Merge tag 'compiler-attributes-for-linus-v5.16' of git://github.com/ojeda/linux
[linux-2.6-microblaze.git] / fs / ocfs2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * journal.c
4  *
5  * Defines functions of journalling api
6  *
7  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
8  */
9
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18
19 #include <cluster/masklog.h>
20
21 #include "ocfs2.h"
22
23 #include "alloc.h"
24 #include "blockcheck.h"
25 #include "dir.h"
26 #include "dlmglue.h"
27 #include "extent_map.h"
28 #include "heartbeat.h"
29 #include "inode.h"
30 #include "journal.h"
31 #include "localalloc.h"
32 #include "slot_map.h"
33 #include "super.h"
34 #include "sysfile.h"
35 #include "uptodate.h"
36 #include "quota.h"
37 #include "file.h"
38 #include "namei.h"
39
40 #include "buffer_head_io.h"
41 #include "ocfs2_trace.h"
42
43 DEFINE_SPINLOCK(trans_inc_lock);
44
45 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
46
47 static int ocfs2_force_read_journal(struct inode *inode);
48 static int ocfs2_recover_node(struct ocfs2_super *osb,
49                               int node_num, int slot_num);
50 static int __ocfs2_recovery_thread(void *arg);
51 static int ocfs2_commit_cache(struct ocfs2_super *osb);
52 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
53 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
54                                       int dirty, int replayed);
55 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
56                                  int slot_num);
57 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
58                                  int slot,
59                                  enum ocfs2_orphan_reco_type orphan_reco_type);
60 static int ocfs2_commit_thread(void *arg);
61 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
62                                             int slot_num,
63                                             struct ocfs2_dinode *la_dinode,
64                                             struct ocfs2_dinode *tl_dinode,
65                                             struct ocfs2_quota_recovery *qrec,
66                                             enum ocfs2_orphan_reco_type orphan_reco_type);
67
68 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
69 {
70         return __ocfs2_wait_on_mount(osb, 0);
71 }
72
73 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
74 {
75         return __ocfs2_wait_on_mount(osb, 1);
76 }
77
78 /*
79  * This replay_map is to track online/offline slots, so we could recover
80  * offline slots during recovery and mount
81  */
82
83 enum ocfs2_replay_state {
84         REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
85         REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
86         REPLAY_DONE             /* Replay was already queued */
87 };
88
89 struct ocfs2_replay_map {
90         unsigned int rm_slots;
91         enum ocfs2_replay_state rm_state;
92         unsigned char rm_replay_slots[];
93 };
94
95 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
96 {
97         if (!osb->replay_map)
98                 return;
99
100         /* If we've already queued the replay, we don't have any more to do */
101         if (osb->replay_map->rm_state == REPLAY_DONE)
102                 return;
103
104         osb->replay_map->rm_state = state;
105 }
106
107 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
108 {
109         struct ocfs2_replay_map *replay_map;
110         int i, node_num;
111
112         /* If replay map is already set, we don't do it again */
113         if (osb->replay_map)
114                 return 0;
115
116         replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
117                              (osb->max_slots * sizeof(char)), GFP_KERNEL);
118
119         if (!replay_map) {
120                 mlog_errno(-ENOMEM);
121                 return -ENOMEM;
122         }
123
124         spin_lock(&osb->osb_lock);
125
126         replay_map->rm_slots = osb->max_slots;
127         replay_map->rm_state = REPLAY_UNNEEDED;
128
129         /* set rm_replay_slots for offline slot(s) */
130         for (i = 0; i < replay_map->rm_slots; i++) {
131                 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
132                         replay_map->rm_replay_slots[i] = 1;
133         }
134
135         osb->replay_map = replay_map;
136         spin_unlock(&osb->osb_lock);
137         return 0;
138 }
139
140 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
141                 enum ocfs2_orphan_reco_type orphan_reco_type)
142 {
143         struct ocfs2_replay_map *replay_map = osb->replay_map;
144         int i;
145
146         if (!replay_map)
147                 return;
148
149         if (replay_map->rm_state != REPLAY_NEEDED)
150                 return;
151
152         for (i = 0; i < replay_map->rm_slots; i++)
153                 if (replay_map->rm_replay_slots[i])
154                         ocfs2_queue_recovery_completion(osb->journal, i, NULL,
155                                                         NULL, NULL,
156                                                         orphan_reco_type);
157         replay_map->rm_state = REPLAY_DONE;
158 }
159
160 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
161 {
162         struct ocfs2_replay_map *replay_map = osb->replay_map;
163
164         if (!osb->replay_map)
165                 return;
166
167         kfree(replay_map);
168         osb->replay_map = NULL;
169 }
170
171 int ocfs2_recovery_init(struct ocfs2_super *osb)
172 {
173         struct ocfs2_recovery_map *rm;
174
175         mutex_init(&osb->recovery_lock);
176         osb->disable_recovery = 0;
177         osb->recovery_thread_task = NULL;
178         init_waitqueue_head(&osb->recovery_event);
179
180         rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
181                      osb->max_slots * sizeof(unsigned int),
182                      GFP_KERNEL);
183         if (!rm) {
184                 mlog_errno(-ENOMEM);
185                 return -ENOMEM;
186         }
187
188         rm->rm_entries = (unsigned int *)((char *)rm +
189                                           sizeof(struct ocfs2_recovery_map));
190         osb->recovery_map = rm;
191
192         return 0;
193 }
194
195 /* we can't grab the goofy sem lock from inside wait_event, so we use
196  * memory barriers to make sure that we'll see the null task before
197  * being woken up */
198 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
199 {
200         mb();
201         return osb->recovery_thread_task != NULL;
202 }
203
204 void ocfs2_recovery_exit(struct ocfs2_super *osb)
205 {
206         struct ocfs2_recovery_map *rm;
207
208         /* disable any new recovery threads and wait for any currently
209          * running ones to exit. Do this before setting the vol_state. */
210         mutex_lock(&osb->recovery_lock);
211         osb->disable_recovery = 1;
212         mutex_unlock(&osb->recovery_lock);
213         wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
214
215         /* At this point, we know that no more recovery threads can be
216          * launched, so wait for any recovery completion work to
217          * complete. */
218         if (osb->ocfs2_wq)
219                 flush_workqueue(osb->ocfs2_wq);
220
221         /*
222          * Now that recovery is shut down, and the osb is about to be
223          * freed,  the osb_lock is not taken here.
224          */
225         rm = osb->recovery_map;
226         /* XXX: Should we bug if there are dirty entries? */
227
228         kfree(rm);
229 }
230
231 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
232                                      unsigned int node_num)
233 {
234         int i;
235         struct ocfs2_recovery_map *rm = osb->recovery_map;
236
237         assert_spin_locked(&osb->osb_lock);
238
239         for (i = 0; i < rm->rm_used; i++) {
240                 if (rm->rm_entries[i] == node_num)
241                         return 1;
242         }
243
244         return 0;
245 }
246
247 /* Behaves like test-and-set.  Returns the previous value */
248 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
249                                   unsigned int node_num)
250 {
251         struct ocfs2_recovery_map *rm = osb->recovery_map;
252
253         spin_lock(&osb->osb_lock);
254         if (__ocfs2_recovery_map_test(osb, node_num)) {
255                 spin_unlock(&osb->osb_lock);
256                 return 1;
257         }
258
259         /* XXX: Can this be exploited? Not from o2dlm... */
260         BUG_ON(rm->rm_used >= osb->max_slots);
261
262         rm->rm_entries[rm->rm_used] = node_num;
263         rm->rm_used++;
264         spin_unlock(&osb->osb_lock);
265
266         return 0;
267 }
268
269 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
270                                      unsigned int node_num)
271 {
272         int i;
273         struct ocfs2_recovery_map *rm = osb->recovery_map;
274
275         spin_lock(&osb->osb_lock);
276
277         for (i = 0; i < rm->rm_used; i++) {
278                 if (rm->rm_entries[i] == node_num)
279                         break;
280         }
281
282         if (i < rm->rm_used) {
283                 /* XXX: be careful with the pointer math */
284                 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
285                         (rm->rm_used - i - 1) * sizeof(unsigned int));
286                 rm->rm_used--;
287         }
288
289         spin_unlock(&osb->osb_lock);
290 }
291
292 static int ocfs2_commit_cache(struct ocfs2_super *osb)
293 {
294         int status = 0;
295         unsigned int flushed;
296         struct ocfs2_journal *journal = NULL;
297
298         journal = osb->journal;
299
300         /* Flush all pending commits and checkpoint the journal. */
301         down_write(&journal->j_trans_barrier);
302
303         flushed = atomic_read(&journal->j_num_trans);
304         trace_ocfs2_commit_cache_begin(flushed);
305         if (flushed == 0) {
306                 up_write(&journal->j_trans_barrier);
307                 goto finally;
308         }
309
310         jbd2_journal_lock_updates(journal->j_journal);
311         status = jbd2_journal_flush(journal->j_journal, 0);
312         jbd2_journal_unlock_updates(journal->j_journal);
313         if (status < 0) {
314                 up_write(&journal->j_trans_barrier);
315                 mlog_errno(status);
316                 goto finally;
317         }
318
319         ocfs2_inc_trans_id(journal);
320
321         flushed = atomic_read(&journal->j_num_trans);
322         atomic_set(&journal->j_num_trans, 0);
323         up_write(&journal->j_trans_barrier);
324
325         trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
326
327         ocfs2_wake_downconvert_thread(osb);
328         wake_up(&journal->j_checkpointed);
329 finally:
330         return status;
331 }
332
333 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
334 {
335         journal_t *journal = osb->journal->j_journal;
336         handle_t *handle;
337
338         BUG_ON(!osb || !osb->journal->j_journal);
339
340         if (ocfs2_is_hard_readonly(osb))
341                 return ERR_PTR(-EROFS);
342
343         BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
344         BUG_ON(max_buffs <= 0);
345
346         /* Nested transaction? Just return the handle... */
347         if (journal_current_handle())
348                 return jbd2_journal_start(journal, max_buffs);
349
350         sb_start_intwrite(osb->sb);
351
352         down_read(&osb->journal->j_trans_barrier);
353
354         handle = jbd2_journal_start(journal, max_buffs);
355         if (IS_ERR(handle)) {
356                 up_read(&osb->journal->j_trans_barrier);
357                 sb_end_intwrite(osb->sb);
358
359                 mlog_errno(PTR_ERR(handle));
360
361                 if (is_journal_aborted(journal)) {
362                         ocfs2_abort(osb->sb, "Detected aborted journal\n");
363                         handle = ERR_PTR(-EROFS);
364                 }
365         } else {
366                 if (!ocfs2_mount_local(osb))
367                         atomic_inc(&(osb->journal->j_num_trans));
368         }
369
370         return handle;
371 }
372
373 int ocfs2_commit_trans(struct ocfs2_super *osb,
374                        handle_t *handle)
375 {
376         int ret, nested;
377         struct ocfs2_journal *journal = osb->journal;
378
379         BUG_ON(!handle);
380
381         nested = handle->h_ref > 1;
382         ret = jbd2_journal_stop(handle);
383         if (ret < 0)
384                 mlog_errno(ret);
385
386         if (!nested) {
387                 up_read(&journal->j_trans_barrier);
388                 sb_end_intwrite(osb->sb);
389         }
390
391         return ret;
392 }
393
394 /*
395  * 'nblocks' is what you want to add to the current transaction.
396  *
397  * This might call jbd2_journal_restart() which will commit dirty buffers
398  * and then restart the transaction. Before calling
399  * ocfs2_extend_trans(), any changed blocks should have been
400  * dirtied. After calling it, all blocks which need to be changed must
401  * go through another set of journal_access/journal_dirty calls.
402  *
403  * WARNING: This will not release any semaphores or disk locks taken
404  * during the transaction, so make sure they were taken *before*
405  * start_trans or we'll have ordering deadlocks.
406  *
407  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
408  * good because transaction ids haven't yet been recorded on the
409  * cluster locks associated with this handle.
410  */
411 int ocfs2_extend_trans(handle_t *handle, int nblocks)
412 {
413         int status, old_nblocks;
414
415         BUG_ON(!handle);
416         BUG_ON(nblocks < 0);
417
418         if (!nblocks)
419                 return 0;
420
421         old_nblocks = jbd2_handle_buffer_credits(handle);
422
423         trace_ocfs2_extend_trans(old_nblocks, nblocks);
424
425 #ifdef CONFIG_OCFS2_DEBUG_FS
426         status = 1;
427 #else
428         status = jbd2_journal_extend(handle, nblocks, 0);
429         if (status < 0) {
430                 mlog_errno(status);
431                 goto bail;
432         }
433 #endif
434
435         if (status > 0) {
436                 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
437                 status = jbd2_journal_restart(handle,
438                                               old_nblocks + nblocks);
439                 if (status < 0) {
440                         mlog_errno(status);
441                         goto bail;
442                 }
443         }
444
445         status = 0;
446 bail:
447         return status;
448 }
449
450 /*
451  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
452  * If that fails, restart the transaction & regain write access for the
453  * buffer head which is used for metadata modifications.
454  * Taken from Ext4: extend_or_restart_transaction()
455  */
456 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
457 {
458         int status, old_nblks;
459
460         BUG_ON(!handle);
461
462         old_nblks = jbd2_handle_buffer_credits(handle);
463         trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
464
465         if (old_nblks < thresh)
466                 return 0;
467
468         status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
469         if (status < 0) {
470                 mlog_errno(status);
471                 goto bail;
472         }
473
474         if (status > 0) {
475                 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
476                 if (status < 0)
477                         mlog_errno(status);
478         }
479
480 bail:
481         return status;
482 }
483
484
485 struct ocfs2_triggers {
486         struct jbd2_buffer_trigger_type ot_triggers;
487         int                             ot_offset;
488 };
489
490 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
491 {
492         return container_of(triggers, struct ocfs2_triggers, ot_triggers);
493 }
494
495 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
496                                  struct buffer_head *bh,
497                                  void *data, size_t size)
498 {
499         struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
500
501         /*
502          * We aren't guaranteed to have the superblock here, so we
503          * must unconditionally compute the ecc data.
504          * __ocfs2_journal_access() will only set the triggers if
505          * metaecc is enabled.
506          */
507         ocfs2_block_check_compute(data, size, data + ot->ot_offset);
508 }
509
510 /*
511  * Quota blocks have their own trigger because the struct ocfs2_block_check
512  * offset depends on the blocksize.
513  */
514 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
515                                  struct buffer_head *bh,
516                                  void *data, size_t size)
517 {
518         struct ocfs2_disk_dqtrailer *dqt =
519                 ocfs2_block_dqtrailer(size, data);
520
521         /*
522          * We aren't guaranteed to have the superblock here, so we
523          * must unconditionally compute the ecc data.
524          * __ocfs2_journal_access() will only set the triggers if
525          * metaecc is enabled.
526          */
527         ocfs2_block_check_compute(data, size, &dqt->dq_check);
528 }
529
530 /*
531  * Directory blocks also have their own trigger because the
532  * struct ocfs2_block_check offset depends on the blocksize.
533  */
534 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
535                                  struct buffer_head *bh,
536                                  void *data, size_t size)
537 {
538         struct ocfs2_dir_block_trailer *trailer =
539                 ocfs2_dir_trailer_from_size(size, data);
540
541         /*
542          * We aren't guaranteed to have the superblock here, so we
543          * must unconditionally compute the ecc data.
544          * __ocfs2_journal_access() will only set the triggers if
545          * metaecc is enabled.
546          */
547         ocfs2_block_check_compute(data, size, &trailer->db_check);
548 }
549
550 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
551                                 struct buffer_head *bh)
552 {
553         mlog(ML_ERROR,
554              "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
555              "bh->b_blocknr = %llu\n",
556              (unsigned long)bh,
557              (unsigned long long)bh->b_blocknr);
558
559         ocfs2_error(bh->b_bdev->bd_super,
560                     "JBD2 has aborted our journal, ocfs2 cannot continue\n");
561 }
562
563 static struct ocfs2_triggers di_triggers = {
564         .ot_triggers = {
565                 .t_frozen = ocfs2_frozen_trigger,
566                 .t_abort = ocfs2_abort_trigger,
567         },
568         .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
569 };
570
571 static struct ocfs2_triggers eb_triggers = {
572         .ot_triggers = {
573                 .t_frozen = ocfs2_frozen_trigger,
574                 .t_abort = ocfs2_abort_trigger,
575         },
576         .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
577 };
578
579 static struct ocfs2_triggers rb_triggers = {
580         .ot_triggers = {
581                 .t_frozen = ocfs2_frozen_trigger,
582                 .t_abort = ocfs2_abort_trigger,
583         },
584         .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
585 };
586
587 static struct ocfs2_triggers gd_triggers = {
588         .ot_triggers = {
589                 .t_frozen = ocfs2_frozen_trigger,
590                 .t_abort = ocfs2_abort_trigger,
591         },
592         .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
593 };
594
595 static struct ocfs2_triggers db_triggers = {
596         .ot_triggers = {
597                 .t_frozen = ocfs2_db_frozen_trigger,
598                 .t_abort = ocfs2_abort_trigger,
599         },
600 };
601
602 static struct ocfs2_triggers xb_triggers = {
603         .ot_triggers = {
604                 .t_frozen = ocfs2_frozen_trigger,
605                 .t_abort = ocfs2_abort_trigger,
606         },
607         .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
608 };
609
610 static struct ocfs2_triggers dq_triggers = {
611         .ot_triggers = {
612                 .t_frozen = ocfs2_dq_frozen_trigger,
613                 .t_abort = ocfs2_abort_trigger,
614         },
615 };
616
617 static struct ocfs2_triggers dr_triggers = {
618         .ot_triggers = {
619                 .t_frozen = ocfs2_frozen_trigger,
620                 .t_abort = ocfs2_abort_trigger,
621         },
622         .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
623 };
624
625 static struct ocfs2_triggers dl_triggers = {
626         .ot_triggers = {
627                 .t_frozen = ocfs2_frozen_trigger,
628                 .t_abort = ocfs2_abort_trigger,
629         },
630         .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
631 };
632
633 static int __ocfs2_journal_access(handle_t *handle,
634                                   struct ocfs2_caching_info *ci,
635                                   struct buffer_head *bh,
636                                   struct ocfs2_triggers *triggers,
637                                   int type)
638 {
639         int status;
640         struct ocfs2_super *osb =
641                 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
642
643         BUG_ON(!ci || !ci->ci_ops);
644         BUG_ON(!handle);
645         BUG_ON(!bh);
646
647         trace_ocfs2_journal_access(
648                 (unsigned long long)ocfs2_metadata_cache_owner(ci),
649                 (unsigned long long)bh->b_blocknr, type, bh->b_size);
650
651         /* we can safely remove this assertion after testing. */
652         if (!buffer_uptodate(bh)) {
653                 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
654                 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
655                      (unsigned long long)bh->b_blocknr, bh->b_state);
656
657                 lock_buffer(bh);
658                 /*
659                  * A previous transaction with a couple of buffer heads fail
660                  * to checkpoint, so all the bhs are marked as BH_Write_EIO.
661                  * For current transaction, the bh is just among those error
662                  * bhs which previous transaction handle. We can't just clear
663                  * its BH_Write_EIO and reuse directly, since other bhs are
664                  * not written to disk yet and that will cause metadata
665                  * inconsistency. So we should set fs read-only to avoid
666                  * further damage.
667                  */
668                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
669                         unlock_buffer(bh);
670                         return ocfs2_error(osb->sb, "A previous attempt to "
671                                         "write this buffer head failed\n");
672                 }
673                 unlock_buffer(bh);
674         }
675
676         /* Set the current transaction information on the ci so
677          * that the locking code knows whether it can drop it's locks
678          * on this ci or not. We're protected from the commit
679          * thread updating the current transaction id until
680          * ocfs2_commit_trans() because ocfs2_start_trans() took
681          * j_trans_barrier for us. */
682         ocfs2_set_ci_lock_trans(osb->journal, ci);
683
684         ocfs2_metadata_cache_io_lock(ci);
685         switch (type) {
686         case OCFS2_JOURNAL_ACCESS_CREATE:
687         case OCFS2_JOURNAL_ACCESS_WRITE:
688                 status = jbd2_journal_get_write_access(handle, bh);
689                 break;
690
691         case OCFS2_JOURNAL_ACCESS_UNDO:
692                 status = jbd2_journal_get_undo_access(handle, bh);
693                 break;
694
695         default:
696                 status = -EINVAL;
697                 mlog(ML_ERROR, "Unknown access type!\n");
698         }
699         if (!status && ocfs2_meta_ecc(osb) && triggers)
700                 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
701         ocfs2_metadata_cache_io_unlock(ci);
702
703         if (status < 0)
704                 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
705                      status, type);
706
707         return status;
708 }
709
710 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
711                             struct buffer_head *bh, int type)
712 {
713         return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
714 }
715
716 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
717                             struct buffer_head *bh, int type)
718 {
719         return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
720 }
721
722 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
723                             struct buffer_head *bh, int type)
724 {
725         return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
726                                       type);
727 }
728
729 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
730                             struct buffer_head *bh, int type)
731 {
732         return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
733 }
734
735 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
736                             struct buffer_head *bh, int type)
737 {
738         return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
739 }
740
741 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
742                             struct buffer_head *bh, int type)
743 {
744         return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
745 }
746
747 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
748                             struct buffer_head *bh, int type)
749 {
750         return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
751 }
752
753 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
754                             struct buffer_head *bh, int type)
755 {
756         return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
757 }
758
759 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
760                             struct buffer_head *bh, int type)
761 {
762         return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
763 }
764
765 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
766                          struct buffer_head *bh, int type)
767 {
768         return __ocfs2_journal_access(handle, ci, bh, NULL, type);
769 }
770
771 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
772 {
773         int status;
774
775         trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
776
777         status = jbd2_journal_dirty_metadata(handle, bh);
778         if (status) {
779                 mlog_errno(status);
780                 if (!is_handle_aborted(handle)) {
781                         journal_t *journal = handle->h_transaction->t_journal;
782                         struct super_block *sb = bh->b_bdev->bd_super;
783
784                         mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
785                                         "Aborting transaction and journal.\n");
786                         handle->h_err = status;
787                         jbd2_journal_abort_handle(handle);
788                         jbd2_journal_abort(journal, status);
789                         ocfs2_abort(sb, "Journal already aborted.\n");
790                 }
791         }
792 }
793
794 #define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
795
796 void ocfs2_set_journal_params(struct ocfs2_super *osb)
797 {
798         journal_t *journal = osb->journal->j_journal;
799         unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
800
801         if (osb->osb_commit_interval)
802                 commit_interval = osb->osb_commit_interval;
803
804         write_lock(&journal->j_state_lock);
805         journal->j_commit_interval = commit_interval;
806         if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
807                 journal->j_flags |= JBD2_BARRIER;
808         else
809                 journal->j_flags &= ~JBD2_BARRIER;
810         write_unlock(&journal->j_state_lock);
811 }
812
813 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
814 {
815         int status = -1;
816         struct inode *inode = NULL; /* the journal inode */
817         journal_t *j_journal = NULL;
818         struct ocfs2_journal *journal = NULL;
819         struct ocfs2_dinode *di = NULL;
820         struct buffer_head *bh = NULL;
821         int inode_lock = 0;
822
823         /* initialize our journal structure */
824         journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
825         if (!journal) {
826                 mlog(ML_ERROR, "unable to alloc journal\n");
827                 status = -ENOMEM;
828                 goto done;
829         }
830         osb->journal = journal;
831         journal->j_osb = osb;
832
833         atomic_set(&journal->j_num_trans, 0);
834         init_rwsem(&journal->j_trans_barrier);
835         init_waitqueue_head(&journal->j_checkpointed);
836         spin_lock_init(&journal->j_lock);
837         journal->j_trans_id = 1UL;
838         INIT_LIST_HEAD(&journal->j_la_cleanups);
839         INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
840         journal->j_state = OCFS2_JOURNAL_FREE;
841
842         /* already have the inode for our journal */
843         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
844                                             osb->slot_num);
845         if (inode == NULL) {
846                 status = -EACCES;
847                 mlog_errno(status);
848                 goto done;
849         }
850         if (is_bad_inode(inode)) {
851                 mlog(ML_ERROR, "access error (bad inode)\n");
852                 iput(inode);
853                 inode = NULL;
854                 status = -EACCES;
855                 goto done;
856         }
857
858         SET_INODE_JOURNAL(inode);
859         OCFS2_I(inode)->ip_open_count++;
860
861         /* Skip recovery waits here - journal inode metadata never
862          * changes in a live cluster so it can be considered an
863          * exception to the rule. */
864         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
865         if (status < 0) {
866                 if (status != -ERESTARTSYS)
867                         mlog(ML_ERROR, "Could not get lock on journal!\n");
868                 goto done;
869         }
870
871         inode_lock = 1;
872         di = (struct ocfs2_dinode *)bh->b_data;
873
874         if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
875                 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
876                      i_size_read(inode));
877                 status = -EINVAL;
878                 goto done;
879         }
880
881         trace_ocfs2_journal_init(i_size_read(inode),
882                                  (unsigned long long)inode->i_blocks,
883                                  OCFS2_I(inode)->ip_clusters);
884
885         /* call the kernels journal init function now */
886         j_journal = jbd2_journal_init_inode(inode);
887         if (j_journal == NULL) {
888                 mlog(ML_ERROR, "Linux journal layer error\n");
889                 status = -EINVAL;
890                 goto done;
891         }
892
893         trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
894
895         *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
896                   OCFS2_JOURNAL_DIRTY_FL);
897
898         journal->j_journal = j_journal;
899         journal->j_journal->j_submit_inode_data_buffers =
900                 jbd2_journal_submit_inode_data_buffers;
901         journal->j_journal->j_finish_inode_data_buffers =
902                 jbd2_journal_finish_inode_data_buffers;
903         journal->j_inode = inode;
904         journal->j_bh = bh;
905
906         ocfs2_set_journal_params(osb);
907
908         journal->j_state = OCFS2_JOURNAL_LOADED;
909
910         status = 0;
911 done:
912         if (status < 0) {
913                 if (inode_lock)
914                         ocfs2_inode_unlock(inode, 1);
915                 brelse(bh);
916                 if (inode) {
917                         OCFS2_I(inode)->ip_open_count--;
918                         iput(inode);
919                 }
920         }
921
922         return status;
923 }
924
925 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
926 {
927         le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
928 }
929
930 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
931 {
932         return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
933 }
934
935 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
936                                       int dirty, int replayed)
937 {
938         int status;
939         unsigned int flags;
940         struct ocfs2_journal *journal = osb->journal;
941         struct buffer_head *bh = journal->j_bh;
942         struct ocfs2_dinode *fe;
943
944         fe = (struct ocfs2_dinode *)bh->b_data;
945
946         /* The journal bh on the osb always comes from ocfs2_journal_init()
947          * and was validated there inside ocfs2_inode_lock_full().  It's a
948          * code bug if we mess it up. */
949         BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
950
951         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
952         if (dirty)
953                 flags |= OCFS2_JOURNAL_DIRTY_FL;
954         else
955                 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
956         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
957
958         if (replayed)
959                 ocfs2_bump_recovery_generation(fe);
960
961         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
962         status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
963         if (status < 0)
964                 mlog_errno(status);
965
966         return status;
967 }
968
969 /*
970  * If the journal has been kmalloc'd it needs to be freed after this
971  * call.
972  */
973 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
974 {
975         struct ocfs2_journal *journal = NULL;
976         int status = 0;
977         struct inode *inode = NULL;
978         int num_running_trans = 0;
979
980         BUG_ON(!osb);
981
982         journal = osb->journal;
983         if (!journal)
984                 goto done;
985
986         inode = journal->j_inode;
987
988         if (journal->j_state != OCFS2_JOURNAL_LOADED)
989                 goto done;
990
991         /* need to inc inode use count - jbd2_journal_destroy will iput. */
992         if (!igrab(inode))
993                 BUG();
994
995         num_running_trans = atomic_read(&(osb->journal->j_num_trans));
996         trace_ocfs2_journal_shutdown(num_running_trans);
997
998         /* Do a commit_cache here. It will flush our journal, *and*
999          * release any locks that are still held.
1000          * set the SHUTDOWN flag and release the trans lock.
1001          * the commit thread will take the trans lock for us below. */
1002         journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1003
1004         /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1005          * drop the trans_lock (which we want to hold until we
1006          * completely destroy the journal. */
1007         if (osb->commit_task) {
1008                 /* Wait for the commit thread */
1009                 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1010                 kthread_stop(osb->commit_task);
1011                 osb->commit_task = NULL;
1012         }
1013
1014         BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1015
1016         if (ocfs2_mount_local(osb)) {
1017                 jbd2_journal_lock_updates(journal->j_journal);
1018                 status = jbd2_journal_flush(journal->j_journal, 0);
1019                 jbd2_journal_unlock_updates(journal->j_journal);
1020                 if (status < 0)
1021                         mlog_errno(status);
1022         }
1023
1024         /* Shutdown the kernel journal system */
1025         if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1026                 /*
1027                  * Do not toggle if flush was unsuccessful otherwise
1028                  * will leave dirty metadata in a "clean" journal
1029                  */
1030                 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1031                 if (status < 0)
1032                         mlog_errno(status);
1033         }
1034         journal->j_journal = NULL;
1035
1036         OCFS2_I(inode)->ip_open_count--;
1037
1038         /* unlock our journal */
1039         ocfs2_inode_unlock(inode, 1);
1040
1041         brelse(journal->j_bh);
1042         journal->j_bh = NULL;
1043
1044         journal->j_state = OCFS2_JOURNAL_FREE;
1045
1046 done:
1047         iput(inode);
1048         kfree(journal);
1049         osb->journal = NULL;
1050 }
1051
1052 static void ocfs2_clear_journal_error(struct super_block *sb,
1053                                       journal_t *journal,
1054                                       int slot)
1055 {
1056         int olderr;
1057
1058         olderr = jbd2_journal_errno(journal);
1059         if (olderr) {
1060                 mlog(ML_ERROR, "File system error %d recorded in "
1061                      "journal %u.\n", olderr, slot);
1062                 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1063                      sb->s_id);
1064
1065                 jbd2_journal_ack_err(journal);
1066                 jbd2_journal_clear_err(journal);
1067         }
1068 }
1069
1070 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1071 {
1072         int status = 0;
1073         struct ocfs2_super *osb;
1074
1075         BUG_ON(!journal);
1076
1077         osb = journal->j_osb;
1078
1079         status = jbd2_journal_load(journal->j_journal);
1080         if (status < 0) {
1081                 mlog(ML_ERROR, "Failed to load journal!\n");
1082                 goto done;
1083         }
1084
1085         ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1086
1087         if (replayed) {
1088                 jbd2_journal_lock_updates(journal->j_journal);
1089                 status = jbd2_journal_flush(journal->j_journal, 0);
1090                 jbd2_journal_unlock_updates(journal->j_journal);
1091                 if (status < 0)
1092                         mlog_errno(status);
1093         }
1094
1095         status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1096         if (status < 0) {
1097                 mlog_errno(status);
1098                 goto done;
1099         }
1100
1101         /* Launch the commit thread */
1102         if (!local) {
1103                 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1104                                 "ocfs2cmt-%s", osb->uuid_str);
1105                 if (IS_ERR(osb->commit_task)) {
1106                         status = PTR_ERR(osb->commit_task);
1107                         osb->commit_task = NULL;
1108                         mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1109                              "error=%d", status);
1110                         goto done;
1111                 }
1112         } else
1113                 osb->commit_task = NULL;
1114
1115 done:
1116         return status;
1117 }
1118
1119
1120 /* 'full' flag tells us whether we clear out all blocks or if we just
1121  * mark the journal clean */
1122 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1123 {
1124         int status;
1125
1126         BUG_ON(!journal);
1127
1128         status = jbd2_journal_wipe(journal->j_journal, full);
1129         if (status < 0) {
1130                 mlog_errno(status);
1131                 goto bail;
1132         }
1133
1134         status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1135         if (status < 0)
1136                 mlog_errno(status);
1137
1138 bail:
1139         return status;
1140 }
1141
1142 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1143 {
1144         int empty;
1145         struct ocfs2_recovery_map *rm = osb->recovery_map;
1146
1147         spin_lock(&osb->osb_lock);
1148         empty = (rm->rm_used == 0);
1149         spin_unlock(&osb->osb_lock);
1150
1151         return empty;
1152 }
1153
1154 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1155 {
1156         wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1157 }
1158
1159 /*
1160  * JBD Might read a cached version of another nodes journal file. We
1161  * don't want this as this file changes often and we get no
1162  * notification on those changes. The only way to be sure that we've
1163  * got the most up to date version of those blocks then is to force
1164  * read them off disk. Just searching through the buffer cache won't
1165  * work as there may be pages backing this file which are still marked
1166  * up to date. We know things can't change on this file underneath us
1167  * as we have the lock by now :)
1168  */
1169 static int ocfs2_force_read_journal(struct inode *inode)
1170 {
1171         int status = 0;
1172         int i;
1173         u64 v_blkno, p_blkno, p_blocks, num_blocks;
1174         struct buffer_head *bh = NULL;
1175         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1176
1177         num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1178         v_blkno = 0;
1179         while (v_blkno < num_blocks) {
1180                 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1181                                                      &p_blkno, &p_blocks, NULL);
1182                 if (status < 0) {
1183                         mlog_errno(status);
1184                         goto bail;
1185                 }
1186
1187                 for (i = 0; i < p_blocks; i++, p_blkno++) {
1188                         bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1189                                         osb->sb->s_blocksize);
1190                         /* block not cached. */
1191                         if (!bh)
1192                                 continue;
1193
1194                         brelse(bh);
1195                         bh = NULL;
1196                         /* We are reading journal data which should not
1197                          * be put in the uptodate cache.
1198                          */
1199                         status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1200                         if (status < 0) {
1201                                 mlog_errno(status);
1202                                 goto bail;
1203                         }
1204
1205                         brelse(bh);
1206                         bh = NULL;
1207                 }
1208
1209                 v_blkno += p_blocks;
1210         }
1211
1212 bail:
1213         return status;
1214 }
1215
1216 struct ocfs2_la_recovery_item {
1217         struct list_head        lri_list;
1218         int                     lri_slot;
1219         struct ocfs2_dinode     *lri_la_dinode;
1220         struct ocfs2_dinode     *lri_tl_dinode;
1221         struct ocfs2_quota_recovery *lri_qrec;
1222         enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1223 };
1224
1225 /* Does the second half of the recovery process. By this point, the
1226  * node is marked clean and can actually be considered recovered,
1227  * hence it's no longer in the recovery map, but there's still some
1228  * cleanup we can do which shouldn't happen within the recovery thread
1229  * as locking in that context becomes very difficult if we are to take
1230  * recovering nodes into account.
1231  *
1232  * NOTE: This function can and will sleep on recovery of other nodes
1233  * during cluster locking, just like any other ocfs2 process.
1234  */
1235 void ocfs2_complete_recovery(struct work_struct *work)
1236 {
1237         int ret = 0;
1238         struct ocfs2_journal *journal =
1239                 container_of(work, struct ocfs2_journal, j_recovery_work);
1240         struct ocfs2_super *osb = journal->j_osb;
1241         struct ocfs2_dinode *la_dinode, *tl_dinode;
1242         struct ocfs2_la_recovery_item *item, *n;
1243         struct ocfs2_quota_recovery *qrec;
1244         enum ocfs2_orphan_reco_type orphan_reco_type;
1245         LIST_HEAD(tmp_la_list);
1246
1247         trace_ocfs2_complete_recovery(
1248                 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1249
1250         spin_lock(&journal->j_lock);
1251         list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1252         spin_unlock(&journal->j_lock);
1253
1254         list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1255                 list_del_init(&item->lri_list);
1256
1257                 ocfs2_wait_on_quotas(osb);
1258
1259                 la_dinode = item->lri_la_dinode;
1260                 tl_dinode = item->lri_tl_dinode;
1261                 qrec = item->lri_qrec;
1262                 orphan_reco_type = item->lri_orphan_reco_type;
1263
1264                 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1265                         la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1266                         tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1267                         qrec);
1268
1269                 if (la_dinode) {
1270                         ret = ocfs2_complete_local_alloc_recovery(osb,
1271                                                                   la_dinode);
1272                         if (ret < 0)
1273                                 mlog_errno(ret);
1274
1275                         kfree(la_dinode);
1276                 }
1277
1278                 if (tl_dinode) {
1279                         ret = ocfs2_complete_truncate_log_recovery(osb,
1280                                                                    tl_dinode);
1281                         if (ret < 0)
1282                                 mlog_errno(ret);
1283
1284                         kfree(tl_dinode);
1285                 }
1286
1287                 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1288                                 orphan_reco_type);
1289                 if (ret < 0)
1290                         mlog_errno(ret);
1291
1292                 if (qrec) {
1293                         ret = ocfs2_finish_quota_recovery(osb, qrec,
1294                                                           item->lri_slot);
1295                         if (ret < 0)
1296                                 mlog_errno(ret);
1297                         /* Recovery info is already freed now */
1298                 }
1299
1300                 kfree(item);
1301         }
1302
1303         trace_ocfs2_complete_recovery_end(ret);
1304 }
1305
1306 /* NOTE: This function always eats your references to la_dinode and
1307  * tl_dinode, either manually on error, or by passing them to
1308  * ocfs2_complete_recovery */
1309 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1310                                             int slot_num,
1311                                             struct ocfs2_dinode *la_dinode,
1312                                             struct ocfs2_dinode *tl_dinode,
1313                                             struct ocfs2_quota_recovery *qrec,
1314                                             enum ocfs2_orphan_reco_type orphan_reco_type)
1315 {
1316         struct ocfs2_la_recovery_item *item;
1317
1318         item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1319         if (!item) {
1320                 /* Though we wish to avoid it, we are in fact safe in
1321                  * skipping local alloc cleanup as fsck.ocfs2 is more
1322                  * than capable of reclaiming unused space. */
1323                 kfree(la_dinode);
1324                 kfree(tl_dinode);
1325
1326                 if (qrec)
1327                         ocfs2_free_quota_recovery(qrec);
1328
1329                 mlog_errno(-ENOMEM);
1330                 return;
1331         }
1332
1333         INIT_LIST_HEAD(&item->lri_list);
1334         item->lri_la_dinode = la_dinode;
1335         item->lri_slot = slot_num;
1336         item->lri_tl_dinode = tl_dinode;
1337         item->lri_qrec = qrec;
1338         item->lri_orphan_reco_type = orphan_reco_type;
1339
1340         spin_lock(&journal->j_lock);
1341         list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1342         queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1343         spin_unlock(&journal->j_lock);
1344 }
1345
1346 /* Called by the mount code to queue recovery the last part of
1347  * recovery for it's own and offline slot(s). */
1348 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1349 {
1350         struct ocfs2_journal *journal = osb->journal;
1351
1352         if (ocfs2_is_hard_readonly(osb))
1353                 return;
1354
1355         /* No need to queue up our truncate_log as regular cleanup will catch
1356          * that */
1357         ocfs2_queue_recovery_completion(journal, osb->slot_num,
1358                                         osb->local_alloc_copy, NULL, NULL,
1359                                         ORPHAN_NEED_TRUNCATE);
1360         ocfs2_schedule_truncate_log_flush(osb, 0);
1361
1362         osb->local_alloc_copy = NULL;
1363
1364         /* queue to recover orphan slots for all offline slots */
1365         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1366         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1367         ocfs2_free_replay_slots(osb);
1368 }
1369
1370 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1371 {
1372         if (osb->quota_rec) {
1373                 ocfs2_queue_recovery_completion(osb->journal,
1374                                                 osb->slot_num,
1375                                                 NULL,
1376                                                 NULL,
1377                                                 osb->quota_rec,
1378                                                 ORPHAN_NEED_TRUNCATE);
1379                 osb->quota_rec = NULL;
1380         }
1381 }
1382
1383 static int __ocfs2_recovery_thread(void *arg)
1384 {
1385         int status, node_num, slot_num;
1386         struct ocfs2_super *osb = arg;
1387         struct ocfs2_recovery_map *rm = osb->recovery_map;
1388         int *rm_quota = NULL;
1389         int rm_quota_used = 0, i;
1390         struct ocfs2_quota_recovery *qrec;
1391
1392         /* Whether the quota supported. */
1393         int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1394                         OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1395                 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1396                         OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1397
1398         status = ocfs2_wait_on_mount(osb);
1399         if (status < 0) {
1400                 goto bail;
1401         }
1402
1403         if (quota_enabled) {
1404                 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1405                 if (!rm_quota) {
1406                         status = -ENOMEM;
1407                         goto bail;
1408                 }
1409         }
1410 restart:
1411         status = ocfs2_super_lock(osb, 1);
1412         if (status < 0) {
1413                 mlog_errno(status);
1414                 goto bail;
1415         }
1416
1417         status = ocfs2_compute_replay_slots(osb);
1418         if (status < 0)
1419                 mlog_errno(status);
1420
1421         /* queue recovery for our own slot */
1422         ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1423                                         NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1424
1425         spin_lock(&osb->osb_lock);
1426         while (rm->rm_used) {
1427                 /* It's always safe to remove entry zero, as we won't
1428                  * clear it until ocfs2_recover_node() has succeeded. */
1429                 node_num = rm->rm_entries[0];
1430                 spin_unlock(&osb->osb_lock);
1431                 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1432                 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1433                 if (slot_num == -ENOENT) {
1434                         status = 0;
1435                         goto skip_recovery;
1436                 }
1437
1438                 /* It is a bit subtle with quota recovery. We cannot do it
1439                  * immediately because we have to obtain cluster locks from
1440                  * quota files and we also don't want to just skip it because
1441                  * then quota usage would be out of sync until some node takes
1442                  * the slot. So we remember which nodes need quota recovery
1443                  * and when everything else is done, we recover quotas. */
1444                 if (quota_enabled) {
1445                         for (i = 0; i < rm_quota_used
1446                                         && rm_quota[i] != slot_num; i++)
1447                                 ;
1448
1449                         if (i == rm_quota_used)
1450                                 rm_quota[rm_quota_used++] = slot_num;
1451                 }
1452
1453                 status = ocfs2_recover_node(osb, node_num, slot_num);
1454 skip_recovery:
1455                 if (!status) {
1456                         ocfs2_recovery_map_clear(osb, node_num);
1457                 } else {
1458                         mlog(ML_ERROR,
1459                              "Error %d recovering node %d on device (%u,%u)!\n",
1460                              status, node_num,
1461                              MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1462                         mlog(ML_ERROR, "Volume requires unmount.\n");
1463                 }
1464
1465                 spin_lock(&osb->osb_lock);
1466         }
1467         spin_unlock(&osb->osb_lock);
1468         trace_ocfs2_recovery_thread_end(status);
1469
1470         /* Refresh all journal recovery generations from disk */
1471         status = ocfs2_check_journals_nolocks(osb);
1472         status = (status == -EROFS) ? 0 : status;
1473         if (status < 0)
1474                 mlog_errno(status);
1475
1476         /* Now it is right time to recover quotas... We have to do this under
1477          * superblock lock so that no one can start using the slot (and crash)
1478          * before we recover it */
1479         if (quota_enabled) {
1480                 for (i = 0; i < rm_quota_used; i++) {
1481                         qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1482                         if (IS_ERR(qrec)) {
1483                                 status = PTR_ERR(qrec);
1484                                 mlog_errno(status);
1485                                 continue;
1486                         }
1487                         ocfs2_queue_recovery_completion(osb->journal,
1488                                         rm_quota[i],
1489                                         NULL, NULL, qrec,
1490                                         ORPHAN_NEED_TRUNCATE);
1491                 }
1492         }
1493
1494         ocfs2_super_unlock(osb, 1);
1495
1496         /* queue recovery for offline slots */
1497         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1498
1499 bail:
1500         mutex_lock(&osb->recovery_lock);
1501         if (!status && !ocfs2_recovery_completed(osb)) {
1502                 mutex_unlock(&osb->recovery_lock);
1503                 goto restart;
1504         }
1505
1506         ocfs2_free_replay_slots(osb);
1507         osb->recovery_thread_task = NULL;
1508         mb(); /* sync with ocfs2_recovery_thread_running */
1509         wake_up(&osb->recovery_event);
1510
1511         mutex_unlock(&osb->recovery_lock);
1512
1513         if (quota_enabled)
1514                 kfree(rm_quota);
1515
1516         /* no one is callint kthread_stop() for us so the kthread() api
1517          * requires that we call do_exit().  And it isn't exported, but
1518          * complete_and_exit() seems to be a minimal wrapper around it. */
1519         complete_and_exit(NULL, status);
1520 }
1521
1522 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1523 {
1524         mutex_lock(&osb->recovery_lock);
1525
1526         trace_ocfs2_recovery_thread(node_num, osb->node_num,
1527                 osb->disable_recovery, osb->recovery_thread_task,
1528                 osb->disable_recovery ?
1529                 -1 : ocfs2_recovery_map_set(osb, node_num));
1530
1531         if (osb->disable_recovery)
1532                 goto out;
1533
1534         if (osb->recovery_thread_task)
1535                 goto out;
1536
1537         osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1538                         "ocfs2rec-%s", osb->uuid_str);
1539         if (IS_ERR(osb->recovery_thread_task)) {
1540                 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1541                 osb->recovery_thread_task = NULL;
1542         }
1543
1544 out:
1545         mutex_unlock(&osb->recovery_lock);
1546         wake_up(&osb->recovery_event);
1547 }
1548
1549 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1550                                     int slot_num,
1551                                     struct buffer_head **bh,
1552                                     struct inode **ret_inode)
1553 {
1554         int status = -EACCES;
1555         struct inode *inode = NULL;
1556
1557         BUG_ON(slot_num >= osb->max_slots);
1558
1559         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1560                                             slot_num);
1561         if (!inode || is_bad_inode(inode)) {
1562                 mlog_errno(status);
1563                 goto bail;
1564         }
1565         SET_INODE_JOURNAL(inode);
1566
1567         status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1568         if (status < 0) {
1569                 mlog_errno(status);
1570                 goto bail;
1571         }
1572
1573         status = 0;
1574
1575 bail:
1576         if (inode) {
1577                 if (status || !ret_inode)
1578                         iput(inode);
1579                 else
1580                         *ret_inode = inode;
1581         }
1582         return status;
1583 }
1584
1585 /* Does the actual journal replay and marks the journal inode as
1586  * clean. Will only replay if the journal inode is marked dirty. */
1587 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1588                                 int node_num,
1589                                 int slot_num)
1590 {
1591         int status;
1592         int got_lock = 0;
1593         unsigned int flags;
1594         struct inode *inode = NULL;
1595         struct ocfs2_dinode *fe;
1596         journal_t *journal = NULL;
1597         struct buffer_head *bh = NULL;
1598         u32 slot_reco_gen;
1599
1600         status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1601         if (status) {
1602                 mlog_errno(status);
1603                 goto done;
1604         }
1605
1606         fe = (struct ocfs2_dinode *)bh->b_data;
1607         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1608         brelse(bh);
1609         bh = NULL;
1610
1611         /*
1612          * As the fs recovery is asynchronous, there is a small chance that
1613          * another node mounted (and recovered) the slot before the recovery
1614          * thread could get the lock. To handle that, we dirty read the journal
1615          * inode for that slot to get the recovery generation. If it is
1616          * different than what we expected, the slot has been recovered.
1617          * If not, it needs recovery.
1618          */
1619         if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1620                 trace_ocfs2_replay_journal_recovered(slot_num,
1621                      osb->slot_recovery_generations[slot_num], slot_reco_gen);
1622                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1623                 status = -EBUSY;
1624                 goto done;
1625         }
1626
1627         /* Continue with recovery as the journal has not yet been recovered */
1628
1629         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1630         if (status < 0) {
1631                 trace_ocfs2_replay_journal_lock_err(status);
1632                 if (status != -ERESTARTSYS)
1633                         mlog(ML_ERROR, "Could not lock journal!\n");
1634                 goto done;
1635         }
1636         got_lock = 1;
1637
1638         fe = (struct ocfs2_dinode *) bh->b_data;
1639
1640         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1641         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1642
1643         if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1644                 trace_ocfs2_replay_journal_skip(node_num);
1645                 /* Refresh recovery generation for the slot */
1646                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1647                 goto done;
1648         }
1649
1650         /* we need to run complete recovery for offline orphan slots */
1651         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1652
1653         printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1654                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1655                MINOR(osb->sb->s_dev));
1656
1657         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1658
1659         status = ocfs2_force_read_journal(inode);
1660         if (status < 0) {
1661                 mlog_errno(status);
1662                 goto done;
1663         }
1664
1665         journal = jbd2_journal_init_inode(inode);
1666         if (journal == NULL) {
1667                 mlog(ML_ERROR, "Linux journal layer error\n");
1668                 status = -EIO;
1669                 goto done;
1670         }
1671
1672         status = jbd2_journal_load(journal);
1673         if (status < 0) {
1674                 mlog_errno(status);
1675                 if (!igrab(inode))
1676                         BUG();
1677                 jbd2_journal_destroy(journal);
1678                 goto done;
1679         }
1680
1681         ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1682
1683         /* wipe the journal */
1684         jbd2_journal_lock_updates(journal);
1685         status = jbd2_journal_flush(journal, 0);
1686         jbd2_journal_unlock_updates(journal);
1687         if (status < 0)
1688                 mlog_errno(status);
1689
1690         /* This will mark the node clean */
1691         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1692         flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1693         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1694
1695         /* Increment recovery generation to indicate successful recovery */
1696         ocfs2_bump_recovery_generation(fe);
1697         osb->slot_recovery_generations[slot_num] =
1698                                         ocfs2_get_recovery_generation(fe);
1699
1700         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1701         status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1702         if (status < 0)
1703                 mlog_errno(status);
1704
1705         if (!igrab(inode))
1706                 BUG();
1707
1708         jbd2_journal_destroy(journal);
1709
1710         printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1711                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1712                MINOR(osb->sb->s_dev));
1713 done:
1714         /* drop the lock on this nodes journal */
1715         if (got_lock)
1716                 ocfs2_inode_unlock(inode, 1);
1717
1718         iput(inode);
1719         brelse(bh);
1720
1721         return status;
1722 }
1723
1724 /*
1725  * Do the most important parts of node recovery:
1726  *  - Replay it's journal
1727  *  - Stamp a clean local allocator file
1728  *  - Stamp a clean truncate log
1729  *  - Mark the node clean
1730  *
1731  * If this function completes without error, a node in OCFS2 can be
1732  * said to have been safely recovered. As a result, failure during the
1733  * second part of a nodes recovery process (local alloc recovery) is
1734  * far less concerning.
1735  */
1736 static int ocfs2_recover_node(struct ocfs2_super *osb,
1737                               int node_num, int slot_num)
1738 {
1739         int status = 0;
1740         struct ocfs2_dinode *la_copy = NULL;
1741         struct ocfs2_dinode *tl_copy = NULL;
1742
1743         trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1744
1745         /* Should not ever be called to recover ourselves -- in that
1746          * case we should've called ocfs2_journal_load instead. */
1747         BUG_ON(osb->node_num == node_num);
1748
1749         status = ocfs2_replay_journal(osb, node_num, slot_num);
1750         if (status < 0) {
1751                 if (status == -EBUSY) {
1752                         trace_ocfs2_recover_node_skip(slot_num, node_num);
1753                         status = 0;
1754                         goto done;
1755                 }
1756                 mlog_errno(status);
1757                 goto done;
1758         }
1759
1760         /* Stamp a clean local alloc file AFTER recovering the journal... */
1761         status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1762         if (status < 0) {
1763                 mlog_errno(status);
1764                 goto done;
1765         }
1766
1767         /* An error from begin_truncate_log_recovery is not
1768          * serious enough to warrant halting the rest of
1769          * recovery. */
1770         status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1771         if (status < 0)
1772                 mlog_errno(status);
1773
1774         /* Likewise, this would be a strange but ultimately not so
1775          * harmful place to get an error... */
1776         status = ocfs2_clear_slot(osb, slot_num);
1777         if (status < 0)
1778                 mlog_errno(status);
1779
1780         /* This will kfree the memory pointed to by la_copy and tl_copy */
1781         ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1782                                         tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1783
1784         status = 0;
1785 done:
1786
1787         return status;
1788 }
1789
1790 /* Test node liveness by trylocking his journal. If we get the lock,
1791  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1792  * still alive (we couldn't get the lock) and < 0 on error. */
1793 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1794                                  int slot_num)
1795 {
1796         int status, flags;
1797         struct inode *inode = NULL;
1798
1799         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1800                                             slot_num);
1801         if (inode == NULL) {
1802                 mlog(ML_ERROR, "access error\n");
1803                 status = -EACCES;
1804                 goto bail;
1805         }
1806         if (is_bad_inode(inode)) {
1807                 mlog(ML_ERROR, "access error (bad inode)\n");
1808                 iput(inode);
1809                 inode = NULL;
1810                 status = -EACCES;
1811                 goto bail;
1812         }
1813         SET_INODE_JOURNAL(inode);
1814
1815         flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1816         status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1817         if (status < 0) {
1818                 if (status != -EAGAIN)
1819                         mlog_errno(status);
1820                 goto bail;
1821         }
1822
1823         ocfs2_inode_unlock(inode, 1);
1824 bail:
1825         iput(inode);
1826
1827         return status;
1828 }
1829
1830 /* Call this underneath ocfs2_super_lock. It also assumes that the
1831  * slot info struct has been updated from disk. */
1832 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1833 {
1834         unsigned int node_num;
1835         int status, i;
1836         u32 gen;
1837         struct buffer_head *bh = NULL;
1838         struct ocfs2_dinode *di;
1839
1840         /* This is called with the super block cluster lock, so we
1841          * know that the slot map can't change underneath us. */
1842
1843         for (i = 0; i < osb->max_slots; i++) {
1844                 /* Read journal inode to get the recovery generation */
1845                 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1846                 if (status) {
1847                         mlog_errno(status);
1848                         goto bail;
1849                 }
1850                 di = (struct ocfs2_dinode *)bh->b_data;
1851                 gen = ocfs2_get_recovery_generation(di);
1852                 brelse(bh);
1853                 bh = NULL;
1854
1855                 spin_lock(&osb->osb_lock);
1856                 osb->slot_recovery_generations[i] = gen;
1857
1858                 trace_ocfs2_mark_dead_nodes(i,
1859                                             osb->slot_recovery_generations[i]);
1860
1861                 if (i == osb->slot_num) {
1862                         spin_unlock(&osb->osb_lock);
1863                         continue;
1864                 }
1865
1866                 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1867                 if (status == -ENOENT) {
1868                         spin_unlock(&osb->osb_lock);
1869                         continue;
1870                 }
1871
1872                 if (__ocfs2_recovery_map_test(osb, node_num)) {
1873                         spin_unlock(&osb->osb_lock);
1874                         continue;
1875                 }
1876                 spin_unlock(&osb->osb_lock);
1877
1878                 /* Ok, we have a slot occupied by another node which
1879                  * is not in the recovery map. We trylock his journal
1880                  * file here to test if he's alive. */
1881                 status = ocfs2_trylock_journal(osb, i);
1882                 if (!status) {
1883                         /* Since we're called from mount, we know that
1884                          * the recovery thread can't race us on
1885                          * setting / checking the recovery bits. */
1886                         ocfs2_recovery_thread(osb, node_num);
1887                 } else if ((status < 0) && (status != -EAGAIN)) {
1888                         mlog_errno(status);
1889                         goto bail;
1890                 }
1891         }
1892
1893         status = 0;
1894 bail:
1895         return status;
1896 }
1897
1898 /*
1899  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1900  * randomness to the timeout to minimize multple nodes firing the timer at the
1901  * same time.
1902  */
1903 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1904 {
1905         unsigned long time;
1906
1907         get_random_bytes(&time, sizeof(time));
1908         time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1909         return msecs_to_jiffies(time);
1910 }
1911
1912 /*
1913  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1914  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1915  * is done to catch any orphans that are left over in orphan directories.
1916  *
1917  * It scans all slots, even ones that are in use. It does so to handle the
1918  * case described below:
1919  *
1920  *   Node 1 has an inode it was using. The dentry went away due to memory
1921  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1922  *   has the open lock.
1923  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1924  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1925  *   open lock, sees that another node has a PR, and does nothing.
1926  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1927  *   open lock, sees the PR still, and does nothing.
1928  *   Basically, we have to trigger an orphan iput on node 1. The only way
1929  *   for this to happen is if node 1 runs node 2's orphan dir.
1930  *
1931  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1932  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1933  * stored in LVB. If the sequence number has changed, it means some other
1934  * node has done the scan.  This node skips the scan and tracks the
1935  * sequence number.  If the sequence number didn't change, it means a scan
1936  * hasn't happened.  The node queues a scan and increments the
1937  * sequence number in the LVB.
1938  */
1939 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1940 {
1941         struct ocfs2_orphan_scan *os;
1942         int status, i;
1943         u32 seqno = 0;
1944
1945         os = &osb->osb_orphan_scan;
1946
1947         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1948                 goto out;
1949
1950         trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1951                                             atomic_read(&os->os_state));
1952
1953         status = ocfs2_orphan_scan_lock(osb, &seqno);
1954         if (status < 0) {
1955                 if (status != -EAGAIN)
1956                         mlog_errno(status);
1957                 goto out;
1958         }
1959
1960         /* Do no queue the tasks if the volume is being umounted */
1961         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1962                 goto unlock;
1963
1964         if (os->os_seqno != seqno) {
1965                 os->os_seqno = seqno;
1966                 goto unlock;
1967         }
1968
1969         for (i = 0; i < osb->max_slots; i++)
1970                 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1971                                                 NULL, ORPHAN_NO_NEED_TRUNCATE);
1972         /*
1973          * We queued a recovery on orphan slots, increment the sequence
1974          * number and update LVB so other node will skip the scan for a while
1975          */
1976         seqno++;
1977         os->os_count++;
1978         os->os_scantime = ktime_get_seconds();
1979 unlock:
1980         ocfs2_orphan_scan_unlock(osb, seqno);
1981 out:
1982         trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1983                                           atomic_read(&os->os_state));
1984         return;
1985 }
1986
1987 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1988 static void ocfs2_orphan_scan_work(struct work_struct *work)
1989 {
1990         struct ocfs2_orphan_scan *os;
1991         struct ocfs2_super *osb;
1992
1993         os = container_of(work, struct ocfs2_orphan_scan,
1994                           os_orphan_scan_work.work);
1995         osb = os->os_osb;
1996
1997         mutex_lock(&os->os_lock);
1998         ocfs2_queue_orphan_scan(osb);
1999         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2000                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2001                                       ocfs2_orphan_scan_timeout());
2002         mutex_unlock(&os->os_lock);
2003 }
2004
2005 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2006 {
2007         struct ocfs2_orphan_scan *os;
2008
2009         os = &osb->osb_orphan_scan;
2010         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2011                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2012                 mutex_lock(&os->os_lock);
2013                 cancel_delayed_work(&os->os_orphan_scan_work);
2014                 mutex_unlock(&os->os_lock);
2015         }
2016 }
2017
2018 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2019 {
2020         struct ocfs2_orphan_scan *os;
2021
2022         os = &osb->osb_orphan_scan;
2023         os->os_osb = osb;
2024         os->os_count = 0;
2025         os->os_seqno = 0;
2026         mutex_init(&os->os_lock);
2027         INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2028 }
2029
2030 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2031 {
2032         struct ocfs2_orphan_scan *os;
2033
2034         os = &osb->osb_orphan_scan;
2035         os->os_scantime = ktime_get_seconds();
2036         if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2037                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2038         else {
2039                 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2040                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2041                                    ocfs2_orphan_scan_timeout());
2042         }
2043 }
2044
2045 struct ocfs2_orphan_filldir_priv {
2046         struct dir_context      ctx;
2047         struct inode            *head;
2048         struct ocfs2_super      *osb;
2049         enum ocfs2_orphan_reco_type orphan_reco_type;
2050 };
2051
2052 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2053                                 int name_len, loff_t pos, u64 ino,
2054                                 unsigned type)
2055 {
2056         struct ocfs2_orphan_filldir_priv *p =
2057                 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2058         struct inode *iter;
2059
2060         if (name_len == 1 && !strncmp(".", name, 1))
2061                 return 0;
2062         if (name_len == 2 && !strncmp("..", name, 2))
2063                 return 0;
2064
2065         /* do not include dio entry in case of orphan scan */
2066         if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2067                         (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2068                         OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2069                 return 0;
2070
2071         /* Skip bad inodes so that recovery can continue */
2072         iter = ocfs2_iget(p->osb, ino,
2073                           OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2074         if (IS_ERR(iter))
2075                 return 0;
2076
2077         if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2078                         OCFS2_DIO_ORPHAN_PREFIX_LEN))
2079                 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2080
2081         /* Skip inodes which are already added to recover list, since dio may
2082          * happen concurrently with unlink/rename */
2083         if (OCFS2_I(iter)->ip_next_orphan) {
2084                 iput(iter);
2085                 return 0;
2086         }
2087
2088         trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2089         /* No locking is required for the next_orphan queue as there
2090          * is only ever a single process doing orphan recovery. */
2091         OCFS2_I(iter)->ip_next_orphan = p->head;
2092         p->head = iter;
2093
2094         return 0;
2095 }
2096
2097 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2098                                int slot,
2099                                struct inode **head,
2100                                enum ocfs2_orphan_reco_type orphan_reco_type)
2101 {
2102         int status;
2103         struct inode *orphan_dir_inode = NULL;
2104         struct ocfs2_orphan_filldir_priv priv = {
2105                 .ctx.actor = ocfs2_orphan_filldir,
2106                 .osb = osb,
2107                 .head = *head,
2108                 .orphan_reco_type = orphan_reco_type
2109         };
2110
2111         orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2112                                                        ORPHAN_DIR_SYSTEM_INODE,
2113                                                        slot);
2114         if  (!orphan_dir_inode) {
2115                 status = -ENOENT;
2116                 mlog_errno(status);
2117                 return status;
2118         }
2119
2120         inode_lock(orphan_dir_inode);
2121         status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2122         if (status < 0) {
2123                 mlog_errno(status);
2124                 goto out;
2125         }
2126
2127         status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2128         if (status) {
2129                 mlog_errno(status);
2130                 goto out_cluster;
2131         }
2132
2133         *head = priv.head;
2134
2135 out_cluster:
2136         ocfs2_inode_unlock(orphan_dir_inode, 0);
2137 out:
2138         inode_unlock(orphan_dir_inode);
2139         iput(orphan_dir_inode);
2140         return status;
2141 }
2142
2143 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2144                                               int slot)
2145 {
2146         int ret;
2147
2148         spin_lock(&osb->osb_lock);
2149         ret = !osb->osb_orphan_wipes[slot];
2150         spin_unlock(&osb->osb_lock);
2151         return ret;
2152 }
2153
2154 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2155                                              int slot)
2156 {
2157         spin_lock(&osb->osb_lock);
2158         /* Mark ourselves such that new processes in delete_inode()
2159          * know to quit early. */
2160         ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2161         while (osb->osb_orphan_wipes[slot]) {
2162                 /* If any processes are already in the middle of an
2163                  * orphan wipe on this dir, then we need to wait for
2164                  * them. */
2165                 spin_unlock(&osb->osb_lock);
2166                 wait_event_interruptible(osb->osb_wipe_event,
2167                                          ocfs2_orphan_recovery_can_continue(osb, slot));
2168                 spin_lock(&osb->osb_lock);
2169         }
2170         spin_unlock(&osb->osb_lock);
2171 }
2172
2173 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2174                                               int slot)
2175 {
2176         ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2177 }
2178
2179 /*
2180  * Orphan recovery. Each mounted node has it's own orphan dir which we
2181  * must run during recovery. Our strategy here is to build a list of
2182  * the inodes in the orphan dir and iget/iput them. The VFS does
2183  * (most) of the rest of the work.
2184  *
2185  * Orphan recovery can happen at any time, not just mount so we have a
2186  * couple of extra considerations.
2187  *
2188  * - We grab as many inodes as we can under the orphan dir lock -
2189  *   doing iget() outside the orphan dir risks getting a reference on
2190  *   an invalid inode.
2191  * - We must be sure not to deadlock with other processes on the
2192  *   system wanting to run delete_inode(). This can happen when they go
2193  *   to lock the orphan dir and the orphan recovery process attempts to
2194  *   iget() inside the orphan dir lock. This can be avoided by
2195  *   advertising our state to ocfs2_delete_inode().
2196  */
2197 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2198                                  int slot,
2199                                  enum ocfs2_orphan_reco_type orphan_reco_type)
2200 {
2201         int ret = 0;
2202         struct inode *inode = NULL;
2203         struct inode *iter;
2204         struct ocfs2_inode_info *oi;
2205         struct buffer_head *di_bh = NULL;
2206         struct ocfs2_dinode *di = NULL;
2207
2208         trace_ocfs2_recover_orphans(slot);
2209
2210         ocfs2_mark_recovering_orphan_dir(osb, slot);
2211         ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2212         ocfs2_clear_recovering_orphan_dir(osb, slot);
2213
2214         /* Error here should be noted, but we want to continue with as
2215          * many queued inodes as we've got. */
2216         if (ret)
2217                 mlog_errno(ret);
2218
2219         while (inode) {
2220                 oi = OCFS2_I(inode);
2221                 trace_ocfs2_recover_orphans_iput(
2222                                         (unsigned long long)oi->ip_blkno);
2223
2224                 iter = oi->ip_next_orphan;
2225                 oi->ip_next_orphan = NULL;
2226
2227                 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2228                         inode_lock(inode);
2229                         ret = ocfs2_rw_lock(inode, 1);
2230                         if (ret < 0) {
2231                                 mlog_errno(ret);
2232                                 goto unlock_mutex;
2233                         }
2234                         /*
2235                          * We need to take and drop the inode lock to
2236                          * force read inode from disk.
2237                          */
2238                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2239                         if (ret) {
2240                                 mlog_errno(ret);
2241                                 goto unlock_rw;
2242                         }
2243
2244                         di = (struct ocfs2_dinode *)di_bh->b_data;
2245
2246                         if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2247                                 ret = ocfs2_truncate_file(inode, di_bh,
2248                                                 i_size_read(inode));
2249                                 if (ret < 0) {
2250                                         if (ret != -ENOSPC)
2251                                                 mlog_errno(ret);
2252                                         goto unlock_inode;
2253                                 }
2254
2255                                 ret = ocfs2_del_inode_from_orphan(osb, inode,
2256                                                 di_bh, 0, 0);
2257                                 if (ret)
2258                                         mlog_errno(ret);
2259                         }
2260 unlock_inode:
2261                         ocfs2_inode_unlock(inode, 1);
2262                         brelse(di_bh);
2263                         di_bh = NULL;
2264 unlock_rw:
2265                         ocfs2_rw_unlock(inode, 1);
2266 unlock_mutex:
2267                         inode_unlock(inode);
2268
2269                         /* clear dio flag in ocfs2_inode_info */
2270                         oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2271                 } else {
2272                         spin_lock(&oi->ip_lock);
2273                         /* Set the proper information to get us going into
2274                          * ocfs2_delete_inode. */
2275                         oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2276                         spin_unlock(&oi->ip_lock);
2277                 }
2278
2279                 iput(inode);
2280                 inode = iter;
2281         }
2282
2283         return ret;
2284 }
2285
2286 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2287 {
2288         /* This check is good because ocfs2 will wait on our recovery
2289          * thread before changing it to something other than MOUNTED
2290          * or DISABLED. */
2291         wait_event(osb->osb_mount_event,
2292                   (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2293                    atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2294                    atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2295
2296         /* If there's an error on mount, then we may never get to the
2297          * MOUNTED flag, but this is set right before
2298          * dismount_volume() so we can trust it. */
2299         if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2300                 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2301                 mlog(0, "mount error, exiting!\n");
2302                 return -EBUSY;
2303         }
2304
2305         return 0;
2306 }
2307
2308 static int ocfs2_commit_thread(void *arg)
2309 {
2310         int status;
2311         struct ocfs2_super *osb = arg;
2312         struct ocfs2_journal *journal = osb->journal;
2313
2314         /* we can trust j_num_trans here because _should_stop() is only set in
2315          * shutdown and nobody other than ourselves should be able to start
2316          * transactions.  committing on shutdown might take a few iterations
2317          * as final transactions put deleted inodes on the list */
2318         while (!(kthread_should_stop() &&
2319                  atomic_read(&journal->j_num_trans) == 0)) {
2320
2321                 wait_event_interruptible(osb->checkpoint_event,
2322                                          atomic_read(&journal->j_num_trans)
2323                                          || kthread_should_stop());
2324
2325                 status = ocfs2_commit_cache(osb);
2326                 if (status < 0) {
2327                         static unsigned long abort_warn_time;
2328
2329                         /* Warn about this once per minute */
2330                         if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2331                                 mlog(ML_ERROR, "status = %d, journal is "
2332                                                 "already aborted.\n", status);
2333                         /*
2334                          * After ocfs2_commit_cache() fails, j_num_trans has a
2335                          * non-zero value.  Sleep here to avoid a busy-wait
2336                          * loop.
2337                          */
2338                         msleep_interruptible(1000);
2339                 }
2340
2341                 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2342                         mlog(ML_KTHREAD,
2343                              "commit_thread: %u transactions pending on "
2344                              "shutdown\n",
2345                              atomic_read(&journal->j_num_trans));
2346                 }
2347         }
2348
2349         return 0;
2350 }
2351
2352 /* Reads all the journal inodes without taking any cluster locks. Used
2353  * for hard readonly access to determine whether any journal requires
2354  * recovery. Also used to refresh the recovery generation numbers after
2355  * a journal has been recovered by another node.
2356  */
2357 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2358 {
2359         int ret = 0;
2360         unsigned int slot;
2361         struct buffer_head *di_bh = NULL;
2362         struct ocfs2_dinode *di;
2363         int journal_dirty = 0;
2364
2365         for(slot = 0; slot < osb->max_slots; slot++) {
2366                 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2367                 if (ret) {
2368                         mlog_errno(ret);
2369                         goto out;
2370                 }
2371
2372                 di = (struct ocfs2_dinode *) di_bh->b_data;
2373
2374                 osb->slot_recovery_generations[slot] =
2375                                         ocfs2_get_recovery_generation(di);
2376
2377                 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2378                     OCFS2_JOURNAL_DIRTY_FL)
2379                         journal_dirty = 1;
2380
2381                 brelse(di_bh);
2382                 di_bh = NULL;
2383         }
2384
2385 out:
2386         if (journal_dirty)
2387                 ret = -EROFS;
2388         return ret;
2389 }