Merge tag 'nios2-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/lftan...
[linux-2.6-microblaze.git] / fs / nilfs2 / super.c
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * Written by Ryusuke Konishi.
17  */
18 /*
19  *  linux/fs/ext2/super.c
20  *
21  * Copyright (C) 1992, 1993, 1994, 1995
22  * Remy Card (card@masi.ibp.fr)
23  * Laboratoire MASI - Institut Blaise Pascal
24  * Universite Pierre et Marie Curie (Paris VI)
25  *
26  *  from
27  *
28  *  linux/fs/minix/inode.c
29  *
30  *  Copyright (C) 1991, 1992  Linus Torvalds
31  *
32  *  Big-endian to little-endian byte-swapping/bitmaps by
33  *        David S. Miller (davem@caip.rutgers.edu), 1995
34  */
35
36 #include <linux/module.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/blkdev.h>
41 #include <linux/parser.h>
42 #include <linux/crc32.h>
43 #include <linux/vfs.h>
44 #include <linux/writeback.h>
45 #include <linux/seq_file.h>
46 #include <linux/mount.h>
47 #include "nilfs.h"
48 #include "export.h"
49 #include "mdt.h"
50 #include "alloc.h"
51 #include "btree.h"
52 #include "btnode.h"
53 #include "page.h"
54 #include "cpfile.h"
55 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
56 #include "ifile.h"
57 #include "dat.h"
58 #include "segment.h"
59 #include "segbuf.h"
60
61 MODULE_AUTHOR("NTT Corp.");
62 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
63                    "(NILFS)");
64 MODULE_LICENSE("GPL");
65
66 static struct kmem_cache *nilfs_inode_cachep;
67 struct kmem_cache *nilfs_transaction_cachep;
68 struct kmem_cache *nilfs_segbuf_cachep;
69 struct kmem_cache *nilfs_btree_path_cache;
70
71 static int nilfs_setup_super(struct super_block *sb, int is_mount);
72 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
73
74 void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
75                  ...)
76 {
77         struct va_format vaf;
78         va_list args;
79
80         va_start(args, fmt);
81         vaf.fmt = fmt;
82         vaf.va = &args;
83         if (sb)
84                 printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
85         else
86                 printk("%sNILFS: %pV\n", level, &vaf);
87         va_end(args);
88 }
89
90 static void nilfs_set_error(struct super_block *sb)
91 {
92         struct the_nilfs *nilfs = sb->s_fs_info;
93         struct nilfs_super_block **sbp;
94
95         down_write(&nilfs->ns_sem);
96         if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
97                 nilfs->ns_mount_state |= NILFS_ERROR_FS;
98                 sbp = nilfs_prepare_super(sb, 0);
99                 if (likely(sbp)) {
100                         sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
101                         if (sbp[1])
102                                 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
103                         nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
104                 }
105         }
106         up_write(&nilfs->ns_sem);
107 }
108
109 /**
110  * __nilfs_error() - report failure condition on a filesystem
111  *
112  * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
113  * reporting an error message.  This function should be called when
114  * NILFS detects incoherences or defects of meta data on disk.
115  *
116  * This implements the body of nilfs_error() macro.  Normally,
117  * nilfs_error() should be used.  As for sustainable errors such as a
118  * single-shot I/O error, nilfs_msg() should be used instead.
119  *
120  * Callers should not add a trailing newline since this will do it.
121  */
122 void __nilfs_error(struct super_block *sb, const char *function,
123                    const char *fmt, ...)
124 {
125         struct the_nilfs *nilfs = sb->s_fs_info;
126         struct va_format vaf;
127         va_list args;
128
129         va_start(args, fmt);
130
131         vaf.fmt = fmt;
132         vaf.va = &args;
133
134         printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
135                sb->s_id, function, &vaf);
136
137         va_end(args);
138
139         if (!sb_rdonly(sb)) {
140                 nilfs_set_error(sb);
141
142                 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
143                         printk(KERN_CRIT "Remounting filesystem read-only\n");
144                         sb->s_flags |= SB_RDONLY;
145                 }
146         }
147
148         if (nilfs_test_opt(nilfs, ERRORS_PANIC))
149                 panic("NILFS (device %s): panic forced after error\n",
150                       sb->s_id);
151 }
152
153 struct inode *nilfs_alloc_inode(struct super_block *sb)
154 {
155         struct nilfs_inode_info *ii;
156
157         ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
158         if (!ii)
159                 return NULL;
160         ii->i_bh = NULL;
161         ii->i_state = 0;
162         ii->i_cno = 0;
163         nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
164         return &ii->vfs_inode;
165 }
166
167 static void nilfs_i_callback(struct rcu_head *head)
168 {
169         struct inode *inode = container_of(head, struct inode, i_rcu);
170
171         if (nilfs_is_metadata_file_inode(inode))
172                 nilfs_mdt_destroy(inode);
173
174         kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
175 }
176
177 void nilfs_destroy_inode(struct inode *inode)
178 {
179         call_rcu(&inode->i_rcu, nilfs_i_callback);
180 }
181
182 static int nilfs_sync_super(struct super_block *sb, int flag)
183 {
184         struct the_nilfs *nilfs = sb->s_fs_info;
185         int err;
186
187  retry:
188         set_buffer_dirty(nilfs->ns_sbh[0]);
189         if (nilfs_test_opt(nilfs, BARRIER)) {
190                 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
191                                           REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
192         } else {
193                 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
194         }
195
196         if (unlikely(err)) {
197                 nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
198                           err);
199                 if (err == -EIO && nilfs->ns_sbh[1]) {
200                         /*
201                          * sbp[0] points to newer log than sbp[1],
202                          * so copy sbp[0] to sbp[1] to take over sbp[0].
203                          */
204                         memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
205                                nilfs->ns_sbsize);
206                         nilfs_fall_back_super_block(nilfs);
207                         goto retry;
208                 }
209         } else {
210                 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
211
212                 nilfs->ns_sbwcount++;
213
214                 /*
215                  * The latest segment becomes trailable from the position
216                  * written in superblock.
217                  */
218                 clear_nilfs_discontinued(nilfs);
219
220                 /* update GC protection for recent segments */
221                 if (nilfs->ns_sbh[1]) {
222                         if (flag == NILFS_SB_COMMIT_ALL) {
223                                 set_buffer_dirty(nilfs->ns_sbh[1]);
224                                 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
225                                         goto out;
226                         }
227                         if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
228                             le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
229                                 sbp = nilfs->ns_sbp[1];
230                 }
231
232                 spin_lock(&nilfs->ns_last_segment_lock);
233                 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
234                 spin_unlock(&nilfs->ns_last_segment_lock);
235         }
236  out:
237         return err;
238 }
239
240 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
241                           struct the_nilfs *nilfs)
242 {
243         sector_t nfreeblocks;
244
245         /* nilfs->ns_sem must be locked by the caller. */
246         nilfs_count_free_blocks(nilfs, &nfreeblocks);
247         sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
248
249         spin_lock(&nilfs->ns_last_segment_lock);
250         sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
251         sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
252         sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
253         spin_unlock(&nilfs->ns_last_segment_lock);
254 }
255
256 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
257                                                int flip)
258 {
259         struct the_nilfs *nilfs = sb->s_fs_info;
260         struct nilfs_super_block **sbp = nilfs->ns_sbp;
261
262         /* nilfs->ns_sem must be locked by the caller. */
263         if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
264                 if (sbp[1] &&
265                     sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
266                         memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
267                 } else {
268                         nilfs_msg(sb, KERN_CRIT, "superblock broke");
269                         return NULL;
270                 }
271         } else if (sbp[1] &&
272                    sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
273                 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
274         }
275
276         if (flip && sbp[1])
277                 nilfs_swap_super_block(nilfs);
278
279         return sbp;
280 }
281
282 int nilfs_commit_super(struct super_block *sb, int flag)
283 {
284         struct the_nilfs *nilfs = sb->s_fs_info;
285         struct nilfs_super_block **sbp = nilfs->ns_sbp;
286         time64_t t;
287
288         /* nilfs->ns_sem must be locked by the caller. */
289         t = ktime_get_real_seconds();
290         nilfs->ns_sbwtime = t;
291         sbp[0]->s_wtime = cpu_to_le64(t);
292         sbp[0]->s_sum = 0;
293         sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
294                                              (unsigned char *)sbp[0],
295                                              nilfs->ns_sbsize));
296         if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
297                 sbp[1]->s_wtime = sbp[0]->s_wtime;
298                 sbp[1]->s_sum = 0;
299                 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
300                                             (unsigned char *)sbp[1],
301                                             nilfs->ns_sbsize));
302         }
303         clear_nilfs_sb_dirty(nilfs);
304         nilfs->ns_flushed_device = 1;
305         /* make sure store to ns_flushed_device cannot be reordered */
306         smp_wmb();
307         return nilfs_sync_super(sb, flag);
308 }
309
310 /**
311  * nilfs_cleanup_super() - write filesystem state for cleanup
312  * @sb: super block instance to be unmounted or degraded to read-only
313  *
314  * This function restores state flags in the on-disk super block.
315  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
316  * filesystem was not clean previously.
317  */
318 int nilfs_cleanup_super(struct super_block *sb)
319 {
320         struct the_nilfs *nilfs = sb->s_fs_info;
321         struct nilfs_super_block **sbp;
322         int flag = NILFS_SB_COMMIT;
323         int ret = -EIO;
324
325         sbp = nilfs_prepare_super(sb, 0);
326         if (sbp) {
327                 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
328                 nilfs_set_log_cursor(sbp[0], nilfs);
329                 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
330                         /*
331                          * make the "clean" flag also to the opposite
332                          * super block if both super blocks point to
333                          * the same checkpoint.
334                          */
335                         sbp[1]->s_state = sbp[0]->s_state;
336                         flag = NILFS_SB_COMMIT_ALL;
337                 }
338                 ret = nilfs_commit_super(sb, flag);
339         }
340         return ret;
341 }
342
343 /**
344  * nilfs_move_2nd_super - relocate secondary super block
345  * @sb: super block instance
346  * @sb2off: new offset of the secondary super block (in bytes)
347  */
348 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
349 {
350         struct the_nilfs *nilfs = sb->s_fs_info;
351         struct buffer_head *nsbh;
352         struct nilfs_super_block *nsbp;
353         sector_t blocknr, newblocknr;
354         unsigned long offset;
355         int sb2i;  /* array index of the secondary superblock */
356         int ret = 0;
357
358         /* nilfs->ns_sem must be locked by the caller. */
359         if (nilfs->ns_sbh[1] &&
360             nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
361                 sb2i = 1;
362                 blocknr = nilfs->ns_sbh[1]->b_blocknr;
363         } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
364                 sb2i = 0;
365                 blocknr = nilfs->ns_sbh[0]->b_blocknr;
366         } else {
367                 sb2i = -1;
368                 blocknr = 0;
369         }
370         if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
371                 goto out;  /* super block location is unchanged */
372
373         /* Get new super block buffer */
374         newblocknr = sb2off >> nilfs->ns_blocksize_bits;
375         offset = sb2off & (nilfs->ns_blocksize - 1);
376         nsbh = sb_getblk(sb, newblocknr);
377         if (!nsbh) {
378                 nilfs_msg(sb, KERN_WARNING,
379                           "unable to move secondary superblock to block %llu",
380                           (unsigned long long)newblocknr);
381                 ret = -EIO;
382                 goto out;
383         }
384         nsbp = (void *)nsbh->b_data + offset;
385         memset(nsbp, 0, nilfs->ns_blocksize);
386
387         if (sb2i >= 0) {
388                 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
389                 brelse(nilfs->ns_sbh[sb2i]);
390                 nilfs->ns_sbh[sb2i] = nsbh;
391                 nilfs->ns_sbp[sb2i] = nsbp;
392         } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
393                 /* secondary super block will be restored to index 1 */
394                 nilfs->ns_sbh[1] = nsbh;
395                 nilfs->ns_sbp[1] = nsbp;
396         } else {
397                 brelse(nsbh);
398         }
399 out:
400         return ret;
401 }
402
403 /**
404  * nilfs_resize_fs - resize the filesystem
405  * @sb: super block instance
406  * @newsize: new size of the filesystem (in bytes)
407  */
408 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
409 {
410         struct the_nilfs *nilfs = sb->s_fs_info;
411         struct nilfs_super_block **sbp;
412         __u64 devsize, newnsegs;
413         loff_t sb2off;
414         int ret;
415
416         ret = -ERANGE;
417         devsize = i_size_read(sb->s_bdev->bd_inode);
418         if (newsize > devsize)
419                 goto out;
420
421         /*
422          * Write lock is required to protect some functions depending
423          * on the number of segments, the number of reserved segments,
424          * and so forth.
425          */
426         down_write(&nilfs->ns_segctor_sem);
427
428         sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
429         newnsegs = sb2off >> nilfs->ns_blocksize_bits;
430         do_div(newnsegs, nilfs->ns_blocks_per_segment);
431
432         ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
433         up_write(&nilfs->ns_segctor_sem);
434         if (ret < 0)
435                 goto out;
436
437         ret = nilfs_construct_segment(sb);
438         if (ret < 0)
439                 goto out;
440
441         down_write(&nilfs->ns_sem);
442         nilfs_move_2nd_super(sb, sb2off);
443         ret = -EIO;
444         sbp = nilfs_prepare_super(sb, 0);
445         if (likely(sbp)) {
446                 nilfs_set_log_cursor(sbp[0], nilfs);
447                 /*
448                  * Drop NILFS_RESIZE_FS flag for compatibility with
449                  * mount-time resize which may be implemented in a
450                  * future release.
451                  */
452                 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
453                                               ~NILFS_RESIZE_FS);
454                 sbp[0]->s_dev_size = cpu_to_le64(newsize);
455                 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
456                 if (sbp[1])
457                         memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
458                 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
459         }
460         up_write(&nilfs->ns_sem);
461
462         /*
463          * Reset the range of allocatable segments last.  This order
464          * is important in the case of expansion because the secondary
465          * superblock must be protected from log write until migration
466          * completes.
467          */
468         if (!ret)
469                 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
470 out:
471         return ret;
472 }
473
474 static void nilfs_put_super(struct super_block *sb)
475 {
476         struct the_nilfs *nilfs = sb->s_fs_info;
477
478         nilfs_detach_log_writer(sb);
479
480         if (!sb_rdonly(sb)) {
481                 down_write(&nilfs->ns_sem);
482                 nilfs_cleanup_super(sb);
483                 up_write(&nilfs->ns_sem);
484         }
485
486         iput(nilfs->ns_sufile);
487         iput(nilfs->ns_cpfile);
488         iput(nilfs->ns_dat);
489
490         destroy_nilfs(nilfs);
491         sb->s_fs_info = NULL;
492 }
493
494 static int nilfs_sync_fs(struct super_block *sb, int wait)
495 {
496         struct the_nilfs *nilfs = sb->s_fs_info;
497         struct nilfs_super_block **sbp;
498         int err = 0;
499
500         /* This function is called when super block should be written back */
501         if (wait)
502                 err = nilfs_construct_segment(sb);
503
504         down_write(&nilfs->ns_sem);
505         if (nilfs_sb_dirty(nilfs)) {
506                 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
507                 if (likely(sbp)) {
508                         nilfs_set_log_cursor(sbp[0], nilfs);
509                         nilfs_commit_super(sb, NILFS_SB_COMMIT);
510                 }
511         }
512         up_write(&nilfs->ns_sem);
513
514         if (!err)
515                 err = nilfs_flush_device(nilfs);
516
517         return err;
518 }
519
520 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
521                             struct nilfs_root **rootp)
522 {
523         struct the_nilfs *nilfs = sb->s_fs_info;
524         struct nilfs_root *root;
525         struct nilfs_checkpoint *raw_cp;
526         struct buffer_head *bh_cp;
527         int err = -ENOMEM;
528
529         root = nilfs_find_or_create_root(
530                 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
531         if (!root)
532                 return err;
533
534         if (root->ifile)
535                 goto reuse; /* already attached checkpoint */
536
537         down_read(&nilfs->ns_segctor_sem);
538         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
539                                           &bh_cp);
540         up_read(&nilfs->ns_segctor_sem);
541         if (unlikely(err)) {
542                 if (err == -ENOENT || err == -EINVAL) {
543                         nilfs_msg(sb, KERN_ERR,
544                                   "Invalid checkpoint (checkpoint number=%llu)",
545                                   (unsigned long long)cno);
546                         err = -EINVAL;
547                 }
548                 goto failed;
549         }
550
551         err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
552                                &raw_cp->cp_ifile_inode, &root->ifile);
553         if (err)
554                 goto failed_bh;
555
556         atomic64_set(&root->inodes_count,
557                         le64_to_cpu(raw_cp->cp_inodes_count));
558         atomic64_set(&root->blocks_count,
559                         le64_to_cpu(raw_cp->cp_blocks_count));
560
561         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
562
563  reuse:
564         *rootp = root;
565         return 0;
566
567  failed_bh:
568         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
569  failed:
570         nilfs_put_root(root);
571
572         return err;
573 }
574
575 static int nilfs_freeze(struct super_block *sb)
576 {
577         struct the_nilfs *nilfs = sb->s_fs_info;
578         int err;
579
580         if (sb_rdonly(sb))
581                 return 0;
582
583         /* Mark super block clean */
584         down_write(&nilfs->ns_sem);
585         err = nilfs_cleanup_super(sb);
586         up_write(&nilfs->ns_sem);
587         return err;
588 }
589
590 static int nilfs_unfreeze(struct super_block *sb)
591 {
592         struct the_nilfs *nilfs = sb->s_fs_info;
593
594         if (sb_rdonly(sb))
595                 return 0;
596
597         down_write(&nilfs->ns_sem);
598         nilfs_setup_super(sb, false);
599         up_write(&nilfs->ns_sem);
600         return 0;
601 }
602
603 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
604 {
605         struct super_block *sb = dentry->d_sb;
606         struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
607         struct the_nilfs *nilfs = root->nilfs;
608         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
609         unsigned long long blocks;
610         unsigned long overhead;
611         unsigned long nrsvblocks;
612         sector_t nfreeblocks;
613         u64 nmaxinodes, nfreeinodes;
614         int err;
615
616         /*
617          * Compute all of the segment blocks
618          *
619          * The blocks before first segment and after last segment
620          * are excluded.
621          */
622         blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
623                 - nilfs->ns_first_data_block;
624         nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
625
626         /*
627          * Compute the overhead
628          *
629          * When distributing meta data blocks outside segment structure,
630          * We must count them as the overhead.
631          */
632         overhead = 0;
633
634         err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
635         if (unlikely(err))
636                 return err;
637
638         err = nilfs_ifile_count_free_inodes(root->ifile,
639                                             &nmaxinodes, &nfreeinodes);
640         if (unlikely(err)) {
641                 nilfs_msg(sb, KERN_WARNING,
642                           "failed to count free inodes: err=%d", err);
643                 if (err == -ERANGE) {
644                         /*
645                          * If nilfs_palloc_count_max_entries() returns
646                          * -ERANGE error code then we simply treat
647                          * curent inodes count as maximum possible and
648                          * zero as free inodes value.
649                          */
650                         nmaxinodes = atomic64_read(&root->inodes_count);
651                         nfreeinodes = 0;
652                         err = 0;
653                 } else
654                         return err;
655         }
656
657         buf->f_type = NILFS_SUPER_MAGIC;
658         buf->f_bsize = sb->s_blocksize;
659         buf->f_blocks = blocks - overhead;
660         buf->f_bfree = nfreeblocks;
661         buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
662                 (buf->f_bfree - nrsvblocks) : 0;
663         buf->f_files = nmaxinodes;
664         buf->f_ffree = nfreeinodes;
665         buf->f_namelen = NILFS_NAME_LEN;
666         buf->f_fsid.val[0] = (u32)id;
667         buf->f_fsid.val[1] = (u32)(id >> 32);
668
669         return 0;
670 }
671
672 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
673 {
674         struct super_block *sb = dentry->d_sb;
675         struct the_nilfs *nilfs = sb->s_fs_info;
676         struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
677
678         if (!nilfs_test_opt(nilfs, BARRIER))
679                 seq_puts(seq, ",nobarrier");
680         if (root->cno != NILFS_CPTREE_CURRENT_CNO)
681                 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
682         if (nilfs_test_opt(nilfs, ERRORS_PANIC))
683                 seq_puts(seq, ",errors=panic");
684         if (nilfs_test_opt(nilfs, ERRORS_CONT))
685                 seq_puts(seq, ",errors=continue");
686         if (nilfs_test_opt(nilfs, STRICT_ORDER))
687                 seq_puts(seq, ",order=strict");
688         if (nilfs_test_opt(nilfs, NORECOVERY))
689                 seq_puts(seq, ",norecovery");
690         if (nilfs_test_opt(nilfs, DISCARD))
691                 seq_puts(seq, ",discard");
692
693         return 0;
694 }
695
696 static const struct super_operations nilfs_sops = {
697         .alloc_inode    = nilfs_alloc_inode,
698         .destroy_inode  = nilfs_destroy_inode,
699         .dirty_inode    = nilfs_dirty_inode,
700         .evict_inode    = nilfs_evict_inode,
701         .put_super      = nilfs_put_super,
702         .sync_fs        = nilfs_sync_fs,
703         .freeze_fs      = nilfs_freeze,
704         .unfreeze_fs    = nilfs_unfreeze,
705         .statfs         = nilfs_statfs,
706         .remount_fs     = nilfs_remount,
707         .show_options = nilfs_show_options
708 };
709
710 enum {
711         Opt_err_cont, Opt_err_panic, Opt_err_ro,
712         Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
713         Opt_discard, Opt_nodiscard, Opt_err,
714 };
715
716 static match_table_t tokens = {
717         {Opt_err_cont, "errors=continue"},
718         {Opt_err_panic, "errors=panic"},
719         {Opt_err_ro, "errors=remount-ro"},
720         {Opt_barrier, "barrier"},
721         {Opt_nobarrier, "nobarrier"},
722         {Opt_snapshot, "cp=%u"},
723         {Opt_order, "order=%s"},
724         {Opt_norecovery, "norecovery"},
725         {Opt_discard, "discard"},
726         {Opt_nodiscard, "nodiscard"},
727         {Opt_err, NULL}
728 };
729
730 static int parse_options(char *options, struct super_block *sb, int is_remount)
731 {
732         struct the_nilfs *nilfs = sb->s_fs_info;
733         char *p;
734         substring_t args[MAX_OPT_ARGS];
735
736         if (!options)
737                 return 1;
738
739         while ((p = strsep(&options, ",")) != NULL) {
740                 int token;
741
742                 if (!*p)
743                         continue;
744
745                 token = match_token(p, tokens, args);
746                 switch (token) {
747                 case Opt_barrier:
748                         nilfs_set_opt(nilfs, BARRIER);
749                         break;
750                 case Opt_nobarrier:
751                         nilfs_clear_opt(nilfs, BARRIER);
752                         break;
753                 case Opt_order:
754                         if (strcmp(args[0].from, "relaxed") == 0)
755                                 /* Ordered data semantics */
756                                 nilfs_clear_opt(nilfs, STRICT_ORDER);
757                         else if (strcmp(args[0].from, "strict") == 0)
758                                 /* Strict in-order semantics */
759                                 nilfs_set_opt(nilfs, STRICT_ORDER);
760                         else
761                                 return 0;
762                         break;
763                 case Opt_err_panic:
764                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
765                         break;
766                 case Opt_err_ro:
767                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
768                         break;
769                 case Opt_err_cont:
770                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
771                         break;
772                 case Opt_snapshot:
773                         if (is_remount) {
774                                 nilfs_msg(sb, KERN_ERR,
775                                           "\"%s\" option is invalid for remount",
776                                           p);
777                                 return 0;
778                         }
779                         break;
780                 case Opt_norecovery:
781                         nilfs_set_opt(nilfs, NORECOVERY);
782                         break;
783                 case Opt_discard:
784                         nilfs_set_opt(nilfs, DISCARD);
785                         break;
786                 case Opt_nodiscard:
787                         nilfs_clear_opt(nilfs, DISCARD);
788                         break;
789                 default:
790                         nilfs_msg(sb, KERN_ERR,
791                                   "unrecognized mount option \"%s\"", p);
792                         return 0;
793                 }
794         }
795         return 1;
796 }
797
798 static inline void
799 nilfs_set_default_options(struct super_block *sb,
800                           struct nilfs_super_block *sbp)
801 {
802         struct the_nilfs *nilfs = sb->s_fs_info;
803
804         nilfs->ns_mount_opt =
805                 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
806 }
807
808 static int nilfs_setup_super(struct super_block *sb, int is_mount)
809 {
810         struct the_nilfs *nilfs = sb->s_fs_info;
811         struct nilfs_super_block **sbp;
812         int max_mnt_count;
813         int mnt_count;
814
815         /* nilfs->ns_sem must be locked by the caller. */
816         sbp = nilfs_prepare_super(sb, 0);
817         if (!sbp)
818                 return -EIO;
819
820         if (!is_mount)
821                 goto skip_mount_setup;
822
823         max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
824         mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
825
826         if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
827                 nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
828 #if 0
829         } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
830                 nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
831 #endif
832         }
833         if (!max_mnt_count)
834                 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
835
836         sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
837         sbp[0]->s_mtime = cpu_to_le64(get_seconds());
838
839 skip_mount_setup:
840         sbp[0]->s_state =
841                 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
842         /* synchronize sbp[1] with sbp[0] */
843         if (sbp[1])
844                 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
845         return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
846 }
847
848 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
849                                                  u64 pos, int blocksize,
850                                                  struct buffer_head **pbh)
851 {
852         unsigned long long sb_index = pos;
853         unsigned long offset;
854
855         offset = do_div(sb_index, blocksize);
856         *pbh = sb_bread(sb, sb_index);
857         if (!*pbh)
858                 return NULL;
859         return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
860 }
861
862 int nilfs_store_magic_and_option(struct super_block *sb,
863                                  struct nilfs_super_block *sbp,
864                                  char *data)
865 {
866         struct the_nilfs *nilfs = sb->s_fs_info;
867
868         sb->s_magic = le16_to_cpu(sbp->s_magic);
869
870         /* FS independent flags */
871 #ifdef NILFS_ATIME_DISABLE
872         sb->s_flags |= SB_NOATIME;
873 #endif
874
875         nilfs_set_default_options(sb, sbp);
876
877         nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
878         nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
879         nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
880         nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
881
882         return !parse_options(data, sb, 0) ? -EINVAL : 0;
883 }
884
885 int nilfs_check_feature_compatibility(struct super_block *sb,
886                                       struct nilfs_super_block *sbp)
887 {
888         __u64 features;
889
890         features = le64_to_cpu(sbp->s_feature_incompat) &
891                 ~NILFS_FEATURE_INCOMPAT_SUPP;
892         if (features) {
893                 nilfs_msg(sb, KERN_ERR,
894                           "couldn't mount because of unsupported optional features (%llx)",
895                           (unsigned long long)features);
896                 return -EINVAL;
897         }
898         features = le64_to_cpu(sbp->s_feature_compat_ro) &
899                 ~NILFS_FEATURE_COMPAT_RO_SUPP;
900         if (!sb_rdonly(sb) && features) {
901                 nilfs_msg(sb, KERN_ERR,
902                           "couldn't mount RDWR because of unsupported optional features (%llx)",
903                           (unsigned long long)features);
904                 return -EINVAL;
905         }
906         return 0;
907 }
908
909 static int nilfs_get_root_dentry(struct super_block *sb,
910                                  struct nilfs_root *root,
911                                  struct dentry **root_dentry)
912 {
913         struct inode *inode;
914         struct dentry *dentry;
915         int ret = 0;
916
917         inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
918         if (IS_ERR(inode)) {
919                 ret = PTR_ERR(inode);
920                 nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
921                 goto out;
922         }
923         if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
924                 iput(inode);
925                 nilfs_msg(sb, KERN_ERR, "corrupt root inode");
926                 ret = -EINVAL;
927                 goto out;
928         }
929
930         if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
931                 dentry = d_find_alias(inode);
932                 if (!dentry) {
933                         dentry = d_make_root(inode);
934                         if (!dentry) {
935                                 ret = -ENOMEM;
936                                 goto failed_dentry;
937                         }
938                 } else {
939                         iput(inode);
940                 }
941         } else {
942                 dentry = d_obtain_root(inode);
943                 if (IS_ERR(dentry)) {
944                         ret = PTR_ERR(dentry);
945                         goto failed_dentry;
946                 }
947         }
948         *root_dentry = dentry;
949  out:
950         return ret;
951
952  failed_dentry:
953         nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
954         goto out;
955 }
956
957 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
958                                  struct dentry **root_dentry)
959 {
960         struct the_nilfs *nilfs = s->s_fs_info;
961         struct nilfs_root *root;
962         int ret;
963
964         mutex_lock(&nilfs->ns_snapshot_mount_mutex);
965
966         down_read(&nilfs->ns_segctor_sem);
967         ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
968         up_read(&nilfs->ns_segctor_sem);
969         if (ret < 0) {
970                 ret = (ret == -ENOENT) ? -EINVAL : ret;
971                 goto out;
972         } else if (!ret) {
973                 nilfs_msg(s, KERN_ERR,
974                           "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
975                           (unsigned long long)cno);
976                 ret = -EINVAL;
977                 goto out;
978         }
979
980         ret = nilfs_attach_checkpoint(s, cno, false, &root);
981         if (ret) {
982                 nilfs_msg(s, KERN_ERR,
983                           "error %d while loading snapshot (checkpoint number=%llu)",
984                           ret, (unsigned long long)cno);
985                 goto out;
986         }
987         ret = nilfs_get_root_dentry(s, root, root_dentry);
988         nilfs_put_root(root);
989  out:
990         mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
991         return ret;
992 }
993
994 /**
995  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
996  * @root_dentry: root dentry of the tree to be shrunk
997  *
998  * This function returns true if the tree was in-use.
999  */
1000 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1001 {
1002         shrink_dcache_parent(root_dentry);
1003         return d_count(root_dentry) > 1;
1004 }
1005
1006 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1007 {
1008         struct the_nilfs *nilfs = sb->s_fs_info;
1009         struct nilfs_root *root;
1010         struct inode *inode;
1011         struct dentry *dentry;
1012         int ret;
1013
1014         if (cno > nilfs->ns_cno)
1015                 return false;
1016
1017         if (cno >= nilfs_last_cno(nilfs))
1018                 return true;    /* protect recent checkpoints */
1019
1020         ret = false;
1021         root = nilfs_lookup_root(nilfs, cno);
1022         if (root) {
1023                 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1024                 if (inode) {
1025                         dentry = d_find_alias(inode);
1026                         if (dentry) {
1027                                 ret = nilfs_tree_is_busy(dentry);
1028                                 dput(dentry);
1029                         }
1030                         iput(inode);
1031                 }
1032                 nilfs_put_root(root);
1033         }
1034         return ret;
1035 }
1036
1037 /**
1038  * nilfs_fill_super() - initialize a super block instance
1039  * @sb: super_block
1040  * @data: mount options
1041  * @silent: silent mode flag
1042  *
1043  * This function is called exclusively by nilfs->ns_mount_mutex.
1044  * So, the recovery process is protected from other simultaneous mounts.
1045  */
1046 static int
1047 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1048 {
1049         struct the_nilfs *nilfs;
1050         struct nilfs_root *fsroot;
1051         __u64 cno;
1052         int err;
1053
1054         nilfs = alloc_nilfs(sb);
1055         if (!nilfs)
1056                 return -ENOMEM;
1057
1058         sb->s_fs_info = nilfs;
1059
1060         err = init_nilfs(nilfs, sb, (char *)data);
1061         if (err)
1062                 goto failed_nilfs;
1063
1064         sb->s_op = &nilfs_sops;
1065         sb->s_export_op = &nilfs_export_ops;
1066         sb->s_root = NULL;
1067         sb->s_time_gran = 1;
1068         sb->s_max_links = NILFS_LINK_MAX;
1069
1070         sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1071
1072         err = load_nilfs(nilfs, sb);
1073         if (err)
1074                 goto failed_nilfs;
1075
1076         cno = nilfs_last_cno(nilfs);
1077         err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1078         if (err) {
1079                 nilfs_msg(sb, KERN_ERR,
1080                           "error %d while loading last checkpoint (checkpoint number=%llu)",
1081                           err, (unsigned long long)cno);
1082                 goto failed_unload;
1083         }
1084
1085         if (!sb_rdonly(sb)) {
1086                 err = nilfs_attach_log_writer(sb, fsroot);
1087                 if (err)
1088                         goto failed_checkpoint;
1089         }
1090
1091         err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1092         if (err)
1093                 goto failed_segctor;
1094
1095         nilfs_put_root(fsroot);
1096
1097         if (!sb_rdonly(sb)) {
1098                 down_write(&nilfs->ns_sem);
1099                 nilfs_setup_super(sb, true);
1100                 up_write(&nilfs->ns_sem);
1101         }
1102
1103         return 0;
1104
1105  failed_segctor:
1106         nilfs_detach_log_writer(sb);
1107
1108  failed_checkpoint:
1109         nilfs_put_root(fsroot);
1110
1111  failed_unload:
1112         iput(nilfs->ns_sufile);
1113         iput(nilfs->ns_cpfile);
1114         iput(nilfs->ns_dat);
1115
1116  failed_nilfs:
1117         destroy_nilfs(nilfs);
1118         return err;
1119 }
1120
1121 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1122 {
1123         struct the_nilfs *nilfs = sb->s_fs_info;
1124         unsigned long old_sb_flags;
1125         unsigned long old_mount_opt;
1126         int err;
1127
1128         sync_filesystem(sb);
1129         old_sb_flags = sb->s_flags;
1130         old_mount_opt = nilfs->ns_mount_opt;
1131
1132         if (!parse_options(data, sb, 1)) {
1133                 err = -EINVAL;
1134                 goto restore_opts;
1135         }
1136         sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1137
1138         err = -EINVAL;
1139
1140         if (!nilfs_valid_fs(nilfs)) {
1141                 nilfs_msg(sb, KERN_WARNING,
1142                           "couldn't remount because the filesystem is in an incomplete recovery state");
1143                 goto restore_opts;
1144         }
1145
1146         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1147                 goto out;
1148         if (*flags & SB_RDONLY) {
1149                 /* Shutting down log writer */
1150                 nilfs_detach_log_writer(sb);
1151                 sb->s_flags |= SB_RDONLY;
1152
1153                 /*
1154                  * Remounting a valid RW partition RDONLY, so set
1155                  * the RDONLY flag and then mark the partition as valid again.
1156                  */
1157                 down_write(&nilfs->ns_sem);
1158                 nilfs_cleanup_super(sb);
1159                 up_write(&nilfs->ns_sem);
1160         } else {
1161                 __u64 features;
1162                 struct nilfs_root *root;
1163
1164                 /*
1165                  * Mounting a RDONLY partition read-write, so reread and
1166                  * store the current valid flag.  (It may have been changed
1167                  * by fsck since we originally mounted the partition.)
1168                  */
1169                 down_read(&nilfs->ns_sem);
1170                 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1171                         ~NILFS_FEATURE_COMPAT_RO_SUPP;
1172                 up_read(&nilfs->ns_sem);
1173                 if (features) {
1174                         nilfs_msg(sb, KERN_WARNING,
1175                                   "couldn't remount RDWR because of unsupported optional features (%llx)",
1176                                   (unsigned long long)features);
1177                         err = -EROFS;
1178                         goto restore_opts;
1179                 }
1180
1181                 sb->s_flags &= ~SB_RDONLY;
1182
1183                 root = NILFS_I(d_inode(sb->s_root))->i_root;
1184                 err = nilfs_attach_log_writer(sb, root);
1185                 if (err)
1186                         goto restore_opts;
1187
1188                 down_write(&nilfs->ns_sem);
1189                 nilfs_setup_super(sb, true);
1190                 up_write(&nilfs->ns_sem);
1191         }
1192  out:
1193         return 0;
1194
1195  restore_opts:
1196         sb->s_flags = old_sb_flags;
1197         nilfs->ns_mount_opt = old_mount_opt;
1198         return err;
1199 }
1200
1201 struct nilfs_super_data {
1202         struct block_device *bdev;
1203         __u64 cno;
1204         int flags;
1205 };
1206
1207 static int nilfs_parse_snapshot_option(const char *option,
1208                                        const substring_t *arg,
1209                                        struct nilfs_super_data *sd)
1210 {
1211         unsigned long long val;
1212         const char *msg = NULL;
1213         int err;
1214
1215         if (!(sd->flags & SB_RDONLY)) {
1216                 msg = "read-only option is not specified";
1217                 goto parse_error;
1218         }
1219
1220         err = kstrtoull(arg->from, 0, &val);
1221         if (err) {
1222                 if (err == -ERANGE)
1223                         msg = "too large checkpoint number";
1224                 else
1225                         msg = "malformed argument";
1226                 goto parse_error;
1227         } else if (val == 0) {
1228                 msg = "invalid checkpoint number 0";
1229                 goto parse_error;
1230         }
1231         sd->cno = val;
1232         return 0;
1233
1234 parse_error:
1235         nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1236         return 1;
1237 }
1238
1239 /**
1240  * nilfs_identify - pre-read mount options needed to identify mount instance
1241  * @data: mount options
1242  * @sd: nilfs_super_data
1243  */
1244 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1245 {
1246         char *p, *options = data;
1247         substring_t args[MAX_OPT_ARGS];
1248         int token;
1249         int ret = 0;
1250
1251         do {
1252                 p = strsep(&options, ",");
1253                 if (p != NULL && *p) {
1254                         token = match_token(p, tokens, args);
1255                         if (token == Opt_snapshot)
1256                                 ret = nilfs_parse_snapshot_option(p, &args[0],
1257                                                                   sd);
1258                 }
1259                 if (!options)
1260                         break;
1261                 BUG_ON(options == data);
1262                 *(options - 1) = ',';
1263         } while (!ret);
1264         return ret;
1265 }
1266
1267 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1268 {
1269         s->s_bdev = data;
1270         s->s_dev = s->s_bdev->bd_dev;
1271         return 0;
1272 }
1273
1274 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1275 {
1276         return (void *)s->s_bdev == data;
1277 }
1278
1279 static struct dentry *
1280 nilfs_mount(struct file_system_type *fs_type, int flags,
1281              const char *dev_name, void *data)
1282 {
1283         struct nilfs_super_data sd;
1284         struct super_block *s;
1285         fmode_t mode = FMODE_READ | FMODE_EXCL;
1286         struct dentry *root_dentry;
1287         int err, s_new = false;
1288
1289         if (!(flags & SB_RDONLY))
1290                 mode |= FMODE_WRITE;
1291
1292         sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1293         if (IS_ERR(sd.bdev))
1294                 return ERR_CAST(sd.bdev);
1295
1296         sd.cno = 0;
1297         sd.flags = flags;
1298         if (nilfs_identify((char *)data, &sd)) {
1299                 err = -EINVAL;
1300                 goto failed;
1301         }
1302
1303         /*
1304          * once the super is inserted into the list by sget, s_umount
1305          * will protect the lockfs code from trying to start a snapshot
1306          * while we are mounting
1307          */
1308         mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1309         if (sd.bdev->bd_fsfreeze_count > 0) {
1310                 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1311                 err = -EBUSY;
1312                 goto failed;
1313         }
1314         s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1315                  sd.bdev);
1316         mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1317         if (IS_ERR(s)) {
1318                 err = PTR_ERR(s);
1319                 goto failed;
1320         }
1321
1322         if (!s->s_root) {
1323                 s_new = true;
1324
1325                 /* New superblock instance created */
1326                 s->s_mode = mode;
1327                 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1328                 sb_set_blocksize(s, block_size(sd.bdev));
1329
1330                 err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1331                 if (err)
1332                         goto failed_super;
1333
1334                 s->s_flags |= SB_ACTIVE;
1335         } else if (!sd.cno) {
1336                 if (nilfs_tree_is_busy(s->s_root)) {
1337                         if ((flags ^ s->s_flags) & SB_RDONLY) {
1338                                 nilfs_msg(s, KERN_ERR,
1339                                           "the device already has a %s mount.",
1340                                           sb_rdonly(s) ? "read-only" : "read/write");
1341                                 err = -EBUSY;
1342                                 goto failed_super;
1343                         }
1344                 } else {
1345                         /*
1346                          * Try remount to setup mount states if the current
1347                          * tree is not mounted and only snapshots use this sb.
1348                          */
1349                         err = nilfs_remount(s, &flags, data);
1350                         if (err)
1351                                 goto failed_super;
1352                 }
1353         }
1354
1355         if (sd.cno) {
1356                 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1357                 if (err)
1358                         goto failed_super;
1359         } else {
1360                 root_dentry = dget(s->s_root);
1361         }
1362
1363         if (!s_new)
1364                 blkdev_put(sd.bdev, mode);
1365
1366         return root_dentry;
1367
1368  failed_super:
1369         deactivate_locked_super(s);
1370
1371  failed:
1372         if (!s_new)
1373                 blkdev_put(sd.bdev, mode);
1374         return ERR_PTR(err);
1375 }
1376
1377 struct file_system_type nilfs_fs_type = {
1378         .owner    = THIS_MODULE,
1379         .name     = "nilfs2",
1380         .mount    = nilfs_mount,
1381         .kill_sb  = kill_block_super,
1382         .fs_flags = FS_REQUIRES_DEV,
1383 };
1384 MODULE_ALIAS_FS("nilfs2");
1385
1386 static void nilfs_inode_init_once(void *obj)
1387 {
1388         struct nilfs_inode_info *ii = obj;
1389
1390         INIT_LIST_HEAD(&ii->i_dirty);
1391 #ifdef CONFIG_NILFS_XATTR
1392         init_rwsem(&ii->xattr_sem);
1393 #endif
1394         address_space_init_once(&ii->i_btnode_cache);
1395         ii->i_bmap = &ii->i_bmap_data;
1396         inode_init_once(&ii->vfs_inode);
1397 }
1398
1399 static void nilfs_segbuf_init_once(void *obj)
1400 {
1401         memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1402 }
1403
1404 static void nilfs_destroy_cachep(void)
1405 {
1406         /*
1407          * Make sure all delayed rcu free inodes are flushed before we
1408          * destroy cache.
1409          */
1410         rcu_barrier();
1411
1412         kmem_cache_destroy(nilfs_inode_cachep);
1413         kmem_cache_destroy(nilfs_transaction_cachep);
1414         kmem_cache_destroy(nilfs_segbuf_cachep);
1415         kmem_cache_destroy(nilfs_btree_path_cache);
1416 }
1417
1418 static int __init nilfs_init_cachep(void)
1419 {
1420         nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1421                         sizeof(struct nilfs_inode_info), 0,
1422                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1423                         nilfs_inode_init_once);
1424         if (!nilfs_inode_cachep)
1425                 goto fail;
1426
1427         nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1428                         sizeof(struct nilfs_transaction_info), 0,
1429                         SLAB_RECLAIM_ACCOUNT, NULL);
1430         if (!nilfs_transaction_cachep)
1431                 goto fail;
1432
1433         nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1434                         sizeof(struct nilfs_segment_buffer), 0,
1435                         SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1436         if (!nilfs_segbuf_cachep)
1437                 goto fail;
1438
1439         nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1440                         sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1441                         0, 0, NULL);
1442         if (!nilfs_btree_path_cache)
1443                 goto fail;
1444
1445         return 0;
1446
1447 fail:
1448         nilfs_destroy_cachep();
1449         return -ENOMEM;
1450 }
1451
1452 static int __init init_nilfs_fs(void)
1453 {
1454         int err;
1455
1456         err = nilfs_init_cachep();
1457         if (err)
1458                 goto fail;
1459
1460         err = nilfs_sysfs_init();
1461         if (err)
1462                 goto free_cachep;
1463
1464         err = register_filesystem(&nilfs_fs_type);
1465         if (err)
1466                 goto deinit_sysfs_entry;
1467
1468         printk(KERN_INFO "NILFS version 2 loaded\n");
1469         return 0;
1470
1471 deinit_sysfs_entry:
1472         nilfs_sysfs_exit();
1473 free_cachep:
1474         nilfs_destroy_cachep();
1475 fail:
1476         return err;
1477 }
1478
1479 static void __exit exit_nilfs_fs(void)
1480 {
1481         nilfs_destroy_cachep();
1482         nilfs_sysfs_exit();
1483         unregister_filesystem(&nilfs_fs_type);
1484 }
1485
1486 module_init(init_nilfs_fs)
1487 module_exit(exit_nilfs_fs)