1 // SPDX-License-Identifier: GPL-2.0-only
5 * (C) Copyright Al Viro 2000, 2001
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
39 /* Maximum number of mounts in a mount namespace */
40 static unsigned int sysctl_mount_max __read_mostly = 100000;
42 static unsigned int m_hash_mask __read_mostly;
43 static unsigned int m_hash_shift __read_mostly;
44 static unsigned int mp_hash_mask __read_mostly;
45 static unsigned int mp_hash_shift __read_mostly;
47 static __initdata unsigned long mhash_entries;
48 static int __init set_mhash_entries(char *str)
52 mhash_entries = simple_strtoul(str, &str, 0);
55 __setup("mhash_entries=", set_mhash_entries);
57 static __initdata unsigned long mphash_entries;
58 static int __init set_mphash_entries(char *str)
62 mphash_entries = simple_strtoul(str, &str, 0);
65 __setup("mphash_entries=", set_mphash_entries);
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
71 static struct hlist_head *mount_hashtable __read_mostly;
72 static struct hlist_head *mountpoint_hashtable __read_mostly;
73 static struct kmem_cache *mnt_cache __read_mostly;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
79 unsigned int attr_set;
80 unsigned int attr_clr;
81 unsigned int propagation;
82 unsigned int lookup_flags;
84 struct user_namespace *mnt_userns;
85 struct mnt_idmap *mnt_idmap;
89 struct kobject *fs_kobj;
90 EXPORT_SYMBOL_GPL(fs_kobj);
93 * vfsmount lock may be taken for read to prevent changes to the
94 * vfsmount hash, ie. during mountpoint lookups or walking back
97 * It should be taken for write in all cases where the vfsmount
98 * tree or hash is modified or when a vfsmount structure is modified.
100 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
102 static inline void lock_mount_hash(void)
104 write_seqlock(&mount_lock);
107 static inline void unlock_mount_hash(void)
109 write_sequnlock(&mount_lock);
112 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
114 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
115 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
116 tmp = tmp + (tmp >> m_hash_shift);
117 return &mount_hashtable[tmp & m_hash_mask];
120 static inline struct hlist_head *mp_hash(struct dentry *dentry)
122 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
123 tmp = tmp + (tmp >> mp_hash_shift);
124 return &mountpoint_hashtable[tmp & mp_hash_mask];
127 static int mnt_alloc_id(struct mount *mnt)
129 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
137 static void mnt_free_id(struct mount *mnt)
139 ida_free(&mnt_id_ida, mnt->mnt_id);
143 * Allocate a new peer group ID
145 static int mnt_alloc_group_id(struct mount *mnt)
147 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
151 mnt->mnt_group_id = res;
156 * Release a peer group ID
158 void mnt_release_group_id(struct mount *mnt)
160 ida_free(&mnt_group_ida, mnt->mnt_group_id);
161 mnt->mnt_group_id = 0;
165 * vfsmount lock must be held for read
167 static inline void mnt_add_count(struct mount *mnt, int n)
170 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
179 * vfsmount lock must be held for write
181 int mnt_get_count(struct mount *mnt)
187 for_each_possible_cpu(cpu) {
188 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
193 return mnt->mnt_count;
197 static struct mount *alloc_vfsmnt(const char *name)
199 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
203 err = mnt_alloc_id(mnt);
208 mnt->mnt_devname = kstrdup_const(name,
210 if (!mnt->mnt_devname)
215 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
217 goto out_free_devname;
219 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
222 mnt->mnt_writers = 0;
225 INIT_HLIST_NODE(&mnt->mnt_hash);
226 INIT_LIST_HEAD(&mnt->mnt_child);
227 INIT_LIST_HEAD(&mnt->mnt_mounts);
228 INIT_LIST_HEAD(&mnt->mnt_list);
229 INIT_LIST_HEAD(&mnt->mnt_expire);
230 INIT_LIST_HEAD(&mnt->mnt_share);
231 INIT_LIST_HEAD(&mnt->mnt_slave_list);
232 INIT_LIST_HEAD(&mnt->mnt_slave);
233 INIT_HLIST_NODE(&mnt->mnt_mp_list);
234 INIT_LIST_HEAD(&mnt->mnt_umounting);
235 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
236 mnt->mnt.mnt_idmap = &nop_mnt_idmap;
242 kfree_const(mnt->mnt_devname);
247 kmem_cache_free(mnt_cache, mnt);
252 * Most r/o checks on a fs are for operations that take
253 * discrete amounts of time, like a write() or unlink().
254 * We must keep track of when those operations start
255 * (for permission checks) and when they end, so that
256 * we can determine when writes are able to occur to
260 * __mnt_is_readonly: check whether a mount is read-only
261 * @mnt: the mount to check for its write status
263 * This shouldn't be used directly ouside of the VFS.
264 * It does not guarantee that the filesystem will stay
265 * r/w, just that it is right *now*. This can not and
266 * should not be used in place of IS_RDONLY(inode).
267 * mnt_want/drop_write() will _keep_ the filesystem
270 bool __mnt_is_readonly(struct vfsmount *mnt)
272 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
274 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
276 static inline void mnt_inc_writers(struct mount *mnt)
279 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
285 static inline void mnt_dec_writers(struct mount *mnt)
288 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
294 static unsigned int mnt_get_writers(struct mount *mnt)
297 unsigned int count = 0;
300 for_each_possible_cpu(cpu) {
301 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
306 return mnt->mnt_writers;
310 static int mnt_is_readonly(struct vfsmount *mnt)
312 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
315 * The barrier pairs with the barrier in sb_start_ro_state_change()
316 * making sure if we don't see s_readonly_remount set yet, we also will
317 * not see any superblock / mount flag changes done by remount.
318 * It also pairs with the barrier in sb_end_ro_state_change()
319 * assuring that if we see s_readonly_remount already cleared, we will
320 * see the values of superblock / mount flags updated by remount.
323 return __mnt_is_readonly(mnt);
327 * Most r/o & frozen checks on a fs are for operations that take discrete
328 * amounts of time, like a write() or unlink(). We must keep track of when
329 * those operations start (for permission checks) and when they end, so that we
330 * can determine when writes are able to occur to a filesystem.
333 * __mnt_want_write - get write access to a mount without freeze protection
334 * @m: the mount on which to take a write
336 * This tells the low-level filesystem that a write is about to be performed to
337 * it, and makes sure that writes are allowed (mnt it read-write) before
338 * returning success. This operation does not protect against filesystem being
339 * frozen. When the write operation is finished, __mnt_drop_write() must be
340 * called. This is effectively a refcount.
342 int __mnt_want_write(struct vfsmount *m)
344 struct mount *mnt = real_mount(m);
348 mnt_inc_writers(mnt);
350 * The store to mnt_inc_writers must be visible before we pass
351 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
352 * incremented count after it has set MNT_WRITE_HOLD.
355 might_lock(&mount_lock.lock);
356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
357 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
361 * This prevents priority inversion, if the task
362 * setting MNT_WRITE_HOLD got preempted on a remote
363 * CPU, and it prevents life lock if the task setting
364 * MNT_WRITE_HOLD has a lower priority and is bound to
365 * the same CPU as the task that is spinning here.
374 * The barrier pairs with the barrier sb_start_ro_state_change() making
375 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
376 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
377 * mnt_is_readonly() and bail in case we are racing with remount
381 if (mnt_is_readonly(m)) {
382 mnt_dec_writers(mnt);
391 * mnt_want_write - get write access to a mount
392 * @m: the mount on which to take a write
394 * This tells the low-level filesystem that a write is about to be performed to
395 * it, and makes sure that writes are allowed (mount is read-write, filesystem
396 * is not frozen) before returning success. When the write operation is
397 * finished, mnt_drop_write() must be called. This is effectively a refcount.
399 int mnt_want_write(struct vfsmount *m)
403 sb_start_write(m->mnt_sb);
404 ret = __mnt_want_write(m);
406 sb_end_write(m->mnt_sb);
409 EXPORT_SYMBOL_GPL(mnt_want_write);
412 * __mnt_want_write_file - get write access to a file's mount
413 * @file: the file who's mount on which to take a write
415 * This is like __mnt_want_write, but if the file is already open for writing it
416 * skips incrementing mnt_writers (since the open file already has a reference)
417 * and instead only does the check for emergency r/o remounts. This must be
418 * paired with __mnt_drop_write_file.
420 int __mnt_want_write_file(struct file *file)
422 if (file->f_mode & FMODE_WRITER) {
424 * Superblock may have become readonly while there are still
425 * writable fd's, e.g. due to a fs error with errors=remount-ro
427 if (__mnt_is_readonly(file->f_path.mnt))
431 return __mnt_want_write(file->f_path.mnt);
435 * mnt_want_write_file - get write access to a file's mount
436 * @file: the file who's mount on which to take a write
438 * This is like mnt_want_write, but if the file is already open for writing it
439 * skips incrementing mnt_writers (since the open file already has a reference)
440 * and instead only does the freeze protection and the check for emergency r/o
441 * remounts. This must be paired with mnt_drop_write_file.
443 int mnt_want_write_file(struct file *file)
447 sb_start_write(file_inode(file)->i_sb);
448 ret = __mnt_want_write_file(file);
450 sb_end_write(file_inode(file)->i_sb);
453 EXPORT_SYMBOL_GPL(mnt_want_write_file);
456 * __mnt_drop_write - give up write access to a mount
457 * @mnt: the mount on which to give up write access
459 * Tells the low-level filesystem that we are done
460 * performing writes to it. Must be matched with
461 * __mnt_want_write() call above.
463 void __mnt_drop_write(struct vfsmount *mnt)
466 mnt_dec_writers(real_mount(mnt));
471 * mnt_drop_write - give up write access to a mount
472 * @mnt: the mount on which to give up write access
474 * Tells the low-level filesystem that we are done performing writes to it and
475 * also allows filesystem to be frozen again. Must be matched with
476 * mnt_want_write() call above.
478 void mnt_drop_write(struct vfsmount *mnt)
480 __mnt_drop_write(mnt);
481 sb_end_write(mnt->mnt_sb);
483 EXPORT_SYMBOL_GPL(mnt_drop_write);
485 void __mnt_drop_write_file(struct file *file)
487 if (!(file->f_mode & FMODE_WRITER))
488 __mnt_drop_write(file->f_path.mnt);
491 void mnt_drop_write_file(struct file *file)
493 __mnt_drop_write_file(file);
494 sb_end_write(file_inode(file)->i_sb);
496 EXPORT_SYMBOL(mnt_drop_write_file);
499 * mnt_hold_writers - prevent write access to the given mount
500 * @mnt: mnt to prevent write access to
502 * Prevents write access to @mnt if there are no active writers for @mnt.
503 * This function needs to be called and return successfully before changing
504 * properties of @mnt that need to remain stable for callers with write access
507 * After this functions has been called successfully callers must pair it with
508 * a call to mnt_unhold_writers() in order to stop preventing write access to
511 * Context: This function expects lock_mount_hash() to be held serializing
512 * setting MNT_WRITE_HOLD.
513 * Return: On success 0 is returned.
514 * On error, -EBUSY is returned.
516 static inline int mnt_hold_writers(struct mount *mnt)
518 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
520 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
521 * should be visible before we do.
526 * With writers on hold, if this value is zero, then there are
527 * definitely no active writers (although held writers may subsequently
528 * increment the count, they'll have to wait, and decrement it after
529 * seeing MNT_READONLY).
531 * It is OK to have counter incremented on one CPU and decremented on
532 * another: the sum will add up correctly. The danger would be when we
533 * sum up each counter, if we read a counter before it is incremented,
534 * but then read another CPU's count which it has been subsequently
535 * decremented from -- we would see more decrements than we should.
536 * MNT_WRITE_HOLD protects against this scenario, because
537 * mnt_want_write first increments count, then smp_mb, then spins on
538 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
539 * we're counting up here.
541 if (mnt_get_writers(mnt) > 0)
548 * mnt_unhold_writers - stop preventing write access to the given mount
549 * @mnt: mnt to stop preventing write access to
551 * Stop preventing write access to @mnt allowing callers to gain write access
554 * This function can only be called after a successful call to
555 * mnt_hold_writers().
557 * Context: This function expects lock_mount_hash() to be held.
559 static inline void mnt_unhold_writers(struct mount *mnt)
562 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
563 * that become unheld will see MNT_READONLY.
566 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
569 static int mnt_make_readonly(struct mount *mnt)
573 ret = mnt_hold_writers(mnt);
575 mnt->mnt.mnt_flags |= MNT_READONLY;
576 mnt_unhold_writers(mnt);
580 int sb_prepare_remount_readonly(struct super_block *sb)
585 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
586 if (atomic_long_read(&sb->s_remove_count))
590 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
591 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
592 err = mnt_hold_writers(mnt);
597 if (!err && atomic_long_read(&sb->s_remove_count))
601 sb_start_ro_state_change(sb);
602 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
603 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
604 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
611 static void free_vfsmnt(struct mount *mnt)
613 mnt_idmap_put(mnt_idmap(&mnt->mnt));
614 kfree_const(mnt->mnt_devname);
616 free_percpu(mnt->mnt_pcp);
618 kmem_cache_free(mnt_cache, mnt);
621 static void delayed_free_vfsmnt(struct rcu_head *head)
623 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
626 /* call under rcu_read_lock */
627 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
630 if (read_seqretry(&mount_lock, seq))
634 mnt = real_mount(bastard);
635 mnt_add_count(mnt, 1);
636 smp_mb(); // see mntput_no_expire()
637 if (likely(!read_seqretry(&mount_lock, seq)))
639 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
640 mnt_add_count(mnt, -1);
644 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
645 mnt_add_count(mnt, -1);
650 /* caller will mntput() */
654 /* call under rcu_read_lock */
655 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
657 int res = __legitimize_mnt(bastard, seq);
660 if (unlikely(res < 0)) {
669 * __lookup_mnt - find first child mount
671 * @dentry: mountpoint
673 * If @mnt has a child mount @c mounted @dentry find and return it.
675 * Note that the child mount @c need not be unique. There are cases
676 * where shadow mounts are created. For example, during mount
677 * propagation when a source mount @mnt whose root got overmounted by a
678 * mount @o after path lookup but before @namespace_sem could be
679 * acquired gets copied and propagated. So @mnt gets copied including
680 * @o. When @mnt is propagated to a destination mount @d that already
681 * has another mount @n mounted at the same mountpoint then the source
682 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
683 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
686 * Return: The first child of @mnt mounted @dentry or NULL.
688 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
690 struct hlist_head *head = m_hash(mnt, dentry);
693 hlist_for_each_entry_rcu(p, head, mnt_hash)
694 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
700 * lookup_mnt - Return the first child mount mounted at path
702 * "First" means first mounted chronologically. If you create the
705 * mount /dev/sda1 /mnt
706 * mount /dev/sda2 /mnt
707 * mount /dev/sda3 /mnt
709 * Then lookup_mnt() on the base /mnt dentry in the root mount will
710 * return successively the root dentry and vfsmount of /dev/sda1, then
711 * /dev/sda2, then /dev/sda3, then NULL.
713 * lookup_mnt takes a reference to the found vfsmount.
715 struct vfsmount *lookup_mnt(const struct path *path)
717 struct mount *child_mnt;
723 seq = read_seqbegin(&mount_lock);
724 child_mnt = __lookup_mnt(path->mnt, path->dentry);
725 m = child_mnt ? &child_mnt->mnt : NULL;
726 } while (!legitimize_mnt(m, seq));
731 static inline void lock_ns_list(struct mnt_namespace *ns)
733 spin_lock(&ns->ns_lock);
736 static inline void unlock_ns_list(struct mnt_namespace *ns)
738 spin_unlock(&ns->ns_lock);
741 static inline bool mnt_is_cursor(struct mount *mnt)
743 return mnt->mnt.mnt_flags & MNT_CURSOR;
747 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
748 * current mount namespace.
750 * The common case is dentries are not mountpoints at all and that
751 * test is handled inline. For the slow case when we are actually
752 * dealing with a mountpoint of some kind, walk through all of the
753 * mounts in the current mount namespace and test to see if the dentry
756 * The mount_hashtable is not usable in the context because we
757 * need to identify all mounts that may be in the current mount
758 * namespace not just a mount that happens to have some specified
761 bool __is_local_mountpoint(struct dentry *dentry)
763 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
765 bool is_covered = false;
767 down_read(&namespace_sem);
769 list_for_each_entry(mnt, &ns->list, mnt_list) {
770 if (mnt_is_cursor(mnt))
772 is_covered = (mnt->mnt_mountpoint == dentry);
777 up_read(&namespace_sem);
782 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
784 struct hlist_head *chain = mp_hash(dentry);
785 struct mountpoint *mp;
787 hlist_for_each_entry(mp, chain, m_hash) {
788 if (mp->m_dentry == dentry) {
796 static struct mountpoint *get_mountpoint(struct dentry *dentry)
798 struct mountpoint *mp, *new = NULL;
801 if (d_mountpoint(dentry)) {
802 /* might be worth a WARN_ON() */
803 if (d_unlinked(dentry))
804 return ERR_PTR(-ENOENT);
806 read_seqlock_excl(&mount_lock);
807 mp = lookup_mountpoint(dentry);
808 read_sequnlock_excl(&mount_lock);
814 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
816 return ERR_PTR(-ENOMEM);
819 /* Exactly one processes may set d_mounted */
820 ret = d_set_mounted(dentry);
822 /* Someone else set d_mounted? */
826 /* The dentry is not available as a mountpoint? */
831 /* Add the new mountpoint to the hash table */
832 read_seqlock_excl(&mount_lock);
833 new->m_dentry = dget(dentry);
835 hlist_add_head(&new->m_hash, mp_hash(dentry));
836 INIT_HLIST_HEAD(&new->m_list);
837 read_sequnlock_excl(&mount_lock);
847 * vfsmount lock must be held. Additionally, the caller is responsible
848 * for serializing calls for given disposal list.
850 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
852 if (!--mp->m_count) {
853 struct dentry *dentry = mp->m_dentry;
854 BUG_ON(!hlist_empty(&mp->m_list));
855 spin_lock(&dentry->d_lock);
856 dentry->d_flags &= ~DCACHE_MOUNTED;
857 spin_unlock(&dentry->d_lock);
858 dput_to_list(dentry, list);
859 hlist_del(&mp->m_hash);
864 /* called with namespace_lock and vfsmount lock */
865 static void put_mountpoint(struct mountpoint *mp)
867 __put_mountpoint(mp, &ex_mountpoints);
870 static inline int check_mnt(struct mount *mnt)
872 return mnt->mnt_ns == current->nsproxy->mnt_ns;
876 * vfsmount lock must be held for write
878 static void touch_mnt_namespace(struct mnt_namespace *ns)
882 wake_up_interruptible(&ns->poll);
887 * vfsmount lock must be held for write
889 static void __touch_mnt_namespace(struct mnt_namespace *ns)
891 if (ns && ns->event != event) {
893 wake_up_interruptible(&ns->poll);
898 * vfsmount lock must be held for write
900 static struct mountpoint *unhash_mnt(struct mount *mnt)
902 struct mountpoint *mp;
903 mnt->mnt_parent = mnt;
904 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
905 list_del_init(&mnt->mnt_child);
906 hlist_del_init_rcu(&mnt->mnt_hash);
907 hlist_del_init(&mnt->mnt_mp_list);
914 * vfsmount lock must be held for write
916 static void umount_mnt(struct mount *mnt)
918 put_mountpoint(unhash_mnt(mnt));
922 * vfsmount lock must be held for write
924 void mnt_set_mountpoint(struct mount *mnt,
925 struct mountpoint *mp,
926 struct mount *child_mnt)
929 mnt_add_count(mnt, 1); /* essentially, that's mntget */
930 child_mnt->mnt_mountpoint = mp->m_dentry;
931 child_mnt->mnt_parent = mnt;
932 child_mnt->mnt_mp = mp;
933 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
937 * mnt_set_mountpoint_beneath - mount a mount beneath another one
939 * @new_parent: the source mount
940 * @top_mnt: the mount beneath which @new_parent is mounted
941 * @new_mp: the new mountpoint of @top_mnt on @new_parent
943 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
944 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
945 * @new_mp. And mount @new_parent on the old parent and old
946 * mountpoint of @top_mnt.
948 * Context: This function expects namespace_lock() and lock_mount_hash()
949 * to have been acquired in that order.
951 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
952 struct mount *top_mnt,
953 struct mountpoint *new_mp)
955 struct mount *old_top_parent = top_mnt->mnt_parent;
956 struct mountpoint *old_top_mp = top_mnt->mnt_mp;
958 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
959 mnt_change_mountpoint(new_parent, new_mp, top_mnt);
963 static void __attach_mnt(struct mount *mnt, struct mount *parent)
965 hlist_add_head_rcu(&mnt->mnt_hash,
966 m_hash(&parent->mnt, mnt->mnt_mountpoint));
967 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
971 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
972 * list of child mounts
973 * @parent: the parent
974 * @mnt: the new mount
975 * @mp: the new mountpoint
976 * @beneath: whether to mount @mnt beneath or on top of @parent
978 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
979 * to @parent's child mount list and to @mount_hashtable.
981 * If @beneath is true, remove @mnt from its current parent and
982 * mountpoint and mount it on @mp on @parent, and mount @parent on the
983 * old parent and old mountpoint of @mnt. Finally, attach @parent to
984 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
986 * Note, when __attach_mnt() is called @mnt->mnt_parent already points
987 * to the correct parent.
989 * Context: This function expects namespace_lock() and lock_mount_hash()
990 * to have been acquired in that order.
992 static void attach_mnt(struct mount *mnt, struct mount *parent,
993 struct mountpoint *mp, bool beneath)
996 mnt_set_mountpoint_beneath(mnt, parent, mp);
998 mnt_set_mountpoint(parent, mp, mnt);
1000 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1001 * beneath @parent then @mnt will need to be attached to
1002 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1003 * isn't the same mount as @parent.
1005 __attach_mnt(mnt, mnt->mnt_parent);
1008 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1010 struct mountpoint *old_mp = mnt->mnt_mp;
1011 struct mount *old_parent = mnt->mnt_parent;
1013 list_del_init(&mnt->mnt_child);
1014 hlist_del_init(&mnt->mnt_mp_list);
1015 hlist_del_init_rcu(&mnt->mnt_hash);
1017 attach_mnt(mnt, parent, mp, false);
1019 put_mountpoint(old_mp);
1020 mnt_add_count(old_parent, -1);
1024 * vfsmount lock must be held for write
1026 static void commit_tree(struct mount *mnt)
1028 struct mount *parent = mnt->mnt_parent;
1031 struct mnt_namespace *n = parent->mnt_ns;
1033 BUG_ON(parent == mnt);
1035 list_add_tail(&head, &mnt->mnt_list);
1036 list_for_each_entry(m, &head, mnt_list)
1039 list_splice(&head, n->list.prev);
1041 n->mounts += n->pending_mounts;
1042 n->pending_mounts = 0;
1044 __attach_mnt(mnt, parent);
1045 touch_mnt_namespace(n);
1048 static struct mount *next_mnt(struct mount *p, struct mount *root)
1050 struct list_head *next = p->mnt_mounts.next;
1051 if (next == &p->mnt_mounts) {
1055 next = p->mnt_child.next;
1056 if (next != &p->mnt_parent->mnt_mounts)
1061 return list_entry(next, struct mount, mnt_child);
1064 static struct mount *skip_mnt_tree(struct mount *p)
1066 struct list_head *prev = p->mnt_mounts.prev;
1067 while (prev != &p->mnt_mounts) {
1068 p = list_entry(prev, struct mount, mnt_child);
1069 prev = p->mnt_mounts.prev;
1075 * vfs_create_mount - Create a mount for a configured superblock
1076 * @fc: The configuration context with the superblock attached
1078 * Create a mount to an already configured superblock. If necessary, the
1079 * caller should invoke vfs_get_tree() before calling this.
1081 * Note that this does not attach the mount to anything.
1083 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1088 return ERR_PTR(-EINVAL);
1090 mnt = alloc_vfsmnt(fc->source ?: "none");
1092 return ERR_PTR(-ENOMEM);
1094 if (fc->sb_flags & SB_KERNMOUNT)
1095 mnt->mnt.mnt_flags = MNT_INTERNAL;
1097 atomic_inc(&fc->root->d_sb->s_active);
1098 mnt->mnt.mnt_sb = fc->root->d_sb;
1099 mnt->mnt.mnt_root = dget(fc->root);
1100 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1101 mnt->mnt_parent = mnt;
1104 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1105 unlock_mount_hash();
1108 EXPORT_SYMBOL(vfs_create_mount);
1110 struct vfsmount *fc_mount(struct fs_context *fc)
1112 int err = vfs_get_tree(fc);
1114 up_write(&fc->root->d_sb->s_umount);
1115 return vfs_create_mount(fc);
1117 return ERR_PTR(err);
1119 EXPORT_SYMBOL(fc_mount);
1121 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1122 int flags, const char *name,
1125 struct fs_context *fc;
1126 struct vfsmount *mnt;
1130 return ERR_PTR(-EINVAL);
1132 fc = fs_context_for_mount(type, flags);
1134 return ERR_CAST(fc);
1137 ret = vfs_parse_fs_string(fc, "source",
1138 name, strlen(name));
1140 ret = parse_monolithic_mount_data(fc, data);
1149 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1152 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1153 const char *name, void *data)
1155 /* Until it is worked out how to pass the user namespace
1156 * through from the parent mount to the submount don't support
1157 * unprivileged mounts with submounts.
1159 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1160 return ERR_PTR(-EPERM);
1162 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1164 EXPORT_SYMBOL_GPL(vfs_submount);
1166 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1169 struct super_block *sb = old->mnt.mnt_sb;
1173 mnt = alloc_vfsmnt(old->mnt_devname);
1175 return ERR_PTR(-ENOMEM);
1177 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1178 mnt->mnt_group_id = 0; /* not a peer of original */
1180 mnt->mnt_group_id = old->mnt_group_id;
1182 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1183 err = mnt_alloc_group_id(mnt);
1188 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1189 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1191 atomic_inc(&sb->s_active);
1192 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1194 mnt->mnt.mnt_sb = sb;
1195 mnt->mnt.mnt_root = dget(root);
1196 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1197 mnt->mnt_parent = mnt;
1199 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1200 unlock_mount_hash();
1202 if ((flag & CL_SLAVE) ||
1203 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1204 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1205 mnt->mnt_master = old;
1206 CLEAR_MNT_SHARED(mnt);
1207 } else if (!(flag & CL_PRIVATE)) {
1208 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1209 list_add(&mnt->mnt_share, &old->mnt_share);
1210 if (IS_MNT_SLAVE(old))
1211 list_add(&mnt->mnt_slave, &old->mnt_slave);
1212 mnt->mnt_master = old->mnt_master;
1214 CLEAR_MNT_SHARED(mnt);
1216 if (flag & CL_MAKE_SHARED)
1217 set_mnt_shared(mnt);
1219 /* stick the duplicate mount on the same expiry list
1220 * as the original if that was on one */
1221 if (flag & CL_EXPIRE) {
1222 if (!list_empty(&old->mnt_expire))
1223 list_add(&mnt->mnt_expire, &old->mnt_expire);
1231 return ERR_PTR(err);
1234 static void cleanup_mnt(struct mount *mnt)
1236 struct hlist_node *p;
1239 * The warning here probably indicates that somebody messed
1240 * up a mnt_want/drop_write() pair. If this happens, the
1241 * filesystem was probably unable to make r/w->r/o transitions.
1242 * The locking used to deal with mnt_count decrement provides barriers,
1243 * so mnt_get_writers() below is safe.
1245 WARN_ON(mnt_get_writers(mnt));
1246 if (unlikely(mnt->mnt_pins.first))
1248 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1249 hlist_del(&m->mnt_umount);
1252 fsnotify_vfsmount_delete(&mnt->mnt);
1253 dput(mnt->mnt.mnt_root);
1254 deactivate_super(mnt->mnt.mnt_sb);
1256 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1259 static void __cleanup_mnt(struct rcu_head *head)
1261 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1264 static LLIST_HEAD(delayed_mntput_list);
1265 static void delayed_mntput(struct work_struct *unused)
1267 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1268 struct mount *m, *t;
1270 llist_for_each_entry_safe(m, t, node, mnt_llist)
1273 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1275 static void mntput_no_expire(struct mount *mnt)
1281 if (likely(READ_ONCE(mnt->mnt_ns))) {
1283 * Since we don't do lock_mount_hash() here,
1284 * ->mnt_ns can change under us. However, if it's
1285 * non-NULL, then there's a reference that won't
1286 * be dropped until after an RCU delay done after
1287 * turning ->mnt_ns NULL. So if we observe it
1288 * non-NULL under rcu_read_lock(), the reference
1289 * we are dropping is not the final one.
1291 mnt_add_count(mnt, -1);
1297 * make sure that if __legitimize_mnt() has not seen us grab
1298 * mount_lock, we'll see their refcount increment here.
1301 mnt_add_count(mnt, -1);
1302 count = mnt_get_count(mnt);
1306 unlock_mount_hash();
1309 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1311 unlock_mount_hash();
1314 mnt->mnt.mnt_flags |= MNT_DOOMED;
1317 list_del(&mnt->mnt_instance);
1319 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1320 struct mount *p, *tmp;
1321 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1322 __put_mountpoint(unhash_mnt(p), &list);
1323 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1326 unlock_mount_hash();
1327 shrink_dentry_list(&list);
1329 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1330 struct task_struct *task = current;
1331 if (likely(!(task->flags & PF_KTHREAD))) {
1332 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1333 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1336 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1337 schedule_delayed_work(&delayed_mntput_work, 1);
1343 void mntput(struct vfsmount *mnt)
1346 struct mount *m = real_mount(mnt);
1347 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1348 if (unlikely(m->mnt_expiry_mark))
1349 m->mnt_expiry_mark = 0;
1350 mntput_no_expire(m);
1353 EXPORT_SYMBOL(mntput);
1355 struct vfsmount *mntget(struct vfsmount *mnt)
1358 mnt_add_count(real_mount(mnt), 1);
1361 EXPORT_SYMBOL(mntget);
1364 * Make a mount point inaccessible to new lookups.
1365 * Because there may still be current users, the caller MUST WAIT
1366 * for an RCU grace period before destroying the mount point.
1368 void mnt_make_shortterm(struct vfsmount *mnt)
1371 real_mount(mnt)->mnt_ns = NULL;
1375 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1376 * @path: path to check
1378 * d_mountpoint() can only be used reliably to establish if a dentry is
1379 * not mounted in any namespace and that common case is handled inline.
1380 * d_mountpoint() isn't aware of the possibility there may be multiple
1381 * mounts using a given dentry in a different namespace. This function
1382 * checks if the passed in path is a mountpoint rather than the dentry
1385 bool path_is_mountpoint(const struct path *path)
1390 if (!d_mountpoint(path->dentry))
1395 seq = read_seqbegin(&mount_lock);
1396 res = __path_is_mountpoint(path);
1397 } while (read_seqretry(&mount_lock, seq));
1402 EXPORT_SYMBOL(path_is_mountpoint);
1404 struct vfsmount *mnt_clone_internal(const struct path *path)
1407 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1410 p->mnt.mnt_flags |= MNT_INTERNAL;
1414 #ifdef CONFIG_PROC_FS
1415 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1416 struct list_head *p)
1418 struct mount *mnt, *ret = NULL;
1421 list_for_each_continue(p, &ns->list) {
1422 mnt = list_entry(p, typeof(*mnt), mnt_list);
1423 if (!mnt_is_cursor(mnt)) {
1433 /* iterator; we want it to have access to namespace_sem, thus here... */
1434 static void *m_start(struct seq_file *m, loff_t *pos)
1436 struct proc_mounts *p = m->private;
1437 struct list_head *prev;
1439 down_read(&namespace_sem);
1441 prev = &p->ns->list;
1443 prev = &p->cursor.mnt_list;
1445 /* Read after we'd reached the end? */
1446 if (list_empty(prev))
1450 return mnt_list_next(p->ns, prev);
1453 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1455 struct proc_mounts *p = m->private;
1456 struct mount *mnt = v;
1459 return mnt_list_next(p->ns, &mnt->mnt_list);
1462 static void m_stop(struct seq_file *m, void *v)
1464 struct proc_mounts *p = m->private;
1465 struct mount *mnt = v;
1467 lock_ns_list(p->ns);
1469 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1471 list_del_init(&p->cursor.mnt_list);
1472 unlock_ns_list(p->ns);
1473 up_read(&namespace_sem);
1476 static int m_show(struct seq_file *m, void *v)
1478 struct proc_mounts *p = m->private;
1479 struct mount *r = v;
1480 return p->show(m, &r->mnt);
1483 const struct seq_operations mounts_op = {
1490 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1492 down_read(&namespace_sem);
1494 list_del(&cursor->mnt_list);
1496 up_read(&namespace_sem);
1498 #endif /* CONFIG_PROC_FS */
1501 * may_umount_tree - check if a mount tree is busy
1502 * @m: root of mount tree
1504 * This is called to check if a tree of mounts has any
1505 * open files, pwds, chroots or sub mounts that are
1508 int may_umount_tree(struct vfsmount *m)
1510 struct mount *mnt = real_mount(m);
1511 int actual_refs = 0;
1512 int minimum_refs = 0;
1516 /* write lock needed for mnt_get_count */
1518 for (p = mnt; p; p = next_mnt(p, mnt)) {
1519 actual_refs += mnt_get_count(p);
1522 unlock_mount_hash();
1524 if (actual_refs > minimum_refs)
1530 EXPORT_SYMBOL(may_umount_tree);
1533 * may_umount - check if a mount point is busy
1534 * @mnt: root of mount
1536 * This is called to check if a mount point has any
1537 * open files, pwds, chroots or sub mounts. If the
1538 * mount has sub mounts this will return busy
1539 * regardless of whether the sub mounts are busy.
1541 * Doesn't take quota and stuff into account. IOW, in some cases it will
1542 * give false negatives. The main reason why it's here is that we need
1543 * a non-destructive way to look for easily umountable filesystems.
1545 int may_umount(struct vfsmount *mnt)
1548 down_read(&namespace_sem);
1550 if (propagate_mount_busy(real_mount(mnt), 2))
1552 unlock_mount_hash();
1553 up_read(&namespace_sem);
1557 EXPORT_SYMBOL(may_umount);
1559 static void namespace_unlock(void)
1561 struct hlist_head head;
1562 struct hlist_node *p;
1566 hlist_move_list(&unmounted, &head);
1567 list_splice_init(&ex_mountpoints, &list);
1569 up_write(&namespace_sem);
1571 shrink_dentry_list(&list);
1573 if (likely(hlist_empty(&head)))
1576 synchronize_rcu_expedited();
1578 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1579 hlist_del(&m->mnt_umount);
1584 static inline void namespace_lock(void)
1586 down_write(&namespace_sem);
1589 enum umount_tree_flags {
1591 UMOUNT_PROPAGATE = 2,
1592 UMOUNT_CONNECTED = 4,
1595 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1597 /* Leaving mounts connected is only valid for lazy umounts */
1598 if (how & UMOUNT_SYNC)
1601 /* A mount without a parent has nothing to be connected to */
1602 if (!mnt_has_parent(mnt))
1605 /* Because the reference counting rules change when mounts are
1606 * unmounted and connected, umounted mounts may not be
1607 * connected to mounted mounts.
1609 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1612 /* Has it been requested that the mount remain connected? */
1613 if (how & UMOUNT_CONNECTED)
1616 /* Is the mount locked such that it needs to remain connected? */
1617 if (IS_MNT_LOCKED(mnt))
1620 /* By default disconnect the mount */
1625 * mount_lock must be held
1626 * namespace_sem must be held for write
1628 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1630 LIST_HEAD(tmp_list);
1633 if (how & UMOUNT_PROPAGATE)
1634 propagate_mount_unlock(mnt);
1636 /* Gather the mounts to umount */
1637 for (p = mnt; p; p = next_mnt(p, mnt)) {
1638 p->mnt.mnt_flags |= MNT_UMOUNT;
1639 list_move(&p->mnt_list, &tmp_list);
1642 /* Hide the mounts from mnt_mounts */
1643 list_for_each_entry(p, &tmp_list, mnt_list) {
1644 list_del_init(&p->mnt_child);
1647 /* Add propogated mounts to the tmp_list */
1648 if (how & UMOUNT_PROPAGATE)
1649 propagate_umount(&tmp_list);
1651 while (!list_empty(&tmp_list)) {
1652 struct mnt_namespace *ns;
1654 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1655 list_del_init(&p->mnt_expire);
1656 list_del_init(&p->mnt_list);
1660 __touch_mnt_namespace(ns);
1663 if (how & UMOUNT_SYNC)
1664 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1666 disconnect = disconnect_mount(p, how);
1667 if (mnt_has_parent(p)) {
1668 mnt_add_count(p->mnt_parent, -1);
1670 /* Don't forget about p */
1671 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1676 change_mnt_propagation(p, MS_PRIVATE);
1678 hlist_add_head(&p->mnt_umount, &unmounted);
1682 static void shrink_submounts(struct mount *mnt);
1684 static int do_umount_root(struct super_block *sb)
1688 down_write(&sb->s_umount);
1689 if (!sb_rdonly(sb)) {
1690 struct fs_context *fc;
1692 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1697 ret = parse_monolithic_mount_data(fc, NULL);
1699 ret = reconfigure_super(fc);
1703 up_write(&sb->s_umount);
1707 static int do_umount(struct mount *mnt, int flags)
1709 struct super_block *sb = mnt->mnt.mnt_sb;
1712 retval = security_sb_umount(&mnt->mnt, flags);
1717 * Allow userspace to request a mountpoint be expired rather than
1718 * unmounting unconditionally. Unmount only happens if:
1719 * (1) the mark is already set (the mark is cleared by mntput())
1720 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1722 if (flags & MNT_EXPIRE) {
1723 if (&mnt->mnt == current->fs->root.mnt ||
1724 flags & (MNT_FORCE | MNT_DETACH))
1728 * probably don't strictly need the lock here if we examined
1729 * all race cases, but it's a slowpath.
1732 if (mnt_get_count(mnt) != 2) {
1733 unlock_mount_hash();
1736 unlock_mount_hash();
1738 if (!xchg(&mnt->mnt_expiry_mark, 1))
1743 * If we may have to abort operations to get out of this
1744 * mount, and they will themselves hold resources we must
1745 * allow the fs to do things. In the Unix tradition of
1746 * 'Gee thats tricky lets do it in userspace' the umount_begin
1747 * might fail to complete on the first run through as other tasks
1748 * must return, and the like. Thats for the mount program to worry
1749 * about for the moment.
1752 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1753 sb->s_op->umount_begin(sb);
1757 * No sense to grab the lock for this test, but test itself looks
1758 * somewhat bogus. Suggestions for better replacement?
1759 * Ho-hum... In principle, we might treat that as umount + switch
1760 * to rootfs. GC would eventually take care of the old vfsmount.
1761 * Actually it makes sense, especially if rootfs would contain a
1762 * /reboot - static binary that would close all descriptors and
1763 * call reboot(9). Then init(8) could umount root and exec /reboot.
1765 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1767 * Special case for "unmounting" root ...
1768 * we just try to remount it readonly.
1770 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1772 return do_umount_root(sb);
1778 /* Recheck MNT_LOCKED with the locks held */
1780 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1784 if (flags & MNT_DETACH) {
1785 if (!list_empty(&mnt->mnt_list))
1786 umount_tree(mnt, UMOUNT_PROPAGATE);
1789 shrink_submounts(mnt);
1791 if (!propagate_mount_busy(mnt, 2)) {
1792 if (!list_empty(&mnt->mnt_list))
1793 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1798 unlock_mount_hash();
1804 * __detach_mounts - lazily unmount all mounts on the specified dentry
1806 * During unlink, rmdir, and d_drop it is possible to loose the path
1807 * to an existing mountpoint, and wind up leaking the mount.
1808 * detach_mounts allows lazily unmounting those mounts instead of
1811 * The caller may hold dentry->d_inode->i_mutex.
1813 void __detach_mounts(struct dentry *dentry)
1815 struct mountpoint *mp;
1820 mp = lookup_mountpoint(dentry);
1825 while (!hlist_empty(&mp->m_list)) {
1826 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1827 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1829 hlist_add_head(&mnt->mnt_umount, &unmounted);
1831 else umount_tree(mnt, UMOUNT_CONNECTED);
1835 unlock_mount_hash();
1840 * Is the caller allowed to modify his namespace?
1842 bool may_mount(void)
1844 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1848 * path_mounted - check whether path is mounted
1849 * @path: path to check
1851 * Determine whether @path refers to the root of a mount.
1853 * Return: true if @path is the root of a mount, false if not.
1855 static inline bool path_mounted(const struct path *path)
1857 return path->mnt->mnt_root == path->dentry;
1860 static void warn_mandlock(void)
1862 pr_warn_once("=======================================================\n"
1863 "WARNING: The mand mount option has been deprecated and\n"
1864 " and is ignored by this kernel. Remove the mand\n"
1865 " option from the mount to silence this warning.\n"
1866 "=======================================================\n");
1869 static int can_umount(const struct path *path, int flags)
1871 struct mount *mnt = real_mount(path->mnt);
1875 if (!path_mounted(path))
1877 if (!check_mnt(mnt))
1879 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1881 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1886 // caller is responsible for flags being sane
1887 int path_umount(struct path *path, int flags)
1889 struct mount *mnt = real_mount(path->mnt);
1892 ret = can_umount(path, flags);
1894 ret = do_umount(mnt, flags);
1896 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1898 mntput_no_expire(mnt);
1902 static int ksys_umount(char __user *name, int flags)
1904 int lookup_flags = LOOKUP_MOUNTPOINT;
1908 // basic validity checks done first
1909 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1912 if (!(flags & UMOUNT_NOFOLLOW))
1913 lookup_flags |= LOOKUP_FOLLOW;
1914 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1917 return path_umount(&path, flags);
1920 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1922 return ksys_umount(name, flags);
1925 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1928 * The 2.0 compatible umount. No flags.
1930 SYSCALL_DEFINE1(oldumount, char __user *, name)
1932 return ksys_umount(name, 0);
1937 static bool is_mnt_ns_file(struct dentry *dentry)
1939 /* Is this a proxy for a mount namespace? */
1940 return dentry->d_op == &ns_dentry_operations &&
1941 dentry->d_fsdata == &mntns_operations;
1944 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1946 return container_of(ns, struct mnt_namespace, ns);
1949 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1954 static bool mnt_ns_loop(struct dentry *dentry)
1956 /* Could bind mounting the mount namespace inode cause a
1957 * mount namespace loop?
1959 struct mnt_namespace *mnt_ns;
1960 if (!is_mnt_ns_file(dentry))
1963 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1964 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1967 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1970 struct mount *res, *p, *q, *r, *parent;
1972 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1973 return ERR_PTR(-EINVAL);
1975 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1976 return ERR_PTR(-EINVAL);
1978 res = q = clone_mnt(mnt, dentry, flag);
1982 q->mnt_mountpoint = mnt->mnt_mountpoint;
1985 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1987 if (!is_subdir(r->mnt_mountpoint, dentry))
1990 for (s = r; s; s = next_mnt(s, r)) {
1991 if (!(flag & CL_COPY_UNBINDABLE) &&
1992 IS_MNT_UNBINDABLE(s)) {
1993 if (s->mnt.mnt_flags & MNT_LOCKED) {
1994 /* Both unbindable and locked. */
1995 q = ERR_PTR(-EPERM);
1998 s = skip_mnt_tree(s);
2002 if (!(flag & CL_COPY_MNT_NS_FILE) &&
2003 is_mnt_ns_file(s->mnt.mnt_root)) {
2004 s = skip_mnt_tree(s);
2007 while (p != s->mnt_parent) {
2013 q = clone_mnt(p, p->mnt.mnt_root, flag);
2017 list_add_tail(&q->mnt_list, &res->mnt_list);
2018 attach_mnt(q, parent, p->mnt_mp, false);
2019 unlock_mount_hash();
2026 umount_tree(res, UMOUNT_SYNC);
2027 unlock_mount_hash();
2032 /* Caller should check returned pointer for errors */
2034 struct vfsmount *collect_mounts(const struct path *path)
2038 if (!check_mnt(real_mount(path->mnt)))
2039 tree = ERR_PTR(-EINVAL);
2041 tree = copy_tree(real_mount(path->mnt), path->dentry,
2042 CL_COPY_ALL | CL_PRIVATE);
2045 return ERR_CAST(tree);
2049 static void free_mnt_ns(struct mnt_namespace *);
2050 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2052 void dissolve_on_fput(struct vfsmount *mnt)
2054 struct mnt_namespace *ns;
2057 ns = real_mount(mnt)->mnt_ns;
2060 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2064 unlock_mount_hash();
2070 void drop_collected_mounts(struct vfsmount *mnt)
2074 umount_tree(real_mount(mnt), 0);
2075 unlock_mount_hash();
2079 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2081 struct mount *child;
2083 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2084 if (!is_subdir(child->mnt_mountpoint, dentry))
2087 if (child->mnt.mnt_flags & MNT_LOCKED)
2094 * clone_private_mount - create a private clone of a path
2095 * @path: path to clone
2097 * This creates a new vfsmount, which will be the clone of @path. The new mount
2098 * will not be attached anywhere in the namespace and will be private (i.e.
2099 * changes to the originating mount won't be propagated into this).
2101 * Release with mntput().
2103 struct vfsmount *clone_private_mount(const struct path *path)
2105 struct mount *old_mnt = real_mount(path->mnt);
2106 struct mount *new_mnt;
2108 down_read(&namespace_sem);
2109 if (IS_MNT_UNBINDABLE(old_mnt))
2112 if (!check_mnt(old_mnt))
2115 if (has_locked_children(old_mnt, path->dentry))
2118 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2119 up_read(&namespace_sem);
2121 if (IS_ERR(new_mnt))
2122 return ERR_CAST(new_mnt);
2124 /* Longterm mount to be removed by kern_unmount*() */
2125 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2127 return &new_mnt->mnt;
2130 up_read(&namespace_sem);
2131 return ERR_PTR(-EINVAL);
2133 EXPORT_SYMBOL_GPL(clone_private_mount);
2135 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2136 struct vfsmount *root)
2139 int res = f(root, arg);
2142 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2143 res = f(&mnt->mnt, arg);
2150 static void lock_mnt_tree(struct mount *mnt)
2154 for (p = mnt; p; p = next_mnt(p, mnt)) {
2155 int flags = p->mnt.mnt_flags;
2156 /* Don't allow unprivileged users to change mount flags */
2157 flags |= MNT_LOCK_ATIME;
2159 if (flags & MNT_READONLY)
2160 flags |= MNT_LOCK_READONLY;
2162 if (flags & MNT_NODEV)
2163 flags |= MNT_LOCK_NODEV;
2165 if (flags & MNT_NOSUID)
2166 flags |= MNT_LOCK_NOSUID;
2168 if (flags & MNT_NOEXEC)
2169 flags |= MNT_LOCK_NOEXEC;
2170 /* Don't allow unprivileged users to reveal what is under a mount */
2171 if (list_empty(&p->mnt_expire))
2172 flags |= MNT_LOCKED;
2173 p->mnt.mnt_flags = flags;
2177 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2181 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2182 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2183 mnt_release_group_id(p);
2187 static int invent_group_ids(struct mount *mnt, bool recurse)
2191 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2192 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2193 int err = mnt_alloc_group_id(p);
2195 cleanup_group_ids(mnt, p);
2204 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2206 unsigned int max = READ_ONCE(sysctl_mount_max);
2207 unsigned int mounts = 0;
2210 if (ns->mounts >= max)
2213 if (ns->pending_mounts >= max)
2215 max -= ns->pending_mounts;
2217 for (p = mnt; p; p = next_mnt(p, mnt))
2223 ns->pending_mounts += mounts;
2227 enum mnt_tree_flags_t {
2228 MNT_TREE_MOVE = BIT(0),
2229 MNT_TREE_BENEATH = BIT(1),
2233 * attach_recursive_mnt - attach a source mount tree
2234 * @source_mnt: mount tree to be attached
2235 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath
2236 * @dest_mp: the mountpoint @source_mnt will be mounted at
2237 * @flags: modify how @source_mnt is supposed to be attached
2239 * NOTE: in the table below explains the semantics when a source mount
2240 * of a given type is attached to a destination mount of a given type.
2241 * ---------------------------------------------------------------------------
2242 * | BIND MOUNT OPERATION |
2243 * |**************************************************************************
2244 * | source-->| shared | private | slave | unbindable |
2248 * |**************************************************************************
2249 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2251 * |non-shared| shared (+) | private | slave (*) | invalid |
2252 * ***************************************************************************
2253 * A bind operation clones the source mount and mounts the clone on the
2254 * destination mount.
2256 * (++) the cloned mount is propagated to all the mounts in the propagation
2257 * tree of the destination mount and the cloned mount is added to
2258 * the peer group of the source mount.
2259 * (+) the cloned mount is created under the destination mount and is marked
2260 * as shared. The cloned mount is added to the peer group of the source
2262 * (+++) the mount is propagated to all the mounts in the propagation tree
2263 * of the destination mount and the cloned mount is made slave
2264 * of the same master as that of the source mount. The cloned mount
2265 * is marked as 'shared and slave'.
2266 * (*) the cloned mount is made a slave of the same master as that of the
2269 * ---------------------------------------------------------------------------
2270 * | MOVE MOUNT OPERATION |
2271 * |**************************************************************************
2272 * | source-->| shared | private | slave | unbindable |
2276 * |**************************************************************************
2277 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2279 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2280 * ***************************************************************************
2282 * (+) the mount is moved to the destination. And is then propagated to
2283 * all the mounts in the propagation tree of the destination mount.
2284 * (+*) the mount is moved to the destination.
2285 * (+++) the mount is moved to the destination and is then propagated to
2286 * all the mounts belonging to the destination mount's propagation tree.
2287 * the mount is marked as 'shared and slave'.
2288 * (*) the mount continues to be a slave at the new location.
2290 * if the source mount is a tree, the operations explained above is
2291 * applied to each mount in the tree.
2292 * Must be called without spinlocks held, since this function can sleep
2295 * Context: The function expects namespace_lock() to be held.
2296 * Return: If @source_mnt was successfully attached 0 is returned.
2297 * Otherwise a negative error code is returned.
2299 static int attach_recursive_mnt(struct mount *source_mnt,
2300 struct mount *top_mnt,
2301 struct mountpoint *dest_mp,
2302 enum mnt_tree_flags_t flags)
2304 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2305 HLIST_HEAD(tree_list);
2306 struct mnt_namespace *ns = top_mnt->mnt_ns;
2307 struct mountpoint *smp;
2308 struct mount *child, *dest_mnt, *p;
2309 struct hlist_node *n;
2311 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2314 * Preallocate a mountpoint in case the new mounts need to be
2315 * mounted beneath mounts on the same mountpoint.
2317 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2319 return PTR_ERR(smp);
2321 /* Is there space to add these mounts to the mount namespace? */
2323 err = count_mounts(ns, source_mnt);
2329 dest_mnt = top_mnt->mnt_parent;
2333 if (IS_MNT_SHARED(dest_mnt)) {
2334 err = invent_group_ids(source_mnt, true);
2337 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2341 goto out_cleanup_ids;
2343 if (IS_MNT_SHARED(dest_mnt)) {
2344 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2351 unhash_mnt(source_mnt);
2352 attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2353 touch_mnt_namespace(source_mnt->mnt_ns);
2355 if (source_mnt->mnt_ns) {
2356 /* move from anon - the caller will destroy */
2357 list_del_init(&source_mnt->mnt_ns->list);
2360 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2362 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2363 commit_tree(source_mnt);
2366 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2368 hlist_del_init(&child->mnt_hash);
2369 q = __lookup_mnt(&child->mnt_parent->mnt,
2370 child->mnt_mountpoint);
2372 mnt_change_mountpoint(child, smp, q);
2373 /* Notice when we are propagating across user namespaces */
2374 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2375 lock_mnt_tree(child);
2376 child->mnt.mnt_flags &= ~MNT_LOCKED;
2379 put_mountpoint(smp);
2380 unlock_mount_hash();
2385 while (!hlist_empty(&tree_list)) {
2386 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2387 child->mnt_parent->mnt_ns->pending_mounts = 0;
2388 umount_tree(child, UMOUNT_SYNC);
2390 unlock_mount_hash();
2391 cleanup_group_ids(source_mnt, NULL);
2393 ns->pending_mounts = 0;
2395 read_seqlock_excl(&mount_lock);
2396 put_mountpoint(smp);
2397 read_sequnlock_excl(&mount_lock);
2403 * do_lock_mount - lock mount and mountpoint
2404 * @path: target path
2405 * @beneath: whether the intention is to mount beneath @path
2407 * Follow the mount stack on @path until the top mount @mnt is found. If
2408 * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2409 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2410 * until nothing is stacked on top of it anymore.
2412 * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2413 * against concurrent removal of the new mountpoint from another mount
2416 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2417 * @mp on @mnt->mnt_parent must be acquired. This protects against a
2418 * concurrent unlink of @mp->mnt_dentry from another mount namespace
2419 * where @mnt doesn't have a child mount mounted @mp. A concurrent
2420 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2421 * on top of it for @beneath.
2423 * In addition, @beneath needs to make sure that @mnt hasn't been
2424 * unmounted or moved from its current mountpoint in between dropping
2425 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2426 * being unmounted would be detected later by e.g., calling
2427 * check_mnt(mnt) in the function it's called from. For the @beneath
2428 * case however, it's useful to detect it directly in do_lock_mount().
2429 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2430 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2431 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2433 * Return: Either the target mountpoint on the top mount or the top
2434 * mount's mountpoint.
2436 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2438 struct vfsmount *mnt = path->mnt;
2439 struct dentry *dentry;
2440 struct mountpoint *mp = ERR_PTR(-ENOENT);
2446 m = real_mount(mnt);
2447 read_seqlock_excl(&mount_lock);
2448 dentry = dget(m->mnt_mountpoint);
2449 read_sequnlock_excl(&mount_lock);
2451 dentry = path->dentry;
2454 inode_lock(dentry->d_inode);
2455 if (unlikely(cant_mount(dentry))) {
2456 inode_unlock(dentry->d_inode);
2462 if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) {
2464 inode_unlock(dentry->d_inode);
2468 mnt = lookup_mnt(path);
2473 inode_unlock(dentry->d_inode);
2478 path->dentry = dget(mnt->mnt_root);
2481 mp = get_mountpoint(dentry);
2484 inode_unlock(dentry->d_inode);
2494 static inline struct mountpoint *lock_mount(struct path *path)
2496 return do_lock_mount(path, false);
2499 static void unlock_mount(struct mountpoint *where)
2501 struct dentry *dentry = where->m_dentry;
2503 read_seqlock_excl(&mount_lock);
2504 put_mountpoint(where);
2505 read_sequnlock_excl(&mount_lock);
2508 inode_unlock(dentry->d_inode);
2511 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2513 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2516 if (d_is_dir(mp->m_dentry) !=
2517 d_is_dir(mnt->mnt.mnt_root))
2520 return attach_recursive_mnt(mnt, p, mp, 0);
2524 * Sanity check the flags to change_mnt_propagation.
2527 static int flags_to_propagation_type(int ms_flags)
2529 int type = ms_flags & ~(MS_REC | MS_SILENT);
2531 /* Fail if any non-propagation flags are set */
2532 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2534 /* Only one propagation flag should be set */
2535 if (!is_power_of_2(type))
2541 * recursively change the type of the mountpoint.
2543 static int do_change_type(struct path *path, int ms_flags)
2546 struct mount *mnt = real_mount(path->mnt);
2547 int recurse = ms_flags & MS_REC;
2551 if (!path_mounted(path))
2554 type = flags_to_propagation_type(ms_flags);
2559 if (type == MS_SHARED) {
2560 err = invent_group_ids(mnt, recurse);
2566 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2567 change_mnt_propagation(m, type);
2568 unlock_mount_hash();
2575 static struct mount *__do_loopback(struct path *old_path, int recurse)
2577 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2579 if (IS_MNT_UNBINDABLE(old))
2582 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2585 if (!recurse && has_locked_children(old, old_path->dentry))
2589 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2591 mnt = clone_mnt(old, old_path->dentry, 0);
2594 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2600 * do loopback mount.
2602 static int do_loopback(struct path *path, const char *old_name,
2605 struct path old_path;
2606 struct mount *mnt = NULL, *parent;
2607 struct mountpoint *mp;
2609 if (!old_name || !*old_name)
2611 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2616 if (mnt_ns_loop(old_path.dentry))
2619 mp = lock_mount(path);
2625 parent = real_mount(path->mnt);
2626 if (!check_mnt(parent))
2629 mnt = __do_loopback(&old_path, recurse);
2635 err = graft_tree(mnt, parent, mp);
2638 umount_tree(mnt, UMOUNT_SYNC);
2639 unlock_mount_hash();
2644 path_put(&old_path);
2648 static struct file *open_detached_copy(struct path *path, bool recursive)
2650 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2651 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2652 struct mount *mnt, *p;
2656 return ERR_CAST(ns);
2659 mnt = __do_loopback(path, recursive);
2663 return ERR_CAST(mnt);
2667 for (p = mnt; p; p = next_mnt(p, mnt)) {
2672 list_add_tail(&ns->list, &mnt->mnt_list);
2674 unlock_mount_hash();
2678 path->mnt = &mnt->mnt;
2679 file = dentry_open(path, O_PATH, current_cred());
2681 dissolve_on_fput(path->mnt);
2683 file->f_mode |= FMODE_NEED_UNMOUNT;
2687 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2691 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2692 bool detached = flags & OPEN_TREE_CLONE;
2696 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2698 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2699 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2703 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2706 if (flags & AT_NO_AUTOMOUNT)
2707 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2708 if (flags & AT_SYMLINK_NOFOLLOW)
2709 lookup_flags &= ~LOOKUP_FOLLOW;
2710 if (flags & AT_EMPTY_PATH)
2711 lookup_flags |= LOOKUP_EMPTY;
2713 if (detached && !may_mount())
2716 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2720 error = user_path_at(dfd, filename, lookup_flags, &path);
2721 if (unlikely(error)) {
2722 file = ERR_PTR(error);
2725 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2727 file = dentry_open(&path, O_PATH, current_cred());
2732 return PTR_ERR(file);
2734 fd_install(fd, file);
2739 * Don't allow locked mount flags to be cleared.
2741 * No locks need to be held here while testing the various MNT_LOCK
2742 * flags because those flags can never be cleared once they are set.
2744 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2746 unsigned int fl = mnt->mnt.mnt_flags;
2748 if ((fl & MNT_LOCK_READONLY) &&
2749 !(mnt_flags & MNT_READONLY))
2752 if ((fl & MNT_LOCK_NODEV) &&
2753 !(mnt_flags & MNT_NODEV))
2756 if ((fl & MNT_LOCK_NOSUID) &&
2757 !(mnt_flags & MNT_NOSUID))
2760 if ((fl & MNT_LOCK_NOEXEC) &&
2761 !(mnt_flags & MNT_NOEXEC))
2764 if ((fl & MNT_LOCK_ATIME) &&
2765 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2771 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2773 bool readonly_request = (mnt_flags & MNT_READONLY);
2775 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2778 if (readonly_request)
2779 return mnt_make_readonly(mnt);
2781 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2785 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2787 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2788 mnt->mnt.mnt_flags = mnt_flags;
2789 touch_mnt_namespace(mnt->mnt_ns);
2792 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2794 struct super_block *sb = mnt->mnt_sb;
2796 if (!__mnt_is_readonly(mnt) &&
2797 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2798 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2799 char *buf = (char *)__get_free_page(GFP_KERNEL);
2800 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2802 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2804 is_mounted(mnt) ? "remounted" : "mounted",
2805 mntpath, &sb->s_time_max,
2806 (unsigned long long)sb->s_time_max);
2808 free_page((unsigned long)buf);
2809 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2814 * Handle reconfiguration of the mountpoint only without alteration of the
2815 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2818 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2820 struct super_block *sb = path->mnt->mnt_sb;
2821 struct mount *mnt = real_mount(path->mnt);
2824 if (!check_mnt(mnt))
2827 if (!path_mounted(path))
2830 if (!can_change_locked_flags(mnt, mnt_flags))
2834 * We're only checking whether the superblock is read-only not
2835 * changing it, so only take down_read(&sb->s_umount).
2837 down_read(&sb->s_umount);
2839 ret = change_mount_ro_state(mnt, mnt_flags);
2841 set_mount_attributes(mnt, mnt_flags);
2842 unlock_mount_hash();
2843 up_read(&sb->s_umount);
2845 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2851 * change filesystem flags. dir should be a physical root of filesystem.
2852 * If you've mounted a non-root directory somewhere and want to do remount
2853 * on it - tough luck.
2855 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2856 int mnt_flags, void *data)
2859 struct super_block *sb = path->mnt->mnt_sb;
2860 struct mount *mnt = real_mount(path->mnt);
2861 struct fs_context *fc;
2863 if (!check_mnt(mnt))
2866 if (!path_mounted(path))
2869 if (!can_change_locked_flags(mnt, mnt_flags))
2872 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2877 err = parse_monolithic_mount_data(fc, data);
2879 down_write(&sb->s_umount);
2881 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2882 err = reconfigure_super(fc);
2885 set_mount_attributes(mnt, mnt_flags);
2886 unlock_mount_hash();
2889 up_write(&sb->s_umount);
2892 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2898 static inline int tree_contains_unbindable(struct mount *mnt)
2901 for (p = mnt; p; p = next_mnt(p, mnt)) {
2902 if (IS_MNT_UNBINDABLE(p))
2909 * Check that there aren't references to earlier/same mount namespaces in the
2910 * specified subtree. Such references can act as pins for mount namespaces
2911 * that aren't checked by the mount-cycle checking code, thereby allowing
2912 * cycles to be made.
2914 static bool check_for_nsfs_mounts(struct mount *subtree)
2920 for (p = subtree; p; p = next_mnt(p, subtree))
2921 if (mnt_ns_loop(p->mnt.mnt_root))
2926 unlock_mount_hash();
2930 static int do_set_group(struct path *from_path, struct path *to_path)
2932 struct mount *from, *to;
2935 from = real_mount(from_path->mnt);
2936 to = real_mount(to_path->mnt);
2941 /* To and From must be mounted */
2942 if (!is_mounted(&from->mnt))
2944 if (!is_mounted(&to->mnt))
2948 /* We should be allowed to modify mount namespaces of both mounts */
2949 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2951 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2955 /* To and From paths should be mount roots */
2956 if (!path_mounted(from_path))
2958 if (!path_mounted(to_path))
2961 /* Setting sharing groups is only allowed across same superblock */
2962 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2965 /* From mount root should be wider than To mount root */
2966 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2969 /* From mount should not have locked children in place of To's root */
2970 if (has_locked_children(from, to->mnt.mnt_root))
2973 /* Setting sharing groups is only allowed on private mounts */
2974 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2977 /* From should not be private */
2978 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2981 if (IS_MNT_SLAVE(from)) {
2982 struct mount *m = from->mnt_master;
2984 list_add(&to->mnt_slave, &m->mnt_slave_list);
2988 if (IS_MNT_SHARED(from)) {
2989 to->mnt_group_id = from->mnt_group_id;
2990 list_add(&to->mnt_share, &from->mnt_share);
2993 unlock_mount_hash();
3003 * path_overmounted - check if path is overmounted
3004 * @path: path to check
3006 * Check if path is overmounted, i.e., if there's a mount on top of
3007 * @path->mnt with @path->dentry as mountpoint.
3009 * Context: This function expects namespace_lock() to be held.
3010 * Return: If path is overmounted true is returned, false if not.
3012 static inline bool path_overmounted(const struct path *path)
3015 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3024 * can_move_mount_beneath - check that we can mount beneath the top mount
3025 * @from: mount to mount beneath
3026 * @to: mount under which to mount
3028 * - Make sure that @to->dentry is actually the root of a mount under
3029 * which we can mount another mount.
3030 * - Make sure that nothing can be mounted beneath the caller's current
3031 * root or the rootfs of the namespace.
3032 * - Make sure that the caller can unmount the topmost mount ensuring
3033 * that the caller could reveal the underlying mountpoint.
3034 * - Ensure that nothing has been mounted on top of @from before we
3035 * grabbed @namespace_sem to avoid creating pointless shadow mounts.
3036 * - Prevent mounting beneath a mount if the propagation relationship
3037 * between the source mount, parent mount, and top mount would lead to
3038 * nonsensical mount trees.
3040 * Context: This function expects namespace_lock() to be held.
3041 * Return: On success 0, and on error a negative error code is returned.
3043 static int can_move_mount_beneath(const struct path *from,
3044 const struct path *to,
3045 const struct mountpoint *mp)
3047 struct mount *mnt_from = real_mount(from->mnt),
3048 *mnt_to = real_mount(to->mnt),
3049 *parent_mnt_to = mnt_to->mnt_parent;
3051 if (!mnt_has_parent(mnt_to))
3054 if (!path_mounted(to))
3057 if (IS_MNT_LOCKED(mnt_to))
3060 /* Avoid creating shadow mounts during mount propagation. */
3061 if (path_overmounted(from))
3065 * Mounting beneath the rootfs only makes sense when the
3066 * semantics of pivot_root(".", ".") are used.
3068 if (&mnt_to->mnt == current->fs->root.mnt)
3070 if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3073 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3078 * If the parent mount propagates to the child mount this would
3079 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3080 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3081 * defeats the whole purpose of mounting beneath another mount.
3083 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3087 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3088 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3089 * Afterwards @mnt_from would be mounted on top of
3090 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3091 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3092 * already mounted on @mnt_from, @mnt_to would ultimately be
3093 * remounted on top of @c. Afterwards, @mnt_from would be
3094 * covered by a copy @c of @mnt_from and @c would be covered by
3095 * @mnt_from itself. This defeats the whole purpose of mounting
3096 * @mnt_from beneath @mnt_to.
3098 if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3104 static int do_move_mount(struct path *old_path, struct path *new_path,
3107 struct mnt_namespace *ns;
3110 struct mount *parent;
3111 struct mountpoint *mp, *old_mp;
3114 enum mnt_tree_flags_t flags = 0;
3116 mp = do_lock_mount(new_path, beneath);
3120 old = real_mount(old_path->mnt);
3121 p = real_mount(new_path->mnt);
3122 parent = old->mnt_parent;
3123 attached = mnt_has_parent(old);
3125 flags |= MNT_TREE_MOVE;
3126 old_mp = old->mnt_mp;
3130 /* The mountpoint must be in our namespace. */
3134 /* The thing moved must be mounted... */
3135 if (!is_mounted(&old->mnt))
3138 /* ... and either ours or the root of anon namespace */
3139 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3142 if (old->mnt.mnt_flags & MNT_LOCKED)
3145 if (!path_mounted(old_path))
3148 if (d_is_dir(new_path->dentry) !=
3149 d_is_dir(old_path->dentry))
3152 * Don't move a mount residing in a shared parent.
3154 if (attached && IS_MNT_SHARED(parent))
3158 err = can_move_mount_beneath(old_path, new_path, mp);
3164 flags |= MNT_TREE_BENEATH;
3168 * Don't move a mount tree containing unbindable mounts to a destination
3169 * mount which is shared.
3171 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3174 if (!check_for_nsfs_mounts(old))
3176 for (; mnt_has_parent(p); p = p->mnt_parent)
3180 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3184 /* if the mount is moved, it should no longer be expire
3186 list_del_init(&old->mnt_expire);
3188 put_mountpoint(old_mp);
3193 mntput_no_expire(parent);
3200 static int do_move_mount_old(struct path *path, const char *old_name)
3202 struct path old_path;
3205 if (!old_name || !*old_name)
3208 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3212 err = do_move_mount(&old_path, path, false);
3213 path_put(&old_path);
3218 * add a mount into a namespace's mount tree
3220 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3221 const struct path *path, int mnt_flags)
3223 struct mount *parent = real_mount(path->mnt);
3225 mnt_flags &= ~MNT_INTERNAL_FLAGS;
3227 if (unlikely(!check_mnt(parent))) {
3228 /* that's acceptable only for automounts done in private ns */
3229 if (!(mnt_flags & MNT_SHRINKABLE))
3231 /* ... and for those we'd better have mountpoint still alive */
3232 if (!parent->mnt_ns)
3236 /* Refuse the same filesystem on the same mount point */
3237 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3240 if (d_is_symlink(newmnt->mnt.mnt_root))
3243 newmnt->mnt.mnt_flags = mnt_flags;
3244 return graft_tree(newmnt, parent, mp);
3247 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3250 * Create a new mount using a superblock configuration and request it
3251 * be added to the namespace tree.
3253 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3254 unsigned int mnt_flags)
3256 struct vfsmount *mnt;
3257 struct mountpoint *mp;
3258 struct super_block *sb = fc->root->d_sb;
3261 error = security_sb_kern_mount(sb);
3262 if (!error && mount_too_revealing(sb, &mnt_flags))
3265 if (unlikely(error)) {
3270 up_write(&sb->s_umount);
3272 mnt = vfs_create_mount(fc);
3274 return PTR_ERR(mnt);
3276 mnt_warn_timestamp_expiry(mountpoint, mnt);
3278 mp = lock_mount(mountpoint);
3283 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3291 * create a new mount for userspace and request it to be added into the
3294 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3295 int mnt_flags, const char *name, void *data)
3297 struct file_system_type *type;
3298 struct fs_context *fc;
3299 const char *subtype = NULL;
3305 type = get_fs_type(fstype);
3309 if (type->fs_flags & FS_HAS_SUBTYPE) {
3310 subtype = strchr(fstype, '.');
3314 put_filesystem(type);
3320 fc = fs_context_for_mount(type, sb_flags);
3321 put_filesystem(type);
3326 err = vfs_parse_fs_string(fc, "subtype",
3327 subtype, strlen(subtype));
3329 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3331 err = parse_monolithic_mount_data(fc, data);
3332 if (!err && !mount_capable(fc))
3335 err = vfs_get_tree(fc);
3337 err = do_new_mount_fc(fc, path, mnt_flags);
3343 int finish_automount(struct vfsmount *m, const struct path *path)
3345 struct dentry *dentry = path->dentry;
3346 struct mountpoint *mp;
3355 mnt = real_mount(m);
3356 /* The new mount record should have at least 2 refs to prevent it being
3357 * expired before we get a chance to add it
3359 BUG_ON(mnt_get_count(mnt) < 2);
3361 if (m->mnt_sb == path->mnt->mnt_sb &&
3362 m->mnt_root == dentry) {
3368 * we don't want to use lock_mount() - in this case finding something
3369 * that overmounts our mountpoint to be means "quitely drop what we've
3370 * got", not "try to mount it on top".
3372 inode_lock(dentry->d_inode);
3374 if (unlikely(cant_mount(dentry))) {
3376 goto discard_locked;
3378 if (path_overmounted(path)) {
3380 goto discard_locked;
3382 mp = get_mountpoint(dentry);
3385 goto discard_locked;
3388 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3397 inode_unlock(dentry->d_inode);
3399 /* remove m from any expiration list it may be on */
3400 if (!list_empty(&mnt->mnt_expire)) {
3402 list_del_init(&mnt->mnt_expire);
3411 * mnt_set_expiry - Put a mount on an expiration list
3412 * @mnt: The mount to list.
3413 * @expiry_list: The list to add the mount to.
3415 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3419 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3423 EXPORT_SYMBOL(mnt_set_expiry);
3426 * process a list of expirable mountpoints with the intent of discarding any
3427 * mountpoints that aren't in use and haven't been touched since last we came
3430 void mark_mounts_for_expiry(struct list_head *mounts)
3432 struct mount *mnt, *next;
3433 LIST_HEAD(graveyard);
3435 if (list_empty(mounts))
3441 /* extract from the expiration list every vfsmount that matches the
3442 * following criteria:
3443 * - only referenced by its parent vfsmount
3444 * - still marked for expiry (marked on the last call here; marks are
3445 * cleared by mntput())
3447 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3448 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3449 propagate_mount_busy(mnt, 1))
3451 list_move(&mnt->mnt_expire, &graveyard);
3453 while (!list_empty(&graveyard)) {
3454 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3455 touch_mnt_namespace(mnt->mnt_ns);
3456 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3458 unlock_mount_hash();
3462 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3465 * Ripoff of 'select_parent()'
3467 * search the list of submounts for a given mountpoint, and move any
3468 * shrinkable submounts to the 'graveyard' list.
3470 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3472 struct mount *this_parent = parent;
3473 struct list_head *next;
3477 next = this_parent->mnt_mounts.next;
3479 while (next != &this_parent->mnt_mounts) {
3480 struct list_head *tmp = next;
3481 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3484 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3487 * Descend a level if the d_mounts list is non-empty.
3489 if (!list_empty(&mnt->mnt_mounts)) {
3494 if (!propagate_mount_busy(mnt, 1)) {
3495 list_move_tail(&mnt->mnt_expire, graveyard);
3500 * All done at this level ... ascend and resume the search
3502 if (this_parent != parent) {
3503 next = this_parent->mnt_child.next;
3504 this_parent = this_parent->mnt_parent;
3511 * process a list of expirable mountpoints with the intent of discarding any
3512 * submounts of a specific parent mountpoint
3514 * mount_lock must be held for write
3516 static void shrink_submounts(struct mount *mnt)
3518 LIST_HEAD(graveyard);
3521 /* extract submounts of 'mountpoint' from the expiration list */
3522 while (select_submounts(mnt, &graveyard)) {
3523 while (!list_empty(&graveyard)) {
3524 m = list_first_entry(&graveyard, struct mount,
3526 touch_mnt_namespace(m->mnt_ns);
3527 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3532 static void *copy_mount_options(const void __user * data)
3535 unsigned left, offset;
3540 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3542 return ERR_PTR(-ENOMEM);
3544 left = copy_from_user(copy, data, PAGE_SIZE);
3547 * Not all architectures have an exact copy_from_user(). Resort to
3550 offset = PAGE_SIZE - left;
3553 if (get_user(c, (const char __user *)data + offset))
3560 if (left == PAGE_SIZE) {
3562 return ERR_PTR(-EFAULT);
3568 static char *copy_mount_string(const void __user *data)
3570 return data ? strndup_user(data, PATH_MAX) : NULL;
3574 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3575 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3577 * data is a (void *) that can point to any structure up to
3578 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3579 * information (or be NULL).
3581 * Pre-0.97 versions of mount() didn't have a flags word.
3582 * When the flags word was introduced its top half was required
3583 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3584 * Therefore, if this magic number is present, it carries no information
3585 * and must be discarded.
3587 int path_mount(const char *dev_name, struct path *path,
3588 const char *type_page, unsigned long flags, void *data_page)
3590 unsigned int mnt_flags = 0, sb_flags;
3594 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3595 flags &= ~MS_MGC_MSK;
3597 /* Basic sanity checks */
3599 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3601 if (flags & MS_NOUSER)
3604 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3609 if (flags & SB_MANDLOCK)
3612 /* Default to relatime unless overriden */
3613 if (!(flags & MS_NOATIME))
3614 mnt_flags |= MNT_RELATIME;
3616 /* Separate the per-mountpoint flags */
3617 if (flags & MS_NOSUID)
3618 mnt_flags |= MNT_NOSUID;
3619 if (flags & MS_NODEV)
3620 mnt_flags |= MNT_NODEV;
3621 if (flags & MS_NOEXEC)
3622 mnt_flags |= MNT_NOEXEC;
3623 if (flags & MS_NOATIME)
3624 mnt_flags |= MNT_NOATIME;
3625 if (flags & MS_NODIRATIME)
3626 mnt_flags |= MNT_NODIRATIME;
3627 if (flags & MS_STRICTATIME)
3628 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3629 if (flags & MS_RDONLY)
3630 mnt_flags |= MNT_READONLY;
3631 if (flags & MS_NOSYMFOLLOW)
3632 mnt_flags |= MNT_NOSYMFOLLOW;
3634 /* The default atime for remount is preservation */
3635 if ((flags & MS_REMOUNT) &&
3636 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3637 MS_STRICTATIME)) == 0)) {
3638 mnt_flags &= ~MNT_ATIME_MASK;
3639 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3642 sb_flags = flags & (SB_RDONLY |
3651 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3652 return do_reconfigure_mnt(path, mnt_flags);
3653 if (flags & MS_REMOUNT)
3654 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3655 if (flags & MS_BIND)
3656 return do_loopback(path, dev_name, flags & MS_REC);
3657 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3658 return do_change_type(path, flags);
3659 if (flags & MS_MOVE)
3660 return do_move_mount_old(path, dev_name);
3662 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3666 long do_mount(const char *dev_name, const char __user *dir_name,
3667 const char *type_page, unsigned long flags, void *data_page)
3672 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3675 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3680 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3682 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3685 static void dec_mnt_namespaces(struct ucounts *ucounts)
3687 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3690 static void free_mnt_ns(struct mnt_namespace *ns)
3692 if (!is_anon_ns(ns))
3693 ns_free_inum(&ns->ns);
3694 dec_mnt_namespaces(ns->ucounts);
3695 put_user_ns(ns->user_ns);
3700 * Assign a sequence number so we can detect when we attempt to bind
3701 * mount a reference to an older mount namespace into the current
3702 * mount namespace, preventing reference counting loops. A 64bit
3703 * number incrementing at 10Ghz will take 12,427 years to wrap which
3704 * is effectively never, so we can ignore the possibility.
3706 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3708 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3710 struct mnt_namespace *new_ns;
3711 struct ucounts *ucounts;
3714 ucounts = inc_mnt_namespaces(user_ns);
3716 return ERR_PTR(-ENOSPC);
3718 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3720 dec_mnt_namespaces(ucounts);
3721 return ERR_PTR(-ENOMEM);
3724 ret = ns_alloc_inum(&new_ns->ns);
3727 dec_mnt_namespaces(ucounts);
3728 return ERR_PTR(ret);
3731 new_ns->ns.ops = &mntns_operations;
3733 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3734 refcount_set(&new_ns->ns.count, 1);
3735 INIT_LIST_HEAD(&new_ns->list);
3736 init_waitqueue_head(&new_ns->poll);
3737 spin_lock_init(&new_ns->ns_lock);
3738 new_ns->user_ns = get_user_ns(user_ns);
3739 new_ns->ucounts = ucounts;
3744 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3745 struct user_namespace *user_ns, struct fs_struct *new_fs)
3747 struct mnt_namespace *new_ns;
3748 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3749 struct mount *p, *q;
3756 if (likely(!(flags & CLONE_NEWNS))) {
3763 new_ns = alloc_mnt_ns(user_ns, false);
3768 /* First pass: copy the tree topology */
3769 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3770 if (user_ns != ns->user_ns)
3771 copy_flags |= CL_SHARED_TO_SLAVE;
3772 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3775 free_mnt_ns(new_ns);
3776 return ERR_CAST(new);
3778 if (user_ns != ns->user_ns) {
3781 unlock_mount_hash();
3784 list_add_tail(&new_ns->list, &new->mnt_list);
3787 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3788 * as belonging to new namespace. We have already acquired a private
3789 * fs_struct, so tsk->fs->lock is not needed.
3797 if (&p->mnt == new_fs->root.mnt) {
3798 new_fs->root.mnt = mntget(&q->mnt);
3801 if (&p->mnt == new_fs->pwd.mnt) {
3802 new_fs->pwd.mnt = mntget(&q->mnt);
3806 p = next_mnt(p, old);
3807 q = next_mnt(q, new);
3810 // an mntns binding we'd skipped?
3811 while (p->mnt.mnt_root != q->mnt.mnt_root)
3812 p = next_mnt(skip_mnt_tree(p), old);
3824 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3826 struct mount *mnt = real_mount(m);
3827 struct mnt_namespace *ns;
3828 struct super_block *s;
3832 ns = alloc_mnt_ns(&init_user_ns, true);
3835 return ERR_CAST(ns);
3840 list_add(&mnt->mnt_list, &ns->list);
3842 err = vfs_path_lookup(m->mnt_root, m,
3843 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3848 return ERR_PTR(err);
3850 /* trade a vfsmount reference for active sb one */
3851 s = path.mnt->mnt_sb;
3852 atomic_inc(&s->s_active);
3854 /* lock the sucker */
3855 down_write(&s->s_umount);
3856 /* ... and return the root of (sub)tree on it */
3859 EXPORT_SYMBOL(mount_subtree);
3861 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3862 char __user *, type, unsigned long, flags, void __user *, data)
3869 kernel_type = copy_mount_string(type);
3870 ret = PTR_ERR(kernel_type);
3871 if (IS_ERR(kernel_type))
3874 kernel_dev = copy_mount_string(dev_name);
3875 ret = PTR_ERR(kernel_dev);
3876 if (IS_ERR(kernel_dev))
3879 options = copy_mount_options(data);
3880 ret = PTR_ERR(options);
3881 if (IS_ERR(options))
3884 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3895 #define FSMOUNT_VALID_FLAGS \
3896 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3897 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
3898 MOUNT_ATTR_NOSYMFOLLOW)
3900 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3902 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3903 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3905 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3907 unsigned int mnt_flags = 0;
3909 if (attr_flags & MOUNT_ATTR_RDONLY)
3910 mnt_flags |= MNT_READONLY;
3911 if (attr_flags & MOUNT_ATTR_NOSUID)
3912 mnt_flags |= MNT_NOSUID;
3913 if (attr_flags & MOUNT_ATTR_NODEV)
3914 mnt_flags |= MNT_NODEV;
3915 if (attr_flags & MOUNT_ATTR_NOEXEC)
3916 mnt_flags |= MNT_NOEXEC;
3917 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3918 mnt_flags |= MNT_NODIRATIME;
3919 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3920 mnt_flags |= MNT_NOSYMFOLLOW;
3926 * Create a kernel mount representation for a new, prepared superblock
3927 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3929 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3930 unsigned int, attr_flags)
3932 struct mnt_namespace *ns;
3933 struct fs_context *fc;
3935 struct path newmount;
3938 unsigned int mnt_flags = 0;
3944 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3947 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3950 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3952 switch (attr_flags & MOUNT_ATTR__ATIME) {
3953 case MOUNT_ATTR_STRICTATIME:
3955 case MOUNT_ATTR_NOATIME:
3956 mnt_flags |= MNT_NOATIME;
3958 case MOUNT_ATTR_RELATIME:
3959 mnt_flags |= MNT_RELATIME;
3970 if (f.file->f_op != &fscontext_fops)
3973 fc = f.file->private_data;
3975 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3979 /* There must be a valid superblock or we can't mount it */
3985 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3986 pr_warn("VFS: Mount too revealing\n");
3991 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3994 if (fc->sb_flags & SB_MANDLOCK)
3997 newmount.mnt = vfs_create_mount(fc);
3998 if (IS_ERR(newmount.mnt)) {
3999 ret = PTR_ERR(newmount.mnt);
4002 newmount.dentry = dget(fc->root);
4003 newmount.mnt->mnt_flags = mnt_flags;
4005 /* We've done the mount bit - now move the file context into more or
4006 * less the same state as if we'd done an fspick(). We don't want to
4007 * do any memory allocation or anything like that at this point as we
4008 * don't want to have to handle any errors incurred.
4010 vfs_clean_context(fc);
4012 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4017 mnt = real_mount(newmount.mnt);
4021 list_add(&mnt->mnt_list, &ns->list);
4022 mntget(newmount.mnt);
4024 /* Attach to an apparent O_PATH fd with a note that we need to unmount
4025 * it, not just simply put it.
4027 file = dentry_open(&newmount, O_PATH, fc->cred);
4029 dissolve_on_fput(newmount.mnt);
4030 ret = PTR_ERR(file);
4033 file->f_mode |= FMODE_NEED_UNMOUNT;
4035 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4037 fd_install(ret, file);
4042 path_put(&newmount);
4044 mutex_unlock(&fc->uapi_mutex);
4051 * Move a mount from one place to another. In combination with
4052 * fsopen()/fsmount() this is used to install a new mount and in combination
4053 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4056 * Note the flags value is a combination of MOVE_MOUNT_* flags.
4058 SYSCALL_DEFINE5(move_mount,
4059 int, from_dfd, const char __user *, from_pathname,
4060 int, to_dfd, const char __user *, to_pathname,
4061 unsigned int, flags)
4063 struct path from_path, to_path;
4064 unsigned int lflags;
4070 if (flags & ~MOVE_MOUNT__MASK)
4073 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4074 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4077 /* If someone gives a pathname, they aren't permitted to move
4078 * from an fd that requires unmount as we can't get at the flag
4079 * to clear it afterwards.
4082 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4083 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4084 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
4086 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4091 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4092 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4093 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
4095 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4099 ret = security_move_mount(&from_path, &to_path);
4103 if (flags & MOVE_MOUNT_SET_GROUP)
4104 ret = do_set_group(&from_path, &to_path);
4106 ret = do_move_mount(&from_path, &to_path,
4107 (flags & MOVE_MOUNT_BENEATH));
4112 path_put(&from_path);
4117 * Return true if path is reachable from root
4119 * namespace_sem or mount_lock is held
4121 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4122 const struct path *root)
4124 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4125 dentry = mnt->mnt_mountpoint;
4126 mnt = mnt->mnt_parent;
4128 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4131 bool path_is_under(const struct path *path1, const struct path *path2)
4134 read_seqlock_excl(&mount_lock);
4135 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4136 read_sequnlock_excl(&mount_lock);
4139 EXPORT_SYMBOL(path_is_under);
4142 * pivot_root Semantics:
4143 * Moves the root file system of the current process to the directory put_old,
4144 * makes new_root as the new root file system of the current process, and sets
4145 * root/cwd of all processes which had them on the current root to new_root.
4148 * The new_root and put_old must be directories, and must not be on the
4149 * same file system as the current process root. The put_old must be
4150 * underneath new_root, i.e. adding a non-zero number of /.. to the string
4151 * pointed to by put_old must yield the same directory as new_root. No other
4152 * file system may be mounted on put_old. After all, new_root is a mountpoint.
4154 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4155 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4156 * in this situation.
4159 * - we don't move root/cwd if they are not at the root (reason: if something
4160 * cared enough to change them, it's probably wrong to force them elsewhere)
4161 * - it's okay to pick a root that isn't the root of a file system, e.g.
4162 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4163 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4166 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4167 const char __user *, put_old)
4169 struct path new, old, root;
4170 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4171 struct mountpoint *old_mp, *root_mp;
4177 error = user_path_at(AT_FDCWD, new_root,
4178 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4182 error = user_path_at(AT_FDCWD, put_old,
4183 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4187 error = security_sb_pivotroot(&old, &new);
4191 get_fs_root(current->fs, &root);
4192 old_mp = lock_mount(&old);
4193 error = PTR_ERR(old_mp);
4198 new_mnt = real_mount(new.mnt);
4199 root_mnt = real_mount(root.mnt);
4200 old_mnt = real_mount(old.mnt);
4201 ex_parent = new_mnt->mnt_parent;
4202 root_parent = root_mnt->mnt_parent;
4203 if (IS_MNT_SHARED(old_mnt) ||
4204 IS_MNT_SHARED(ex_parent) ||
4205 IS_MNT_SHARED(root_parent))
4207 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4209 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4212 if (d_unlinked(new.dentry))
4215 if (new_mnt == root_mnt || old_mnt == root_mnt)
4216 goto out4; /* loop, on the same file system */
4218 if (!path_mounted(&root))
4219 goto out4; /* not a mountpoint */
4220 if (!mnt_has_parent(root_mnt))
4221 goto out4; /* not attached */
4222 if (!path_mounted(&new))
4223 goto out4; /* not a mountpoint */
4224 if (!mnt_has_parent(new_mnt))
4225 goto out4; /* not attached */
4226 /* make sure we can reach put_old from new_root */
4227 if (!is_path_reachable(old_mnt, old.dentry, &new))
4229 /* make certain new is below the root */
4230 if (!is_path_reachable(new_mnt, new.dentry, &root))
4233 umount_mnt(new_mnt);
4234 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
4235 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4236 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4237 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4239 /* mount old root on put_old */
4240 attach_mnt(root_mnt, old_mnt, old_mp, false);
4241 /* mount new_root on / */
4242 attach_mnt(new_mnt, root_parent, root_mp, false);
4243 mnt_add_count(root_parent, -1);
4244 touch_mnt_namespace(current->nsproxy->mnt_ns);
4245 /* A moved mount should not expire automatically */
4246 list_del_init(&new_mnt->mnt_expire);
4247 put_mountpoint(root_mp);
4248 unlock_mount_hash();
4249 chroot_fs_refs(&root, &new);
4252 unlock_mount(old_mp);
4254 mntput_no_expire(ex_parent);
4265 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4267 unsigned int flags = mnt->mnt.mnt_flags;
4269 /* flags to clear */
4270 flags &= ~kattr->attr_clr;
4271 /* flags to raise */
4272 flags |= kattr->attr_set;
4277 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4279 struct vfsmount *m = &mnt->mnt;
4280 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4282 if (!kattr->mnt_idmap)
4286 * Creating an idmapped mount with the filesystem wide idmapping
4287 * doesn't make sense so block that. We don't allow mushy semantics.
4289 if (!check_fsmapping(kattr->mnt_idmap, m->mnt_sb))
4293 * Once a mount has been idmapped we don't allow it to change its
4294 * mapping. It makes things simpler and callers can just create
4295 * another bind-mount they can idmap if they want to.
4297 if (is_idmapped_mnt(m))
4300 /* The underlying filesystem doesn't support idmapped mounts yet. */
4301 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4304 /* We're not controlling the superblock. */
4305 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4308 /* Mount has already been visible in the filesystem hierarchy. */
4309 if (!is_anon_ns(mnt->mnt_ns))
4316 * mnt_allow_writers() - check whether the attribute change allows writers
4317 * @kattr: the new mount attributes
4318 * @mnt: the mount to which @kattr will be applied
4320 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4322 * Return: true if writers need to be held, false if not
4324 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4325 const struct mount *mnt)
4327 return (!(kattr->attr_set & MNT_READONLY) ||
4328 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4332 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4337 for (m = mnt; m; m = next_mnt(m, mnt)) {
4338 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4343 err = can_idmap_mount(kattr, m);
4347 if (!mnt_allow_writers(kattr, m)) {
4348 err = mnt_hold_writers(m);
4353 if (!kattr->recurse)
4361 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4362 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4363 * mounts and needs to take care to include the first mount.
4365 for (p = mnt; p; p = next_mnt(p, mnt)) {
4366 /* If we had to hold writers unblock them. */
4367 if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4368 mnt_unhold_writers(p);
4371 * We're done once the first mount we changed got
4372 * MNT_WRITE_HOLD unset.
4381 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4383 if (!kattr->mnt_idmap)
4387 * Pairs with smp_load_acquire() in mnt_idmap().
4389 * Since we only allow a mount to change the idmapping once and
4390 * verified this in can_idmap_mount() we know that the mount has
4391 * @nop_mnt_idmap attached to it. So there's no need to drop any
4394 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4397 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4401 for (m = mnt; m; m = next_mnt(m, mnt)) {
4404 do_idmap_mount(kattr, m);
4405 flags = recalc_flags(kattr, m);
4406 WRITE_ONCE(m->mnt.mnt_flags, flags);
4408 /* If we had to hold writers unblock them. */
4409 if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4410 mnt_unhold_writers(m);
4412 if (kattr->propagation)
4413 change_mnt_propagation(m, kattr->propagation);
4414 if (!kattr->recurse)
4417 touch_mnt_namespace(mnt->mnt_ns);
4420 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4422 struct mount *mnt = real_mount(path->mnt);
4425 if (!path_mounted(path))
4428 if (kattr->mnt_userns) {
4429 struct mnt_idmap *mnt_idmap;
4431 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4432 if (IS_ERR(mnt_idmap))
4433 return PTR_ERR(mnt_idmap);
4434 kattr->mnt_idmap = mnt_idmap;
4437 if (kattr->propagation) {
4439 * Only take namespace_lock() if we're actually changing
4443 if (kattr->propagation == MS_SHARED) {
4444 err = invent_group_ids(mnt, kattr->recurse);
4455 /* Ensure that this isn't anything purely vfs internal. */
4456 if (!is_mounted(&mnt->mnt))
4460 * If this is an attached mount make sure it's located in the callers
4461 * mount namespace. If it's not don't let the caller interact with it.
4462 * If this is a detached mount make sure it has an anonymous mount
4463 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4465 if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4469 * First, we get the mount tree in a shape where we can change mount
4470 * properties without failure. If we succeeded to do so we commit all
4471 * changes and if we failed we clean up.
4473 err = mount_setattr_prepare(kattr, mnt);
4475 mount_setattr_commit(kattr, mnt);
4478 unlock_mount_hash();
4480 if (kattr->propagation) {
4482 cleanup_group_ids(mnt, NULL);
4489 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4490 struct mount_kattr *kattr, unsigned int flags)
4493 struct ns_common *ns;
4494 struct user_namespace *mnt_userns;
4497 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4501 * We currently do not support clearing an idmapped mount. If this ever
4502 * is a use-case we can revisit this but for now let's keep it simple
4505 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4508 if (attr->userns_fd > INT_MAX)
4511 f = fdget(attr->userns_fd);
4515 if (!proc_ns_file(f.file)) {
4520 ns = get_proc_ns(file_inode(f.file));
4521 if (ns->ops->type != CLONE_NEWUSER) {
4527 * The initial idmapping cannot be used to create an idmapped
4528 * mount. We use the initial idmapping as an indicator of a mount
4529 * that is not idmapped. It can simply be passed into helpers that
4530 * are aware of idmapped mounts as a convenient shortcut. A user
4531 * can just create a dedicated identity mapping to achieve the same
4534 mnt_userns = container_of(ns, struct user_namespace, ns);
4535 if (mnt_userns == &init_user_ns) {
4540 /* We're not controlling the target namespace. */
4541 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4546 kattr->mnt_userns = get_user_ns(mnt_userns);
4553 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4554 struct mount_kattr *kattr, unsigned int flags)
4556 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4558 if (flags & AT_NO_AUTOMOUNT)
4559 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4560 if (flags & AT_SYMLINK_NOFOLLOW)
4561 lookup_flags &= ~LOOKUP_FOLLOW;
4562 if (flags & AT_EMPTY_PATH)
4563 lookup_flags |= LOOKUP_EMPTY;
4565 *kattr = (struct mount_kattr) {
4566 .lookup_flags = lookup_flags,
4567 .recurse = !!(flags & AT_RECURSIVE),
4570 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4572 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4574 kattr->propagation = attr->propagation;
4576 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4579 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4580 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4583 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4584 * users wanting to transition to a different atime setting cannot
4585 * simply specify the atime setting in @attr_set, but must also
4586 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4587 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4588 * @attr_clr and that @attr_set can't have any atime bits set if
4589 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4591 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4592 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4596 * Clear all previous time settings as they are mutually
4599 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4600 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4601 case MOUNT_ATTR_RELATIME:
4602 kattr->attr_set |= MNT_RELATIME;
4604 case MOUNT_ATTR_NOATIME:
4605 kattr->attr_set |= MNT_NOATIME;
4607 case MOUNT_ATTR_STRICTATIME:
4613 if (attr->attr_set & MOUNT_ATTR__ATIME)
4617 return build_mount_idmapped(attr, usize, kattr, flags);
4620 static void finish_mount_kattr(struct mount_kattr *kattr)
4622 put_user_ns(kattr->mnt_userns);
4623 kattr->mnt_userns = NULL;
4625 if (kattr->mnt_idmap)
4626 mnt_idmap_put(kattr->mnt_idmap);
4629 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4630 unsigned int, flags, struct mount_attr __user *, uattr,
4635 struct mount_attr attr;
4636 struct mount_kattr kattr;
4638 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4640 if (flags & ~(AT_EMPTY_PATH |
4642 AT_SYMLINK_NOFOLLOW |
4646 if (unlikely(usize > PAGE_SIZE))
4648 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4654 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4658 /* Don't bother walking through the mounts if this is a nop. */
4659 if (attr.attr_set == 0 &&
4660 attr.attr_clr == 0 &&
4661 attr.propagation == 0)
4664 err = build_mount_kattr(&attr, usize, &kattr, flags);
4668 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4670 err = do_mount_setattr(&target, &kattr);
4673 finish_mount_kattr(&kattr);
4677 static void __init init_mount_tree(void)
4679 struct vfsmount *mnt;
4681 struct mnt_namespace *ns;
4684 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4686 panic("Can't create rootfs");
4688 ns = alloc_mnt_ns(&init_user_ns, false);
4690 panic("Can't allocate initial namespace");
4691 m = real_mount(mnt);
4695 list_add(&m->mnt_list, &ns->list);
4696 init_task.nsproxy->mnt_ns = ns;
4700 root.dentry = mnt->mnt_root;
4701 mnt->mnt_flags |= MNT_LOCKED;
4703 set_fs_pwd(current->fs, &root);
4704 set_fs_root(current->fs, &root);
4707 void __init mnt_init(void)
4711 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4712 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4714 mount_hashtable = alloc_large_system_hash("Mount-cache",
4715 sizeof(struct hlist_head),
4718 &m_hash_shift, &m_hash_mask, 0, 0);
4719 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4720 sizeof(struct hlist_head),
4723 &mp_hash_shift, &mp_hash_mask, 0, 0);
4725 if (!mount_hashtable || !mountpoint_hashtable)
4726 panic("Failed to allocate mount hash table\n");
4732 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4734 fs_kobj = kobject_create_and_add("fs", NULL);
4736 printk(KERN_WARNING "%s: kobj create error\n", __func__);
4742 void put_mnt_ns(struct mnt_namespace *ns)
4744 if (!refcount_dec_and_test(&ns->ns.count))
4746 drop_collected_mounts(&ns->root->mnt);
4750 struct vfsmount *kern_mount(struct file_system_type *type)
4752 struct vfsmount *mnt;
4753 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4756 * it is a longterm mount, don't release mnt until
4757 * we unmount before file sys is unregistered
4759 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4763 EXPORT_SYMBOL_GPL(kern_mount);
4765 void kern_unmount(struct vfsmount *mnt)
4767 /* release long term mount so mount point can be released */
4769 mnt_make_shortterm(mnt);
4770 synchronize_rcu(); /* yecchhh... */
4774 EXPORT_SYMBOL(kern_unmount);
4776 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4780 for (i = 0; i < num; i++)
4781 mnt_make_shortterm(mnt[i]);
4782 synchronize_rcu_expedited();
4783 for (i = 0; i < num; i++)
4786 EXPORT_SYMBOL(kern_unmount_array);
4788 bool our_mnt(struct vfsmount *mnt)
4790 return check_mnt(real_mount(mnt));
4793 bool current_chrooted(void)
4795 /* Does the current process have a non-standard root */
4796 struct path ns_root;
4797 struct path fs_root;
4800 /* Find the namespace root */
4801 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
4802 ns_root.dentry = ns_root.mnt->mnt_root;
4804 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4807 get_fs_root(current->fs, &fs_root);
4809 chrooted = !path_equal(&fs_root, &ns_root);
4817 static bool mnt_already_visible(struct mnt_namespace *ns,
4818 const struct super_block *sb,
4821 int new_flags = *new_mnt_flags;
4823 bool visible = false;
4825 down_read(&namespace_sem);
4827 list_for_each_entry(mnt, &ns->list, mnt_list) {
4828 struct mount *child;
4831 if (mnt_is_cursor(mnt))
4834 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4837 /* This mount is not fully visible if it's root directory
4838 * is not the root directory of the filesystem.
4840 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4843 /* A local view of the mount flags */
4844 mnt_flags = mnt->mnt.mnt_flags;
4846 /* Don't miss readonly hidden in the superblock flags */
4847 if (sb_rdonly(mnt->mnt.mnt_sb))
4848 mnt_flags |= MNT_LOCK_READONLY;
4850 /* Verify the mount flags are equal to or more permissive
4851 * than the proposed new mount.
4853 if ((mnt_flags & MNT_LOCK_READONLY) &&
4854 !(new_flags & MNT_READONLY))
4856 if ((mnt_flags & MNT_LOCK_ATIME) &&
4857 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4860 /* This mount is not fully visible if there are any
4861 * locked child mounts that cover anything except for
4862 * empty directories.
4864 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4865 struct inode *inode = child->mnt_mountpoint->d_inode;
4866 /* Only worry about locked mounts */
4867 if (!(child->mnt.mnt_flags & MNT_LOCKED))
4869 /* Is the directory permanetly empty? */
4870 if (!is_empty_dir_inode(inode))
4873 /* Preserve the locked attributes */
4874 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4882 up_read(&namespace_sem);
4886 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4888 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4889 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4890 unsigned long s_iflags;
4892 if (ns->user_ns == &init_user_ns)
4895 /* Can this filesystem be too revealing? */
4896 s_iflags = sb->s_iflags;
4897 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4900 if ((s_iflags & required_iflags) != required_iflags) {
4901 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4906 return !mnt_already_visible(ns, sb, new_mnt_flags);
4909 bool mnt_may_suid(struct vfsmount *mnt)
4912 * Foreign mounts (accessed via fchdir or through /proc
4913 * symlinks) are always treated as if they are nosuid. This
4914 * prevents namespaces from trusting potentially unsafe
4915 * suid/sgid bits, file caps, or security labels that originate
4916 * in other namespaces.
4918 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4919 current_in_userns(mnt->mnt_sb->s_user_ns);
4922 static struct ns_common *mntns_get(struct task_struct *task)
4924 struct ns_common *ns = NULL;
4925 struct nsproxy *nsproxy;
4928 nsproxy = task->nsproxy;
4930 ns = &nsproxy->mnt_ns->ns;
4931 get_mnt_ns(to_mnt_ns(ns));
4938 static void mntns_put(struct ns_common *ns)
4940 put_mnt_ns(to_mnt_ns(ns));
4943 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4945 struct nsproxy *nsproxy = nsset->nsproxy;
4946 struct fs_struct *fs = nsset->fs;
4947 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4948 struct user_namespace *user_ns = nsset->cred->user_ns;
4952 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4953 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4954 !ns_capable(user_ns, CAP_SYS_ADMIN))
4957 if (is_anon_ns(mnt_ns))
4964 old_mnt_ns = nsproxy->mnt_ns;
4965 nsproxy->mnt_ns = mnt_ns;
4968 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4969 "/", LOOKUP_DOWN, &root);
4971 /* revert to old namespace */
4972 nsproxy->mnt_ns = old_mnt_ns;
4977 put_mnt_ns(old_mnt_ns);
4979 /* Update the pwd and root */
4980 set_fs_pwd(fs, &root);
4981 set_fs_root(fs, &root);
4987 static struct user_namespace *mntns_owner(struct ns_common *ns)
4989 return to_mnt_ns(ns)->user_ns;
4992 const struct proc_ns_operations mntns_operations = {
4994 .type = CLONE_NEWNS,
4997 .install = mntns_install,
4998 .owner = mntns_owner,
5001 #ifdef CONFIG_SYSCTL
5002 static struct ctl_table fs_namespace_sysctls[] = {
5004 .procname = "mount-max",
5005 .data = &sysctl_mount_max,
5006 .maxlen = sizeof(unsigned int),
5008 .proc_handler = proc_dointvec_minmax,
5009 .extra1 = SYSCTL_ONE,
5014 static int __init init_fs_namespace_sysctls(void)
5016 register_sysctl_init("fs", fs_namespace_sysctls);
5019 fs_initcall(init_fs_namespace_sysctls);
5021 #endif /* CONFIG_SYSCTL */