io_uring: move fdinfo helpers to its own file
[linux-2.6-microblaze.git] / fs / ocfs2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * journal.c
4  *
5  * Defines functions of journalling api
6  *
7  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
8  */
9
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18
19 #include <cluster/masklog.h>
20
21 #include "ocfs2.h"
22
23 #include "alloc.h"
24 #include "blockcheck.h"
25 #include "dir.h"
26 #include "dlmglue.h"
27 #include "extent_map.h"
28 #include "heartbeat.h"
29 #include "inode.h"
30 #include "journal.h"
31 #include "localalloc.h"
32 #include "slot_map.h"
33 #include "super.h"
34 #include "sysfile.h"
35 #include "uptodate.h"
36 #include "quota.h"
37 #include "file.h"
38 #include "namei.h"
39
40 #include "buffer_head_io.h"
41 #include "ocfs2_trace.h"
42
43 DEFINE_SPINLOCK(trans_inc_lock);
44
45 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
46
47 static int ocfs2_force_read_journal(struct inode *inode);
48 static int ocfs2_recover_node(struct ocfs2_super *osb,
49                               int node_num, int slot_num);
50 static int __ocfs2_recovery_thread(void *arg);
51 static int ocfs2_commit_cache(struct ocfs2_super *osb);
52 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
53 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
54                                       int dirty, int replayed);
55 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
56                                  int slot_num);
57 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
58                                  int slot,
59                                  enum ocfs2_orphan_reco_type orphan_reco_type);
60 static int ocfs2_commit_thread(void *arg);
61 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
62                                             int slot_num,
63                                             struct ocfs2_dinode *la_dinode,
64                                             struct ocfs2_dinode *tl_dinode,
65                                             struct ocfs2_quota_recovery *qrec,
66                                             enum ocfs2_orphan_reco_type orphan_reco_type);
67
68 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
69 {
70         return __ocfs2_wait_on_mount(osb, 0);
71 }
72
73 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
74 {
75         return __ocfs2_wait_on_mount(osb, 1);
76 }
77
78 /*
79  * This replay_map is to track online/offline slots, so we could recover
80  * offline slots during recovery and mount
81  */
82
83 enum ocfs2_replay_state {
84         REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
85         REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
86         REPLAY_DONE             /* Replay was already queued */
87 };
88
89 struct ocfs2_replay_map {
90         unsigned int rm_slots;
91         enum ocfs2_replay_state rm_state;
92         unsigned char rm_replay_slots[];
93 };
94
95 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
96 {
97         if (!osb->replay_map)
98                 return;
99
100         /* If we've already queued the replay, we don't have any more to do */
101         if (osb->replay_map->rm_state == REPLAY_DONE)
102                 return;
103
104         osb->replay_map->rm_state = state;
105 }
106
107 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
108 {
109         struct ocfs2_replay_map *replay_map;
110         int i, node_num;
111
112         /* If replay map is already set, we don't do it again */
113         if (osb->replay_map)
114                 return 0;
115
116         replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
117                              (osb->max_slots * sizeof(char)), GFP_KERNEL);
118
119         if (!replay_map) {
120                 mlog_errno(-ENOMEM);
121                 return -ENOMEM;
122         }
123
124         spin_lock(&osb->osb_lock);
125
126         replay_map->rm_slots = osb->max_slots;
127         replay_map->rm_state = REPLAY_UNNEEDED;
128
129         /* set rm_replay_slots for offline slot(s) */
130         for (i = 0; i < replay_map->rm_slots; i++) {
131                 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
132                         replay_map->rm_replay_slots[i] = 1;
133         }
134
135         osb->replay_map = replay_map;
136         spin_unlock(&osb->osb_lock);
137         return 0;
138 }
139
140 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
141                 enum ocfs2_orphan_reco_type orphan_reco_type)
142 {
143         struct ocfs2_replay_map *replay_map = osb->replay_map;
144         int i;
145
146         if (!replay_map)
147                 return;
148
149         if (replay_map->rm_state != REPLAY_NEEDED)
150                 return;
151
152         for (i = 0; i < replay_map->rm_slots; i++)
153                 if (replay_map->rm_replay_slots[i])
154                         ocfs2_queue_recovery_completion(osb->journal, i, NULL,
155                                                         NULL, NULL,
156                                                         orphan_reco_type);
157         replay_map->rm_state = REPLAY_DONE;
158 }
159
160 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
161 {
162         struct ocfs2_replay_map *replay_map = osb->replay_map;
163
164         if (!osb->replay_map)
165                 return;
166
167         kfree(replay_map);
168         osb->replay_map = NULL;
169 }
170
171 int ocfs2_recovery_init(struct ocfs2_super *osb)
172 {
173         struct ocfs2_recovery_map *rm;
174
175         mutex_init(&osb->recovery_lock);
176         osb->disable_recovery = 0;
177         osb->recovery_thread_task = NULL;
178         init_waitqueue_head(&osb->recovery_event);
179
180         rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
181                      osb->max_slots * sizeof(unsigned int),
182                      GFP_KERNEL);
183         if (!rm) {
184                 mlog_errno(-ENOMEM);
185                 return -ENOMEM;
186         }
187
188         rm->rm_entries = (unsigned int *)((char *)rm +
189                                           sizeof(struct ocfs2_recovery_map));
190         osb->recovery_map = rm;
191
192         return 0;
193 }
194
195 /* we can't grab the goofy sem lock from inside wait_event, so we use
196  * memory barriers to make sure that we'll see the null task before
197  * being woken up */
198 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
199 {
200         mb();
201         return osb->recovery_thread_task != NULL;
202 }
203
204 void ocfs2_recovery_exit(struct ocfs2_super *osb)
205 {
206         struct ocfs2_recovery_map *rm;
207
208         /* disable any new recovery threads and wait for any currently
209          * running ones to exit. Do this before setting the vol_state. */
210         mutex_lock(&osb->recovery_lock);
211         osb->disable_recovery = 1;
212         mutex_unlock(&osb->recovery_lock);
213         wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
214
215         /* At this point, we know that no more recovery threads can be
216          * launched, so wait for any recovery completion work to
217          * complete. */
218         if (osb->ocfs2_wq)
219                 flush_workqueue(osb->ocfs2_wq);
220
221         /*
222          * Now that recovery is shut down, and the osb is about to be
223          * freed,  the osb_lock is not taken here.
224          */
225         rm = osb->recovery_map;
226         /* XXX: Should we bug if there are dirty entries? */
227
228         kfree(rm);
229 }
230
231 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
232                                      unsigned int node_num)
233 {
234         int i;
235         struct ocfs2_recovery_map *rm = osb->recovery_map;
236
237         assert_spin_locked(&osb->osb_lock);
238
239         for (i = 0; i < rm->rm_used; i++) {
240                 if (rm->rm_entries[i] == node_num)
241                         return 1;
242         }
243
244         return 0;
245 }
246
247 /* Behaves like test-and-set.  Returns the previous value */
248 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
249                                   unsigned int node_num)
250 {
251         struct ocfs2_recovery_map *rm = osb->recovery_map;
252
253         spin_lock(&osb->osb_lock);
254         if (__ocfs2_recovery_map_test(osb, node_num)) {
255                 spin_unlock(&osb->osb_lock);
256                 return 1;
257         }
258
259         /* XXX: Can this be exploited? Not from o2dlm... */
260         BUG_ON(rm->rm_used >= osb->max_slots);
261
262         rm->rm_entries[rm->rm_used] = node_num;
263         rm->rm_used++;
264         spin_unlock(&osb->osb_lock);
265
266         return 0;
267 }
268
269 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
270                                      unsigned int node_num)
271 {
272         int i;
273         struct ocfs2_recovery_map *rm = osb->recovery_map;
274
275         spin_lock(&osb->osb_lock);
276
277         for (i = 0; i < rm->rm_used; i++) {
278                 if (rm->rm_entries[i] == node_num)
279                         break;
280         }
281
282         if (i < rm->rm_used) {
283                 /* XXX: be careful with the pointer math */
284                 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
285                         (rm->rm_used - i - 1) * sizeof(unsigned int));
286                 rm->rm_used--;
287         }
288
289         spin_unlock(&osb->osb_lock);
290 }
291
292 static int ocfs2_commit_cache(struct ocfs2_super *osb)
293 {
294         int status = 0;
295         unsigned int flushed;
296         struct ocfs2_journal *journal = NULL;
297
298         journal = osb->journal;
299
300         /* Flush all pending commits and checkpoint the journal. */
301         down_write(&journal->j_trans_barrier);
302
303         flushed = atomic_read(&journal->j_num_trans);
304         trace_ocfs2_commit_cache_begin(flushed);
305         if (flushed == 0) {
306                 up_write(&journal->j_trans_barrier);
307                 goto finally;
308         }
309
310         jbd2_journal_lock_updates(journal->j_journal);
311         status = jbd2_journal_flush(journal->j_journal, 0);
312         jbd2_journal_unlock_updates(journal->j_journal);
313         if (status < 0) {
314                 up_write(&journal->j_trans_barrier);
315                 mlog_errno(status);
316                 goto finally;
317         }
318
319         ocfs2_inc_trans_id(journal);
320
321         flushed = atomic_read(&journal->j_num_trans);
322         atomic_set(&journal->j_num_trans, 0);
323         up_write(&journal->j_trans_barrier);
324
325         trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
326
327         ocfs2_wake_downconvert_thread(osb);
328         wake_up(&journal->j_checkpointed);
329 finally:
330         return status;
331 }
332
333 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
334 {
335         journal_t *journal = osb->journal->j_journal;
336         handle_t *handle;
337
338         BUG_ON(!osb || !osb->journal->j_journal);
339
340         if (ocfs2_is_hard_readonly(osb))
341                 return ERR_PTR(-EROFS);
342
343         BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
344         BUG_ON(max_buffs <= 0);
345
346         /* Nested transaction? Just return the handle... */
347         if (journal_current_handle())
348                 return jbd2_journal_start(journal, max_buffs);
349
350         sb_start_intwrite(osb->sb);
351
352         down_read(&osb->journal->j_trans_barrier);
353
354         handle = jbd2_journal_start(journal, max_buffs);
355         if (IS_ERR(handle)) {
356                 up_read(&osb->journal->j_trans_barrier);
357                 sb_end_intwrite(osb->sb);
358
359                 mlog_errno(PTR_ERR(handle));
360
361                 if (is_journal_aborted(journal)) {
362                         ocfs2_abort(osb->sb, "Detected aborted journal\n");
363                         handle = ERR_PTR(-EROFS);
364                 }
365         } else {
366                 if (!ocfs2_mount_local(osb))
367                         atomic_inc(&(osb->journal->j_num_trans));
368         }
369
370         return handle;
371 }
372
373 int ocfs2_commit_trans(struct ocfs2_super *osb,
374                        handle_t *handle)
375 {
376         int ret, nested;
377         struct ocfs2_journal *journal = osb->journal;
378
379         BUG_ON(!handle);
380
381         nested = handle->h_ref > 1;
382         ret = jbd2_journal_stop(handle);
383         if (ret < 0)
384                 mlog_errno(ret);
385
386         if (!nested) {
387                 up_read(&journal->j_trans_barrier);
388                 sb_end_intwrite(osb->sb);
389         }
390
391         return ret;
392 }
393
394 /*
395  * 'nblocks' is what you want to add to the current transaction.
396  *
397  * This might call jbd2_journal_restart() which will commit dirty buffers
398  * and then restart the transaction. Before calling
399  * ocfs2_extend_trans(), any changed blocks should have been
400  * dirtied. After calling it, all blocks which need to be changed must
401  * go through another set of journal_access/journal_dirty calls.
402  *
403  * WARNING: This will not release any semaphores or disk locks taken
404  * during the transaction, so make sure they were taken *before*
405  * start_trans or we'll have ordering deadlocks.
406  *
407  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
408  * good because transaction ids haven't yet been recorded on the
409  * cluster locks associated with this handle.
410  */
411 int ocfs2_extend_trans(handle_t *handle, int nblocks)
412 {
413         int status, old_nblocks;
414
415         BUG_ON(!handle);
416         BUG_ON(nblocks < 0);
417
418         if (!nblocks)
419                 return 0;
420
421         old_nblocks = jbd2_handle_buffer_credits(handle);
422
423         trace_ocfs2_extend_trans(old_nblocks, nblocks);
424
425 #ifdef CONFIG_OCFS2_DEBUG_FS
426         status = 1;
427 #else
428         status = jbd2_journal_extend(handle, nblocks, 0);
429         if (status < 0) {
430                 mlog_errno(status);
431                 goto bail;
432         }
433 #endif
434
435         if (status > 0) {
436                 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
437                 status = jbd2_journal_restart(handle,
438                                               old_nblocks + nblocks);
439                 if (status < 0) {
440                         mlog_errno(status);
441                         goto bail;
442                 }
443         }
444
445         status = 0;
446 bail:
447         return status;
448 }
449
450 /*
451  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
452  * If that fails, restart the transaction & regain write access for the
453  * buffer head which is used for metadata modifications.
454  * Taken from Ext4: extend_or_restart_transaction()
455  */
456 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
457 {
458         int status, old_nblks;
459
460         BUG_ON(!handle);
461
462         old_nblks = jbd2_handle_buffer_credits(handle);
463         trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
464
465         if (old_nblks < thresh)
466                 return 0;
467
468         status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
469         if (status < 0) {
470                 mlog_errno(status);
471                 goto bail;
472         }
473
474         if (status > 0) {
475                 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
476                 if (status < 0)
477                         mlog_errno(status);
478         }
479
480 bail:
481         return status;
482 }
483
484
485 struct ocfs2_triggers {
486         struct jbd2_buffer_trigger_type ot_triggers;
487         int                             ot_offset;
488 };
489
490 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
491 {
492         return container_of(triggers, struct ocfs2_triggers, ot_triggers);
493 }
494
495 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
496                                  struct buffer_head *bh,
497                                  void *data, size_t size)
498 {
499         struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
500
501         /*
502          * We aren't guaranteed to have the superblock here, so we
503          * must unconditionally compute the ecc data.
504          * __ocfs2_journal_access() will only set the triggers if
505          * metaecc is enabled.
506          */
507         ocfs2_block_check_compute(data, size, data + ot->ot_offset);
508 }
509
510 /*
511  * Quota blocks have their own trigger because the struct ocfs2_block_check
512  * offset depends on the blocksize.
513  */
514 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
515                                  struct buffer_head *bh,
516                                  void *data, size_t size)
517 {
518         struct ocfs2_disk_dqtrailer *dqt =
519                 ocfs2_block_dqtrailer(size, data);
520
521         /*
522          * We aren't guaranteed to have the superblock here, so we
523          * must unconditionally compute the ecc data.
524          * __ocfs2_journal_access() will only set the triggers if
525          * metaecc is enabled.
526          */
527         ocfs2_block_check_compute(data, size, &dqt->dq_check);
528 }
529
530 /*
531  * Directory blocks also have their own trigger because the
532  * struct ocfs2_block_check offset depends on the blocksize.
533  */
534 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
535                                  struct buffer_head *bh,
536                                  void *data, size_t size)
537 {
538         struct ocfs2_dir_block_trailer *trailer =
539                 ocfs2_dir_trailer_from_size(size, data);
540
541         /*
542          * We aren't guaranteed to have the superblock here, so we
543          * must unconditionally compute the ecc data.
544          * __ocfs2_journal_access() will only set the triggers if
545          * metaecc is enabled.
546          */
547         ocfs2_block_check_compute(data, size, &trailer->db_check);
548 }
549
550 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
551                                 struct buffer_head *bh)
552 {
553         mlog(ML_ERROR,
554              "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
555              "bh->b_blocknr = %llu\n",
556              (unsigned long)bh,
557              (unsigned long long)bh->b_blocknr);
558
559         ocfs2_error(bh->b_bdev->bd_super,
560                     "JBD2 has aborted our journal, ocfs2 cannot continue\n");
561 }
562
563 static struct ocfs2_triggers di_triggers = {
564         .ot_triggers = {
565                 .t_frozen = ocfs2_frozen_trigger,
566                 .t_abort = ocfs2_abort_trigger,
567         },
568         .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
569 };
570
571 static struct ocfs2_triggers eb_triggers = {
572         .ot_triggers = {
573                 .t_frozen = ocfs2_frozen_trigger,
574                 .t_abort = ocfs2_abort_trigger,
575         },
576         .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
577 };
578
579 static struct ocfs2_triggers rb_triggers = {
580         .ot_triggers = {
581                 .t_frozen = ocfs2_frozen_trigger,
582                 .t_abort = ocfs2_abort_trigger,
583         },
584         .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
585 };
586
587 static struct ocfs2_triggers gd_triggers = {
588         .ot_triggers = {
589                 .t_frozen = ocfs2_frozen_trigger,
590                 .t_abort = ocfs2_abort_trigger,
591         },
592         .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
593 };
594
595 static struct ocfs2_triggers db_triggers = {
596         .ot_triggers = {
597                 .t_frozen = ocfs2_db_frozen_trigger,
598                 .t_abort = ocfs2_abort_trigger,
599         },
600 };
601
602 static struct ocfs2_triggers xb_triggers = {
603         .ot_triggers = {
604                 .t_frozen = ocfs2_frozen_trigger,
605                 .t_abort = ocfs2_abort_trigger,
606         },
607         .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
608 };
609
610 static struct ocfs2_triggers dq_triggers = {
611         .ot_triggers = {
612                 .t_frozen = ocfs2_dq_frozen_trigger,
613                 .t_abort = ocfs2_abort_trigger,
614         },
615 };
616
617 static struct ocfs2_triggers dr_triggers = {
618         .ot_triggers = {
619                 .t_frozen = ocfs2_frozen_trigger,
620                 .t_abort = ocfs2_abort_trigger,
621         },
622         .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
623 };
624
625 static struct ocfs2_triggers dl_triggers = {
626         .ot_triggers = {
627                 .t_frozen = ocfs2_frozen_trigger,
628                 .t_abort = ocfs2_abort_trigger,
629         },
630         .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
631 };
632
633 static int __ocfs2_journal_access(handle_t *handle,
634                                   struct ocfs2_caching_info *ci,
635                                   struct buffer_head *bh,
636                                   struct ocfs2_triggers *triggers,
637                                   int type)
638 {
639         int status;
640         struct ocfs2_super *osb =
641                 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
642
643         BUG_ON(!ci || !ci->ci_ops);
644         BUG_ON(!handle);
645         BUG_ON(!bh);
646
647         trace_ocfs2_journal_access(
648                 (unsigned long long)ocfs2_metadata_cache_owner(ci),
649                 (unsigned long long)bh->b_blocknr, type, bh->b_size);
650
651         /* we can safely remove this assertion after testing. */
652         if (!buffer_uptodate(bh)) {
653                 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
654                 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
655                      (unsigned long long)bh->b_blocknr, bh->b_state);
656
657                 lock_buffer(bh);
658                 /*
659                  * A previous transaction with a couple of buffer heads fail
660                  * to checkpoint, so all the bhs are marked as BH_Write_EIO.
661                  * For current transaction, the bh is just among those error
662                  * bhs which previous transaction handle. We can't just clear
663                  * its BH_Write_EIO and reuse directly, since other bhs are
664                  * not written to disk yet and that will cause metadata
665                  * inconsistency. So we should set fs read-only to avoid
666                  * further damage.
667                  */
668                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
669                         unlock_buffer(bh);
670                         return ocfs2_error(osb->sb, "A previous attempt to "
671                                         "write this buffer head failed\n");
672                 }
673                 unlock_buffer(bh);
674         }
675
676         /* Set the current transaction information on the ci so
677          * that the locking code knows whether it can drop it's locks
678          * on this ci or not. We're protected from the commit
679          * thread updating the current transaction id until
680          * ocfs2_commit_trans() because ocfs2_start_trans() took
681          * j_trans_barrier for us. */
682         ocfs2_set_ci_lock_trans(osb->journal, ci);
683
684         ocfs2_metadata_cache_io_lock(ci);
685         switch (type) {
686         case OCFS2_JOURNAL_ACCESS_CREATE:
687         case OCFS2_JOURNAL_ACCESS_WRITE:
688                 status = jbd2_journal_get_write_access(handle, bh);
689                 break;
690
691         case OCFS2_JOURNAL_ACCESS_UNDO:
692                 status = jbd2_journal_get_undo_access(handle, bh);
693                 break;
694
695         default:
696                 status = -EINVAL;
697                 mlog(ML_ERROR, "Unknown access type!\n");
698         }
699         if (!status && ocfs2_meta_ecc(osb) && triggers)
700                 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
701         ocfs2_metadata_cache_io_unlock(ci);
702
703         if (status < 0)
704                 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
705                      status, type);
706
707         return status;
708 }
709
710 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
711                             struct buffer_head *bh, int type)
712 {
713         return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
714 }
715
716 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
717                             struct buffer_head *bh, int type)
718 {
719         return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
720 }
721
722 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
723                             struct buffer_head *bh, int type)
724 {
725         return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
726                                       type);
727 }
728
729 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
730                             struct buffer_head *bh, int type)
731 {
732         return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
733 }
734
735 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
736                             struct buffer_head *bh, int type)
737 {
738         return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
739 }
740
741 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
742                             struct buffer_head *bh, int type)
743 {
744         return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
745 }
746
747 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
748                             struct buffer_head *bh, int type)
749 {
750         return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
751 }
752
753 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
754                             struct buffer_head *bh, int type)
755 {
756         return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
757 }
758
759 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
760                             struct buffer_head *bh, int type)
761 {
762         return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
763 }
764
765 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
766                          struct buffer_head *bh, int type)
767 {
768         return __ocfs2_journal_access(handle, ci, bh, NULL, type);
769 }
770
771 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
772 {
773         int status;
774
775         trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
776
777         status = jbd2_journal_dirty_metadata(handle, bh);
778         if (status) {
779                 mlog_errno(status);
780                 if (!is_handle_aborted(handle)) {
781                         journal_t *journal = handle->h_transaction->t_journal;
782                         struct super_block *sb = bh->b_bdev->bd_super;
783
784                         mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
785                                         "Aborting transaction and journal.\n");
786                         handle->h_err = status;
787                         jbd2_journal_abort_handle(handle);
788                         jbd2_journal_abort(journal, status);
789                         ocfs2_abort(sb, "Journal already aborted.\n");
790                 }
791         }
792 }
793
794 #define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
795
796 void ocfs2_set_journal_params(struct ocfs2_super *osb)
797 {
798         journal_t *journal = osb->journal->j_journal;
799         unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
800
801         if (osb->osb_commit_interval)
802                 commit_interval = osb->osb_commit_interval;
803
804         write_lock(&journal->j_state_lock);
805         journal->j_commit_interval = commit_interval;
806         if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
807                 journal->j_flags |= JBD2_BARRIER;
808         else
809                 journal->j_flags &= ~JBD2_BARRIER;
810         write_unlock(&journal->j_state_lock);
811 }
812
813 /*
814  * alloc & initialize skeleton for journal structure.
815  * ocfs2_journal_init() will make fs have journal ability.
816  */
817 int ocfs2_journal_alloc(struct ocfs2_super *osb)
818 {
819         int status = 0;
820         struct ocfs2_journal *journal;
821
822         journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
823         if (!journal) {
824                 mlog(ML_ERROR, "unable to alloc journal\n");
825                 status = -ENOMEM;
826                 goto bail;
827         }
828         osb->journal = journal;
829         journal->j_osb = osb;
830
831         atomic_set(&journal->j_num_trans, 0);
832         init_rwsem(&journal->j_trans_barrier);
833         init_waitqueue_head(&journal->j_checkpointed);
834         spin_lock_init(&journal->j_lock);
835         journal->j_trans_id = 1UL;
836         INIT_LIST_HEAD(&journal->j_la_cleanups);
837         INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
838         journal->j_state = OCFS2_JOURNAL_FREE;
839
840 bail:
841         return status;
842 }
843
844 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
845 {
846         int status = -1;
847         struct inode *inode = NULL; /* the journal inode */
848         journal_t *j_journal = NULL;
849         struct ocfs2_journal *journal = osb->journal;
850         struct ocfs2_dinode *di = NULL;
851         struct buffer_head *bh = NULL;
852         int inode_lock = 0;
853
854         BUG_ON(!journal);
855         /* already have the inode for our journal */
856         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
857                                             osb->slot_num);
858         if (inode == NULL) {
859                 status = -EACCES;
860                 mlog_errno(status);
861                 goto done;
862         }
863         if (is_bad_inode(inode)) {
864                 mlog(ML_ERROR, "access error (bad inode)\n");
865                 iput(inode);
866                 inode = NULL;
867                 status = -EACCES;
868                 goto done;
869         }
870
871         SET_INODE_JOURNAL(inode);
872         OCFS2_I(inode)->ip_open_count++;
873
874         /* Skip recovery waits here - journal inode metadata never
875          * changes in a live cluster so it can be considered an
876          * exception to the rule. */
877         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
878         if (status < 0) {
879                 if (status != -ERESTARTSYS)
880                         mlog(ML_ERROR, "Could not get lock on journal!\n");
881                 goto done;
882         }
883
884         inode_lock = 1;
885         di = (struct ocfs2_dinode *)bh->b_data;
886
887         if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
888                 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
889                      i_size_read(inode));
890                 status = -EINVAL;
891                 goto done;
892         }
893
894         trace_ocfs2_journal_init(i_size_read(inode),
895                                  (unsigned long long)inode->i_blocks,
896                                  OCFS2_I(inode)->ip_clusters);
897
898         /* call the kernels journal init function now */
899         j_journal = jbd2_journal_init_inode(inode);
900         if (j_journal == NULL) {
901                 mlog(ML_ERROR, "Linux journal layer error\n");
902                 status = -EINVAL;
903                 goto done;
904         }
905
906         trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
907
908         *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
909                   OCFS2_JOURNAL_DIRTY_FL);
910
911         journal->j_journal = j_journal;
912         journal->j_journal->j_submit_inode_data_buffers =
913                 jbd2_journal_submit_inode_data_buffers;
914         journal->j_journal->j_finish_inode_data_buffers =
915                 jbd2_journal_finish_inode_data_buffers;
916         journal->j_inode = inode;
917         journal->j_bh = bh;
918
919         ocfs2_set_journal_params(osb);
920
921         journal->j_state = OCFS2_JOURNAL_LOADED;
922
923         status = 0;
924 done:
925         if (status < 0) {
926                 if (inode_lock)
927                         ocfs2_inode_unlock(inode, 1);
928                 brelse(bh);
929                 if (inode) {
930                         OCFS2_I(inode)->ip_open_count--;
931                         iput(inode);
932                 }
933         }
934
935         return status;
936 }
937
938 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
939 {
940         le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
941 }
942
943 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
944 {
945         return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
946 }
947
948 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
949                                       int dirty, int replayed)
950 {
951         int status;
952         unsigned int flags;
953         struct ocfs2_journal *journal = osb->journal;
954         struct buffer_head *bh = journal->j_bh;
955         struct ocfs2_dinode *fe;
956
957         fe = (struct ocfs2_dinode *)bh->b_data;
958
959         /* The journal bh on the osb always comes from ocfs2_journal_init()
960          * and was validated there inside ocfs2_inode_lock_full().  It's a
961          * code bug if we mess it up. */
962         BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
963
964         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
965         if (dirty)
966                 flags |= OCFS2_JOURNAL_DIRTY_FL;
967         else
968                 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
969         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
970
971         if (replayed)
972                 ocfs2_bump_recovery_generation(fe);
973
974         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
975         status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
976         if (status < 0)
977                 mlog_errno(status);
978
979         return status;
980 }
981
982 /*
983  * If the journal has been kmalloc'd it needs to be freed after this
984  * call.
985  */
986 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
987 {
988         struct ocfs2_journal *journal = NULL;
989         int status = 0;
990         struct inode *inode = NULL;
991         int num_running_trans = 0;
992
993         BUG_ON(!osb);
994
995         journal = osb->journal;
996         if (!journal)
997                 goto done;
998
999         inode = journal->j_inode;
1000
1001         if (journal->j_state != OCFS2_JOURNAL_LOADED)
1002                 goto done;
1003
1004         /* need to inc inode use count - jbd2_journal_destroy will iput. */
1005         if (!igrab(inode))
1006                 BUG();
1007
1008         num_running_trans = atomic_read(&(osb->journal->j_num_trans));
1009         trace_ocfs2_journal_shutdown(num_running_trans);
1010
1011         /* Do a commit_cache here. It will flush our journal, *and*
1012          * release any locks that are still held.
1013          * set the SHUTDOWN flag and release the trans lock.
1014          * the commit thread will take the trans lock for us below. */
1015         journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1016
1017         /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1018          * drop the trans_lock (which we want to hold until we
1019          * completely destroy the journal. */
1020         if (osb->commit_task) {
1021                 /* Wait for the commit thread */
1022                 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1023                 kthread_stop(osb->commit_task);
1024                 osb->commit_task = NULL;
1025         }
1026
1027         BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1028
1029         if (ocfs2_mount_local(osb)) {
1030                 jbd2_journal_lock_updates(journal->j_journal);
1031                 status = jbd2_journal_flush(journal->j_journal, 0);
1032                 jbd2_journal_unlock_updates(journal->j_journal);
1033                 if (status < 0)
1034                         mlog_errno(status);
1035         }
1036
1037         /* Shutdown the kernel journal system */
1038         if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1039                 /*
1040                  * Do not toggle if flush was unsuccessful otherwise
1041                  * will leave dirty metadata in a "clean" journal
1042                  */
1043                 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1044                 if (status < 0)
1045                         mlog_errno(status);
1046         }
1047         journal->j_journal = NULL;
1048
1049         OCFS2_I(inode)->ip_open_count--;
1050
1051         /* unlock our journal */
1052         ocfs2_inode_unlock(inode, 1);
1053
1054         brelse(journal->j_bh);
1055         journal->j_bh = NULL;
1056
1057         journal->j_state = OCFS2_JOURNAL_FREE;
1058
1059 done:
1060         iput(inode);
1061         kfree(journal);
1062         osb->journal = NULL;
1063 }
1064
1065 static void ocfs2_clear_journal_error(struct super_block *sb,
1066                                       journal_t *journal,
1067                                       int slot)
1068 {
1069         int olderr;
1070
1071         olderr = jbd2_journal_errno(journal);
1072         if (olderr) {
1073                 mlog(ML_ERROR, "File system error %d recorded in "
1074                      "journal %u.\n", olderr, slot);
1075                 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1076                      sb->s_id);
1077
1078                 jbd2_journal_ack_err(journal);
1079                 jbd2_journal_clear_err(journal);
1080         }
1081 }
1082
1083 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1084 {
1085         int status = 0;
1086         struct ocfs2_super *osb;
1087
1088         BUG_ON(!journal);
1089
1090         osb = journal->j_osb;
1091
1092         status = jbd2_journal_load(journal->j_journal);
1093         if (status < 0) {
1094                 mlog(ML_ERROR, "Failed to load journal!\n");
1095                 goto done;
1096         }
1097
1098         ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1099
1100         if (replayed) {
1101                 jbd2_journal_lock_updates(journal->j_journal);
1102                 status = jbd2_journal_flush(journal->j_journal, 0);
1103                 jbd2_journal_unlock_updates(journal->j_journal);
1104                 if (status < 0)
1105                         mlog_errno(status);
1106         }
1107
1108         status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1109         if (status < 0) {
1110                 mlog_errno(status);
1111                 goto done;
1112         }
1113
1114         /* Launch the commit thread */
1115         if (!local) {
1116                 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1117                                 "ocfs2cmt-%s", osb->uuid_str);
1118                 if (IS_ERR(osb->commit_task)) {
1119                         status = PTR_ERR(osb->commit_task);
1120                         osb->commit_task = NULL;
1121                         mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1122                              "error=%d", status);
1123                         goto done;
1124                 }
1125         } else
1126                 osb->commit_task = NULL;
1127
1128 done:
1129         return status;
1130 }
1131
1132
1133 /* 'full' flag tells us whether we clear out all blocks or if we just
1134  * mark the journal clean */
1135 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1136 {
1137         int status;
1138
1139         BUG_ON(!journal);
1140
1141         status = jbd2_journal_wipe(journal->j_journal, full);
1142         if (status < 0) {
1143                 mlog_errno(status);
1144                 goto bail;
1145         }
1146
1147         status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1148         if (status < 0)
1149                 mlog_errno(status);
1150
1151 bail:
1152         return status;
1153 }
1154
1155 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1156 {
1157         int empty;
1158         struct ocfs2_recovery_map *rm = osb->recovery_map;
1159
1160         spin_lock(&osb->osb_lock);
1161         empty = (rm->rm_used == 0);
1162         spin_unlock(&osb->osb_lock);
1163
1164         return empty;
1165 }
1166
1167 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1168 {
1169         wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1170 }
1171
1172 /*
1173  * JBD Might read a cached version of another nodes journal file. We
1174  * don't want this as this file changes often and we get no
1175  * notification on those changes. The only way to be sure that we've
1176  * got the most up to date version of those blocks then is to force
1177  * read them off disk. Just searching through the buffer cache won't
1178  * work as there may be pages backing this file which are still marked
1179  * up to date. We know things can't change on this file underneath us
1180  * as we have the lock by now :)
1181  */
1182 static int ocfs2_force_read_journal(struct inode *inode)
1183 {
1184         int status = 0;
1185         int i;
1186         u64 v_blkno, p_blkno, p_blocks, num_blocks;
1187         struct buffer_head *bh = NULL;
1188         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1189
1190         num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1191         v_blkno = 0;
1192         while (v_blkno < num_blocks) {
1193                 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1194                                                      &p_blkno, &p_blocks, NULL);
1195                 if (status < 0) {
1196                         mlog_errno(status);
1197                         goto bail;
1198                 }
1199
1200                 for (i = 0; i < p_blocks; i++, p_blkno++) {
1201                         bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1202                                         osb->sb->s_blocksize);
1203                         /* block not cached. */
1204                         if (!bh)
1205                                 continue;
1206
1207                         brelse(bh);
1208                         bh = NULL;
1209                         /* We are reading journal data which should not
1210                          * be put in the uptodate cache.
1211                          */
1212                         status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1213                         if (status < 0) {
1214                                 mlog_errno(status);
1215                                 goto bail;
1216                         }
1217
1218                         brelse(bh);
1219                         bh = NULL;
1220                 }
1221
1222                 v_blkno += p_blocks;
1223         }
1224
1225 bail:
1226         return status;
1227 }
1228
1229 struct ocfs2_la_recovery_item {
1230         struct list_head        lri_list;
1231         int                     lri_slot;
1232         struct ocfs2_dinode     *lri_la_dinode;
1233         struct ocfs2_dinode     *lri_tl_dinode;
1234         struct ocfs2_quota_recovery *lri_qrec;
1235         enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1236 };
1237
1238 /* Does the second half of the recovery process. By this point, the
1239  * node is marked clean and can actually be considered recovered,
1240  * hence it's no longer in the recovery map, but there's still some
1241  * cleanup we can do which shouldn't happen within the recovery thread
1242  * as locking in that context becomes very difficult if we are to take
1243  * recovering nodes into account.
1244  *
1245  * NOTE: This function can and will sleep on recovery of other nodes
1246  * during cluster locking, just like any other ocfs2 process.
1247  */
1248 void ocfs2_complete_recovery(struct work_struct *work)
1249 {
1250         int ret = 0;
1251         struct ocfs2_journal *journal =
1252                 container_of(work, struct ocfs2_journal, j_recovery_work);
1253         struct ocfs2_super *osb = journal->j_osb;
1254         struct ocfs2_dinode *la_dinode, *tl_dinode;
1255         struct ocfs2_la_recovery_item *item, *n;
1256         struct ocfs2_quota_recovery *qrec;
1257         enum ocfs2_orphan_reco_type orphan_reco_type;
1258         LIST_HEAD(tmp_la_list);
1259
1260         trace_ocfs2_complete_recovery(
1261                 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1262
1263         spin_lock(&journal->j_lock);
1264         list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1265         spin_unlock(&journal->j_lock);
1266
1267         list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1268                 list_del_init(&item->lri_list);
1269
1270                 ocfs2_wait_on_quotas(osb);
1271
1272                 la_dinode = item->lri_la_dinode;
1273                 tl_dinode = item->lri_tl_dinode;
1274                 qrec = item->lri_qrec;
1275                 orphan_reco_type = item->lri_orphan_reco_type;
1276
1277                 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1278                         la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1279                         tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1280                         qrec);
1281
1282                 if (la_dinode) {
1283                         ret = ocfs2_complete_local_alloc_recovery(osb,
1284                                                                   la_dinode);
1285                         if (ret < 0)
1286                                 mlog_errno(ret);
1287
1288                         kfree(la_dinode);
1289                 }
1290
1291                 if (tl_dinode) {
1292                         ret = ocfs2_complete_truncate_log_recovery(osb,
1293                                                                    tl_dinode);
1294                         if (ret < 0)
1295                                 mlog_errno(ret);
1296
1297                         kfree(tl_dinode);
1298                 }
1299
1300                 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1301                                 orphan_reco_type);
1302                 if (ret < 0)
1303                         mlog_errno(ret);
1304
1305                 if (qrec) {
1306                         ret = ocfs2_finish_quota_recovery(osb, qrec,
1307                                                           item->lri_slot);
1308                         if (ret < 0)
1309                                 mlog_errno(ret);
1310                         /* Recovery info is already freed now */
1311                 }
1312
1313                 kfree(item);
1314         }
1315
1316         trace_ocfs2_complete_recovery_end(ret);
1317 }
1318
1319 /* NOTE: This function always eats your references to la_dinode and
1320  * tl_dinode, either manually on error, or by passing them to
1321  * ocfs2_complete_recovery */
1322 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1323                                             int slot_num,
1324                                             struct ocfs2_dinode *la_dinode,
1325                                             struct ocfs2_dinode *tl_dinode,
1326                                             struct ocfs2_quota_recovery *qrec,
1327                                             enum ocfs2_orphan_reco_type orphan_reco_type)
1328 {
1329         struct ocfs2_la_recovery_item *item;
1330
1331         item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1332         if (!item) {
1333                 /* Though we wish to avoid it, we are in fact safe in
1334                  * skipping local alloc cleanup as fsck.ocfs2 is more
1335                  * than capable of reclaiming unused space. */
1336                 kfree(la_dinode);
1337                 kfree(tl_dinode);
1338
1339                 if (qrec)
1340                         ocfs2_free_quota_recovery(qrec);
1341
1342                 mlog_errno(-ENOMEM);
1343                 return;
1344         }
1345
1346         INIT_LIST_HEAD(&item->lri_list);
1347         item->lri_la_dinode = la_dinode;
1348         item->lri_slot = slot_num;
1349         item->lri_tl_dinode = tl_dinode;
1350         item->lri_qrec = qrec;
1351         item->lri_orphan_reco_type = orphan_reco_type;
1352
1353         spin_lock(&journal->j_lock);
1354         list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1355         queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1356         spin_unlock(&journal->j_lock);
1357 }
1358
1359 /* Called by the mount code to queue recovery the last part of
1360  * recovery for it's own and offline slot(s). */
1361 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1362 {
1363         struct ocfs2_journal *journal = osb->journal;
1364
1365         if (ocfs2_is_hard_readonly(osb))
1366                 return;
1367
1368         /* No need to queue up our truncate_log as regular cleanup will catch
1369          * that */
1370         ocfs2_queue_recovery_completion(journal, osb->slot_num,
1371                                         osb->local_alloc_copy, NULL, NULL,
1372                                         ORPHAN_NEED_TRUNCATE);
1373         ocfs2_schedule_truncate_log_flush(osb, 0);
1374
1375         osb->local_alloc_copy = NULL;
1376
1377         /* queue to recover orphan slots for all offline slots */
1378         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1379         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1380         ocfs2_free_replay_slots(osb);
1381 }
1382
1383 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1384 {
1385         if (osb->quota_rec) {
1386                 ocfs2_queue_recovery_completion(osb->journal,
1387                                                 osb->slot_num,
1388                                                 NULL,
1389                                                 NULL,
1390                                                 osb->quota_rec,
1391                                                 ORPHAN_NEED_TRUNCATE);
1392                 osb->quota_rec = NULL;
1393         }
1394 }
1395
1396 static int __ocfs2_recovery_thread(void *arg)
1397 {
1398         int status, node_num, slot_num;
1399         struct ocfs2_super *osb = arg;
1400         struct ocfs2_recovery_map *rm = osb->recovery_map;
1401         int *rm_quota = NULL;
1402         int rm_quota_used = 0, i;
1403         struct ocfs2_quota_recovery *qrec;
1404
1405         /* Whether the quota supported. */
1406         int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1407                         OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1408                 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1409                         OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1410
1411         status = ocfs2_wait_on_mount(osb);
1412         if (status < 0) {
1413                 goto bail;
1414         }
1415
1416         if (quota_enabled) {
1417                 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1418                 if (!rm_quota) {
1419                         status = -ENOMEM;
1420                         goto bail;
1421                 }
1422         }
1423 restart:
1424         status = ocfs2_super_lock(osb, 1);
1425         if (status < 0) {
1426                 mlog_errno(status);
1427                 goto bail;
1428         }
1429
1430         status = ocfs2_compute_replay_slots(osb);
1431         if (status < 0)
1432                 mlog_errno(status);
1433
1434         /* queue recovery for our own slot */
1435         ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1436                                         NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1437
1438         spin_lock(&osb->osb_lock);
1439         while (rm->rm_used) {
1440                 /* It's always safe to remove entry zero, as we won't
1441                  * clear it until ocfs2_recover_node() has succeeded. */
1442                 node_num = rm->rm_entries[0];
1443                 spin_unlock(&osb->osb_lock);
1444                 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1445                 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1446                 if (slot_num == -ENOENT) {
1447                         status = 0;
1448                         goto skip_recovery;
1449                 }
1450
1451                 /* It is a bit subtle with quota recovery. We cannot do it
1452                  * immediately because we have to obtain cluster locks from
1453                  * quota files and we also don't want to just skip it because
1454                  * then quota usage would be out of sync until some node takes
1455                  * the slot. So we remember which nodes need quota recovery
1456                  * and when everything else is done, we recover quotas. */
1457                 if (quota_enabled) {
1458                         for (i = 0; i < rm_quota_used
1459                                         && rm_quota[i] != slot_num; i++)
1460                                 ;
1461
1462                         if (i == rm_quota_used)
1463                                 rm_quota[rm_quota_used++] = slot_num;
1464                 }
1465
1466                 status = ocfs2_recover_node(osb, node_num, slot_num);
1467 skip_recovery:
1468                 if (!status) {
1469                         ocfs2_recovery_map_clear(osb, node_num);
1470                 } else {
1471                         mlog(ML_ERROR,
1472                              "Error %d recovering node %d on device (%u,%u)!\n",
1473                              status, node_num,
1474                              MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1475                         mlog(ML_ERROR, "Volume requires unmount.\n");
1476                 }
1477
1478                 spin_lock(&osb->osb_lock);
1479         }
1480         spin_unlock(&osb->osb_lock);
1481         trace_ocfs2_recovery_thread_end(status);
1482
1483         /* Refresh all journal recovery generations from disk */
1484         status = ocfs2_check_journals_nolocks(osb);
1485         status = (status == -EROFS) ? 0 : status;
1486         if (status < 0)
1487                 mlog_errno(status);
1488
1489         /* Now it is right time to recover quotas... We have to do this under
1490          * superblock lock so that no one can start using the slot (and crash)
1491          * before we recover it */
1492         if (quota_enabled) {
1493                 for (i = 0; i < rm_quota_used; i++) {
1494                         qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1495                         if (IS_ERR(qrec)) {
1496                                 status = PTR_ERR(qrec);
1497                                 mlog_errno(status);
1498                                 continue;
1499                         }
1500                         ocfs2_queue_recovery_completion(osb->journal,
1501                                         rm_quota[i],
1502                                         NULL, NULL, qrec,
1503                                         ORPHAN_NEED_TRUNCATE);
1504                 }
1505         }
1506
1507         ocfs2_super_unlock(osb, 1);
1508
1509         /* queue recovery for offline slots */
1510         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1511
1512 bail:
1513         mutex_lock(&osb->recovery_lock);
1514         if (!status && !ocfs2_recovery_completed(osb)) {
1515                 mutex_unlock(&osb->recovery_lock);
1516                 goto restart;
1517         }
1518
1519         ocfs2_free_replay_slots(osb);
1520         osb->recovery_thread_task = NULL;
1521         mb(); /* sync with ocfs2_recovery_thread_running */
1522         wake_up(&osb->recovery_event);
1523
1524         mutex_unlock(&osb->recovery_lock);
1525
1526         if (quota_enabled)
1527                 kfree(rm_quota);
1528
1529         return status;
1530 }
1531
1532 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1533 {
1534         mutex_lock(&osb->recovery_lock);
1535
1536         trace_ocfs2_recovery_thread(node_num, osb->node_num,
1537                 osb->disable_recovery, osb->recovery_thread_task,
1538                 osb->disable_recovery ?
1539                 -1 : ocfs2_recovery_map_set(osb, node_num));
1540
1541         if (osb->disable_recovery)
1542                 goto out;
1543
1544         if (osb->recovery_thread_task)
1545                 goto out;
1546
1547         osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1548                         "ocfs2rec-%s", osb->uuid_str);
1549         if (IS_ERR(osb->recovery_thread_task)) {
1550                 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1551                 osb->recovery_thread_task = NULL;
1552         }
1553
1554 out:
1555         mutex_unlock(&osb->recovery_lock);
1556         wake_up(&osb->recovery_event);
1557 }
1558
1559 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1560                                     int slot_num,
1561                                     struct buffer_head **bh,
1562                                     struct inode **ret_inode)
1563 {
1564         int status = -EACCES;
1565         struct inode *inode = NULL;
1566
1567         BUG_ON(slot_num >= osb->max_slots);
1568
1569         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1570                                             slot_num);
1571         if (!inode || is_bad_inode(inode)) {
1572                 mlog_errno(status);
1573                 goto bail;
1574         }
1575         SET_INODE_JOURNAL(inode);
1576
1577         status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1578         if (status < 0) {
1579                 mlog_errno(status);
1580                 goto bail;
1581         }
1582
1583         status = 0;
1584
1585 bail:
1586         if (inode) {
1587                 if (status || !ret_inode)
1588                         iput(inode);
1589                 else
1590                         *ret_inode = inode;
1591         }
1592         return status;
1593 }
1594
1595 /* Does the actual journal replay and marks the journal inode as
1596  * clean. Will only replay if the journal inode is marked dirty. */
1597 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1598                                 int node_num,
1599                                 int slot_num)
1600 {
1601         int status;
1602         int got_lock = 0;
1603         unsigned int flags;
1604         struct inode *inode = NULL;
1605         struct ocfs2_dinode *fe;
1606         journal_t *journal = NULL;
1607         struct buffer_head *bh = NULL;
1608         u32 slot_reco_gen;
1609
1610         status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1611         if (status) {
1612                 mlog_errno(status);
1613                 goto done;
1614         }
1615
1616         fe = (struct ocfs2_dinode *)bh->b_data;
1617         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1618         brelse(bh);
1619         bh = NULL;
1620
1621         /*
1622          * As the fs recovery is asynchronous, there is a small chance that
1623          * another node mounted (and recovered) the slot before the recovery
1624          * thread could get the lock. To handle that, we dirty read the journal
1625          * inode for that slot to get the recovery generation. If it is
1626          * different than what we expected, the slot has been recovered.
1627          * If not, it needs recovery.
1628          */
1629         if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1630                 trace_ocfs2_replay_journal_recovered(slot_num,
1631                      osb->slot_recovery_generations[slot_num], slot_reco_gen);
1632                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1633                 status = -EBUSY;
1634                 goto done;
1635         }
1636
1637         /* Continue with recovery as the journal has not yet been recovered */
1638
1639         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1640         if (status < 0) {
1641                 trace_ocfs2_replay_journal_lock_err(status);
1642                 if (status != -ERESTARTSYS)
1643                         mlog(ML_ERROR, "Could not lock journal!\n");
1644                 goto done;
1645         }
1646         got_lock = 1;
1647
1648         fe = (struct ocfs2_dinode *) bh->b_data;
1649
1650         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1651         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1652
1653         if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1654                 trace_ocfs2_replay_journal_skip(node_num);
1655                 /* Refresh recovery generation for the slot */
1656                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1657                 goto done;
1658         }
1659
1660         /* we need to run complete recovery for offline orphan slots */
1661         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1662
1663         printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1664                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1665                MINOR(osb->sb->s_dev));
1666
1667         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1668
1669         status = ocfs2_force_read_journal(inode);
1670         if (status < 0) {
1671                 mlog_errno(status);
1672                 goto done;
1673         }
1674
1675         journal = jbd2_journal_init_inode(inode);
1676         if (journal == NULL) {
1677                 mlog(ML_ERROR, "Linux journal layer error\n");
1678                 status = -EIO;
1679                 goto done;
1680         }
1681
1682         status = jbd2_journal_load(journal);
1683         if (status < 0) {
1684                 mlog_errno(status);
1685                 BUG_ON(!igrab(inode));
1686                 jbd2_journal_destroy(journal);
1687                 goto done;
1688         }
1689
1690         ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1691
1692         /* wipe the journal */
1693         jbd2_journal_lock_updates(journal);
1694         status = jbd2_journal_flush(journal, 0);
1695         jbd2_journal_unlock_updates(journal);
1696         if (status < 0)
1697                 mlog_errno(status);
1698
1699         /* This will mark the node clean */
1700         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1701         flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1702         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1703
1704         /* Increment recovery generation to indicate successful recovery */
1705         ocfs2_bump_recovery_generation(fe);
1706         osb->slot_recovery_generations[slot_num] =
1707                                         ocfs2_get_recovery_generation(fe);
1708
1709         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1710         status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1711         if (status < 0)
1712                 mlog_errno(status);
1713
1714         BUG_ON(!igrab(inode));
1715
1716         jbd2_journal_destroy(journal);
1717
1718         printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1719                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1720                MINOR(osb->sb->s_dev));
1721 done:
1722         /* drop the lock on this nodes journal */
1723         if (got_lock)
1724                 ocfs2_inode_unlock(inode, 1);
1725
1726         iput(inode);
1727         brelse(bh);
1728
1729         return status;
1730 }
1731
1732 /*
1733  * Do the most important parts of node recovery:
1734  *  - Replay it's journal
1735  *  - Stamp a clean local allocator file
1736  *  - Stamp a clean truncate log
1737  *  - Mark the node clean
1738  *
1739  * If this function completes without error, a node in OCFS2 can be
1740  * said to have been safely recovered. As a result, failure during the
1741  * second part of a nodes recovery process (local alloc recovery) is
1742  * far less concerning.
1743  */
1744 static int ocfs2_recover_node(struct ocfs2_super *osb,
1745                               int node_num, int slot_num)
1746 {
1747         int status = 0;
1748         struct ocfs2_dinode *la_copy = NULL;
1749         struct ocfs2_dinode *tl_copy = NULL;
1750
1751         trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1752
1753         /* Should not ever be called to recover ourselves -- in that
1754          * case we should've called ocfs2_journal_load instead. */
1755         BUG_ON(osb->node_num == node_num);
1756
1757         status = ocfs2_replay_journal(osb, node_num, slot_num);
1758         if (status < 0) {
1759                 if (status == -EBUSY) {
1760                         trace_ocfs2_recover_node_skip(slot_num, node_num);
1761                         status = 0;
1762                         goto done;
1763                 }
1764                 mlog_errno(status);
1765                 goto done;
1766         }
1767
1768         /* Stamp a clean local alloc file AFTER recovering the journal... */
1769         status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1770         if (status < 0) {
1771                 mlog_errno(status);
1772                 goto done;
1773         }
1774
1775         /* An error from begin_truncate_log_recovery is not
1776          * serious enough to warrant halting the rest of
1777          * recovery. */
1778         status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1779         if (status < 0)
1780                 mlog_errno(status);
1781
1782         /* Likewise, this would be a strange but ultimately not so
1783          * harmful place to get an error... */
1784         status = ocfs2_clear_slot(osb, slot_num);
1785         if (status < 0)
1786                 mlog_errno(status);
1787
1788         /* This will kfree the memory pointed to by la_copy and tl_copy */
1789         ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1790                                         tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1791
1792         status = 0;
1793 done:
1794
1795         return status;
1796 }
1797
1798 /* Test node liveness by trylocking his journal. If we get the lock,
1799  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1800  * still alive (we couldn't get the lock) and < 0 on error. */
1801 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1802                                  int slot_num)
1803 {
1804         int status, flags;
1805         struct inode *inode = NULL;
1806
1807         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1808                                             slot_num);
1809         if (inode == NULL) {
1810                 mlog(ML_ERROR, "access error\n");
1811                 status = -EACCES;
1812                 goto bail;
1813         }
1814         if (is_bad_inode(inode)) {
1815                 mlog(ML_ERROR, "access error (bad inode)\n");
1816                 iput(inode);
1817                 inode = NULL;
1818                 status = -EACCES;
1819                 goto bail;
1820         }
1821         SET_INODE_JOURNAL(inode);
1822
1823         flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1824         status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1825         if (status < 0) {
1826                 if (status != -EAGAIN)
1827                         mlog_errno(status);
1828                 goto bail;
1829         }
1830
1831         ocfs2_inode_unlock(inode, 1);
1832 bail:
1833         iput(inode);
1834
1835         return status;
1836 }
1837
1838 /* Call this underneath ocfs2_super_lock. It also assumes that the
1839  * slot info struct has been updated from disk. */
1840 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1841 {
1842         unsigned int node_num;
1843         int status, i;
1844         u32 gen;
1845         struct buffer_head *bh = NULL;
1846         struct ocfs2_dinode *di;
1847
1848         /* This is called with the super block cluster lock, so we
1849          * know that the slot map can't change underneath us. */
1850
1851         for (i = 0; i < osb->max_slots; i++) {
1852                 /* Read journal inode to get the recovery generation */
1853                 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1854                 if (status) {
1855                         mlog_errno(status);
1856                         goto bail;
1857                 }
1858                 di = (struct ocfs2_dinode *)bh->b_data;
1859                 gen = ocfs2_get_recovery_generation(di);
1860                 brelse(bh);
1861                 bh = NULL;
1862
1863                 spin_lock(&osb->osb_lock);
1864                 osb->slot_recovery_generations[i] = gen;
1865
1866                 trace_ocfs2_mark_dead_nodes(i,
1867                                             osb->slot_recovery_generations[i]);
1868
1869                 if (i == osb->slot_num) {
1870                         spin_unlock(&osb->osb_lock);
1871                         continue;
1872                 }
1873
1874                 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1875                 if (status == -ENOENT) {
1876                         spin_unlock(&osb->osb_lock);
1877                         continue;
1878                 }
1879
1880                 if (__ocfs2_recovery_map_test(osb, node_num)) {
1881                         spin_unlock(&osb->osb_lock);
1882                         continue;
1883                 }
1884                 spin_unlock(&osb->osb_lock);
1885
1886                 /* Ok, we have a slot occupied by another node which
1887                  * is not in the recovery map. We trylock his journal
1888                  * file here to test if he's alive. */
1889                 status = ocfs2_trylock_journal(osb, i);
1890                 if (!status) {
1891                         /* Since we're called from mount, we know that
1892                          * the recovery thread can't race us on
1893                          * setting / checking the recovery bits. */
1894                         ocfs2_recovery_thread(osb, node_num);
1895                 } else if ((status < 0) && (status != -EAGAIN)) {
1896                         mlog_errno(status);
1897                         goto bail;
1898                 }
1899         }
1900
1901         status = 0;
1902 bail:
1903         return status;
1904 }
1905
1906 /*
1907  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1908  * randomness to the timeout to minimize multple nodes firing the timer at the
1909  * same time.
1910  */
1911 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1912 {
1913         unsigned long time;
1914
1915         get_random_bytes(&time, sizeof(time));
1916         time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1917         return msecs_to_jiffies(time);
1918 }
1919
1920 /*
1921  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1922  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1923  * is done to catch any orphans that are left over in orphan directories.
1924  *
1925  * It scans all slots, even ones that are in use. It does so to handle the
1926  * case described below:
1927  *
1928  *   Node 1 has an inode it was using. The dentry went away due to memory
1929  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1930  *   has the open lock.
1931  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1932  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1933  *   open lock, sees that another node has a PR, and does nothing.
1934  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1935  *   open lock, sees the PR still, and does nothing.
1936  *   Basically, we have to trigger an orphan iput on node 1. The only way
1937  *   for this to happen is if node 1 runs node 2's orphan dir.
1938  *
1939  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1940  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1941  * stored in LVB. If the sequence number has changed, it means some other
1942  * node has done the scan.  This node skips the scan and tracks the
1943  * sequence number.  If the sequence number didn't change, it means a scan
1944  * hasn't happened.  The node queues a scan and increments the
1945  * sequence number in the LVB.
1946  */
1947 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1948 {
1949         struct ocfs2_orphan_scan *os;
1950         int status, i;
1951         u32 seqno = 0;
1952
1953         os = &osb->osb_orphan_scan;
1954
1955         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1956                 goto out;
1957
1958         trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1959                                             atomic_read(&os->os_state));
1960
1961         status = ocfs2_orphan_scan_lock(osb, &seqno);
1962         if (status < 0) {
1963                 if (status != -EAGAIN)
1964                         mlog_errno(status);
1965                 goto out;
1966         }
1967
1968         /* Do no queue the tasks if the volume is being umounted */
1969         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1970                 goto unlock;
1971
1972         if (os->os_seqno != seqno) {
1973                 os->os_seqno = seqno;
1974                 goto unlock;
1975         }
1976
1977         for (i = 0; i < osb->max_slots; i++)
1978                 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1979                                                 NULL, ORPHAN_NO_NEED_TRUNCATE);
1980         /*
1981          * We queued a recovery on orphan slots, increment the sequence
1982          * number and update LVB so other node will skip the scan for a while
1983          */
1984         seqno++;
1985         os->os_count++;
1986         os->os_scantime = ktime_get_seconds();
1987 unlock:
1988         ocfs2_orphan_scan_unlock(osb, seqno);
1989 out:
1990         trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1991                                           atomic_read(&os->os_state));
1992         return;
1993 }
1994
1995 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1996 static void ocfs2_orphan_scan_work(struct work_struct *work)
1997 {
1998         struct ocfs2_orphan_scan *os;
1999         struct ocfs2_super *osb;
2000
2001         os = container_of(work, struct ocfs2_orphan_scan,
2002                           os_orphan_scan_work.work);
2003         osb = os->os_osb;
2004
2005         mutex_lock(&os->os_lock);
2006         ocfs2_queue_orphan_scan(osb);
2007         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2008                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2009                                       ocfs2_orphan_scan_timeout());
2010         mutex_unlock(&os->os_lock);
2011 }
2012
2013 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2014 {
2015         struct ocfs2_orphan_scan *os;
2016
2017         os = &osb->osb_orphan_scan;
2018         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2019                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2020                 mutex_lock(&os->os_lock);
2021                 cancel_delayed_work(&os->os_orphan_scan_work);
2022                 mutex_unlock(&os->os_lock);
2023         }
2024 }
2025
2026 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2027 {
2028         struct ocfs2_orphan_scan *os;
2029
2030         os = &osb->osb_orphan_scan;
2031         os->os_osb = osb;
2032         os->os_count = 0;
2033         os->os_seqno = 0;
2034         mutex_init(&os->os_lock);
2035         INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2036 }
2037
2038 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2039 {
2040         struct ocfs2_orphan_scan *os;
2041
2042         os = &osb->osb_orphan_scan;
2043         os->os_scantime = ktime_get_seconds();
2044         if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2045                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2046         else {
2047                 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2048                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2049                                    ocfs2_orphan_scan_timeout());
2050         }
2051 }
2052
2053 struct ocfs2_orphan_filldir_priv {
2054         struct dir_context      ctx;
2055         struct inode            *head;
2056         struct ocfs2_super      *osb;
2057         enum ocfs2_orphan_reco_type orphan_reco_type;
2058 };
2059
2060 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2061                                 int name_len, loff_t pos, u64 ino,
2062                                 unsigned type)
2063 {
2064         struct ocfs2_orphan_filldir_priv *p =
2065                 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2066         struct inode *iter;
2067
2068         if (name_len == 1 && !strncmp(".", name, 1))
2069                 return 0;
2070         if (name_len == 2 && !strncmp("..", name, 2))
2071                 return 0;
2072
2073         /* do not include dio entry in case of orphan scan */
2074         if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2075                         (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2076                         OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2077                 return 0;
2078
2079         /* Skip bad inodes so that recovery can continue */
2080         iter = ocfs2_iget(p->osb, ino,
2081                           OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2082         if (IS_ERR(iter))
2083                 return 0;
2084
2085         if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2086                         OCFS2_DIO_ORPHAN_PREFIX_LEN))
2087                 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2088
2089         /* Skip inodes which are already added to recover list, since dio may
2090          * happen concurrently with unlink/rename */
2091         if (OCFS2_I(iter)->ip_next_orphan) {
2092                 iput(iter);
2093                 return 0;
2094         }
2095
2096         trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2097         /* No locking is required for the next_orphan queue as there
2098          * is only ever a single process doing orphan recovery. */
2099         OCFS2_I(iter)->ip_next_orphan = p->head;
2100         p->head = iter;
2101
2102         return 0;
2103 }
2104
2105 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2106                                int slot,
2107                                struct inode **head,
2108                                enum ocfs2_orphan_reco_type orphan_reco_type)
2109 {
2110         int status;
2111         struct inode *orphan_dir_inode = NULL;
2112         struct ocfs2_orphan_filldir_priv priv = {
2113                 .ctx.actor = ocfs2_orphan_filldir,
2114                 .osb = osb,
2115                 .head = *head,
2116                 .orphan_reco_type = orphan_reco_type
2117         };
2118
2119         orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2120                                                        ORPHAN_DIR_SYSTEM_INODE,
2121                                                        slot);
2122         if  (!orphan_dir_inode) {
2123                 status = -ENOENT;
2124                 mlog_errno(status);
2125                 return status;
2126         }
2127
2128         inode_lock(orphan_dir_inode);
2129         status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2130         if (status < 0) {
2131                 mlog_errno(status);
2132                 goto out;
2133         }
2134
2135         status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2136         if (status) {
2137                 mlog_errno(status);
2138                 goto out_cluster;
2139         }
2140
2141         *head = priv.head;
2142
2143 out_cluster:
2144         ocfs2_inode_unlock(orphan_dir_inode, 0);
2145 out:
2146         inode_unlock(orphan_dir_inode);
2147         iput(orphan_dir_inode);
2148         return status;
2149 }
2150
2151 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2152                                               int slot)
2153 {
2154         int ret;
2155
2156         spin_lock(&osb->osb_lock);
2157         ret = !osb->osb_orphan_wipes[slot];
2158         spin_unlock(&osb->osb_lock);
2159         return ret;
2160 }
2161
2162 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2163                                              int slot)
2164 {
2165         spin_lock(&osb->osb_lock);
2166         /* Mark ourselves such that new processes in delete_inode()
2167          * know to quit early. */
2168         ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2169         while (osb->osb_orphan_wipes[slot]) {
2170                 /* If any processes are already in the middle of an
2171                  * orphan wipe on this dir, then we need to wait for
2172                  * them. */
2173                 spin_unlock(&osb->osb_lock);
2174                 wait_event_interruptible(osb->osb_wipe_event,
2175                                          ocfs2_orphan_recovery_can_continue(osb, slot));
2176                 spin_lock(&osb->osb_lock);
2177         }
2178         spin_unlock(&osb->osb_lock);
2179 }
2180
2181 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2182                                               int slot)
2183 {
2184         ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2185 }
2186
2187 /*
2188  * Orphan recovery. Each mounted node has it's own orphan dir which we
2189  * must run during recovery. Our strategy here is to build a list of
2190  * the inodes in the orphan dir and iget/iput them. The VFS does
2191  * (most) of the rest of the work.
2192  *
2193  * Orphan recovery can happen at any time, not just mount so we have a
2194  * couple of extra considerations.
2195  *
2196  * - We grab as many inodes as we can under the orphan dir lock -
2197  *   doing iget() outside the orphan dir risks getting a reference on
2198  *   an invalid inode.
2199  * - We must be sure not to deadlock with other processes on the
2200  *   system wanting to run delete_inode(). This can happen when they go
2201  *   to lock the orphan dir and the orphan recovery process attempts to
2202  *   iget() inside the orphan dir lock. This can be avoided by
2203  *   advertising our state to ocfs2_delete_inode().
2204  */
2205 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2206                                  int slot,
2207                                  enum ocfs2_orphan_reco_type orphan_reco_type)
2208 {
2209         int ret = 0;
2210         struct inode *inode = NULL;
2211         struct inode *iter;
2212         struct ocfs2_inode_info *oi;
2213         struct buffer_head *di_bh = NULL;
2214         struct ocfs2_dinode *di = NULL;
2215
2216         trace_ocfs2_recover_orphans(slot);
2217
2218         ocfs2_mark_recovering_orphan_dir(osb, slot);
2219         ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2220         ocfs2_clear_recovering_orphan_dir(osb, slot);
2221
2222         /* Error here should be noted, but we want to continue with as
2223          * many queued inodes as we've got. */
2224         if (ret)
2225                 mlog_errno(ret);
2226
2227         while (inode) {
2228                 oi = OCFS2_I(inode);
2229                 trace_ocfs2_recover_orphans_iput(
2230                                         (unsigned long long)oi->ip_blkno);
2231
2232                 iter = oi->ip_next_orphan;
2233                 oi->ip_next_orphan = NULL;
2234
2235                 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2236                         inode_lock(inode);
2237                         ret = ocfs2_rw_lock(inode, 1);
2238                         if (ret < 0) {
2239                                 mlog_errno(ret);
2240                                 goto unlock_mutex;
2241                         }
2242                         /*
2243                          * We need to take and drop the inode lock to
2244                          * force read inode from disk.
2245                          */
2246                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2247                         if (ret) {
2248                                 mlog_errno(ret);
2249                                 goto unlock_rw;
2250                         }
2251
2252                         di = (struct ocfs2_dinode *)di_bh->b_data;
2253
2254                         if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2255                                 ret = ocfs2_truncate_file(inode, di_bh,
2256                                                 i_size_read(inode));
2257                                 if (ret < 0) {
2258                                         if (ret != -ENOSPC)
2259                                                 mlog_errno(ret);
2260                                         goto unlock_inode;
2261                                 }
2262
2263                                 ret = ocfs2_del_inode_from_orphan(osb, inode,
2264                                                 di_bh, 0, 0);
2265                                 if (ret)
2266                                         mlog_errno(ret);
2267                         }
2268 unlock_inode:
2269                         ocfs2_inode_unlock(inode, 1);
2270                         brelse(di_bh);
2271                         di_bh = NULL;
2272 unlock_rw:
2273                         ocfs2_rw_unlock(inode, 1);
2274 unlock_mutex:
2275                         inode_unlock(inode);
2276
2277                         /* clear dio flag in ocfs2_inode_info */
2278                         oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2279                 } else {
2280                         spin_lock(&oi->ip_lock);
2281                         /* Set the proper information to get us going into
2282                          * ocfs2_delete_inode. */
2283                         oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2284                         spin_unlock(&oi->ip_lock);
2285                 }
2286
2287                 iput(inode);
2288                 inode = iter;
2289         }
2290
2291         return ret;
2292 }
2293
2294 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2295 {
2296         /* This check is good because ocfs2 will wait on our recovery
2297          * thread before changing it to something other than MOUNTED
2298          * or DISABLED. */
2299         wait_event(osb->osb_mount_event,
2300                   (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2301                    atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2302                    atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2303
2304         /* If there's an error on mount, then we may never get to the
2305          * MOUNTED flag, but this is set right before
2306          * dismount_volume() so we can trust it. */
2307         if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2308                 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2309                 mlog(0, "mount error, exiting!\n");
2310                 return -EBUSY;
2311         }
2312
2313         return 0;
2314 }
2315
2316 static int ocfs2_commit_thread(void *arg)
2317 {
2318         int status;
2319         struct ocfs2_super *osb = arg;
2320         struct ocfs2_journal *journal = osb->journal;
2321
2322         /* we can trust j_num_trans here because _should_stop() is only set in
2323          * shutdown and nobody other than ourselves should be able to start
2324          * transactions.  committing on shutdown might take a few iterations
2325          * as final transactions put deleted inodes on the list */
2326         while (!(kthread_should_stop() &&
2327                  atomic_read(&journal->j_num_trans) == 0)) {
2328
2329                 wait_event_interruptible(osb->checkpoint_event,
2330                                          atomic_read(&journal->j_num_trans)
2331                                          || kthread_should_stop());
2332
2333                 status = ocfs2_commit_cache(osb);
2334                 if (status < 0) {
2335                         static unsigned long abort_warn_time;
2336
2337                         /* Warn about this once per minute */
2338                         if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2339                                 mlog(ML_ERROR, "status = %d, journal is "
2340                                                 "already aborted.\n", status);
2341                         /*
2342                          * After ocfs2_commit_cache() fails, j_num_trans has a
2343                          * non-zero value.  Sleep here to avoid a busy-wait
2344                          * loop.
2345                          */
2346                         msleep_interruptible(1000);
2347                 }
2348
2349                 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2350                         mlog(ML_KTHREAD,
2351                              "commit_thread: %u transactions pending on "
2352                              "shutdown\n",
2353                              atomic_read(&journal->j_num_trans));
2354                 }
2355         }
2356
2357         return 0;
2358 }
2359
2360 /* Reads all the journal inodes without taking any cluster locks. Used
2361  * for hard readonly access to determine whether any journal requires
2362  * recovery. Also used to refresh the recovery generation numbers after
2363  * a journal has been recovered by another node.
2364  */
2365 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2366 {
2367         int ret = 0;
2368         unsigned int slot;
2369         struct buffer_head *di_bh = NULL;
2370         struct ocfs2_dinode *di;
2371         int journal_dirty = 0;
2372
2373         for(slot = 0; slot < osb->max_slots; slot++) {
2374                 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2375                 if (ret) {
2376                         mlog_errno(ret);
2377                         goto out;
2378                 }
2379
2380                 di = (struct ocfs2_dinode *) di_bh->b_data;
2381
2382                 osb->slot_recovery_generations[slot] =
2383                                         ocfs2_get_recovery_generation(di);
2384
2385                 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2386                     OCFS2_JOURNAL_DIRTY_FL)
2387                         journal_dirty = 1;
2388
2389                 brelse(di_bh);
2390                 di_bh = NULL;
2391         }
2392
2393 out:
2394         if (journal_dirty)
2395                 ret = -EROFS;
2396         return ret;
2397 }