_super *osb)
173 {
174         struct ocfs2_recovery_map *rm;
175
176         mutex_init(&osb->recovery_lock);
177         osb->disable_recovery = 0;
178         osb->recovery_thread_task = NULL;
179         init_waitqueue_head(&osb->recovery_event);
180
181         rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots),
182                      GFP_KERNEL);
183         if (!rm) {
184                 mlog_errno(-ENOMEM);
185                 return -ENOMEM;
186         }
187
188         osb->recovery_map = rm;
189
190         return 0;
191 }
192
193 /* we can't grab the goofy sem lock from inside wait_event, so we use
194  * memory barriers to make sure that we'll see the null task before
195  * being woken up */
196 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
197 {
198         mb();
199         return osb->recovery_thread_task != NULL;
200 }
201
202 void ocfs2_recovery_exit(struct ocfs2_super *osb)
203 {
204         struct ocfs2_recovery_map *rm;
205
206         /* disable any new recovery threads and wait for any currently
207          * running ones to exit. Do this before setting the vol_state. */
208         mutex_lock(&osb->recovery_lock);
209         osb->disable_recovery = 1;
210         mutex_unlock(&osb->recovery_lock);
211         wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
212
213         /* At this point, we know that no more recovery threads can be
214          * launched, so wait for any recovery completion work to
215          * complete. */
216         if (osb->ocfs2_wq)
217                 flush_workqueue(osb->ocfs2_wq);
218
219         /*
220          * Now that recovery is shut down, and the osb is about to be
221          * freed,  the osb_lock is not taken here.
222          */
223         rm = osb->recovery_map;
224         /* XXX: Should we bug if there are dirty entries? */
225
226         kfree(rm);
227 }
228
229 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
230                                      unsigned int node_num)
231 {
232         int i;
233         struct ocfs2_recovery_map *rm = osb->recovery_map;
234
235         assert_spin_locked(&osb->osb_lock);
236
237         for (i = 0; i < rm->rm_used; i++) {
238                 if (rm->rm_entries[i] == node_num)
239                         return 1;
240         }
241
242         return 0;
243 }
244
245 /* Behaves like test-and-set.  Returns the previous value */
246 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
247                                   unsigned int node_num)
248 {
249         struct ocfs2_recovery_map *rm = osb->recovery_map;
250
251         spin_lock(&osb->osb_lock);
252         if (__ocfs2_recovery_map_test(osb, node_num)) {
253                 spin_unlock(&osb->osb_lock);
254                 return 1;
255         }
256
257         /* XXX: Can this be exploited? Not from o2dlm... */
258         BUG_ON(rm->rm_used >= osb->max_slots);
259
260         rm->rm_entries[rm->rm_used] = node_num;
261         rm->rm_used++;
262         spin_unlock(&osb->osb_lock);
263
264         return 0;
265 }
266
267 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
268                                      unsigned int node_num)
269 {
270         int i;
271         struct ocfs2_recovery_map *rm = osb->recovery_map;
272
273         spin_lock(&osb->osb_lock);
274
275         for (i = 0; i < rm->rm_used; i++) {
276                 if (rm->rm_entries[i] == node_num)
277                         break;
278         }
279
280         if (i < rm->rm_used) {
281                 /* XXX: be careful with the pointer math */
282                 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
283                         (rm->rm_used - i - 1) * sizeof(unsigned int));
284                 rm->rm_used--;
285         }
286
287         spin_unlock(&osb->osb_lock);
288 }
289
290 static int ocfs2_commit_cache(struct ocfs2_super *osb)
291 {
292         int status = 0;
293         unsigned int flushed;
294         struct ocfs2_journal *journal = NULL;
295
296         journal = osb->journal;
297
298         /* Flush all pending commits and checkpoint the journal. */
299         down_write(&journal->j_trans_barrier);
300
301         flushed = atomic_read(&journal->j_num_trans);
302         trace_ocfs2_commit_cache_begin(flushed);
303         if (flushed == 0) {
304                 up_write(&journal->j_trans_barrier);
305                 goto finally;
306         }
307
308         jbd2_journal_lock_updates(journal->j_journal);
309         status = jbd2_journal_flush(journal->j_journal, 0);
310         jbd2_journal_unlock_updates(journal->j_journal);
311         if (status < 0) {
312                 up_write(&journal->j_trans_barrier);
313                 mlog_errno(status);
314                 goto finally;
315         }
316
317         ocfs2_inc_trans_id(journal);
318
319         flushed = atomic_read(&journal->j_num_trans);
320         atomic_set(&journal->j_num_trans, 0);
321         up_write(&journal->j_trans_barrier);
322
323         trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
324
325         ocfs2_wake_downconvert_thread(osb);
326         wake_up(&journal->j_checkpointed);
327 finally:
328         return status;
329 }
330
331 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
332 {
333         journal_t *journal = osb->journal->j_journal;
334         handle_t *handle;
335
336         BUG_ON(!osb || !osb->journal->j_journal);
337
338         if (ocfs2_is_hard_readonly(osb))
339                 return ERR_PTR(-EROFS);
340
341         BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
342         BUG_ON(max_buffs <= 0);
343
344         /* Nested transaction? Just return the handle... */
345         if (journal_current_handle())
346                 return jbd2_journal_start(journal, max_buffs);
347
348         sb_start_intwrite(osb->sb);
349
350         down_read(&osb->journal->j_trans_barrier);
351
352         handle = jbd2_journal_start(journal, max_buffs);
353         if (IS_ERR(handle)) {
354                 up_read(&osb->journal->j_trans_barrier);
355                 sb_end_intwrite(osb->sb);
356
357                 mlog_errno(PTR_ERR(handle));
358
359                 if (is_journal_aborted(journal)) {
360                         ocfs2_abort(osb->sb, "Detected aborted journal\n");
361                         handle = ERR_PTR(-EROFS);
362                 }
363         } else {
364                 if (!ocfs2_mount_local(osb))
365                         atomic_inc(&(osb->journal->j_num_trans));
366         }
367
368         return handle;
369 }
370
371 int ocfs2_commit_trans(struct ocfs2_super *osb,
372                        handle_t *handle)
373 {
374         int ret, nested;
375         struct ocfs2_journal *journal = osb->journal;
376
377         BUG_ON(!handle);
378
379         nested = handle->h_ref > 1;
380         ret = jbd2_journal_stop(handle);
381         if (ret < 0)
382                 mlog_errno(ret);
383
384         if (!nested) {
385                 up_read(&journal->j_trans_barrier);
386                 sb_end_intwrite(osb->sb);
387         }
388
389         return ret;
390 }
391
392 /*
393  * 'nblocks' is what you want to add to the current transaction.
394  *
395  * This might call jbd2_journal_restart() which will commit dirty buffers
396  * and then restart the transaction. Before calling
397  * ocfs2_extend_trans(), any changed blocks should have been
398  * dirtied. After calling it, all blocks which need to be changed must
399  * go through another set of journal_access/journal_dirty calls.
400  *
401  * WARNING: This will not release any semaphores or disk locks taken
402  * during the transaction, so make sure they were taken *before*
403  * start_trans or we'll have ordering deadlocks.
404  *
405  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
406  * good because transaction ids haven't yet been recorded on the
407  * cluster locks associated with this handle.
408  */
409 int ocfs2_extend_trans(handle_t *handle, int nblocks)
410 {
411         int status, old_nblocks;
412
413         BUG_ON(!handle);
414         BUG_ON(nblocks < 0);
415
416         if (!nblocks)
417                 return 0;
418
419         old_nblocks = jbd2_handle_buffer_credits(handle);
420
421         trace_ocfs2_extend_trans(old_nblocks, nblocks);
422
423 #ifdef CONFIG_OCFS2_DEBUG_FS
424         status = 1;
425 #else
426         status = jbd2_journal_extend(handle, nblocks, 0);
427         if (status < 0) {
428                 mlog_errno(status);
429                 goto bail;
430         }
431 #endif
432
433         if (status > 0) {
434                 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
435                 status = jbd2_journal_restart(handle,
436                                               old_nblocks + nblocks);
437                 if (status < 0) {
438                         mlog_errno(status);
439                         goto bail;
440                 }
441         }
442
443         status = 0;
444 bail:
445         return status;
446 }
447
448 /*
449  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
450  * If that fails, restart the transaction & regain write access for the
451  * buffer head which is used for metadata modifications.
452  * Taken from Ext4: extend_or_restart_transaction()
453  */
454 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
455 {
456         int status, old_nblks;
457
458         BUG_ON(!handle);
459
460         old_nblks = jbd2_handle_buffer_credits(handle);
461         trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
462
463         if (old_nblks < thresh)
464                 return 0;
465
466         status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
467         if (status < 0) {
468                 mlog_errno(status);
469                 goto bail;
470         }
471
472         if (status > 0) {
473                 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
474                 if (status < 0)
475                         mlog_errno(status);
476         }
477
478 bail:
479         return status;
480 }
481
482
483 struct ocfs2_triggers {
484         struct jbd2_buffer_trigger_type ot_triggers;
485         int                             ot_offset;
486 };
487
488 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
489 {
490         return container_of(triggers, struct ocfs2_triggers, ot_triggers);
491 }
492
493 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
494                                  struct buffer_head *bh,
495                                  void *data, size_t size)
496 {
497         struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
498
499         /*
500          * We aren't guaranteed to have the superblock here, so we
501          * must unconditionally compute the ecc data.
502          * __ocfs2_journal_access() will only set the triggers if
503          * metaecc is enabled.
504          */
505         ocfs2_block_check_compute(data, size, data + ot->ot_offset);
506 }
507
508 /*
509  * Quota blocks have their own trigger because the struct ocfs2_block_check
510  * offset depends on the blocksize.
511  */
512 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
513                                  struct buffer_head *bh,
514                                  void *data, size_t size)
515 {
516         struct ocfs2_disk_dqtrailer *dqt =
517                 ocfs2_block_dqtrailer(size, data);
518
519         /*
520          * We aren't guaranteed to have the superblock here, so we
521          * must unconditionally compute the ecc data.
522          * __ocfs2_journal_access() will only set the triggers if
523          * metaecc is enabled.
524          */
525         ocfs2_block_check_compute(data, size, &dqt->dq_check);
526 }
527
528 /*
529  * Directory blocks also have their own trigger because the
530  * struct ocfs2_block_check offset depends on the blocksize.
531  */
532 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
533                                  struct buffer_head *bh,
534                                  void *data, size_t size)
535 {
536         struct ocfs2_dir_block_trailer *trailer =
537                 ocfs2_dir_trailer_from_size(size, data);
538
539         /*
540          * We aren't guaranteed to have the superblock here, so we
541          * must unconditionally compute the ecc data.
542          * __ocfs2_journal_access() will only set the triggers if
543          * metaecc is enabled.
544          */
545         ocfs2_block_check_compute(data, size, &trailer->db_check);
546 }
547
548 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
549                                 struct buffer_head *bh)
550 {
551         mlog(ML_ERROR,
552              "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
553              "bh->b_blocknr = %llu\n",
554              (unsigned long)bh,
555              (unsigned long long)bh->b_blocknr);
556
557         ocfs2_error(bh->b_assoc_map->host->i_sb,
558                     "JBD2 has aborted our journal, ocfs2 cannot continue\n");
559 }
560
561 static struct ocfs2_triggers di_triggers = {
562         .ot_triggers = {
563                 .t_frozen = ocfs2_frozen_trigger,
564                 .t_abort = ocfs2_abort_trigger,
565         },
566         .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
567 };
568
569 static struct ocfs2_triggers eb_triggers = {
570         .ot_triggers = {
571                 .t_frozen = ocfs2_frozen_trigger,
572                 .t_abort = ocfs2_abort_trigger,
573         },
574         .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
575 };
576
577 static struct ocfs2_triggers rb_triggers = {
578         .ot_triggers = {
579                 .t_frozen = ocfs2_frozen_trigger,
580                 .t_abort = ocfs2_abort_trigger,
581         },
582         .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
583 };
584
585 static struct ocfs2_triggers gd_triggers = {
586         .ot_triggers = {
587                 .t_frozen = ocfs2_frozen_trigger,
588                 .t_abort = ocfs2_abort_trigger,
589         },
590         .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
591 };
592
593 static struct ocfs2_triggers db_triggers = {
594         .ot_triggers = {
595                 .t_frozen = ocfs2_db_frozen_trigger,
596                 .t_abort = ocfs2_abort_trigger,
597         },
598 };
599
600 static struct ocfs2_triggers xb_triggers = {
601         .ot_triggers = {
602                 .t_frozen = ocfs2_frozen_trigger,
603                 .t_abort = ocfs2_abort_trigger,
604         },
605         .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
606 };
607
608 static struct ocfs2_triggers dq_triggers = {
609         .ot_triggers = {
610                 .t_frozen = ocfs2_dq_frozen_trigger,
611                 .t_abort = ocfs2_abort_trigger,
612         },
613 };
614
615 static struct ocfs2_triggers dr_triggers = {
616         .ot_triggers = {
617                 .t_frozen = ocfs2_frozen_trigger,
618                 .t_abort = ocfs2_abort_trigger,
619         },
620         .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
621 };
622
623 static struct ocfs2_triggers dl_triggers = {
624         .ot_triggers = {
625                 .t_frozen = ocfs2_frozen_trigger,
626                 .t_abort = ocfs2_abort_trigger,
627         },
628         .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
629 };
630
631 static int __ocfs2_journal_access(handle_t *handle,
632                                   struct ocfs2_caching_info *ci,
633                                   struct buffer_head *bh,
634                                   struct ocfs2_triggers *triggers,
635                                   int type)
636 {
637         int status;
638         struct ocfs2_super *osb =
639                 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
640
641         BUG_ON(!ci || !ci->ci_ops);
642         BUG_ON(!handle);
643         BUG_ON(!bh);
644
645         trace_ocfs2_journal_access(
646                 (unsigned long long)ocfs2_metadata_cache_owner(ci),
647                 (unsigned long long)bh->b_blocknr, type, bh->b_size);
648
649         /* we can safely remove this assertion after testing. */
650         if (!buffer_uptodate(bh)) {
651                 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
652                 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
653                      (unsigned long long)bh->b_blocknr, bh->b_state);
654
655                 lock_buffer(bh);
656                 /*
657                  * A previous transaction with a couple of buffer heads fail
658                  * to checkpoint, so all the bhs are marked as BH_Write_EIO.
659                  * For current transaction, the bh is just among those error
660                  * bhs which previous transaction handle. We can't just clear
661                  * its BH_Write_EIO and reuse directly, since other bhs are
662                  * not written to disk yet and that will cause metadata
663                  * inconsistency. So we should set fs read-only to avoid
664                  * further damage.
665                  */
666                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
667                         unlock_buffer(bh);
668                         return ocfs2_error(osb->sb, "A previous attempt to "
669                                         "write this buffer head failed\n");
670                 }
671                 unlock_buffer(bh);
672         }
673
674         /* Set the current transaction information on the ci so
675          * that the locking code knows whether it can drop it's locks
676          * on this ci or not. We're protected from the commit
677          * thread updating the current transaction id until
678          * ocfs2_commit_trans() because ocfs2_start_trans() took
679          * j_trans_barrier for us. */
680         ocfs2_set_ci_lock_trans(osb->journal, ci);
681
682         ocfs2_metadata_cache_io_lock(ci);
683         switch (type) {
684         case OCFS2_JOURNAL_ACCESS_CREATE:
685         case OCFS2_JOURNAL_ACCESS_WRITE:
686                 status = jbd2_journal_get_write_access(handle, bh);
687                 break;
688
689         case OCFS2_JOURNAL_ACCESS_UNDO:
690                 status = jbd2_journal_get_undo_access(handle, bh);
691                 break;
692
693         default:
694                 status = -EINVAL;
695                 mlog(ML_ERROR, "Unknown access type!\n");
696         }
697         if (!status && ocfs2_meta_ecc(osb) && triggers)
698                 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
699         ocfs2_metadata_cache_io_unlock(ci);
700
701         if (status < 0)
702                 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
703                      status, type);
704
705         return status;
706 }
707
708 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
709                             struct buffer_head *bh, int type)
710 {
711         return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
712 }
713
714 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
715                             struct buffer_head *bh, int type)
716 {
717         return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
718 }
719
720 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
721                             struct buffer_head *bh, int type)
722 {
723         return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
724                                       type);
725 }
726
727 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
728                             struct buffer_head *bh, int type)
729 {
730         return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
731 }
732
733 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
734                             struct buffer_head *bh, int type)
735 {
736         return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
737 }
738
739 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
740                             struct buffer_head *bh, int type)
741 {
742         return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
743 }
744
745 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
746                             struct buffer_head *bh, int type)
747 {
748         return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
749 }
750
751 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
752                             struct buffer_head *bh, int type)
753 {
754         return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
755 }
756
757 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
758                             struct buffer_head *bh, int type)
759 {
760         return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
761 }
762
763 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
764                          struct buffer_head *bh, int type)
765 {
766         return __ocfs2_journal_access(handle, ci, bh, NULL, type);
767 }
768
769 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
770 {
771         int status;
772
773         trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
774
775         status = jbd2_journal_dirty_metadata(handle, bh);
776         if (status) {
777                 mlog_errno(status);
778                 if (!is_handle_aborted(handle)) {
779                         journal_t *journal = handle->h_transaction->t_journal;
780
781                         mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
782                                         "Aborting transaction and journal.\n");
783                         handle->h_err = status;
784                         jbd2_journal_abort_handle(handle);
785                         jbd2_journal_abort(journal, status);
786                         ocfs2_abort(bh->b_assoc_map->host->i_sb,
787                                     "Journal already aborted.\n");
788                 }
789         }
790 }
791
792 #define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
793
794 void ocfs2_set_journal_params(struct ocfs2_super *osb)
795 {
796         journal_t *journal = osb->journal->j_journal;
797         unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
798
799         if (osb->osb_commit_interval)
800                 commit_interval = osb->osb_commit_interval;
801
802         write_lock(&journal->j_state_lock);
803         journal->j_commit_interval = commit_interval;
804         if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
805                 journal->j_flags |= JBD2_BARRIER;
806         else
807                 journal->j_flags &= ~JBD2_BARRIER;
808         write_unlock(&journal->j_state_lock);
809 }
810
811 /*
812  * alloc & initialize skeleton for journal structure.
813  * ocfs2_journal_init() will make fs have journal ability.
814  */
815 int ocfs2_journal_alloc(struct ocfs2_super *osb)
816 {
817         int status = 0;
818         struct ocfs2_journal *journal;
819
820         journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
821         if (!journal) {
822                 mlog(ML_ERROR, "unable to alloc journal\n");
823                 status = -ENOMEM;
824                 goto bail;
825         }
826         osb->journal = journal;
827         journal->j_osb = osb;
828
829         atomic_set(&journal->j_num_trans, 0);
830         init_rwsem(&journal->j_trans_barrier);
831         init_waitqueue_head(&journal->j_checkpointed);
832         spin_lock_init(&journal->j_lock);
833         journal->j_trans_id = 1UL;
834         INIT_LIST_HEAD(&journal->j_la_cleanups);
835         INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
836         journal->j_state = OCFS2_JOURNAL_FREE;
837
838 bail:
839         return status;
840 }
841
842 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
843 {
844         struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
845         struct writeback_control wbc = {
846                 .sync_mode =  WB_SYNC_ALL,
847                 .nr_to_write = mapping->nrpages * 2,
848                 .range_start = jinode->i_dirty_start,
849                 .range_end = jinode->i_dirty_end,
850         };
851
852         return filemap_fdatawrite_wbc(mapping, &wbc);
853 }
854
855 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
856 {
857         int status = -1;
858         struct inode *inode = NULL; /* the journal inode */
859         journal_t *j_journal = NULL;
860         struct ocfs2_journal *journal = osb->journal;
861         struct ocfs2_dinode *di = NULL;
862         struct buffer_head *bh = NULL;
863         int inode_lock = 0;
864
865         BUG_ON(!journal);
866         /* already have the inode for our journal */
867         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
868                                             osb->slot_num);
869         if (inode == NULL) {
870                 status = -EACCES;
871                 mlog_errno(status);
872                 goto done;
873         }
874         if (is_bad_inode(inode)) {
875                 mlog(ML_ERROR, "access error (bad inode)\n");
876                 iput(inode);
877                 inode = NULL;
878                 status = -EACCES;
879                 goto done;
880         }
881
882         SET_INODE_JOURNAL(inode);
883         OCFS2_I(inode)->ip_open_count++;
884
885         /* Skip recovery waits here - journal inode metadata never
886          * changes in a live cluster so it can be considered an
887          * exception to the rule. */
888         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
889         if (status < 0) {
890                 if (status != -ERESTARTSYS)
891                         mlog(ML_ERROR, "Could not get lock on journal!\n");
892                 goto done;
893         }
894
895         inode_lock = 1;
896         di = (struct ocfs2_dinode *)bh->b_data;
897
898         if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
899                 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
900                      i_size_read(inode));
901                 status = -EINVAL;
902                 goto done;
903         }
904
905         trace_ocfs2_journal_init(i_size_read(inode),
906                                  (unsigned long long)inode->i_blocks,
907                                  OCFS2_I(inode)->ip_clusters);
908
909         /* call the kernels journal init function now */
910         j_journal = jbd2_journal_init_inode(inode);
911         if (IS_ERR(j_journal)) {
912                 mlog(ML_ERROR, "Linux journal layer error\n");
913                 status = PTR_ERR(j_journal);
914                 goto done;
915         }
916
917         trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
918
919         *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
920                   OCFS2_JOURNAL_DIRTY_FL);
921
922         journal->j_journal = j_journal;
923         journal->j_journal->j_submit_inode_data_buffers =
924                 ocfs2_journal_submit_inode_data_buffers;
925         journal->j_journal->j_finish_inode_data_buffers =
926                 jbd2_journal_finish_inode_data_buffers;
927         journal->j_inode = inode;
928         journal->j_bh = bh;
929
930         ocfs2_set_journal_params(osb);
931
932         journal->j_state = OCFS2_JOURNAL_LOADED;
933
934         status = 0;
935 done:
936         if (status < 0) {
937                 if (inode_lock)
938                         ocfs2_inode_unlock(inode, 1);
939                 brelse(bh);
940                 if (inode) {
941                         OCFS2_I(inode)->ip_open_count--;
942                         iput(inode);
943                 }
944         }
945
946         return status;
947 }
948
949 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
950 {
951         le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
952 }
953
954 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
955 {
956         return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
957 }
958
959 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
960                                       int dirty, int replayed)
961 {
962         int status;
963         unsigned int flags;
964         struct ocfs2_journal *journal = osb->journal;
965         struct buffer_head *bh = journal->j_bh;
966         struct ocfs2_dinode *fe;
967
968         fe = (struct ocfs2_dinode *)bh->b_data;
969
970         /* The journal bh on the osb always comes from ocfs2_journal_init()
971          * and was validated there inside ocfs2_inode_lock_full().  It's a
972          * code bug if we mess it up. */
973         BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
974
975         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
976         if (dirty)
977                 flags |= OCFS2_JOURNAL_DIRTY_FL;
978         else
979                 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
980         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
981
982         if (replayed)
983                 ocfs2_bump_recovery_generation(fe);
984
985         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
986         status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
987         if (status < 0)
988                 mlog_errno(status);
989
990         return status;
991 }
992
993 /*
994  * If the journal has been kmalloc'd it needs to be freed after this
995  * call.
996  */
997 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
998 {
999         struct ocfs2_journal *journal = NULL;
1000         int status = 0;
1001         struct inode *inode = NULL;
1002         int num_running_trans = 0;
1003
1004         BUG_ON(!osb);
1005
1006         journal = osb->journal;
1007         if (!journal)
1008                 goto done;
1009
1010         inode = journal->j_inode;
1011
1012         if (journal->j_state != OCFS2_JOURNAL_LOADED)
1013                 goto done;
1014
1015         /* need to inc inode use count - jbd2_journal_destroy will iput. */
1016         if (!igrab(inode))
1017                 BUG();
1018
1019         num_running_trans = atomic_read(&(osb->journal->j_num_trans));
1020         trace_ocfs2_journal_shutdown(num_running_trans);
1021
1022         /* Do a commit_cache here. It will flush our journal, *and*
1023          * release any locks that are still held.
1024          * set the SHUTDOWN flag and release the trans lock.
1025          * the commit thread will take the trans lock for us below. */
1026         journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1027
1028         /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1029          * drop the trans_lock (which we want to hold until we
1030          * completely destroy the journal. */
1031         if (osb->commit_task) {
1032                 /* Wait for the commit thread */
1033                 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1034                 kthread_stop(osb->commit_task);
1035                 osb->commit_task = NULL;
1036         }
1037
1038         BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1039
1040         if (ocfs2_mount_local(osb)) {
1041                 jbd2_journal_lock_updates(journal->j_journal);
1042                 status = jbd2_journal_flush(journal->j_journal, 0);
1043                 jbd2_journal_unlock_updates(journal->j_journal);
1044                 if (status < 0)
1045                         mlog_errno(status);
1046         }
1047
1048         /* Shutdown the kernel journal system */
1049         if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1050                 /*
1051                  * Do not toggle if flush was unsuccessful otherwise
1052                  * will leave dirty metadata in a "clean" journal
1053                  */
1054                 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1055                 if (status < 0)
1056                         mlog_errno(status);
1057         }
1058         journal->j_journal = NULL;
1059
1060         OCFS2_I(inode)->ip_open_count--;
1061
1062         /* unlock our journal */
1063         ocfs2_inode_unlock(inode, 1);
1064
1065         brelse(journal->j_bh);
1066         journal->j_bh = NULL;
1067
1068         journal->j_state = OCFS2_JOURNAL_FREE;
1069
1070 done:
1071         iput(inode);
1072         kfree(journal);
1073         osb->journal = NULL;
1074 }
1075
1076 static void ocfs2_clear_journal_error(struct super_block *sb,
1077                                       journal_t *journal,
1078                                       int slot)
1079 {
1080         int olderr;
1081
1082         olderr = jbd2_journal_errno(journal);
1083         if (olderr) {
1084                 mlog(ML_ERROR, "File system error %d recorded in "
1085                      "journal %u.\n", olderr, slot);
1086                 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1087                      sb->s_id);
1088
1089                 jbd2_journal_ack_err(journal);
1090                 jbd2_journal_clear_err(journal);
1091         }
1092 }
1093
1094 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1095 {
1096         int status = 0;
1097         struct ocfs2_super *osb;
1098
1099         BUG_ON(!journal);
1100
1101         osb = journal->j_osb;
1102
1103         status = jbd2_journal_load(journal->j_journal);
1104         if (status < 0) {
1105                 mlog(ML_ERROR, "Failed to load journal!\n");
1106                 goto done;
1107         }
1108
1109         ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1110
1111         if (replayed) {
1112                 jbd2_journal_lock_updates(journal->j_journal);
1113                 status = jbd2_journal_flush(journal->j_journal, 0);
1114                 jbd2_journal_unlock_updates(journal->j_journal);
1115                 if (status < 0)
1116                         mlog_errno(status);
1117         }
1118
1119         status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1120         if (status < 0) {
1121                 mlog_errno(status);
1122                 goto done;
1123         }
1124
1125         /* Launch the commit thread */
1126         if (!local) {
1127                 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1128                                 "ocfs2cmt-%s", osb->uuid_str);
1129                 if (IS_ERR(osb->commit_task)) {
1130                         status = PTR_ERR(osb->commit_task);
1131                         osb->commit_task = NULL;
1132                         mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1133                              "error=%d", status);
1134                         goto done;
1135                 }
1136         } else
1137                 osb->commit_task = NULL;
1138
1139 done:
1140         return status;
1141 }
1142
1143
1144 /* 'full' flag tells us whether we clear out all blocks or if we just
1145  * mark the journal clean */
1146 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1147 {
1148         int status;
1149
1150         BUG_ON(!journal);
1151
1152         status = jbd2_journal_wipe(journal->j_journal, full);
1153         if (status < 0) {
1154                 mlog_errno(status);
1155                 goto bail;
1156         }
1157
1158         status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1159         if (status < 0)
1160                 mlog_errno(status);
1161
1162 bail:
1163         return status;
1164 }
1165
1166 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1167 {
1168         int empty;
1169         struct ocfs2_recovery_map *rm = osb->recovery_map;
1170
1171         spin_lock(&osb->osb_lock);
1172         empty = (rm->rm_used == 0);
1173         spin_unlock(&osb->osb_lock);
1174
1175         return empty;
1176 }
1177
1178 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1179 {
1180         wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1181 }
1182
1183 /*
1184  * JBD Might read a cached version of another nodes journal file. We
1185  * don't want this as this file changes often and we get no
1186  * notification on those changes. The only way to be sure that we've
1187  * got the most up to date version of those blocks then is to force
1188  * read them off disk. Just searching through the buffer cache won't
1189  * work as there may be pages backing this file which are still marked
1190  * up to date. We know things can't change on this file underneath us
1191  * as we have the lock by now :)
1192  */
1193 static int ocfs2_force_read_journal(struct inode *inode)
1194 {
1195         int status = 0;
1196         int i;
1197         u64 v_blkno, p_blkno, p_blocks, num_blocks;
1198         struct buffer_head *bh = NULL;
1199         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1200
1201         num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1202         v_blkno = 0;
1203         while (v_blkno < num_blocks) {
1204                 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1205                                                      &p_blkno, &p_blocks, NULL);
1206                 if (status < 0) {
1207                         mlog_errno(status);
1208                         goto bail;
1209                 }
1210
1211                 for (i = 0; i < p_blocks; i++, p_blkno++) {
1212                         bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1213                                         osb->sb->s_blocksize);
1214                         /* block not cached. */
1215                         if (!bh)
1216                                 continue;
1217
1218                         brelse(bh);
1219                         bh = NULL;
1220                         /* We are reading journal data which should not
1221                          * be put in the uptodate cache.
1222                          */
1223                         status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1224                         if (status < 0) {
1225                                 mlog_errno(status);
1226                                 goto bail;
1227                         }
1228
1229                         brelse(bh);
1230                         bh = NULL;
1231                 }
1232
1233                 v_blkno += p_blocks;
1234         }
1235
1236 bail:
1237         return status;
1238 }
1239
1240 struct ocfs2_la_recovery_item {
1241         struct list_head        lri_list;
1242         int                     lri_slot;
1243         struct ocfs2_dinode     *lri_la_dinode;
1244         struct ocfs2_dinode     *lri_tl_dinode;
1245         struct ocfs2_quota_recovery *lri_qrec;
1246         enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1247 };
1248
1249 /* Does the second half of the recovery process. By this point, the
1250  * node is marked clean and can actually be considered recovered,
1251  * hence it's no longer in the recovery map, but there's still some
1252  * cleanup we can do which shouldn't happen within the recovery thread
1253  * as locking in that context becomes very difficult if we are to take
1254  * recovering nodes into account.
1255  *
1256  * NOTE: This function can and will sleep on recovery of other nodes
1257  * during cluster locking, just like any other ocfs2 process.
1258  */
1259 void ocfs2_complete_recovery(struct work_struct *work)
1260 {
1261         int ret = 0;
1262         struct ocfs2_journal *journal =
1263                 container_of(work, struct ocfs2_journal, j_recovery_work);
1264         struct ocfs2_super *osb = journal->j_osb;
1265         struct ocfs2_dinode *la_dinode, *tl_dinode;
1266         struct ocfs2_la_recovery_item *item, *n;
1267         struct ocfs2_quota_recovery *qrec;
1268         enum ocfs2_orphan_reco_type orphan_reco_type;
1269         LIST_HEAD(tmp_la_list);
1270
1271         trace_ocfs2_complete_recovery(
1272                 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1273
1274         spin_lock(&journal->j_lock);
1275         list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1276         spin_unlock(&journal->j_lock);
1277
1278         list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1279                 list_del_init(&item->lri_list);
1280
1281                 ocfs2_wait_on_quotas(osb);
1282
1283                 la_dinode = item->lri_la_dinode;
1284                 tl_dinode = item->lri_tl_dinode;
1285                 qrec = item->lri_qrec;
1286                 orphan_reco_type = item->lri_orphan_reco_type;
1287
1288                 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1289                         la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1290                         tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1291                         qrec);
1292
1293                 if (la_dinode) {
1294                         ret = ocfs2_complete_local_alloc_recovery(osb,
1295                                                                   la_dinode);
1296                         if (ret < 0)
1297                                 mlog_errno(ret);
1298
1299                         kfree(la_dinode);
1300                 }
1301
1302                 if (tl_dinode) {
1303                         ret = ocfs2_complete_truncate_log_recovery(osb,
1304                                                                    tl_dinode);
1305                         if (ret < 0)
1306                                 mlog_errno(ret);
1307
1308                         kfree(tl_dinode);
1309                 }
1310
1311                 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1312                                 orphan_reco_type);
1313                 if (ret < 0)
1314                         mlog_errno(ret);
1315
1316                 if (qrec) {
1317                         ret = ocfs2_finish_quota_recovery(osb, qrec,
1318                                                           item->lri_slot);
1319                         if (ret < 0)
1320                                 mlog_errno(ret);
1321                         /* Recovery info is already freed now */
1322                 }
1323
1324                 kfree(item);
1325         }
1326
1327         trace_ocfs2_complete_recovery_end(ret);
1328 }
1329
1330 /* NOTE: This function always eats your references to la_dinode and
1331  * tl_dinode, either manually on error, or by passing them to
1332  * ocfs2_complete_recovery */
1333 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1334                                             int slot_num,
1335                                             struct ocfs2_dinode *la_dinode,
1336                                             struct ocfs2_dinode *tl_dinode,
1337                                             struct ocfs2_quota_recovery *qrec,
1338                                             enum ocfs2_orphan_reco_type orphan_reco_type)
1339 {
1340         struct ocfs2_la_recovery_item *item;
1341
1342         item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1343         if (!item) {
1344                 /* Though we wish to avoid it, we are in fact safe in
1345                  * skipping local alloc cleanup as fsck.ocfs2 is more
1346                  * than capable of reclaiming unused space. */
1347                 kfree(la_dinode);
1348                 kfree(tl_dinode);
1349
1350                 if (qrec)
1351                         ocfs2_free_quota_recovery(qrec);
1352
1353                 mlog_errno(-ENOMEM);
1354                 return;
1355         }
1356
1357         INIT_LIST_HEAD(&item->lri_list);
1358         item->lri_la_dinode = la_dinode;
1359         item->lri_slot = slot_num;
1360         item->lri_tl_dinode = tl_dinode;
1361         item->lri_qrec = qrec;
1362         item->lri_orphan_reco_type = orphan_reco_type;
1363
1364         spin_lock(&journal->j_lock);
1365         list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1366         queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1367         spin_unlock(&journal->j_lock);
1368 }
1369
1370 /* Called by the mount code to queue recovery the last part of
1371  * recovery for it's own and offline slot(s). */
1372 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1373 {
1374         struct ocfs2_journal *journal = osb->journal;
1375
1376         if (ocfs2_is_hard_readonly(osb))
1377                 return;
1378
1379         /* No need to queue up our truncate_log as regular cleanup will catch
1380          * that */
1381         ocfs2_queue_recovery_completion(journal, osb->slot_num,
1382                                         osb->local_alloc_copy, NULL, NULL,
1383                                         ORPHAN_NEED_TRUNCATE);
1384         ocfs2_schedule_truncate_log_flush(osb, 0);
1385
1386         osb->local_alloc_copy = NULL;
1387
1388         /* queue to recover orphan slots for all offline slots */
1389         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1390         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1391         ocfs2_free_replay_slots(osb);
1392 }
1393
1394 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1395 {
1396         if (osb->quota_rec) {
1397                 ocfs2_queue_recovery_completion(osb->journal,
1398                                                 osb->slot_num,
1399                                                 NULL,
1400                                                 NULL,
1401                                                 osb->quota_rec,
1402                                                 ORPHAN_NEED_TRUNCATE);
1403                 osb->quota_rec = NULL;
1404         }
1405 }
1406
1407 static int __ocfs2_recovery_thread(void *arg)
1408 {
1409         int status, node_num, slot_num;
1410         struct ocfs2_super *osb = arg;
1411         struct ocfs2_recovery_map *rm = osb->recovery_map;
1412         int *rm_quota = NULL;
1413         int rm_quota_used = 0, i;
1414         struct ocfs2_quota_recovery *qrec;
1415
1416         /* Whether the quota supported. */
1417         int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1418                         OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1419                 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1420                         OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1421
1422         status = ocfs2_wait_on_mount(osb);
1423         if (status < 0) {
1424                 goto bail;
1425         }
1426
1427         if (quota_enabled) {
1428                 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1429                 if (!rm_quota) {
1430                         status = -ENOMEM;
1431                         goto bail;
1432                 }
1433         }
1434 restart:
1435         status = ocfs2_super_lock(osb, 1);
1436         if (status < 0) {
1437                 mlog_errno(status);
1438                 goto bail;
1439         }
1440
1441         status = ocfs2_compute_replay_slots(osb);
1442         if (status < 0)
1443                 mlog_errno(status);
1444
1445         /* queue recovery for our own slot */
1446         ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1447                                         NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1448
1449         spin_lock(&osb->osb_lock);
1450         while (rm->rm_used) {
1451                 /* It's always safe to remove entry zero, as we won't
1452                  * clear it until ocfs2_recover_node() has succeeded. */
1453                 node_num = rm->rm_entries[0];
1454                 spin_unlock(&osb->osb_lock);
1455                 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1456                 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1457                 if (slot_num == -ENOENT) {
1458                         status = 0;
1459                         goto skip_recovery;
1460                 }
1461
1462                 /* It is a bit subtle with quota recovery. We cannot do it
1463                  * immediately because we have to obtain cluster locks from
1464                  * quota files and we also don't want to just skip it because
1465                  * then quota usage would be out of sync until some node takes
1466                  * the slot. So we remember which nodes need quota recovery
1467                  * and when everything else is done, we recover quotas. */
1468                 if (quota_enabled) {
1469                         for (i = 0; i < rm_quota_used
1470                                         && rm_quota[i] != slot_num; i++)
1471                                 ;
1472
1473                         if (i == rm_quota_used)
1474                                 rm_quota[rm_quota_used++] = slot_num;
1475                 }
1476
1477                 status = ocfs2_recover_node(osb, node_num, slot_num);
1478 skip_recovery:
1479                 if (!status) {
1480                         ocfs2_recovery_map_clear(osb, node_num);
1481                 } else {
1482                         mlog(ML_ERROR,
1483                              "Error %d recovering node %d on device (%u,%u)!\n",
1484                              status, node_num,
1485                              MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1486                         mlog(ML_ERROR, "Volume requires unmount.\n");
1487                 }
1488
1489                 spin_lock(&osb->osb_lock);
1490         }
1491         spin_unlock(&osb->osb_lock);
1492         trace_ocfs2_recovery_thread_end(status);
1493
1494         /* Refresh all journal recovery generations from disk */
1495         status = ocfs2_check_journals_nolocks(osb);
1496         status = (status == -EROFS) ? 0 : status;
1497         if (status < 0)
1498                 mlog_errno(status);
1499
1500         /* Now it is right time to recover quotas... We have to do this under
1501          * superblock lock so that no one can start using the slot (and crash)
1502          * before we recover it */
1503         if (quota_enabled) {
1504                 for (i = 0; i < rm_quota_used; i++) {
1505                         qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1506                         if (IS_ERR(qrec)) {
1507                                 status = PTR_ERR(qrec);
1508                                 mlog_errno(status);
1509                                 continue;
1510                         }
1511                         ocfs2_queue_recovery_completion(osb->journal,
1512                                         rm_quota[i],
1513                                         NULL, NULL, qrec,
1514                                         ORPHAN_NEED_TRUNCATE);
1515                 }
1516         }
1517
1518         ocfs2_super_unlock(osb, 1);
1519
1520         /* queue recovery for offline slots */
1521         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1522
1523 bail:
1524         mutex_lock(&osb->recovery_lock);
1525         if (!status && !ocfs2_recovery_completed(osb)) {
1526                 mutex_unlock(&osb->recovery_lock);
1527                 goto restart;
1528         }
1529
1530         ocfs2_free_replay_slots(osb);
1531         osb->recovery_thread_task = NULL;
1532         mb(); /* sync with ocfs2_recovery_thread_running */
1533         wake_up(&osb->recovery_event);
1534
1535         mutex_unlock(&osb->recovery_lock);
1536
1537         if (quota_enabled)
1538                 kfree(rm_quota);
1539
1540         return status;
1541 }
1542
1543 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1544 {
1545         mutex_lock(&osb->recovery_lock);
1546
1547         trace_ocfs2_recovery_thread(node_num, osb->node_num,
1548                 osb->disable_recovery, osb->recovery_thread_task,
1549                 osb->disable_recovery ?
1550                 -1 : ocfs2_recovery_map_set(osb, node_num));
1551
1552         if (osb->disable_recovery)
1553                 goto out;
1554
1555         if (osb->recovery_thread_task)
1556                 goto out;
1557
1558         osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1559                         "ocfs2rec-%s", osb->uuid_str);
1560         if (IS_ERR(osb->recovery_thread_task)) {
1561                 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1562                 osb->recovery_thread_task = NULL;
1563         }
1564
1565 out:
1566         mutex_unlock(&osb->recovery_lock);
1567         wake_up(&osb->recovery_event);
1568 }
1569
1570 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1571                                     int slot_num,
1572                                     struct buffer_head **bh,
1573                                     struct inode **ret_inode)
1574 {
1575         int status = -EACCES;
1576         struct inode *inode = NULL;
1577
1578         BUG_ON(slot_num >= osb->max_slots);
1579
1580         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1581                                             slot_num);
1582         if (!inode || is_bad_inode(inode)) {
1583                 mlog_errno(status);
1584                 goto bail;
1585         }
1586         SET_INODE_JOURNAL(inode);
1587
1588         status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1589         if (status < 0) {
1590                 mlog_errno(status);
1591                 goto bail;
1592         }
1593
1594         status = 0;
1595
1596 bail:
1597         if (inode) {
1598                 if (status || !ret_inode)
1599                         iput(inode);
1600                 else
1601                         *ret_inode = inode;
1602         }
1603         return status;
1604 }
1605
1606 /* Does the actual journal replay and marks the journal inode as
1607  * clean. Will only replay if the journal inode is marked dirty. */
1608 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1609                                 int node_num,
1610                                 int slot_num)
1611 {
1612         int status;
1613         int got_lock = 0;
1614         unsigned int flags;
1615         struct inode *inode = NULL;
1616         struct ocfs2_dinode *fe;
1617         journal_t *journal = NULL;
1618         struct buffer_head *bh = NULL;
1619         u32 slot_reco_gen;
1620
1621         status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1622         if (status) {
1623                 mlog_errno(status);
1624                 goto done;
1625         }
1626
1627         fe = (struct ocfs2_dinode *)bh->b_data;
1628         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1629         brelse(bh);
1630         bh = NULL;
1631
1632         /*
1633          * As the fs recovery is asynchronous, there is a small chance that
1634          * another node mounted (and recovered) the slot before the recovery
1635          * thread could get the lock. To handle that, we dirty read the journal
1636          * inode for that slot to get the recovery generation. If it is
1637          * different than what we expected, the slot has been recovered.
1638          * If not, it needs recovery.
1639          */
1640         if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1641                 trace_ocfs2_replay_journal_recovered(slot_num,
1642                      osb->slot_recovery_generations[slot_num], slot_reco_gen);
1643                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1644                 status = -EBUSY;
1645                 goto done;
1646         }
1647
1648         /* Continue with recovery as the journal has not yet been recovered */
1649
1650         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1651         if (status < 0) {
1652                 trace_ocfs2_replay_journal_lock_err(status);
1653                 if (status != -ERESTARTSYS)
1654                         mlog(ML_ERROR, "Could not lock journal!\n");
1655                 goto done;
1656         }
1657         got_lock = 1;
1658
1659         fe = (struct ocfs2_dinode *) bh->b_data;
1660
1661         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1662         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1663
1664         if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1665                 trace_ocfs2_replay_journal_skip(node_num);
1666                 /* Refresh recovery generation for the slot */
1667                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1668                 goto done;
1669         }
1670
1671         /* we need to run complete recovery for offline orphan slots */
1672         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1673
1674         printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1675                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1676                MINOR(osb->sb->s_dev));
1677
1678         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1679
1680         status = ocfs2_force_read_journal(inode);
1681         if (status < 0) {
1682                 mlog_errno(status);
1683                 goto done;
1684         }
1685
1686         journal = jbd2_journal_init_inode(inode);
1687         if (IS_ERR(journal)) {
1688                 mlog(ML_ERROR, "Linux journal layer error\n");
1689                 status = PTR_ERR(journal);
1690                 goto done;
1691         }
1692
1693         status = jbd2_journal_load(journal);
1694         if (status < 0) {
1695                 mlog_errno(status);
1696                 BUG_ON(!igrab(inode));
1697                 jbd2_journal_destroy(journal);
1698                 goto done;
1699         }
1700
1701         ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1702
1703         /* wipe the journal */
1704         jbd2_journal_lock_updates(journal);
1705         status = jbd2_journal_flush(journal, 0);
1706         jbd2_journal_unlock_updates(journal);
1707         if (status < 0)
1708                 mlog_errno(status);
1709
1710         /* This will mark the node clean */
1711         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1712         flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1713         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1714
1715         /* Increment recovery generation to indicate successful recovery */
1716         ocfs2_bump_recovery_generation(fe);
1717         osb->slot_recovery_generations[slot_num] =
1718                                         ocfs2_get_recovery_generation(fe);
1719
1720         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1721         status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1722         if (status < 0)
1723                 mlog_errno(status);
1724
1725         BUG_ON(!igrab(inode));
1726
1727         jbd2_journal_destroy(journal);
1728
1729         printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1730                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1731                MINOR(osb->sb->s_dev));
1732 done:
1733         /* drop the lock on this nodes journal */
1734         if (got_lock)
1735                 ocfs2_inode_unlock(inode, 1);
1736
1737         iput(inode);
1738         brelse(bh);
1739
1740         return status;
1741 }
1742
1743 /*
1744  * Do the most important parts of node recovery:
1745  *  - Replay it's journal
1746  *  - Stamp a clean local allocator file
1747  *  - Stamp a clean truncate log
1748  *  - Mark the node clean
1749  *
1750  * If this function completes without error, a node in OCFS2 can be
1751  * said to have been safely recovered. As a result, failure during the
1752  * second part of a nodes recovery process (local alloc recovery) is
1753  * far less concerning.
1754  */
1755 static int ocfs2_recover_node(struct ocfs2_super *osb,
1756                               int node_num, int slot_num)
1757 {
1758         int status = 0;
1759         struct ocfs2_dinode *la_copy = NULL;
1760         struct ocfs2_dinode *tl_copy = NULL;
1761
1762         trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1763
1764         /* Should not ever be called to recover ourselves -- in that
1765          * case we should've called ocfs2_journal_load instead. */
1766         BUG_ON(osb->node_num == node_num);
1767
1768         status = ocfs2_replay_journal(osb, node_num, slot_num);
1769         if (status < 0) {
1770                 if (status == -EBUSY) {
1771                         trace_ocfs2_recover_node_skip(slot_num, node_num);
1772                         status = 0;
1773                         goto done;
1774                 }
1775                 mlog_errno(status);
1776                 goto done;
1777         }
1778
1779         /* Stamp a clean local alloc file AFTER recovering the journal... */
1780         status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1781         if (status < 0) {
1782                 mlog_errno(status);
1783                 goto done;
1784         }
1785
1786         /* An error from begin_truncate_log_recovery is not
1787          * serious enough to warrant halting the rest of
1788          * recovery. */
1789         status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1790         if (status < 0)
1791                 mlog_errno(status);
1792
1793         /* Likewise, this would be a strange but ultimately not so
1794          * harmful place to get an error... */
1795         status = ocfs2_clear_slot(osb, slot_num);
1796         if (status < 0)
1797                 mlog_errno(status);
1798
1799         /* This will kfree the memory pointed to by la_copy and tl_copy */
1800         ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1801                                         tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1802
1803         status = 0;
1804 done:
1805
1806         return status;
1807 }
1808
1809 /* Test node liveness by trylocking his journal. If we get the lock,
1810  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1811  * still alive (we couldn't get the lock) and < 0 on error. */
1812 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1813                                  int slot_num)
1814 {
1815         int status, flags;
1816         struct inode *inode = NULL;
1817
1818         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1819                                             slot_num);
1820         if (inode == NULL) {
1821                 mlog(ML_ERROR, "access error\n");
1822                 status = -EACCES;
1823                 goto bail;
1824         }
1825         if (is_bad_inode(inode)) {
1826                 mlog(ML_ERROR, "access error (bad inode)\n");
1827                 iput(inode);
1828                 inode = NULL;
1829                 status = -EACCES;
1830                 goto bail;
1831         }
1832         SET_INODE_JOURNAL(inode);
1833
1834         flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1835         status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1836         if (status < 0) {
1837                 if (status != -EAGAIN)
1838                         mlog_errno(status);
1839                 goto bail;
1840         }
1841
1842         ocfs2_inode_unlock(inode, 1);
1843 bail:
1844         iput(inode);
1845
1846         return status;
1847 }
1848
1849 /* Call this underneath ocfs2_super_lock. It also assumes that the
1850  * slot info struct has been updated from disk. */
1851 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1852 {
1853         unsigned int node_num;
1854         int status, i;
1855         u32 gen;
1856         struct buffer_head *bh = NULL;
1857         struct ocfs2_dinode *di;
1858
1859         /* This is called with the super block cluster lock, so we
1860          * know that the slot map can't change underneath us. */
1861
1862         for (i = 0; i < osb->max_slots; i++) {
1863                 /* Read journal inode to get the recovery generation */
1864                 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1865                 if (status) {
1866                         mlog_errno(status);
1867                         goto bail;
1868                 }
1869                 di = (struct ocfs2_dinode *)bh->b_data;
1870                 gen = ocfs2_get_recovery_generation(di);
1871                 brelse(bh);
1872                 bh = NULL;
1873
1874                 spin_lock(&osb->osb_lock);
1875                 osb->slot_recovery_generations[i] = gen;
1876
1877                 trace_ocfs2_mark_dead_nodes(i,
1878                                             osb->slot_recovery_generations[i]);
1879
1880                 if (i == osb->slot_num) {
1881                         spin_unlock(&osb->osb_lock);
1882                         continue;
1883                 }
1884
1885                 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1886                 if (status == -ENOENT) {
1887                         spin_unlock(&osb->osb_lock);
1888                         continue;
1889                 }
1890
1891                 if (__ocfs2_recovery_map_test(osb, node_num)) {
1892                         spin_unlock(&osb->osb_lock);
1893                         continue;
1894                 }
1895                 spin_unlock(&osb->osb_lock);
1896
1897                 /* Ok, we have a slot occupied by another node which
1898                  * is not in the recovery map. We trylock his journal
1899                  * file here to test if he's alive. */
1900                 status = ocfs2_trylock_journal(osb, i);
1901                 if (!status) {
1902                         /* Since we're called from mount, we know that
1903                          * the recovery thread can't race us on
1904                          * setting / checking the recovery bits. */
1905                         ocfs2_recovery_thread(osb, node_num);
1906                 } else if ((status < 0) && (status != -EAGAIN)) {
1907                         mlog_errno(status);
1908                         goto bail;
1909                 }
1910         }
1911
1912         status = 0;
1913 bail:
1914         return status;
1915 }
1916
1917 /*
1918  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1919  * randomness to the timeout to minimize multple nodes firing the timer at the
1920  * same time.
1921  */
1922 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1923 {
1924         unsigned long time;
1925
1926         get_random_bytes(&time, sizeof(time));
1927         time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1928         return msecs_to_jiffies(time);
1929 }
1930
1931 /*
1932  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1933  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1934  * is done to catch any orphans that are left over in orphan directories.
1935  *
1936  * It scans all slots, even ones that are in use. It does so to handle the
1937  * case described below:
1938  *
1939  *   Node 1 has an inode it was using. The dentry went away due to memory
1940  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1941  *   has the open lock.
1942  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1943  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1944  *   open lock, sees that another node has a PR, and does nothing.
1945  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1946  *   open lock, sees the PR still, and does nothing.
1947  *   Basically, we have to trigger an orphan iput on node 1. The only way
1948  *   for this to happen is if node 1 runs node 2's orphan dir.
1949  *
1950  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1951  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1952  * stored in LVB. If the sequence number has changed, it means some other
1953  * node has done the scan.  This node skips the scan and tracks the
1954  * sequence number.  If the sequence number didn't change, it means a scan
1955  * hasn't happened.  The node queues a scan and increments the
1956  * sequence number in the LVB.
1957  */
1958 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1959 {
1960         struct ocfs2_orphan_scan *os;
1961         int status, i;
1962         u32 seqno = 0;
1963
1964         os = &osb->osb_orphan_scan;
1965
1966         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1967                 goto out;
1968
1969         trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1970                                             atomic_read(&os->os_state));
1971
1972         status = ocfs2_orphan_scan_lock(osb, &seqno);
1973         if (status < 0) {
1974                 if (status != -EAGAIN)
1975                         mlog_errno(status);
1976                 goto out;
1977         }
1978
1979         /* Do no queue the tasks if the volume is being umounted */
1980         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1981                 goto unlock;
1982
1983         if (os->os_seqno != seqno) {
1984                 os->os_seqno = seqno;
1985                 goto unlock;
1986         }
1987
1988         for (i = 0; i < osb->max_slots; i++)
1989                 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1990                                                 NULL, ORPHAN_NO_NEED_TRUNCATE);
1991         /*
1992          * We queued a recovery on orphan slots, increment the sequence
1993          * number and update LVB so other node will skip the scan for a while
1994          */
1995         seqno++;
1996         os->os_count++;
1997         os->os_scantime = ktime_get_seconds();
1998 unlock:
1999         ocfs2_orphan_scan_unlock(osb, seqno);
2000 out:
2001         trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
2002                                           atomic_read(&os->os_state));
2003         return;
2004 }
2005
2006 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
2007 static void ocfs2_orphan_scan_work(struct work_struct *work)
2008 {
2009         struct ocfs2_orphan_scan *os;
2010         struct ocfs2_super *osb;
2011
2012         os = container_of(work, struct ocfs2_orphan_scan,
2013                           os_orphan_scan_work.work);
2014         osb = os->os_osb;
2015
2016         mutex_lock(&os->os_lock);
2017         ocfs2_queue_orphan_scan(osb);
2018         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2019                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2020                                       ocfs2_orphan_scan_timeout());
2021         mutex_unlock(&os->os_lock);
2022 }
2023
2024 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2025 {
2026         struct ocfs2_orphan_scan *os;
2027
2028         os = &osb->osb_orphan_scan;
2029         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2030                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2031                 mutex_lock(&os->os_lock);
2032                 cancel_delayed_work(&os->os_orphan_scan_work);
2033                 mutex_unlock(&os->os_lock);
2034         }
2035 }
2036
2037 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2038 {
2039         struct ocfs2_orphan_scan *os;
2040
2041         os = &osb->osb_orphan_scan;
2042         os->os_osb = osb;
2043         os->os_count = 0;
2044         os->os_seqno = 0;
2045         mutex_init(&os->os_lock);
2046         INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2047 }
2048
2049 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2050 {
2051         struct ocfs2_orphan_scan *os;
2052
2053         os = &osb->osb_orphan_scan;
2054         os->os_scantime = ktime_get_seconds();
2055         if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2056                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2057         else {
2058                 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2059                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2060                                    ocfs2_orphan_scan_timeout());
2061         }
2062 }
2063
2064 struct ocfs2_orphan_filldir_priv {
2065         struct dir_context      ctx;
2066         struct inode            *head;
2067         struct ocfs2_super      *osb;
2068         enum ocfs2_orphan_reco_type orphan_reco_type;
2069 };
2070
2071 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2072                                 int name_len, loff_t pos, u64 ino,
2073                                 unsigned type)
2074 {
2075         struct ocfs2_orphan_filldir_priv *p =
2076                 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2077         struct inode *iter;
2078
2079         if (name_len == 1 && !strncmp(".", name, 1))
2080                 return true;
2081         if (name_len == 2 && !strncmp("..", name, 2))
2082                 return true;
2083
2084         /* do not include dio entry in case of orphan scan */
2085         if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2086                         (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2087                         OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2088                 return true;
2089
2090         /* Skip bad inodes so that recovery can continue */
2091         iter = ocfs2_iget(p->osb, ino,
2092                           OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2093         if (IS_ERR(iter))
2094                 return true;
2095
2096         if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2097                         OCFS2_DIO_ORPHAN_PREFIX_LEN))
2098                 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2099
2100         /* Skip inodes which are already added to recover list, since dio may
2101          * happen concurrently with unlink/rename */
2102         if (OCFS2_I(iter)->ip_next_orphan) {
2103                 iput(iter);
2104                 return true;
2105         }
2106
2107         trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2108         /* No locking is required for the next_orphan queue as there
2109          * is only ever a single process doing orphan recovery. */
2110         OCFS2_I(iter)->ip_next_orphan = p->head;
2111         p->head = iter;
2112
2113         return true;
2114 }
2115
2116 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2117                                int slot,
2118                                struct inode **head,
2119                                enum ocfs2_orphan_reco_type orphan_reco_type)
2120 {
2121         int status;
2122         struct inode *orphan_dir_inode = NULL;
2123         struct ocfs2_orphan_filldir_priv priv = {
2124                 .ctx.actor = ocfs2_orphan_filldir,
2125                 .osb = osb,
2126                 .head = *head,
2127                 .orphan_reco_type = orphan_reco_type
2128         };
2129
2130         orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2131                                                        ORPHAN_DIR_SYSTEM_INODE,
2132                                                        slot);
2133         if  (!orphan_dir_inode) {
2134                 status = -ENOENT;
2135                 mlog_errno(status);
2136                 return status;
2137         }
2138
2139         inode_lock(orphan_dir_inode);
2140         status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2141         if (status < 0) {
2142                 mlog_errno(status);
2143                 goto out;
2144         }
2145
2146         status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2147         if (status) {
2148                 mlog_errno(status);
2149                 goto out_cluster;
2150         }
2151
2152         *head = priv.head;
2153
2154 out_cluster:
2155         ocfs2_inode_unlock(orphan_dir_inode, 0);
2156 out:
2157         inode_unlock(orphan_dir_inode);
2158         iput(orphan_dir_inode);
2159         return status;
2160 }
2161
2162 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2163                                               int slot)
2164 {
2165         int ret;
2166
2167         spin_lock(&osb->osb_lock);
2168         ret = !osb->osb_orphan_wipes[slot];
2169         spin_unlock(&osb->osb_lock);
2170         return ret;
2171 }
2172
2173 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2174                                              int slot)
2175 {
2176         spin_lock(&osb->osb_lock);
2177         /* Mark ourselves such that new processes in delete_inode()
2178          * know to quit early. */
2179         ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2180         while (osb->osb_orphan_wipes[slot]) {
2181                 /* If any processes are already in the middle of an
2182                  * orphan wipe on this dir, then we need to wait for
2183                  * them. */
2184                 spin_unlock(&osb->osb_lock);
2185                 wait_event_interruptible(osb->osb_wipe_event,
2186                                          ocfs2_orphan_recovery_can_continue(osb, slot));
2187                 spin_lock(&osb->osb_lock);
2188         }
2189         spin_unlock(&osb->osb_lock);
2190 }
2191
2192 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2193                                               int slot)
2194 {
2195         ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2196 }
2197
2198 /*
2199  * Orphan recovery. Each mounted node has it's own orphan dir which we
2200  * must run during recovery. Our strategy here is to build a list of
2201  * the inodes in the orphan dir and iget/iput them. The VFS does
2202  * (most) of the rest of the work.
2203  *
2204  * Orphan recovery can happen at any time, not just mount so we have a
2205  * couple of extra considerations.
2206  *
2207  * - We grab as many inodes as we can under the orphan dir lock -
2208  *   doing iget() outside the orphan dir risks getting a reference on
2209  *   an invalid inode.
2210  * - We must be sure not to deadlock with other processes on the
2211  *   system wanting to run delete_inode(). This can happen when they go
2212  *   to lock the orphan dir and the orphan recovery process attempts to
2213  *   iget() inside the orphan dir lock. This can be avoided by
2214  *   advertising our state to ocfs2_delete_inode().
2215  */
2216 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2217                                  int slot,
2218                                  enum ocfs2_orphan_reco_type orphan_reco_type)
2219 {
2220         int ret = 0;
2221         struct inode *inode = NULL;
2222         struct inode *iter;
2223         struct ocfs2_inode_info *oi;
2224         struct buffer_head *di_bh = NULL;
2225         struct ocfs2_dinode *di = NULL;
2226
2227         trace_ocfs2_recover_orphans(slot);
2228
2229         ocfs2_mark_recovering_orphan_dir(osb, slot);
2230         ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2231         ocfs2_clear_recovering_orphan_dir(osb, slot);
2232
2233         /* Error here should be noted, but we want to continue with as
2234          * many queued inodes as we've got. */
2235         if (ret)
2236                 mlog_errno(ret);
2237
2238         while (inode) {
2239                 oi = OCFS2_I(inode);
2240                 trace_ocfs2_recover_orphans_iput(
2241                                         (unsigned long long)oi->ip_blkno);
2242
2243                 iter = oi->ip_next_orphan;
2244                 oi->ip_next_orphan = NULL;
2245
2246                 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2247                         inode_lock(inode);
2248                         ret = ocfs2_rw_lock(inode, 1);
2249                         if (ret < 0) {
2250                                 mlog_errno(ret);
2251                                 goto unlock_mutex;
2252                         }
2253                         /*
2254                          * We need to take and drop the inode lock to
2255                          * force read inode from disk.
2256                          */
2257                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2258                         if (ret) {
2259                                 mlog_errno(ret);
2260                                 goto unlock_rw;
2261                         }
2262
2263                         di = (struct ocfs2_dinode *)di_bh->b_data;
2264
2265                         if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2266                                 ret = ocfs2_truncate_file(inode, di_bh,
2267                                                 i_size_read(inode));
2268                                 if (ret < 0) {
2269                                         if (ret != -ENOSPC)
2270                                                 mlog_errno(ret);
2271                                         goto unlock_inode;
2272                                 }
2273
2274                                 ret = ocfs2_del_inode_from_orphan(osb, inode,
2275                                                 di_bh, 0, 0);
2276                                 if (ret)
2277                                         mlog_errno(ret);
2278                         }
2279 unlock_inode:
2280                         ocfs2_inode_unlock(inode, 1);
2281                         brelse(di_bh);
2282                         di_bh = NULL;
2283 unlock_rw:
2284                         ocfs2_rw_unlock(inode, 1);
2285 unlock_mutex:
2286                         inode_unlock(inode);
2287
2288                         /* clear dio flag in ocfs2_inode_info */
2289                         oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2290                 } else {
2291                         spin_lock(&oi->ip_lock);
2292                         /* Set the proper information to get us going into
2293                          * ocfs2_delete_inode. */
2294                         oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2295                         spin_unlock(&oi->ip_lock);
2296                 }
2297
2298                 iput(inode);
2299                 inode = iter;
2300         }
2301
2302         return ret;
2303 }
2304
2305 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2306 {
2307         /* This check is good because ocfs2 will wait on our recovery
2308          * thread before changing it to something other than MOUNTED
2309          * or DISABLED. */
2310         wait_event(osb->osb_mount_event,
2311                   (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2312                    atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2313                    atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2314
2315         /* If there's an error on mount, then we may never get to the
2316          * MOUNTED flag, but this is set right before
2317          * dismount_volume() so we can trust it. */
2318         if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2319                 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2320                 mlog(0, "mount error, exiting!\n");
2321                 return -EBUSY;
2322         }
2323
2324         return 0;
2325 }
2326
2327 static int ocfs2_commit_thread(void *arg)
2328 {
2329         int status;
2330         struct ocfs2_super *osb = arg;
2331         struct ocfs2_journal *journal = osb->journal;
2332
2333         /* we can trust j_num_trans here because _should_stop() is only set in
2334          * shutdown and nobody other than ourselves should be able to start
2335          * transactions.  committing on shutdown might take a few iterations
2336          * as final transactions put deleted inodes on the list */
2337         while (!(kthread_should_stop() &&
2338                  atomic_read(&journal->j_num_trans) == 0)) {
2339
2340                 wait_event_interruptible(osb->checkpoint_event,
2341                                          atomic_read(&journal->j_num_trans)
2342                                          || kthread_should_stop());
2343
2344                 status = ocfs2_commit_cache(osb);
2345                 if (status < 0) {
2346                         static unsigned long abort_warn_time;
2347
2348                         /* Warn about this once per minute */
2349                         if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2350                                 mlog(ML_ERROR, "status = %d, journal is "
2351                                                 "already aborted.\n", status);
2352                         /*
2353                          * After ocfs2_commit_cache() fails, j_num_trans has a
2354                          * non-zero value.  Sleep here to avoid a busy-wait
2355                          * loop.
2356                          */
2357                         msleep_interruptible(1000);
2358                 }
2359
2360                 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2361                         mlog(ML_KTHREAD,
2362                              "commit_thread: %u transactions pending on "
2363                              "shutdown\n",
2364                              atomic_read(&journal->j_num_trans));
2365                 }
2366         }
2367
2368         return 0;
2369 }
2370
2371 /* Reads all the journal inodes without taking any cluster locks. Used
2372  * for hard readonly access to determine whether any journal requires
2373  * recovery. Also used to refresh the recovery generation numbers after
2374  * a journal has been recovered by another node.
2375  */
2376 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2377 {
2378         int ret = 0;
2379         unsigned int slot;
2380         struct buffer_head *di_bh = NULL;
2381         struct ocfs2_dinode *di;
2382         int journal_dirty = 0;
2383
2384         for(slot = 0; slot < osb->max_slots; slot++) {
2385                 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2386                 if (ret) {
2387                         mlog_errno(ret);
2388                         goto out;
2389                 }
2390
2391                 di = (struct ocfs2_dinode *) di_bh->b_data;
2392
2393                 osb->slot_recovery_generations[slot] =
2394                                         ocfs2_get_recovery_generation(di);
2395
2396                 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2397                     OCFS2_JOURNAL_DIRTY_FL)
2398                         journal_dirty = 1;
2399
2400                 brelse(di_bh);
2401                 di_bh = NULL;
2402         }
2403
2404 out:
2405         if (journal_dirty)
2406                 ret = -EROFS;
2407         return ret;
2408 }