Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
[linux-2.6-microblaze.git] / fs / namei.c
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * Some corrections by tytso.
9  */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <linux/init_task.h>
40 #include <linux/uaccess.h>
41
42 #include "internal.h"
43 #include "mount.h"
44
45 /* [Feb-1997 T. Schoebel-Theuer]
46  * Fundamental changes in the pathname lookup mechanisms (namei)
47  * were necessary because of omirr.  The reason is that omirr needs
48  * to know the _real_ pathname, not the user-supplied one, in case
49  * of symlinks (and also when transname replacements occur).
50  *
51  * The new code replaces the old recursive symlink resolution with
52  * an iterative one (in case of non-nested symlink chains).  It does
53  * this with calls to <fs>_follow_link().
54  * As a side effect, dir_namei(), _namei() and follow_link() are now 
55  * replaced with a single function lookup_dentry() that can handle all 
56  * the special cases of the former code.
57  *
58  * With the new dcache, the pathname is stored at each inode, at least as
59  * long as the refcount of the inode is positive.  As a side effect, the
60  * size of the dcache depends on the inode cache and thus is dynamic.
61  *
62  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
63  * resolution to correspond with current state of the code.
64  *
65  * Note that the symlink resolution is not *completely* iterative.
66  * There is still a significant amount of tail- and mid- recursion in
67  * the algorithm.  Also, note that <fs>_readlink() is not used in
68  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
69  * may return different results than <fs>_follow_link().  Many virtual
70  * filesystems (including /proc) exhibit this behavior.
71  */
72
73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
74  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
75  * and the name already exists in form of a symlink, try to create the new
76  * name indicated by the symlink. The old code always complained that the
77  * name already exists, due to not following the symlink even if its target
78  * is nonexistent.  The new semantics affects also mknod() and link() when
79  * the name is a symlink pointing to a non-existent name.
80  *
81  * I don't know which semantics is the right one, since I have no access
82  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
83  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
84  * "old" one. Personally, I think the new semantics is much more logical.
85  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
86  * file does succeed in both HP-UX and SunOs, but not in Solaris
87  * and in the old Linux semantics.
88  */
89
90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
91  * semantics.  See the comments in "open_namei" and "do_link" below.
92  *
93  * [10-Sep-98 Alan Modra] Another symlink change.
94  */
95
96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
97  *      inside the path - always follow.
98  *      in the last component in creation/removal/renaming - never follow.
99  *      if LOOKUP_FOLLOW passed - follow.
100  *      if the pathname has trailing slashes - follow.
101  *      otherwise - don't follow.
102  * (applied in that order).
103  *
104  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
105  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
106  * During the 2.4 we need to fix the userland stuff depending on it -
107  * hopefully we will be able to get rid of that wart in 2.5. So far only
108  * XEmacs seems to be relying on it...
109  */
110 /*
111  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
112  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
113  * any extra contention...
114  */
115
116 /* In order to reduce some races, while at the same time doing additional
117  * checking and hopefully speeding things up, we copy filenames to the
118  * kernel data space before using them..
119  *
120  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
121  * PATH_MAX includes the nul terminator --RR.
122  */
123
124 #define EMBEDDED_NAME_MAX       (PATH_MAX - offsetof(struct filename, iname))
125
126 struct filename *
127 getname_flags(const char __user *filename, int flags, int *empty)
128 {
129         struct filename *result;
130         char *kname;
131         int len;
132
133         result = audit_reusename(filename);
134         if (result)
135                 return result;
136
137         result = __getname();
138         if (unlikely(!result))
139                 return ERR_PTR(-ENOMEM);
140
141         /*
142          * First, try to embed the struct filename inside the names_cache
143          * allocation
144          */
145         kname = (char *)result->iname;
146         result->name = kname;
147
148         len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
149         if (unlikely(len < 0)) {
150                 __putname(result);
151                 return ERR_PTR(len);
152         }
153
154         /*
155          * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
156          * separate struct filename so we can dedicate the entire
157          * names_cache allocation for the pathname, and re-do the copy from
158          * userland.
159          */
160         if (unlikely(len == EMBEDDED_NAME_MAX)) {
161                 const size_t size = offsetof(struct filename, iname[1]);
162                 kname = (char *)result;
163
164                 /*
165                  * size is chosen that way we to guarantee that
166                  * result->iname[0] is within the same object and that
167                  * kname can't be equal to result->iname, no matter what.
168                  */
169                 result = kzalloc(size, GFP_KERNEL);
170                 if (unlikely(!result)) {
171                         __putname(kname);
172                         return ERR_PTR(-ENOMEM);
173                 }
174                 result->name = kname;
175                 len = strncpy_from_user(kname, filename, PATH_MAX);
176                 if (unlikely(len < 0)) {
177                         __putname(kname);
178                         kfree(result);
179                         return ERR_PTR(len);
180                 }
181                 if (unlikely(len == PATH_MAX)) {
182                         __putname(kname);
183                         kfree(result);
184                         return ERR_PTR(-ENAMETOOLONG);
185                 }
186         }
187
188         result->refcnt = 1;
189         /* The empty path is special. */
190         if (unlikely(!len)) {
191                 if (empty)
192                         *empty = 1;
193                 if (!(flags & LOOKUP_EMPTY)) {
194                         putname(result);
195                         return ERR_PTR(-ENOENT);
196                 }
197         }
198
199         result->uptr = filename;
200         result->aname = NULL;
201         audit_getname(result);
202         return result;
203 }
204
205 struct filename *
206 getname(const char __user * filename)
207 {
208         return getname_flags(filename, 0, NULL);
209 }
210
211 struct filename *
212 getname_kernel(const char * filename)
213 {
214         struct filename *result;
215         int len = strlen(filename) + 1;
216
217         result = __getname();
218         if (unlikely(!result))
219                 return ERR_PTR(-ENOMEM);
220
221         if (len <= EMBEDDED_NAME_MAX) {
222                 result->name = (char *)result->iname;
223         } else if (len <= PATH_MAX) {
224                 struct filename *tmp;
225
226                 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
227                 if (unlikely(!tmp)) {
228                         __putname(result);
229                         return ERR_PTR(-ENOMEM);
230                 }
231                 tmp->name = (char *)result;
232                 result = tmp;
233         } else {
234                 __putname(result);
235                 return ERR_PTR(-ENAMETOOLONG);
236         }
237         memcpy((char *)result->name, filename, len);
238         result->uptr = NULL;
239         result->aname = NULL;
240         result->refcnt = 1;
241         audit_getname(result);
242
243         return result;
244 }
245
246 void putname(struct filename *name)
247 {
248         BUG_ON(name->refcnt <= 0);
249
250         if (--name->refcnt > 0)
251                 return;
252
253         if (name->name != name->iname) {
254                 __putname(name->name);
255                 kfree(name);
256         } else
257                 __putname(name);
258 }
259
260 static int check_acl(struct inode *inode, int mask)
261 {
262 #ifdef CONFIG_FS_POSIX_ACL
263         struct posix_acl *acl;
264
265         if (mask & MAY_NOT_BLOCK) {
266                 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
267                 if (!acl)
268                         return -EAGAIN;
269                 /* no ->get_acl() calls in RCU mode... */
270                 if (is_uncached_acl(acl))
271                         return -ECHILD;
272                 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
273         }
274
275         acl = get_acl(inode, ACL_TYPE_ACCESS);
276         if (IS_ERR(acl))
277                 return PTR_ERR(acl);
278         if (acl) {
279                 int error = posix_acl_permission(inode, acl, mask);
280                 posix_acl_release(acl);
281                 return error;
282         }
283 #endif
284
285         return -EAGAIN;
286 }
287
288 /*
289  * This does the basic permission checking
290  */
291 static int acl_permission_check(struct inode *inode, int mask)
292 {
293         unsigned int mode = inode->i_mode;
294
295         if (likely(uid_eq(current_fsuid(), inode->i_uid)))
296                 mode >>= 6;
297         else {
298                 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
299                         int error = check_acl(inode, mask);
300                         if (error != -EAGAIN)
301                                 return error;
302                 }
303
304                 if (in_group_p(inode->i_gid))
305                         mode >>= 3;
306         }
307
308         /*
309          * If the DACs are ok we don't need any capability check.
310          */
311         if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
312                 return 0;
313         return -EACCES;
314 }
315
316 /**
317  * generic_permission -  check for access rights on a Posix-like filesystem
318  * @inode:      inode to check access rights for
319  * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
320  *
321  * Used to check for read/write/execute permissions on a file.
322  * We use "fsuid" for this, letting us set arbitrary permissions
323  * for filesystem access without changing the "normal" uids which
324  * are used for other things.
325  *
326  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
327  * request cannot be satisfied (eg. requires blocking or too much complexity).
328  * It would then be called again in ref-walk mode.
329  */
330 int generic_permission(struct inode *inode, int mask)
331 {
332         int ret;
333
334         /*
335          * Do the basic permission checks.
336          */
337         ret = acl_permission_check(inode, mask);
338         if (ret != -EACCES)
339                 return ret;
340
341         if (S_ISDIR(inode->i_mode)) {
342                 /* DACs are overridable for directories */
343                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
344                         return 0;
345                 if (!(mask & MAY_WRITE))
346                         if (capable_wrt_inode_uidgid(inode,
347                                                      CAP_DAC_READ_SEARCH))
348                                 return 0;
349                 return -EACCES;
350         }
351         /*
352          * Read/write DACs are always overridable.
353          * Executable DACs are overridable when there is
354          * at least one exec bit set.
355          */
356         if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
357                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
358                         return 0;
359
360         /*
361          * Searching includes executable on directories, else just read.
362          */
363         mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
364         if (mask == MAY_READ)
365                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
366                         return 0;
367
368         return -EACCES;
369 }
370 EXPORT_SYMBOL(generic_permission);
371
372 /*
373  * We _really_ want to just do "generic_permission()" without
374  * even looking at the inode->i_op values. So we keep a cache
375  * flag in inode->i_opflags, that says "this has not special
376  * permission function, use the fast case".
377  */
378 static inline int do_inode_permission(struct inode *inode, int mask)
379 {
380         if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
381                 if (likely(inode->i_op->permission))
382                         return inode->i_op->permission(inode, mask);
383
384                 /* This gets set once for the inode lifetime */
385                 spin_lock(&inode->i_lock);
386                 inode->i_opflags |= IOP_FASTPERM;
387                 spin_unlock(&inode->i_lock);
388         }
389         return generic_permission(inode, mask);
390 }
391
392 /**
393  * __inode_permission - Check for access rights to a given inode
394  * @inode: Inode to check permission on
395  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
396  *
397  * Check for read/write/execute permissions on an inode.
398  *
399  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
400  *
401  * This does not check for a read-only file system.  You probably want
402  * inode_permission().
403  */
404 int __inode_permission(struct inode *inode, int mask)
405 {
406         int retval;
407
408         if (unlikely(mask & MAY_WRITE)) {
409                 /*
410                  * Nobody gets write access to an immutable file.
411                  */
412                 if (IS_IMMUTABLE(inode))
413                         return -EPERM;
414
415                 /*
416                  * Updating mtime will likely cause i_uid and i_gid to be
417                  * written back improperly if their true value is unknown
418                  * to the vfs.
419                  */
420                 if (HAS_UNMAPPED_ID(inode))
421                         return -EACCES;
422         }
423
424         retval = do_inode_permission(inode, mask);
425         if (retval)
426                 return retval;
427
428         retval = devcgroup_inode_permission(inode, mask);
429         if (retval)
430                 return retval;
431
432         return security_inode_permission(inode, mask);
433 }
434 EXPORT_SYMBOL(__inode_permission);
435
436 /**
437  * sb_permission - Check superblock-level permissions
438  * @sb: Superblock of inode to check permission on
439  * @inode: Inode to check permission on
440  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
441  *
442  * Separate out file-system wide checks from inode-specific permission checks.
443  */
444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
445 {
446         if (unlikely(mask & MAY_WRITE)) {
447                 umode_t mode = inode->i_mode;
448
449                 /* Nobody gets write access to a read-only fs. */
450                 if ((sb->s_flags & MS_RDONLY) &&
451                     (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452                         return -EROFS;
453         }
454         return 0;
455 }
456
457 /**
458  * inode_permission - Check for access rights to a given inode
459  * @inode: Inode to check permission on
460  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461  *
462  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
463  * this, letting us set arbitrary permissions for filesystem access without
464  * changing the "normal" UIDs which are used for other things.
465  *
466  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467  */
468 int inode_permission(struct inode *inode, int mask)
469 {
470         int retval;
471
472         retval = sb_permission(inode->i_sb, inode, mask);
473         if (retval)
474                 return retval;
475         return __inode_permission(inode, mask);
476 }
477 EXPORT_SYMBOL(inode_permission);
478
479 /**
480  * path_get - get a reference to a path
481  * @path: path to get the reference to
482  *
483  * Given a path increment the reference count to the dentry and the vfsmount.
484  */
485 void path_get(const struct path *path)
486 {
487         mntget(path->mnt);
488         dget(path->dentry);
489 }
490 EXPORT_SYMBOL(path_get);
491
492 /**
493  * path_put - put a reference to a path
494  * @path: path to put the reference to
495  *
496  * Given a path decrement the reference count to the dentry and the vfsmount.
497  */
498 void path_put(const struct path *path)
499 {
500         dput(path->dentry);
501         mntput(path->mnt);
502 }
503 EXPORT_SYMBOL(path_put);
504
505 #define EMBEDDED_LEVELS 2
506 struct nameidata {
507         struct path     path;
508         struct qstr     last;
509         struct path     root;
510         struct inode    *inode; /* path.dentry.d_inode */
511         unsigned int    flags;
512         unsigned        seq, m_seq;
513         int             last_type;
514         unsigned        depth;
515         int             total_link_count;
516         struct saved {
517                 struct path link;
518                 struct delayed_call done;
519                 const char *name;
520                 unsigned seq;
521         } *stack, internal[EMBEDDED_LEVELS];
522         struct filename *name;
523         struct nameidata *saved;
524         struct inode    *link_inode;
525         unsigned        root_seq;
526         int             dfd;
527 };
528
529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 {
531         struct nameidata *old = current->nameidata;
532         p->stack = p->internal;
533         p->dfd = dfd;
534         p->name = name;
535         p->total_link_count = old ? old->total_link_count : 0;
536         p->saved = old;
537         current->nameidata = p;
538 }
539
540 static void restore_nameidata(void)
541 {
542         struct nameidata *now = current->nameidata, *old = now->saved;
543
544         current->nameidata = old;
545         if (old)
546                 old->total_link_count = now->total_link_count;
547         if (now->stack != now->internal)
548                 kfree(now->stack);
549 }
550
551 static int __nd_alloc_stack(struct nameidata *nd)
552 {
553         struct saved *p;
554
555         if (nd->flags & LOOKUP_RCU) {
556                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557                                   GFP_ATOMIC);
558                 if (unlikely(!p))
559                         return -ECHILD;
560         } else {
561                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562                                   GFP_KERNEL);
563                 if (unlikely(!p))
564                         return -ENOMEM;
565         }
566         memcpy(p, nd->internal, sizeof(nd->internal));
567         nd->stack = p;
568         return 0;
569 }
570
571 /**
572  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573  * @path: nameidate to verify
574  *
575  * Rename can sometimes move a file or directory outside of a bind
576  * mount, path_connected allows those cases to be detected.
577  */
578 static bool path_connected(const struct path *path)
579 {
580         struct vfsmount *mnt = path->mnt;
581
582         /* Only bind mounts can have disconnected paths */
583         if (mnt->mnt_root == mnt->mnt_sb->s_root)
584                 return true;
585
586         return is_subdir(path->dentry, mnt->mnt_root);
587 }
588
589 static inline int nd_alloc_stack(struct nameidata *nd)
590 {
591         if (likely(nd->depth != EMBEDDED_LEVELS))
592                 return 0;
593         if (likely(nd->stack != nd->internal))
594                 return 0;
595         return __nd_alloc_stack(nd);
596 }
597
598 static void drop_links(struct nameidata *nd)
599 {
600         int i = nd->depth;
601         while (i--) {
602                 struct saved *last = nd->stack + i;
603                 do_delayed_call(&last->done);
604                 clear_delayed_call(&last->done);
605         }
606 }
607
608 static void terminate_walk(struct nameidata *nd)
609 {
610         drop_links(nd);
611         if (!(nd->flags & LOOKUP_RCU)) {
612                 int i;
613                 path_put(&nd->path);
614                 for (i = 0; i < nd->depth; i++)
615                         path_put(&nd->stack[i].link);
616                 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
617                         path_put(&nd->root);
618                         nd->root.mnt = NULL;
619                 }
620         } else {
621                 nd->flags &= ~LOOKUP_RCU;
622                 if (!(nd->flags & LOOKUP_ROOT))
623                         nd->root.mnt = NULL;
624                 rcu_read_unlock();
625         }
626         nd->depth = 0;
627 }
628
629 /* path_put is needed afterwards regardless of success or failure */
630 static bool legitimize_path(struct nameidata *nd,
631                             struct path *path, unsigned seq)
632 {
633         int res = __legitimize_mnt(path->mnt, nd->m_seq);
634         if (unlikely(res)) {
635                 if (res > 0)
636                         path->mnt = NULL;
637                 path->dentry = NULL;
638                 return false;
639         }
640         if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
641                 path->dentry = NULL;
642                 return false;
643         }
644         return !read_seqcount_retry(&path->dentry->d_seq, seq);
645 }
646
647 static bool legitimize_links(struct nameidata *nd)
648 {
649         int i;
650         for (i = 0; i < nd->depth; i++) {
651                 struct saved *last = nd->stack + i;
652                 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
653                         drop_links(nd);
654                         nd->depth = i + 1;
655                         return false;
656                 }
657         }
658         return true;
659 }
660
661 /*
662  * Path walking has 2 modes, rcu-walk and ref-walk (see
663  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
664  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
665  * normal reference counts on dentries and vfsmounts to transition to ref-walk
666  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
667  * got stuck, so ref-walk may continue from there. If this is not successful
668  * (eg. a seqcount has changed), then failure is returned and it's up to caller
669  * to restart the path walk from the beginning in ref-walk mode.
670  */
671
672 /**
673  * unlazy_walk - try to switch to ref-walk mode.
674  * @nd: nameidata pathwalk data
675  * Returns: 0 on success, -ECHILD on failure
676  *
677  * unlazy_walk attempts to legitimize the current nd->path and nd->root
678  * for ref-walk mode.
679  * Must be called from rcu-walk context.
680  * Nothing should touch nameidata between unlazy_walk() failure and
681  * terminate_walk().
682  */
683 static int unlazy_walk(struct nameidata *nd)
684 {
685         struct dentry *parent = nd->path.dentry;
686
687         BUG_ON(!(nd->flags & LOOKUP_RCU));
688
689         nd->flags &= ~LOOKUP_RCU;
690         if (unlikely(!legitimize_links(nd)))
691                 goto out2;
692         if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
693                 goto out1;
694         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
695                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
696                         goto out;
697         }
698         rcu_read_unlock();
699         BUG_ON(nd->inode != parent->d_inode);
700         return 0;
701
702 out2:
703         nd->path.mnt = NULL;
704         nd->path.dentry = NULL;
705 out1:
706         if (!(nd->flags & LOOKUP_ROOT))
707                 nd->root.mnt = NULL;
708 out:
709         rcu_read_unlock();
710         return -ECHILD;
711 }
712
713 /**
714  * unlazy_child - try to switch to ref-walk mode.
715  * @nd: nameidata pathwalk data
716  * @dentry: child of nd->path.dentry
717  * @seq: seq number to check dentry against
718  * Returns: 0 on success, -ECHILD on failure
719  *
720  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
721  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
722  * @nd.  Must be called from rcu-walk context.
723  * Nothing should touch nameidata between unlazy_child() failure and
724  * terminate_walk().
725  */
726 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
727 {
728         BUG_ON(!(nd->flags & LOOKUP_RCU));
729
730         nd->flags &= ~LOOKUP_RCU;
731         if (unlikely(!legitimize_links(nd)))
732                 goto out2;
733         if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
734                 goto out2;
735         if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
736                 goto out1;
737
738         /*
739          * We need to move both the parent and the dentry from the RCU domain
740          * to be properly refcounted. And the sequence number in the dentry
741          * validates *both* dentry counters, since we checked the sequence
742          * number of the parent after we got the child sequence number. So we
743          * know the parent must still be valid if the child sequence number is
744          */
745         if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
746                 goto out;
747         if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
748                 rcu_read_unlock();
749                 dput(dentry);
750                 goto drop_root_mnt;
751         }
752         /*
753          * Sequence counts matched. Now make sure that the root is
754          * still valid and get it if required.
755          */
756         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
757                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
758                         rcu_read_unlock();
759                         dput(dentry);
760                         return -ECHILD;
761                 }
762         }
763
764         rcu_read_unlock();
765         return 0;
766
767 out2:
768         nd->path.mnt = NULL;
769 out1:
770         nd->path.dentry = NULL;
771 out:
772         rcu_read_unlock();
773 drop_root_mnt:
774         if (!(nd->flags & LOOKUP_ROOT))
775                 nd->root.mnt = NULL;
776         return -ECHILD;
777 }
778
779 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
780 {
781         if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
782                 return dentry->d_op->d_revalidate(dentry, flags);
783         else
784                 return 1;
785 }
786
787 /**
788  * complete_walk - successful completion of path walk
789  * @nd:  pointer nameidata
790  *
791  * If we had been in RCU mode, drop out of it and legitimize nd->path.
792  * Revalidate the final result, unless we'd already done that during
793  * the path walk or the filesystem doesn't ask for it.  Return 0 on
794  * success, -error on failure.  In case of failure caller does not
795  * need to drop nd->path.
796  */
797 static int complete_walk(struct nameidata *nd)
798 {
799         struct dentry *dentry = nd->path.dentry;
800         int status;
801
802         if (nd->flags & LOOKUP_RCU) {
803                 if (!(nd->flags & LOOKUP_ROOT))
804                         nd->root.mnt = NULL;
805                 if (unlikely(unlazy_walk(nd)))
806                         return -ECHILD;
807         }
808
809         if (likely(!(nd->flags & LOOKUP_JUMPED)))
810                 return 0;
811
812         if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
813                 return 0;
814
815         status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
816         if (status > 0)
817                 return 0;
818
819         if (!status)
820                 status = -ESTALE;
821
822         return status;
823 }
824
825 static void set_root(struct nameidata *nd)
826 {
827         struct fs_struct *fs = current->fs;
828
829         if (nd->flags & LOOKUP_RCU) {
830                 unsigned seq;
831
832                 do {
833                         seq = read_seqcount_begin(&fs->seq);
834                         nd->root = fs->root;
835                         nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
836                 } while (read_seqcount_retry(&fs->seq, seq));
837         } else {
838                 get_fs_root(fs, &nd->root);
839         }
840 }
841
842 static void path_put_conditional(struct path *path, struct nameidata *nd)
843 {
844         dput(path->dentry);
845         if (path->mnt != nd->path.mnt)
846                 mntput(path->mnt);
847 }
848
849 static inline void path_to_nameidata(const struct path *path,
850                                         struct nameidata *nd)
851 {
852         if (!(nd->flags & LOOKUP_RCU)) {
853                 dput(nd->path.dentry);
854                 if (nd->path.mnt != path->mnt)
855                         mntput(nd->path.mnt);
856         }
857         nd->path.mnt = path->mnt;
858         nd->path.dentry = path->dentry;
859 }
860
861 static int nd_jump_root(struct nameidata *nd)
862 {
863         if (nd->flags & LOOKUP_RCU) {
864                 struct dentry *d;
865                 nd->path = nd->root;
866                 d = nd->path.dentry;
867                 nd->inode = d->d_inode;
868                 nd->seq = nd->root_seq;
869                 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
870                         return -ECHILD;
871         } else {
872                 path_put(&nd->path);
873                 nd->path = nd->root;
874                 path_get(&nd->path);
875                 nd->inode = nd->path.dentry->d_inode;
876         }
877         nd->flags |= LOOKUP_JUMPED;
878         return 0;
879 }
880
881 /*
882  * Helper to directly jump to a known parsed path from ->get_link,
883  * caller must have taken a reference to path beforehand.
884  */
885 void nd_jump_link(struct path *path)
886 {
887         struct nameidata *nd = current->nameidata;
888         path_put(&nd->path);
889
890         nd->path = *path;
891         nd->inode = nd->path.dentry->d_inode;
892         nd->flags |= LOOKUP_JUMPED;
893 }
894
895 static inline void put_link(struct nameidata *nd)
896 {
897         struct saved *last = nd->stack + --nd->depth;
898         do_delayed_call(&last->done);
899         if (!(nd->flags & LOOKUP_RCU))
900                 path_put(&last->link);
901 }
902
903 int sysctl_protected_symlinks __read_mostly = 0;
904 int sysctl_protected_hardlinks __read_mostly = 0;
905
906 /**
907  * may_follow_link - Check symlink following for unsafe situations
908  * @nd: nameidata pathwalk data
909  *
910  * In the case of the sysctl_protected_symlinks sysctl being enabled,
911  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
912  * in a sticky world-writable directory. This is to protect privileged
913  * processes from failing races against path names that may change out
914  * from under them by way of other users creating malicious symlinks.
915  * It will permit symlinks to be followed only when outside a sticky
916  * world-writable directory, or when the uid of the symlink and follower
917  * match, or when the directory owner matches the symlink's owner.
918  *
919  * Returns 0 if following the symlink is allowed, -ve on error.
920  */
921 static inline int may_follow_link(struct nameidata *nd)
922 {
923         const struct inode *inode;
924         const struct inode *parent;
925         kuid_t puid;
926
927         if (!sysctl_protected_symlinks)
928                 return 0;
929
930         /* Allowed if owner and follower match. */
931         inode = nd->link_inode;
932         if (uid_eq(current_cred()->fsuid, inode->i_uid))
933                 return 0;
934
935         /* Allowed if parent directory not sticky and world-writable. */
936         parent = nd->inode;
937         if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
938                 return 0;
939
940         /* Allowed if parent directory and link owner match. */
941         puid = parent->i_uid;
942         if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
943                 return 0;
944
945         if (nd->flags & LOOKUP_RCU)
946                 return -ECHILD;
947
948         audit_log_link_denied("follow_link", &nd->stack[0].link);
949         return -EACCES;
950 }
951
952 /**
953  * safe_hardlink_source - Check for safe hardlink conditions
954  * @inode: the source inode to hardlink from
955  *
956  * Return false if at least one of the following conditions:
957  *    - inode is not a regular file
958  *    - inode is setuid
959  *    - inode is setgid and group-exec
960  *    - access failure for read and write
961  *
962  * Otherwise returns true.
963  */
964 static bool safe_hardlink_source(struct inode *inode)
965 {
966         umode_t mode = inode->i_mode;
967
968         /* Special files should not get pinned to the filesystem. */
969         if (!S_ISREG(mode))
970                 return false;
971
972         /* Setuid files should not get pinned to the filesystem. */
973         if (mode & S_ISUID)
974                 return false;
975
976         /* Executable setgid files should not get pinned to the filesystem. */
977         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
978                 return false;
979
980         /* Hardlinking to unreadable or unwritable sources is dangerous. */
981         if (inode_permission(inode, MAY_READ | MAY_WRITE))
982                 return false;
983
984         return true;
985 }
986
987 /**
988  * may_linkat - Check permissions for creating a hardlink
989  * @link: the source to hardlink from
990  *
991  * Block hardlink when all of:
992  *  - sysctl_protected_hardlinks enabled
993  *  - fsuid does not match inode
994  *  - hardlink source is unsafe (see safe_hardlink_source() above)
995  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
996  *
997  * Returns 0 if successful, -ve on error.
998  */
999 static int may_linkat(struct path *link)
1000 {
1001         struct inode *inode;
1002
1003         if (!sysctl_protected_hardlinks)
1004                 return 0;
1005
1006         inode = link->dentry->d_inode;
1007
1008         /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1009          * otherwise, it must be a safe source.
1010          */
1011         if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
1012                 return 0;
1013
1014         audit_log_link_denied("linkat", link);
1015         return -EPERM;
1016 }
1017
1018 static __always_inline
1019 const char *get_link(struct nameidata *nd)
1020 {
1021         struct saved *last = nd->stack + nd->depth - 1;
1022         struct dentry *dentry = last->link.dentry;
1023         struct inode *inode = nd->link_inode;
1024         int error;
1025         const char *res;
1026
1027         if (!(nd->flags & LOOKUP_RCU)) {
1028                 touch_atime(&last->link);
1029                 cond_resched();
1030         } else if (atime_needs_update_rcu(&last->link, inode)) {
1031                 if (unlikely(unlazy_walk(nd)))
1032                         return ERR_PTR(-ECHILD);
1033                 touch_atime(&last->link);
1034         }
1035
1036         error = security_inode_follow_link(dentry, inode,
1037                                            nd->flags & LOOKUP_RCU);
1038         if (unlikely(error))
1039                 return ERR_PTR(error);
1040
1041         nd->last_type = LAST_BIND;
1042         res = inode->i_link;
1043         if (!res) {
1044                 const char * (*get)(struct dentry *, struct inode *,
1045                                 struct delayed_call *);
1046                 get = inode->i_op->get_link;
1047                 if (nd->flags & LOOKUP_RCU) {
1048                         res = get(NULL, inode, &last->done);
1049                         if (res == ERR_PTR(-ECHILD)) {
1050                                 if (unlikely(unlazy_walk(nd)))
1051                                         return ERR_PTR(-ECHILD);
1052                                 res = get(dentry, inode, &last->done);
1053                         }
1054                 } else {
1055                         res = get(dentry, inode, &last->done);
1056                 }
1057                 if (IS_ERR_OR_NULL(res))
1058                         return res;
1059         }
1060         if (*res == '/') {
1061                 if (!nd->root.mnt)
1062                         set_root(nd);
1063                 if (unlikely(nd_jump_root(nd)))
1064                         return ERR_PTR(-ECHILD);
1065                 while (unlikely(*++res == '/'))
1066                         ;
1067         }
1068         if (!*res)
1069                 res = NULL;
1070         return res;
1071 }
1072
1073 /*
1074  * follow_up - Find the mountpoint of path's vfsmount
1075  *
1076  * Given a path, find the mountpoint of its source file system.
1077  * Replace @path with the path of the mountpoint in the parent mount.
1078  * Up is towards /.
1079  *
1080  * Return 1 if we went up a level and 0 if we were already at the
1081  * root.
1082  */
1083 int follow_up(struct path *path)
1084 {
1085         struct mount *mnt = real_mount(path->mnt);
1086         struct mount *parent;
1087         struct dentry *mountpoint;
1088
1089         read_seqlock_excl(&mount_lock);
1090         parent = mnt->mnt_parent;
1091         if (parent == mnt) {
1092                 read_sequnlock_excl(&mount_lock);
1093                 return 0;
1094         }
1095         mntget(&parent->mnt);
1096         mountpoint = dget(mnt->mnt_mountpoint);
1097         read_sequnlock_excl(&mount_lock);
1098         dput(path->dentry);
1099         path->dentry = mountpoint;
1100         mntput(path->mnt);
1101         path->mnt = &parent->mnt;
1102         return 1;
1103 }
1104 EXPORT_SYMBOL(follow_up);
1105
1106 /*
1107  * Perform an automount
1108  * - return -EISDIR to tell follow_managed() to stop and return the path we
1109  *   were called with.
1110  */
1111 static int follow_automount(struct path *path, struct nameidata *nd,
1112                             bool *need_mntput)
1113 {
1114         struct vfsmount *mnt;
1115         int err;
1116
1117         if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1118                 return -EREMOTE;
1119
1120         /* We don't want to mount if someone's just doing a stat -
1121          * unless they're stat'ing a directory and appended a '/' to
1122          * the name.
1123          *
1124          * We do, however, want to mount if someone wants to open or
1125          * create a file of any type under the mountpoint, wants to
1126          * traverse through the mountpoint or wants to open the
1127          * mounted directory.  Also, autofs may mark negative dentries
1128          * as being automount points.  These will need the attentions
1129          * of the daemon to instantiate them before they can be used.
1130          */
1131         if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1132                            LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1133             path->dentry->d_inode)
1134                 return -EISDIR;
1135
1136         if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1137                 return -EACCES;
1138
1139         nd->total_link_count++;
1140         if (nd->total_link_count >= 40)
1141                 return -ELOOP;
1142
1143         mnt = path->dentry->d_op->d_automount(path);
1144         if (IS_ERR(mnt)) {
1145                 /*
1146                  * The filesystem is allowed to return -EISDIR here to indicate
1147                  * it doesn't want to automount.  For instance, autofs would do
1148                  * this so that its userspace daemon can mount on this dentry.
1149                  *
1150                  * However, we can only permit this if it's a terminal point in
1151                  * the path being looked up; if it wasn't then the remainder of
1152                  * the path is inaccessible and we should say so.
1153                  */
1154                 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1155                         return -EREMOTE;
1156                 return PTR_ERR(mnt);
1157         }
1158
1159         if (!mnt) /* mount collision */
1160                 return 0;
1161
1162         if (!*need_mntput) {
1163                 /* lock_mount() may release path->mnt on error */
1164                 mntget(path->mnt);
1165                 *need_mntput = true;
1166         }
1167         err = finish_automount(mnt, path);
1168
1169         switch (err) {
1170         case -EBUSY:
1171                 /* Someone else made a mount here whilst we were busy */
1172                 return 0;
1173         case 0:
1174                 path_put(path);
1175                 path->mnt = mnt;
1176                 path->dentry = dget(mnt->mnt_root);
1177                 return 0;
1178         default:
1179                 return err;
1180         }
1181
1182 }
1183
1184 /*
1185  * Handle a dentry that is managed in some way.
1186  * - Flagged for transit management (autofs)
1187  * - Flagged as mountpoint
1188  * - Flagged as automount point
1189  *
1190  * This may only be called in refwalk mode.
1191  *
1192  * Serialization is taken care of in namespace.c
1193  */
1194 static int follow_managed(struct path *path, struct nameidata *nd)
1195 {
1196         struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1197         unsigned managed;
1198         bool need_mntput = false;
1199         int ret = 0;
1200
1201         /* Given that we're not holding a lock here, we retain the value in a
1202          * local variable for each dentry as we look at it so that we don't see
1203          * the components of that value change under us */
1204         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1205                managed &= DCACHE_MANAGED_DENTRY,
1206                unlikely(managed != 0)) {
1207                 /* Allow the filesystem to manage the transit without i_mutex
1208                  * being held. */
1209                 if (managed & DCACHE_MANAGE_TRANSIT) {
1210                         BUG_ON(!path->dentry->d_op);
1211                         BUG_ON(!path->dentry->d_op->d_manage);
1212                         ret = path->dentry->d_op->d_manage(path, false);
1213                         if (ret < 0)
1214                                 break;
1215                 }
1216
1217                 /* Transit to a mounted filesystem. */
1218                 if (managed & DCACHE_MOUNTED) {
1219                         struct vfsmount *mounted = lookup_mnt(path);
1220                         if (mounted) {
1221                                 dput(path->dentry);
1222                                 if (need_mntput)
1223                                         mntput(path->mnt);
1224                                 path->mnt = mounted;
1225                                 path->dentry = dget(mounted->mnt_root);
1226                                 need_mntput = true;
1227                                 continue;
1228                         }
1229
1230                         /* Something is mounted on this dentry in another
1231                          * namespace and/or whatever was mounted there in this
1232                          * namespace got unmounted before lookup_mnt() could
1233                          * get it */
1234                 }
1235
1236                 /* Handle an automount point */
1237                 if (managed & DCACHE_NEED_AUTOMOUNT) {
1238                         ret = follow_automount(path, nd, &need_mntput);
1239                         if (ret < 0)
1240                                 break;
1241                         continue;
1242                 }
1243
1244                 /* We didn't change the current path point */
1245                 break;
1246         }
1247
1248         if (need_mntput && path->mnt == mnt)
1249                 mntput(path->mnt);
1250         if (ret == -EISDIR || !ret)
1251                 ret = 1;
1252         if (need_mntput)
1253                 nd->flags |= LOOKUP_JUMPED;
1254         if (unlikely(ret < 0))
1255                 path_put_conditional(path, nd);
1256         return ret;
1257 }
1258
1259 int follow_down_one(struct path *path)
1260 {
1261         struct vfsmount *mounted;
1262
1263         mounted = lookup_mnt(path);
1264         if (mounted) {
1265                 dput(path->dentry);
1266                 mntput(path->mnt);
1267                 path->mnt = mounted;
1268                 path->dentry = dget(mounted->mnt_root);
1269                 return 1;
1270         }
1271         return 0;
1272 }
1273 EXPORT_SYMBOL(follow_down_one);
1274
1275 static inline int managed_dentry_rcu(const struct path *path)
1276 {
1277         return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1278                 path->dentry->d_op->d_manage(path, true) : 0;
1279 }
1280
1281 /*
1282  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1283  * we meet a managed dentry that would need blocking.
1284  */
1285 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1286                                struct inode **inode, unsigned *seqp)
1287 {
1288         for (;;) {
1289                 struct mount *mounted;
1290                 /*
1291                  * Don't forget we might have a non-mountpoint managed dentry
1292                  * that wants to block transit.
1293                  */
1294                 switch (managed_dentry_rcu(path)) {
1295                 case -ECHILD:
1296                 default:
1297                         return false;
1298                 case -EISDIR:
1299                         return true;
1300                 case 0:
1301                         break;
1302                 }
1303
1304                 if (!d_mountpoint(path->dentry))
1305                         return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1306
1307                 mounted = __lookup_mnt(path->mnt, path->dentry);
1308                 if (!mounted)
1309                         break;
1310                 path->mnt = &mounted->mnt;
1311                 path->dentry = mounted->mnt.mnt_root;
1312                 nd->flags |= LOOKUP_JUMPED;
1313                 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1314                 /*
1315                  * Update the inode too. We don't need to re-check the
1316                  * dentry sequence number here after this d_inode read,
1317                  * because a mount-point is always pinned.
1318                  */
1319                 *inode = path->dentry->d_inode;
1320         }
1321         return !read_seqretry(&mount_lock, nd->m_seq) &&
1322                 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1323 }
1324
1325 static int follow_dotdot_rcu(struct nameidata *nd)
1326 {
1327         struct inode *inode = nd->inode;
1328
1329         while (1) {
1330                 if (path_equal(&nd->path, &nd->root))
1331                         break;
1332                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1333                         struct dentry *old = nd->path.dentry;
1334                         struct dentry *parent = old->d_parent;
1335                         unsigned seq;
1336
1337                         inode = parent->d_inode;
1338                         seq = read_seqcount_begin(&parent->d_seq);
1339                         if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1340                                 return -ECHILD;
1341                         nd->path.dentry = parent;
1342                         nd->seq = seq;
1343                         if (unlikely(!path_connected(&nd->path)))
1344                                 return -ENOENT;
1345                         break;
1346                 } else {
1347                         struct mount *mnt = real_mount(nd->path.mnt);
1348                         struct mount *mparent = mnt->mnt_parent;
1349                         struct dentry *mountpoint = mnt->mnt_mountpoint;
1350                         struct inode *inode2 = mountpoint->d_inode;
1351                         unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1352                         if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1353                                 return -ECHILD;
1354                         if (&mparent->mnt == nd->path.mnt)
1355                                 break;
1356                         /* we know that mountpoint was pinned */
1357                         nd->path.dentry = mountpoint;
1358                         nd->path.mnt = &mparent->mnt;
1359                         inode = inode2;
1360                         nd->seq = seq;
1361                 }
1362         }
1363         while (unlikely(d_mountpoint(nd->path.dentry))) {
1364                 struct mount *mounted;
1365                 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1366                 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1367                         return -ECHILD;
1368                 if (!mounted)
1369                         break;
1370                 nd->path.mnt = &mounted->mnt;
1371                 nd->path.dentry = mounted->mnt.mnt_root;
1372                 inode = nd->path.dentry->d_inode;
1373                 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1374         }
1375         nd->inode = inode;
1376         return 0;
1377 }
1378
1379 /*
1380  * Follow down to the covering mount currently visible to userspace.  At each
1381  * point, the filesystem owning that dentry may be queried as to whether the
1382  * caller is permitted to proceed or not.
1383  */
1384 int follow_down(struct path *path)
1385 {
1386         unsigned managed;
1387         int ret;
1388
1389         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1390                unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1391                 /* Allow the filesystem to manage the transit without i_mutex
1392                  * being held.
1393                  *
1394                  * We indicate to the filesystem if someone is trying to mount
1395                  * something here.  This gives autofs the chance to deny anyone
1396                  * other than its daemon the right to mount on its
1397                  * superstructure.
1398                  *
1399                  * The filesystem may sleep at this point.
1400                  */
1401                 if (managed & DCACHE_MANAGE_TRANSIT) {
1402                         BUG_ON(!path->dentry->d_op);
1403                         BUG_ON(!path->dentry->d_op->d_manage);
1404                         ret = path->dentry->d_op->d_manage(path, false);
1405                         if (ret < 0)
1406                                 return ret == -EISDIR ? 0 : ret;
1407                 }
1408
1409                 /* Transit to a mounted filesystem. */
1410                 if (managed & DCACHE_MOUNTED) {
1411                         struct vfsmount *mounted = lookup_mnt(path);
1412                         if (!mounted)
1413                                 break;
1414                         dput(path->dentry);
1415                         mntput(path->mnt);
1416                         path->mnt = mounted;
1417                         path->dentry = dget(mounted->mnt_root);
1418                         continue;
1419                 }
1420
1421                 /* Don't handle automount points here */
1422                 break;
1423         }
1424         return 0;
1425 }
1426 EXPORT_SYMBOL(follow_down);
1427
1428 /*
1429  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1430  */
1431 static void follow_mount(struct path *path)
1432 {
1433         while (d_mountpoint(path->dentry)) {
1434                 struct vfsmount *mounted = lookup_mnt(path);
1435                 if (!mounted)
1436                         break;
1437                 dput(path->dentry);
1438                 mntput(path->mnt);
1439                 path->mnt = mounted;
1440                 path->dentry = dget(mounted->mnt_root);
1441         }
1442 }
1443
1444 static int path_parent_directory(struct path *path)
1445 {
1446         struct dentry *old = path->dentry;
1447         /* rare case of legitimate dget_parent()... */
1448         path->dentry = dget_parent(path->dentry);
1449         dput(old);
1450         if (unlikely(!path_connected(path)))
1451                 return -ENOENT;
1452         return 0;
1453 }
1454
1455 static int follow_dotdot(struct nameidata *nd)
1456 {
1457         while(1) {
1458                 if (nd->path.dentry == nd->root.dentry &&
1459                     nd->path.mnt == nd->root.mnt) {
1460                         break;
1461                 }
1462                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1463                         int ret = path_parent_directory(&nd->path);
1464                         if (ret)
1465                                 return ret;
1466                         break;
1467                 }
1468                 if (!follow_up(&nd->path))
1469                         break;
1470         }
1471         follow_mount(&nd->path);
1472         nd->inode = nd->path.dentry->d_inode;
1473         return 0;
1474 }
1475
1476 /*
1477  * This looks up the name in dcache and possibly revalidates the found dentry.
1478  * NULL is returned if the dentry does not exist in the cache.
1479  */
1480 static struct dentry *lookup_dcache(const struct qstr *name,
1481                                     struct dentry *dir,
1482                                     unsigned int flags)
1483 {
1484         struct dentry *dentry = d_lookup(dir, name);
1485         if (dentry) {
1486                 int error = d_revalidate(dentry, flags);
1487                 if (unlikely(error <= 0)) {
1488                         if (!error)
1489                                 d_invalidate(dentry);
1490                         dput(dentry);
1491                         return ERR_PTR(error);
1492                 }
1493         }
1494         return dentry;
1495 }
1496
1497 /*
1498  * Call i_op->lookup on the dentry.  The dentry must be negative and
1499  * unhashed.
1500  *
1501  * dir->d_inode->i_mutex must be held
1502  */
1503 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1504                                   unsigned int flags)
1505 {
1506         struct dentry *old;
1507
1508         /* Don't create child dentry for a dead directory. */
1509         if (unlikely(IS_DEADDIR(dir))) {
1510                 dput(dentry);
1511                 return ERR_PTR(-ENOENT);
1512         }
1513
1514         old = dir->i_op->lookup(dir, dentry, flags);
1515         if (unlikely(old)) {
1516                 dput(dentry);
1517                 dentry = old;
1518         }
1519         return dentry;
1520 }
1521
1522 static struct dentry *__lookup_hash(const struct qstr *name,
1523                 struct dentry *base, unsigned int flags)
1524 {
1525         struct dentry *dentry = lookup_dcache(name, base, flags);
1526
1527         if (dentry)
1528                 return dentry;
1529
1530         dentry = d_alloc(base, name);
1531         if (unlikely(!dentry))
1532                 return ERR_PTR(-ENOMEM);
1533
1534         return lookup_real(base->d_inode, dentry, flags);
1535 }
1536
1537 static int lookup_fast(struct nameidata *nd,
1538                        struct path *path, struct inode **inode,
1539                        unsigned *seqp)
1540 {
1541         struct vfsmount *mnt = nd->path.mnt;
1542         struct dentry *dentry, *parent = nd->path.dentry;
1543         int status = 1;
1544         int err;
1545
1546         /*
1547          * Rename seqlock is not required here because in the off chance
1548          * of a false negative due to a concurrent rename, the caller is
1549          * going to fall back to non-racy lookup.
1550          */
1551         if (nd->flags & LOOKUP_RCU) {
1552                 unsigned seq;
1553                 bool negative;
1554                 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1555                 if (unlikely(!dentry)) {
1556                         if (unlazy_walk(nd))
1557                                 return -ECHILD;
1558                         return 0;
1559                 }
1560
1561                 /*
1562                  * This sequence count validates that the inode matches
1563                  * the dentry name information from lookup.
1564                  */
1565                 *inode = d_backing_inode(dentry);
1566                 negative = d_is_negative(dentry);
1567                 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1568                         return -ECHILD;
1569
1570                 /*
1571                  * This sequence count validates that the parent had no
1572                  * changes while we did the lookup of the dentry above.
1573                  *
1574                  * The memory barrier in read_seqcount_begin of child is
1575                  *  enough, we can use __read_seqcount_retry here.
1576                  */
1577                 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1578                         return -ECHILD;
1579
1580                 *seqp = seq;
1581                 status = d_revalidate(dentry, nd->flags);
1582                 if (likely(status > 0)) {
1583                         /*
1584                          * Note: do negative dentry check after revalidation in
1585                          * case that drops it.
1586                          */
1587                         if (unlikely(negative))
1588                                 return -ENOENT;
1589                         path->mnt = mnt;
1590                         path->dentry = dentry;
1591                         if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1592                                 return 1;
1593                 }
1594                 if (unlazy_child(nd, dentry, seq))
1595                         return -ECHILD;
1596                 if (unlikely(status == -ECHILD))
1597                         /* we'd been told to redo it in non-rcu mode */
1598                         status = d_revalidate(dentry, nd->flags);
1599         } else {
1600                 dentry = __d_lookup(parent, &nd->last);
1601                 if (unlikely(!dentry))
1602                         return 0;
1603                 status = d_revalidate(dentry, nd->flags);
1604         }
1605         if (unlikely(status <= 0)) {
1606                 if (!status)
1607                         d_invalidate(dentry);
1608                 dput(dentry);
1609                 return status;
1610         }
1611         if (unlikely(d_is_negative(dentry))) {
1612                 dput(dentry);
1613                 return -ENOENT;
1614         }
1615
1616         path->mnt = mnt;
1617         path->dentry = dentry;
1618         err = follow_managed(path, nd);
1619         if (likely(err > 0))
1620                 *inode = d_backing_inode(path->dentry);
1621         return err;
1622 }
1623
1624 /* Fast lookup failed, do it the slow way */
1625 static struct dentry *lookup_slow(const struct qstr *name,
1626                                   struct dentry *dir,
1627                                   unsigned int flags)
1628 {
1629         struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1630         struct inode *inode = dir->d_inode;
1631         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1632
1633         inode_lock_shared(inode);
1634         /* Don't go there if it's already dead */
1635         if (unlikely(IS_DEADDIR(inode)))
1636                 goto out;
1637 again:
1638         dentry = d_alloc_parallel(dir, name, &wq);
1639         if (IS_ERR(dentry))
1640                 goto out;
1641         if (unlikely(!d_in_lookup(dentry))) {
1642                 if (!(flags & LOOKUP_NO_REVAL)) {
1643                         int error = d_revalidate(dentry, flags);
1644                         if (unlikely(error <= 0)) {
1645                                 if (!error) {
1646                                         d_invalidate(dentry);
1647                                         dput(dentry);
1648                                         goto again;
1649                                 }
1650                                 dput(dentry);
1651                                 dentry = ERR_PTR(error);
1652                         }
1653                 }
1654         } else {
1655                 old = inode->i_op->lookup(inode, dentry, flags);
1656                 d_lookup_done(dentry);
1657                 if (unlikely(old)) {
1658                         dput(dentry);
1659                         dentry = old;
1660                 }
1661         }
1662 out:
1663         inode_unlock_shared(inode);
1664         return dentry;
1665 }
1666
1667 static inline int may_lookup(struct nameidata *nd)
1668 {
1669         if (nd->flags & LOOKUP_RCU) {
1670                 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1671                 if (err != -ECHILD)
1672                         return err;
1673                 if (unlazy_walk(nd))
1674                         return -ECHILD;
1675         }
1676         return inode_permission(nd->inode, MAY_EXEC);
1677 }
1678
1679 static inline int handle_dots(struct nameidata *nd, int type)
1680 {
1681         if (type == LAST_DOTDOT) {
1682                 if (!nd->root.mnt)
1683                         set_root(nd);
1684                 if (nd->flags & LOOKUP_RCU) {
1685                         return follow_dotdot_rcu(nd);
1686                 } else
1687                         return follow_dotdot(nd);
1688         }
1689         return 0;
1690 }
1691
1692 static int pick_link(struct nameidata *nd, struct path *link,
1693                      struct inode *inode, unsigned seq)
1694 {
1695         int error;
1696         struct saved *last;
1697         if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1698                 path_to_nameidata(link, nd);
1699                 return -ELOOP;
1700         }
1701         if (!(nd->flags & LOOKUP_RCU)) {
1702                 if (link->mnt == nd->path.mnt)
1703                         mntget(link->mnt);
1704         }
1705         error = nd_alloc_stack(nd);
1706         if (unlikely(error)) {
1707                 if (error == -ECHILD) {
1708                         if (unlikely(!legitimize_path(nd, link, seq))) {
1709                                 drop_links(nd);
1710                                 nd->depth = 0;
1711                                 nd->flags &= ~LOOKUP_RCU;
1712                                 nd->path.mnt = NULL;
1713                                 nd->path.dentry = NULL;
1714                                 if (!(nd->flags & LOOKUP_ROOT))
1715                                         nd->root.mnt = NULL;
1716                                 rcu_read_unlock();
1717                         } else if (likely(unlazy_walk(nd)) == 0)
1718                                 error = nd_alloc_stack(nd);
1719                 }
1720                 if (error) {
1721                         path_put(link);
1722                         return error;
1723                 }
1724         }
1725
1726         last = nd->stack + nd->depth++;
1727         last->link = *link;
1728         clear_delayed_call(&last->done);
1729         nd->link_inode = inode;
1730         last->seq = seq;
1731         return 1;
1732 }
1733
1734 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1735
1736 /*
1737  * Do we need to follow links? We _really_ want to be able
1738  * to do this check without having to look at inode->i_op,
1739  * so we keep a cache of "no, this doesn't need follow_link"
1740  * for the common case.
1741  */
1742 static inline int step_into(struct nameidata *nd, struct path *path,
1743                             int flags, struct inode *inode, unsigned seq)
1744 {
1745         if (!(flags & WALK_MORE) && nd->depth)
1746                 put_link(nd);
1747         if (likely(!d_is_symlink(path->dentry)) ||
1748            !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1749                 /* not a symlink or should not follow */
1750                 path_to_nameidata(path, nd);
1751                 nd->inode = inode;
1752                 nd->seq = seq;
1753                 return 0;
1754         }
1755         /* make sure that d_is_symlink above matches inode */
1756         if (nd->flags & LOOKUP_RCU) {
1757                 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1758                         return -ECHILD;
1759         }
1760         return pick_link(nd, path, inode, seq);
1761 }
1762
1763 static int walk_component(struct nameidata *nd, int flags)
1764 {
1765         struct path path;
1766         struct inode *inode;
1767         unsigned seq;
1768         int err;
1769         /*
1770          * "." and ".." are special - ".." especially so because it has
1771          * to be able to know about the current root directory and
1772          * parent relationships.
1773          */
1774         if (unlikely(nd->last_type != LAST_NORM)) {
1775                 err = handle_dots(nd, nd->last_type);
1776                 if (!(flags & WALK_MORE) && nd->depth)
1777                         put_link(nd);
1778                 return err;
1779         }
1780         err = lookup_fast(nd, &path, &inode, &seq);
1781         if (unlikely(err <= 0)) {
1782                 if (err < 0)
1783                         return err;
1784                 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1785                                           nd->flags);
1786                 if (IS_ERR(path.dentry))
1787                         return PTR_ERR(path.dentry);
1788
1789                 path.mnt = nd->path.mnt;
1790                 err = follow_managed(&path, nd);
1791                 if (unlikely(err < 0))
1792                         return err;
1793
1794                 if (unlikely(d_is_negative(path.dentry))) {
1795                         path_to_nameidata(&path, nd);
1796                         return -ENOENT;
1797                 }
1798
1799                 seq = 0;        /* we are already out of RCU mode */
1800                 inode = d_backing_inode(path.dentry);
1801         }
1802
1803         return step_into(nd, &path, flags, inode, seq);
1804 }
1805
1806 /*
1807  * We can do the critical dentry name comparison and hashing
1808  * operations one word at a time, but we are limited to:
1809  *
1810  * - Architectures with fast unaligned word accesses. We could
1811  *   do a "get_unaligned()" if this helps and is sufficiently
1812  *   fast.
1813  *
1814  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1815  *   do not trap on the (extremely unlikely) case of a page
1816  *   crossing operation.
1817  *
1818  * - Furthermore, we need an efficient 64-bit compile for the
1819  *   64-bit case in order to generate the "number of bytes in
1820  *   the final mask". Again, that could be replaced with a
1821  *   efficient population count instruction or similar.
1822  */
1823 #ifdef CONFIG_DCACHE_WORD_ACCESS
1824
1825 #include <asm/word-at-a-time.h>
1826
1827 #ifdef HASH_MIX
1828
1829 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1830
1831 #elif defined(CONFIG_64BIT)
1832 /*
1833  * Register pressure in the mixing function is an issue, particularly
1834  * on 32-bit x86, but almost any function requires one state value and
1835  * one temporary.  Instead, use a function designed for two state values
1836  * and no temporaries.
1837  *
1838  * This function cannot create a collision in only two iterations, so
1839  * we have two iterations to achieve avalanche.  In those two iterations,
1840  * we have six layers of mixing, which is enough to spread one bit's
1841  * influence out to 2^6 = 64 state bits.
1842  *
1843  * Rotate constants are scored by considering either 64 one-bit input
1844  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1845  * probability of that delta causing a change to each of the 128 output
1846  * bits, using a sample of random initial states.
1847  *
1848  * The Shannon entropy of the computed probabilities is then summed
1849  * to produce a score.  Ideally, any input change has a 50% chance of
1850  * toggling any given output bit.
1851  *
1852  * Mixing scores (in bits) for (12,45):
1853  * Input delta: 1-bit      2-bit
1854  * 1 round:     713.3    42542.6
1855  * 2 rounds:   2753.7   140389.8
1856  * 3 rounds:   5954.1   233458.2
1857  * 4 rounds:   7862.6   256672.2
1858  * Perfect:    8192     258048
1859  *            (64*128) (64*63/2 * 128)
1860  */
1861 #define HASH_MIX(x, y, a)       \
1862         (       x ^= (a),       \
1863         y ^= x, x = rol64(x,12),\
1864         x += y, y = rol64(y,45),\
1865         y *= 9                  )
1866
1867 /*
1868  * Fold two longs into one 32-bit hash value.  This must be fast, but
1869  * latency isn't quite as critical, as there is a fair bit of additional
1870  * work done before the hash value is used.
1871  */
1872 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1873 {
1874         y ^= x * GOLDEN_RATIO_64;
1875         y *= GOLDEN_RATIO_64;
1876         return y >> 32;
1877 }
1878
1879 #else   /* 32-bit case */
1880
1881 /*
1882  * Mixing scores (in bits) for (7,20):
1883  * Input delta: 1-bit      2-bit
1884  * 1 round:     330.3     9201.6
1885  * 2 rounds:   1246.4    25475.4
1886  * 3 rounds:   1907.1    31295.1
1887  * 4 rounds:   2042.3    31718.6
1888  * Perfect:    2048      31744
1889  *            (32*64)   (32*31/2 * 64)
1890  */
1891 #define HASH_MIX(x, y, a)       \
1892         (       x ^= (a),       \
1893         y ^= x, x = rol32(x, 7),\
1894         x += y, y = rol32(y,20),\
1895         y *= 9                  )
1896
1897 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1898 {
1899         /* Use arch-optimized multiply if one exists */
1900         return __hash_32(y ^ __hash_32(x));
1901 }
1902
1903 #endif
1904
1905 /*
1906  * Return the hash of a string of known length.  This is carfully
1907  * designed to match hash_name(), which is the more critical function.
1908  * In particular, we must end by hashing a final word containing 0..7
1909  * payload bytes, to match the way that hash_name() iterates until it
1910  * finds the delimiter after the name.
1911  */
1912 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1913 {
1914         unsigned long a, x = 0, y = (unsigned long)salt;
1915
1916         for (;;) {
1917                 if (!len)
1918                         goto done;
1919                 a = load_unaligned_zeropad(name);
1920                 if (len < sizeof(unsigned long))
1921                         break;
1922                 HASH_MIX(x, y, a);
1923                 name += sizeof(unsigned long);
1924                 len -= sizeof(unsigned long);
1925         }
1926         x ^= a & bytemask_from_count(len);
1927 done:
1928         return fold_hash(x, y);
1929 }
1930 EXPORT_SYMBOL(full_name_hash);
1931
1932 /* Return the "hash_len" (hash and length) of a null-terminated string */
1933 u64 hashlen_string(const void *salt, const char *name)
1934 {
1935         unsigned long a = 0, x = 0, y = (unsigned long)salt;
1936         unsigned long adata, mask, len;
1937         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1938
1939         len = 0;
1940         goto inside;
1941
1942         do {
1943                 HASH_MIX(x, y, a);
1944                 len += sizeof(unsigned long);
1945 inside:
1946                 a = load_unaligned_zeropad(name+len);
1947         } while (!has_zero(a, &adata, &constants));
1948
1949         adata = prep_zero_mask(a, adata, &constants);
1950         mask = create_zero_mask(adata);
1951         x ^= a & zero_bytemask(mask);
1952
1953         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1954 }
1955 EXPORT_SYMBOL(hashlen_string);
1956
1957 /*
1958  * Calculate the length and hash of the path component, and
1959  * return the "hash_len" as the result.
1960  */
1961 static inline u64 hash_name(const void *salt, const char *name)
1962 {
1963         unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1964         unsigned long adata, bdata, mask, len;
1965         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1966
1967         len = 0;
1968         goto inside;
1969
1970         do {
1971                 HASH_MIX(x, y, a);
1972                 len += sizeof(unsigned long);
1973 inside:
1974                 a = load_unaligned_zeropad(name+len);
1975                 b = a ^ REPEAT_BYTE('/');
1976         } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1977
1978         adata = prep_zero_mask(a, adata, &constants);
1979         bdata = prep_zero_mask(b, bdata, &constants);
1980         mask = create_zero_mask(adata | bdata);
1981         x ^= a & zero_bytemask(mask);
1982
1983         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1984 }
1985
1986 #else   /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1987
1988 /* Return the hash of a string of known length */
1989 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1990 {
1991         unsigned long hash = init_name_hash(salt);
1992         while (len--)
1993                 hash = partial_name_hash((unsigned char)*name++, hash);
1994         return end_name_hash(hash);
1995 }
1996 EXPORT_SYMBOL(full_name_hash);
1997
1998 /* Return the "hash_len" (hash and length) of a null-terminated string */
1999 u64 hashlen_string(const void *salt, const char *name)
2000 {
2001         unsigned long hash = init_name_hash(salt);
2002         unsigned long len = 0, c;
2003
2004         c = (unsigned char)*name;
2005         while (c) {
2006                 len++;
2007                 hash = partial_name_hash(c, hash);
2008                 c = (unsigned char)name[len];
2009         }
2010         return hashlen_create(end_name_hash(hash), len);
2011 }
2012 EXPORT_SYMBOL(hashlen_string);
2013
2014 /*
2015  * We know there's a real path component here of at least
2016  * one character.
2017  */
2018 static inline u64 hash_name(const void *salt, const char *name)
2019 {
2020         unsigned long hash = init_name_hash(salt);
2021         unsigned long len = 0, c;
2022
2023         c = (unsigned char)*name;
2024         do {
2025                 len++;
2026                 hash = partial_name_hash(c, hash);
2027                 c = (unsigned char)name[len];
2028         } while (c && c != '/');
2029         return hashlen_create(end_name_hash(hash), len);
2030 }
2031
2032 #endif
2033
2034 /*
2035  * Name resolution.
2036  * This is the basic name resolution function, turning a pathname into
2037  * the final dentry. We expect 'base' to be positive and a directory.
2038  *
2039  * Returns 0 and nd will have valid dentry and mnt on success.
2040  * Returns error and drops reference to input namei data on failure.
2041  */
2042 static int link_path_walk(const char *name, struct nameidata *nd)
2043 {
2044         int err;
2045
2046         while (*name=='/')
2047                 name++;
2048         if (!*name)
2049                 return 0;
2050
2051         /* At this point we know we have a real path component. */
2052         for(;;) {
2053                 u64 hash_len;
2054                 int type;
2055
2056                 err = may_lookup(nd);
2057                 if (err)
2058                         return err;
2059
2060                 hash_len = hash_name(nd->path.dentry, name);
2061
2062                 type = LAST_NORM;
2063                 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2064                         case 2:
2065                                 if (name[1] == '.') {
2066                                         type = LAST_DOTDOT;
2067                                         nd->flags |= LOOKUP_JUMPED;
2068                                 }
2069                                 break;
2070                         case 1:
2071                                 type = LAST_DOT;
2072                 }
2073                 if (likely(type == LAST_NORM)) {
2074                         struct dentry *parent = nd->path.dentry;
2075                         nd->flags &= ~LOOKUP_JUMPED;
2076                         if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2077                                 struct qstr this = { { .hash_len = hash_len }, .name = name };
2078                                 err = parent->d_op->d_hash(parent, &this);
2079                                 if (err < 0)
2080                                         return err;
2081                                 hash_len = this.hash_len;
2082                                 name = this.name;
2083                         }
2084                 }
2085
2086                 nd->last.hash_len = hash_len;
2087                 nd->last.name = name;
2088                 nd->last_type = type;
2089
2090                 name += hashlen_len(hash_len);
2091                 if (!*name)
2092                         goto OK;
2093                 /*
2094                  * If it wasn't NUL, we know it was '/'. Skip that
2095                  * slash, and continue until no more slashes.
2096                  */
2097                 do {
2098                         name++;
2099                 } while (unlikely(*name == '/'));
2100                 if (unlikely(!*name)) {
2101 OK:
2102                         /* pathname body, done */
2103                         if (!nd->depth)
2104                                 return 0;
2105                         name = nd->stack[nd->depth - 1].name;
2106                         /* trailing symlink, done */
2107                         if (!name)
2108                                 return 0;
2109                         /* last component of nested symlink */
2110                         err = walk_component(nd, WALK_FOLLOW);
2111                 } else {
2112                         /* not the last component */
2113                         err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2114                 }
2115                 if (err < 0)
2116                         return err;
2117
2118                 if (err) {
2119                         const char *s = get_link(nd);
2120
2121                         if (IS_ERR(s))
2122                                 return PTR_ERR(s);
2123                         err = 0;
2124                         if (unlikely(!s)) {
2125                                 /* jumped */
2126                                 put_link(nd);
2127                         } else {
2128                                 nd->stack[nd->depth - 1].name = name;
2129                                 name = s;
2130                                 continue;
2131                         }
2132                 }
2133                 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2134                         if (nd->flags & LOOKUP_RCU) {
2135                                 if (unlazy_walk(nd))
2136                                         return -ECHILD;
2137                         }
2138                         return -ENOTDIR;
2139                 }
2140         }
2141 }
2142
2143 static const char *path_init(struct nameidata *nd, unsigned flags)
2144 {
2145         int retval = 0;
2146         const char *s = nd->name->name;
2147
2148         nd->last_type = LAST_ROOT; /* if there are only slashes... */
2149         nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2150         nd->depth = 0;
2151         if (flags & LOOKUP_ROOT) {
2152                 struct dentry *root = nd->root.dentry;
2153                 struct inode *inode = root->d_inode;
2154                 if (*s) {
2155                         if (!d_can_lookup(root))
2156                                 return ERR_PTR(-ENOTDIR);
2157                         retval = inode_permission(inode, MAY_EXEC);
2158                         if (retval)
2159                                 return ERR_PTR(retval);
2160                 }
2161                 nd->path = nd->root;
2162                 nd->inode = inode;
2163                 if (flags & LOOKUP_RCU) {
2164                         rcu_read_lock();
2165                         nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2166                         nd->root_seq = nd->seq;
2167                         nd->m_seq = read_seqbegin(&mount_lock);
2168                 } else {
2169                         path_get(&nd->path);
2170                 }
2171                 return s;
2172         }
2173
2174         nd->root.mnt = NULL;
2175         nd->path.mnt = NULL;
2176         nd->path.dentry = NULL;
2177
2178         nd->m_seq = read_seqbegin(&mount_lock);
2179         if (*s == '/') {
2180                 if (flags & LOOKUP_RCU)
2181                         rcu_read_lock();
2182                 set_root(nd);
2183                 if (likely(!nd_jump_root(nd)))
2184                         return s;
2185                 nd->root.mnt = NULL;
2186                 rcu_read_unlock();
2187                 return ERR_PTR(-ECHILD);
2188         } else if (nd->dfd == AT_FDCWD) {
2189                 if (flags & LOOKUP_RCU) {
2190                         struct fs_struct *fs = current->fs;
2191                         unsigned seq;
2192
2193                         rcu_read_lock();
2194
2195                         do {
2196                                 seq = read_seqcount_begin(&fs->seq);
2197                                 nd->path = fs->pwd;
2198                                 nd->inode = nd->path.dentry->d_inode;
2199                                 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2200                         } while (read_seqcount_retry(&fs->seq, seq));
2201                 } else {
2202                         get_fs_pwd(current->fs, &nd->path);
2203                         nd->inode = nd->path.dentry->d_inode;
2204                 }
2205                 return s;
2206         } else {
2207                 /* Caller must check execute permissions on the starting path component */
2208                 struct fd f = fdget_raw(nd->dfd);
2209                 struct dentry *dentry;
2210
2211                 if (!f.file)
2212                         return ERR_PTR(-EBADF);
2213
2214                 dentry = f.file->f_path.dentry;
2215
2216                 if (*s) {
2217                         if (!d_can_lookup(dentry)) {
2218                                 fdput(f);
2219                                 return ERR_PTR(-ENOTDIR);
2220                         }
2221                 }
2222
2223                 nd->path = f.file->f_path;
2224                 if (flags & LOOKUP_RCU) {
2225                         rcu_read_lock();
2226                         nd->inode = nd->path.dentry->d_inode;
2227                         nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2228                 } else {
2229                         path_get(&nd->path);
2230                         nd->inode = nd->path.dentry->d_inode;
2231                 }
2232                 fdput(f);
2233                 return s;
2234         }
2235 }
2236
2237 static const char *trailing_symlink(struct nameidata *nd)
2238 {
2239         const char *s;
2240         int error = may_follow_link(nd);
2241         if (unlikely(error))
2242                 return ERR_PTR(error);
2243         nd->flags |= LOOKUP_PARENT;
2244         nd->stack[0].name = NULL;
2245         s = get_link(nd);
2246         return s ? s : "";
2247 }
2248
2249 static inline int lookup_last(struct nameidata *nd)
2250 {
2251         if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2252                 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2253
2254         nd->flags &= ~LOOKUP_PARENT;
2255         return walk_component(nd, 0);
2256 }
2257
2258 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2259 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2260 {
2261         const char *s = path_init(nd, flags);
2262         int err;
2263
2264         if (IS_ERR(s))
2265                 return PTR_ERR(s);
2266         while (!(err = link_path_walk(s, nd))
2267                 && ((err = lookup_last(nd)) > 0)) {
2268                 s = trailing_symlink(nd);
2269                 if (IS_ERR(s)) {
2270                         err = PTR_ERR(s);
2271                         break;
2272                 }
2273         }
2274         if (!err)
2275                 err = complete_walk(nd);
2276
2277         if (!err && nd->flags & LOOKUP_DIRECTORY)
2278                 if (!d_can_lookup(nd->path.dentry))
2279                         err = -ENOTDIR;
2280         if (!err) {
2281                 *path = nd->path;
2282                 nd->path.mnt = NULL;
2283                 nd->path.dentry = NULL;
2284         }
2285         terminate_walk(nd);
2286         return err;
2287 }
2288
2289 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2290                            struct path *path, struct path *root)
2291 {
2292         int retval;
2293         struct nameidata nd;
2294         if (IS_ERR(name))
2295                 return PTR_ERR(name);
2296         if (unlikely(root)) {
2297                 nd.root = *root;
2298                 flags |= LOOKUP_ROOT;
2299         }
2300         set_nameidata(&nd, dfd, name);
2301         retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2302         if (unlikely(retval == -ECHILD))
2303                 retval = path_lookupat(&nd, flags, path);
2304         if (unlikely(retval == -ESTALE))
2305                 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2306
2307         if (likely(!retval))
2308                 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2309         restore_nameidata();
2310         putname(name);
2311         return retval;
2312 }
2313
2314 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2315 static int path_parentat(struct nameidata *nd, unsigned flags,
2316                                 struct path *parent)
2317 {
2318         const char *s = path_init(nd, flags);
2319         int err;
2320         if (IS_ERR(s))
2321                 return PTR_ERR(s);
2322         err = link_path_walk(s, nd);
2323         if (!err)
2324                 err = complete_walk(nd);
2325         if (!err) {
2326                 *parent = nd->path;
2327                 nd->path.mnt = NULL;
2328                 nd->path.dentry = NULL;
2329         }
2330         terminate_walk(nd);
2331         return err;
2332 }
2333
2334 static struct filename *filename_parentat(int dfd, struct filename *name,
2335                                 unsigned int flags, struct path *parent,
2336                                 struct qstr *last, int *type)
2337 {
2338         int retval;
2339         struct nameidata nd;
2340
2341         if (IS_ERR(name))
2342                 return name;
2343         set_nameidata(&nd, dfd, name);
2344         retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2345         if (unlikely(retval == -ECHILD))
2346                 retval = path_parentat(&nd, flags, parent);
2347         if (unlikely(retval == -ESTALE))
2348                 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2349         if (likely(!retval)) {
2350                 *last = nd.last;
2351                 *type = nd.last_type;
2352                 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2353         } else {
2354                 putname(name);
2355                 name = ERR_PTR(retval);
2356         }
2357         restore_nameidata();
2358         return name;
2359 }
2360
2361 /* does lookup, returns the object with parent locked */
2362 struct dentry *kern_path_locked(const char *name, struct path *path)
2363 {
2364         struct filename *filename;
2365         struct dentry *d;
2366         struct qstr last;
2367         int type;
2368
2369         filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2370                                     &last, &type);
2371         if (IS_ERR(filename))
2372                 return ERR_CAST(filename);
2373         if (unlikely(type != LAST_NORM)) {
2374                 path_put(path);
2375                 putname(filename);
2376                 return ERR_PTR(-EINVAL);
2377         }
2378         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2379         d = __lookup_hash(&last, path->dentry, 0);
2380         if (IS_ERR(d)) {
2381                 inode_unlock(path->dentry->d_inode);
2382                 path_put(path);
2383         }
2384         putname(filename);
2385         return d;
2386 }
2387
2388 int kern_path(const char *name, unsigned int flags, struct path *path)
2389 {
2390         return filename_lookup(AT_FDCWD, getname_kernel(name),
2391                                flags, path, NULL);
2392 }
2393 EXPORT_SYMBOL(kern_path);
2394
2395 /**
2396  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2397  * @dentry:  pointer to dentry of the base directory
2398  * @mnt: pointer to vfs mount of the base directory
2399  * @name: pointer to file name
2400  * @flags: lookup flags
2401  * @path: pointer to struct path to fill
2402  */
2403 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2404                     const char *name, unsigned int flags,
2405                     struct path *path)
2406 {
2407         struct path root = {.mnt = mnt, .dentry = dentry};
2408         /* the first argument of filename_lookup() is ignored with root */
2409         return filename_lookup(AT_FDCWD, getname_kernel(name),
2410                                flags , path, &root);
2411 }
2412 EXPORT_SYMBOL(vfs_path_lookup);
2413
2414 /**
2415  * lookup_one_len - filesystem helper to lookup single pathname component
2416  * @name:       pathname component to lookup
2417  * @base:       base directory to lookup from
2418  * @len:        maximum length @len should be interpreted to
2419  *
2420  * Note that this routine is purely a helper for filesystem usage and should
2421  * not be called by generic code.
2422  *
2423  * The caller must hold base->i_mutex.
2424  */
2425 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2426 {
2427         struct qstr this;
2428         unsigned int c;
2429         int err;
2430
2431         WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2432
2433         this.name = name;
2434         this.len = len;
2435         this.hash = full_name_hash(base, name, len);
2436         if (!len)
2437                 return ERR_PTR(-EACCES);
2438
2439         if (unlikely(name[0] == '.')) {
2440                 if (len < 2 || (len == 2 && name[1] == '.'))
2441                         return ERR_PTR(-EACCES);
2442         }
2443
2444         while (len--) {
2445                 c = *(const unsigned char *)name++;
2446                 if (c == '/' || c == '\0')
2447                         return ERR_PTR(-EACCES);
2448         }
2449         /*
2450          * See if the low-level filesystem might want
2451          * to use its own hash..
2452          */
2453         if (base->d_flags & DCACHE_OP_HASH) {
2454                 int err = base->d_op->d_hash(base, &this);
2455                 if (err < 0)
2456                         return ERR_PTR(err);
2457         }
2458
2459         err = inode_permission(base->d_inode, MAY_EXEC);
2460         if (err)
2461                 return ERR_PTR(err);
2462
2463         return __lookup_hash(&this, base, 0);
2464 }
2465 EXPORT_SYMBOL(lookup_one_len);
2466
2467 /**
2468  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2469  * @name:       pathname component to lookup
2470  * @base:       base directory to lookup from
2471  * @len:        maximum length @len should be interpreted to
2472  *
2473  * Note that this routine is purely a helper for filesystem usage and should
2474  * not be called by generic code.
2475  *
2476  * Unlike lookup_one_len, it should be called without the parent
2477  * i_mutex held, and will take the i_mutex itself if necessary.
2478  */
2479 struct dentry *lookup_one_len_unlocked(const char *name,
2480                                        struct dentry *base, int len)
2481 {
2482         struct qstr this;
2483         unsigned int c;
2484         int err;
2485         struct dentry *ret;
2486
2487         this.name = name;
2488         this.len = len;
2489         this.hash = full_name_hash(base, name, len);
2490         if (!len)
2491                 return ERR_PTR(-EACCES);
2492
2493         if (unlikely(name[0] == '.')) {
2494                 if (len < 2 || (len == 2 && name[1] == '.'))
2495                         return ERR_PTR(-EACCES);
2496         }
2497
2498         while (len--) {
2499                 c = *(const unsigned char *)name++;
2500                 if (c == '/' || c == '\0')
2501                         return ERR_PTR(-EACCES);
2502         }
2503         /*
2504          * See if the low-level filesystem might want
2505          * to use its own hash..
2506          */
2507         if (base->d_flags & DCACHE_OP_HASH) {
2508                 int err = base->d_op->d_hash(base, &this);
2509                 if (err < 0)
2510                         return ERR_PTR(err);
2511         }
2512
2513         err = inode_permission(base->d_inode, MAY_EXEC);
2514         if (err)
2515                 return ERR_PTR(err);
2516
2517         ret = lookup_dcache(&this, base, 0);
2518         if (!ret)
2519                 ret = lookup_slow(&this, base, 0);
2520         return ret;
2521 }
2522 EXPORT_SYMBOL(lookup_one_len_unlocked);
2523
2524 #ifdef CONFIG_UNIX98_PTYS
2525 int path_pts(struct path *path)
2526 {
2527         /* Find something mounted on "pts" in the same directory as
2528          * the input path.
2529          */
2530         struct dentry *child, *parent;
2531         struct qstr this;
2532         int ret;
2533
2534         ret = path_parent_directory(path);
2535         if (ret)
2536                 return ret;
2537
2538         parent = path->dentry;
2539         this.name = "pts";
2540         this.len = 3;
2541         child = d_hash_and_lookup(parent, &this);
2542         if (!child)
2543                 return -ENOENT;
2544
2545         path->dentry = child;
2546         dput(parent);
2547         follow_mount(path);
2548         return 0;
2549 }
2550 #endif
2551
2552 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2553                  struct path *path, int *empty)
2554 {
2555         return filename_lookup(dfd, getname_flags(name, flags, empty),
2556                                flags, path, NULL);
2557 }
2558 EXPORT_SYMBOL(user_path_at_empty);
2559
2560 /**
2561  * mountpoint_last - look up last component for umount
2562  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2563  *
2564  * This is a special lookup_last function just for umount. In this case, we
2565  * need to resolve the path without doing any revalidation.
2566  *
2567  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2568  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2569  * in almost all cases, this lookup will be served out of the dcache. The only
2570  * cases where it won't are if nd->last refers to a symlink or the path is
2571  * bogus and it doesn't exist.
2572  *
2573  * Returns:
2574  * -error: if there was an error during lookup. This includes -ENOENT if the
2575  *         lookup found a negative dentry.
2576  *
2577  * 0:      if we successfully resolved nd->last and found it to not to be a
2578  *         symlink that needs to be followed.
2579  *
2580  * 1:      if we successfully resolved nd->last and found it to be a symlink
2581  *         that needs to be followed.
2582  */
2583 static int
2584 mountpoint_last(struct nameidata *nd)
2585 {
2586         int error = 0;
2587         struct dentry *dir = nd->path.dentry;
2588         struct path path;
2589
2590         /* If we're in rcuwalk, drop out of it to handle last component */
2591         if (nd->flags & LOOKUP_RCU) {
2592                 if (unlazy_walk(nd))
2593                         return -ECHILD;
2594         }
2595
2596         nd->flags &= ~LOOKUP_PARENT;
2597
2598         if (unlikely(nd->last_type != LAST_NORM)) {
2599                 error = handle_dots(nd, nd->last_type);
2600                 if (error)
2601                         return error;
2602                 path.dentry = dget(nd->path.dentry);
2603         } else {
2604                 path.dentry = d_lookup(dir, &nd->last);
2605                 if (!path.dentry) {
2606                         /*
2607                          * No cached dentry. Mounted dentries are pinned in the
2608                          * cache, so that means that this dentry is probably
2609                          * a symlink or the path doesn't actually point
2610                          * to a mounted dentry.
2611                          */
2612                         path.dentry = lookup_slow(&nd->last, dir,
2613                                              nd->flags | LOOKUP_NO_REVAL);
2614                         if (IS_ERR(path.dentry))
2615                                 return PTR_ERR(path.dentry);
2616                 }
2617         }
2618         if (d_is_negative(path.dentry)) {
2619                 dput(path.dentry);
2620                 return -ENOENT;
2621         }
2622         path.mnt = nd->path.mnt;
2623         return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2624 }
2625
2626 /**
2627  * path_mountpoint - look up a path to be umounted
2628  * @nd:         lookup context
2629  * @flags:      lookup flags
2630  * @path:       pointer to container for result
2631  *
2632  * Look up the given name, but don't attempt to revalidate the last component.
2633  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2634  */
2635 static int
2636 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2637 {
2638         const char *s = path_init(nd, flags);
2639         int err;
2640         if (IS_ERR(s))
2641                 return PTR_ERR(s);
2642         while (!(err = link_path_walk(s, nd)) &&
2643                 (err = mountpoint_last(nd)) > 0) {
2644                 s = trailing_symlink(nd);
2645                 if (IS_ERR(s)) {
2646                         err = PTR_ERR(s);
2647                         break;
2648                 }
2649         }
2650         if (!err) {
2651                 *path = nd->path;
2652                 nd->path.mnt = NULL;
2653                 nd->path.dentry = NULL;
2654                 follow_mount(path);
2655         }
2656         terminate_walk(nd);
2657         return err;
2658 }
2659
2660 static int
2661 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2662                         unsigned int flags)
2663 {
2664         struct nameidata nd;
2665         int error;
2666         if (IS_ERR(name))
2667                 return PTR_ERR(name);
2668         set_nameidata(&nd, dfd, name);
2669         error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2670         if (unlikely(error == -ECHILD))
2671                 error = path_mountpoint(&nd, flags, path);
2672         if (unlikely(error == -ESTALE))
2673                 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2674         if (likely(!error))
2675                 audit_inode(name, path->dentry, 0);
2676         restore_nameidata();
2677         putname(name);
2678         return error;
2679 }
2680
2681 /**
2682  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2683  * @dfd:        directory file descriptor
2684  * @name:       pathname from userland
2685  * @flags:      lookup flags
2686  * @path:       pointer to container to hold result
2687  *
2688  * A umount is a special case for path walking. We're not actually interested
2689  * in the inode in this situation, and ESTALE errors can be a problem. We
2690  * simply want track down the dentry and vfsmount attached at the mountpoint
2691  * and avoid revalidating the last component.
2692  *
2693  * Returns 0 and populates "path" on success.
2694  */
2695 int
2696 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2697                         struct path *path)
2698 {
2699         return filename_mountpoint(dfd, getname(name), path, flags);
2700 }
2701
2702 int
2703 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2704                         unsigned int flags)
2705 {
2706         return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2707 }
2708 EXPORT_SYMBOL(kern_path_mountpoint);
2709
2710 int __check_sticky(struct inode *dir, struct inode *inode)
2711 {
2712         kuid_t fsuid = current_fsuid();
2713
2714         if (uid_eq(inode->i_uid, fsuid))
2715                 return 0;
2716         if (uid_eq(dir->i_uid, fsuid))
2717                 return 0;
2718         return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2719 }
2720 EXPORT_SYMBOL(__check_sticky);
2721
2722 /*
2723  *      Check whether we can remove a link victim from directory dir, check
2724  *  whether the type of victim is right.
2725  *  1. We can't do it if dir is read-only (done in permission())
2726  *  2. We should have write and exec permissions on dir
2727  *  3. We can't remove anything from append-only dir
2728  *  4. We can't do anything with immutable dir (done in permission())
2729  *  5. If the sticky bit on dir is set we should either
2730  *      a. be owner of dir, or
2731  *      b. be owner of victim, or
2732  *      c. have CAP_FOWNER capability
2733  *  6. If the victim is append-only or immutable we can't do antyhing with
2734  *     links pointing to it.
2735  *  7. If the victim has an unknown uid or gid we can't change the inode.
2736  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2737  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2738  * 10. We can't remove a root or mountpoint.
2739  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2740  *     nfs_async_unlink().
2741  */
2742 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2743 {
2744         struct inode *inode = d_backing_inode(victim);
2745         int error;
2746
2747         if (d_is_negative(victim))
2748                 return -ENOENT;
2749         BUG_ON(!inode);
2750
2751         BUG_ON(victim->d_parent->d_inode != dir);
2752         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2753
2754         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2755         if (error)
2756                 return error;
2757         if (IS_APPEND(dir))
2758                 return -EPERM;
2759
2760         if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2761             IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2762                 return -EPERM;
2763         if (isdir) {
2764                 if (!d_is_dir(victim))
2765                         return -ENOTDIR;
2766                 if (IS_ROOT(victim))
2767                         return -EBUSY;
2768         } else if (d_is_dir(victim))
2769                 return -EISDIR;
2770         if (IS_DEADDIR(dir))
2771                 return -ENOENT;
2772         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2773                 return -EBUSY;
2774         return 0;
2775 }
2776
2777 /*      Check whether we can create an object with dentry child in directory
2778  *  dir.
2779  *  1. We can't do it if child already exists (open has special treatment for
2780  *     this case, but since we are inlined it's OK)
2781  *  2. We can't do it if dir is read-only (done in permission())
2782  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2783  *  4. We should have write and exec permissions on dir
2784  *  5. We can't do it if dir is immutable (done in permission())
2785  */
2786 static inline int may_create(struct inode *dir, struct dentry *child)
2787 {
2788         struct user_namespace *s_user_ns;
2789         audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2790         if (child->d_inode)
2791                 return -EEXIST;
2792         if (IS_DEADDIR(dir))
2793                 return -ENOENT;
2794         s_user_ns = dir->i_sb->s_user_ns;
2795         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2796             !kgid_has_mapping(s_user_ns, current_fsgid()))
2797                 return -EOVERFLOW;
2798         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2799 }
2800
2801 /*
2802  * p1 and p2 should be directories on the same fs.
2803  */
2804 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2805 {
2806         struct dentry *p;
2807
2808         if (p1 == p2) {
2809                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2810                 return NULL;
2811         }
2812
2813         mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2814
2815         p = d_ancestor(p2, p1);
2816         if (p) {
2817                 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2818                 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2819                 return p;
2820         }
2821
2822         p = d_ancestor(p1, p2);
2823         if (p) {
2824                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2825                 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2826                 return p;
2827         }
2828
2829         inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2830         inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2831         return NULL;
2832 }
2833 EXPORT_SYMBOL(lock_rename);
2834
2835 void unlock_rename(struct dentry *p1, struct dentry *p2)
2836 {
2837         inode_unlock(p1->d_inode);
2838         if (p1 != p2) {
2839                 inode_unlock(p2->d_inode);
2840                 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2841         }
2842 }
2843 EXPORT_SYMBOL(unlock_rename);
2844
2845 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2846                 bool want_excl)
2847 {
2848         int error = may_create(dir, dentry);
2849         if (error)
2850                 return error;
2851
2852         if (!dir->i_op->create)
2853                 return -EACCES; /* shouldn't it be ENOSYS? */
2854         mode &= S_IALLUGO;
2855         mode |= S_IFREG;
2856         error = security_inode_create(dir, dentry, mode);
2857         if (error)
2858                 return error;
2859         error = dir->i_op->create(dir, dentry, mode, want_excl);
2860         if (!error)
2861                 fsnotify_create(dir, dentry);
2862         return error;
2863 }
2864 EXPORT_SYMBOL(vfs_create);
2865
2866 bool may_open_dev(const struct path *path)
2867 {
2868         return !(path->mnt->mnt_flags & MNT_NODEV) &&
2869                 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2870 }
2871
2872 static int may_open(const struct path *path, int acc_mode, int flag)
2873 {
2874         struct dentry *dentry = path->dentry;
2875         struct inode *inode = dentry->d_inode;
2876         int error;
2877
2878         if (!inode)
2879                 return -ENOENT;
2880
2881         switch (inode->i_mode & S_IFMT) {
2882         case S_IFLNK:
2883                 return -ELOOP;
2884         case S_IFDIR:
2885                 if (acc_mode & MAY_WRITE)
2886                         return -EISDIR;
2887                 break;
2888         case S_IFBLK:
2889         case S_IFCHR:
2890                 if (!may_open_dev(path))
2891                         return -EACCES;
2892                 /*FALLTHRU*/
2893         case S_IFIFO:
2894         case S_IFSOCK:
2895                 flag &= ~O_TRUNC;
2896                 break;
2897         }
2898
2899         error = inode_permission(inode, MAY_OPEN | acc_mode);
2900         if (error)
2901                 return error;
2902
2903         /*
2904          * An append-only file must be opened in append mode for writing.
2905          */
2906         if (IS_APPEND(inode)) {
2907                 if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2908                         return -EPERM;
2909                 if (flag & O_TRUNC)
2910                         return -EPERM;
2911         }
2912
2913         /* O_NOATIME can only be set by the owner or superuser */
2914         if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2915                 return -EPERM;
2916
2917         return 0;
2918 }
2919
2920 static int handle_truncate(struct file *filp)
2921 {
2922         const struct path *path = &filp->f_path;
2923         struct inode *inode = path->dentry->d_inode;
2924         int error = get_write_access(inode);
2925         if (error)
2926                 return error;
2927         /*
2928          * Refuse to truncate files with mandatory locks held on them.
2929          */
2930         error = locks_verify_locked(filp);
2931         if (!error)
2932                 error = security_path_truncate(path);
2933         if (!error) {
2934                 error = do_truncate(path->dentry, 0,
2935                                     ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2936                                     filp);
2937         }
2938         put_write_access(inode);
2939         return error;
2940 }
2941
2942 static inline int open_to_namei_flags(int flag)
2943 {
2944         if ((flag & O_ACCMODE) == 3)
2945                 flag--;
2946         return flag;
2947 }
2948
2949 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2950 {
2951         struct user_namespace *s_user_ns;
2952         int error = security_path_mknod(dir, dentry, mode, 0);
2953         if (error)
2954                 return error;
2955
2956         s_user_ns = dir->dentry->d_sb->s_user_ns;
2957         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2958             !kgid_has_mapping(s_user_ns, current_fsgid()))
2959                 return -EOVERFLOW;
2960
2961         error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2962         if (error)
2963                 return error;
2964
2965         return security_inode_create(dir->dentry->d_inode, dentry, mode);
2966 }
2967
2968 /*
2969  * Attempt to atomically look up, create and open a file from a negative
2970  * dentry.
2971  *
2972  * Returns 0 if successful.  The file will have been created and attached to
2973  * @file by the filesystem calling finish_open().
2974  *
2975  * Returns 1 if the file was looked up only or didn't need creating.  The
2976  * caller will need to perform the open themselves.  @path will have been
2977  * updated to point to the new dentry.  This may be negative.
2978  *
2979  * Returns an error code otherwise.
2980  */
2981 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2982                         struct path *path, struct file *file,
2983                         const struct open_flags *op,
2984                         int open_flag, umode_t mode,
2985                         int *opened)
2986 {
2987         struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2988         struct inode *dir =  nd->path.dentry->d_inode;
2989         int error;
2990
2991         if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
2992                 open_flag &= ~O_TRUNC;
2993
2994         if (nd->flags & LOOKUP_DIRECTORY)
2995                 open_flag |= O_DIRECTORY;
2996
2997         file->f_path.dentry = DENTRY_NOT_SET;
2998         file->f_path.mnt = nd->path.mnt;
2999         error = dir->i_op->atomic_open(dir, dentry, file,
3000                                        open_to_namei_flags(open_flag),
3001                                        mode, opened);
3002         d_lookup_done(dentry);
3003         if (!error) {
3004                 /*
3005                  * We didn't have the inode before the open, so check open
3006                  * permission here.
3007                  */
3008                 int acc_mode = op->acc_mode;
3009                 if (*opened & FILE_CREATED) {
3010                         WARN_ON(!(open_flag & O_CREAT));
3011                         fsnotify_create(dir, dentry);
3012                         acc_mode = 0;
3013                 }
3014                 error = may_open(&file->f_path, acc_mode, open_flag);
3015                 if (WARN_ON(error > 0))
3016                         error = -EINVAL;
3017         } else if (error > 0) {
3018                 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3019                         error = -EIO;
3020                 } else {
3021                         if (file->f_path.dentry) {
3022                                 dput(dentry);
3023                                 dentry = file->f_path.dentry;
3024                         }
3025                         if (*opened & FILE_CREATED)
3026                                 fsnotify_create(dir, dentry);
3027                         if (unlikely(d_is_negative(dentry))) {
3028                                 error = -ENOENT;
3029                         } else {
3030                                 path->dentry = dentry;
3031                                 path->mnt = nd->path.mnt;
3032                                 return 1;
3033                         }
3034                 }
3035         }
3036         dput(dentry);
3037         return error;
3038 }
3039
3040 /*
3041  * Look up and maybe create and open the last component.
3042  *
3043  * Must be called with i_mutex held on parent.
3044  *
3045  * Returns 0 if the file was successfully atomically created (if necessary) and
3046  * opened.  In this case the file will be returned attached to @file.
3047  *
3048  * Returns 1 if the file was not completely opened at this time, though lookups
3049  * and creations will have been performed and the dentry returned in @path will
3050  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3051  * specified then a negative dentry may be returned.
3052  *
3053  * An error code is returned otherwise.
3054  *
3055  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3056  * cleared otherwise prior to returning.
3057  */
3058 static int lookup_open(struct nameidata *nd, struct path *path,
3059                         struct file *file,
3060                         const struct open_flags *op,
3061                         bool got_write, int *opened)
3062 {
3063         struct dentry *dir = nd->path.dentry;
3064         struct inode *dir_inode = dir->d_inode;
3065         int open_flag = op->open_flag;
3066         struct dentry *dentry;
3067         int error, create_error = 0;
3068         umode_t mode = op->mode;
3069         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3070
3071         if (unlikely(IS_DEADDIR(dir_inode)))
3072                 return -ENOENT;
3073
3074         *opened &= ~FILE_CREATED;
3075         dentry = d_lookup(dir, &nd->last);
3076         for (;;) {
3077                 if (!dentry) {
3078                         dentry = d_alloc_parallel(dir, &nd->last, &wq);
3079                         if (IS_ERR(dentry))
3080                                 return PTR_ERR(dentry);
3081                 }
3082                 if (d_in_lookup(dentry))
3083                         break;
3084
3085                 error = d_revalidate(dentry, nd->flags);
3086                 if (likely(error > 0))
3087                         break;
3088                 if (error)
3089                         goto out_dput;
3090                 d_invalidate(dentry);
3091                 dput(dentry);
3092                 dentry = NULL;
3093         }
3094         if (dentry->d_inode) {
3095                 /* Cached positive dentry: will open in f_op->open */
3096                 goto out_no_open;
3097         }
3098
3099         /*
3100          * Checking write permission is tricky, bacuse we don't know if we are
3101          * going to actually need it: O_CREAT opens should work as long as the
3102          * file exists.  But checking existence breaks atomicity.  The trick is
3103          * to check access and if not granted clear O_CREAT from the flags.
3104          *
3105          * Another problem is returing the "right" error value (e.g. for an
3106          * O_EXCL open we want to return EEXIST not EROFS).
3107          */
3108         if (open_flag & O_CREAT) {
3109                 if (!IS_POSIXACL(dir->d_inode))
3110                         mode &= ~current_umask();
3111                 if (unlikely(!got_write)) {
3112                         create_error = -EROFS;
3113                         open_flag &= ~O_CREAT;
3114                         if (open_flag & (O_EXCL | O_TRUNC))
3115                                 goto no_open;
3116                         /* No side effects, safe to clear O_CREAT */
3117                 } else {
3118                         create_error = may_o_create(&nd->path, dentry, mode);
3119                         if (create_error) {
3120                                 open_flag &= ~O_CREAT;
3121                                 if (open_flag & O_EXCL)
3122                                         goto no_open;
3123                         }
3124                 }
3125         } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3126                    unlikely(!got_write)) {
3127                 /*
3128                  * No O_CREATE -> atomicity not a requirement -> fall
3129                  * back to lookup + open
3130                  */
3131                 goto no_open;
3132         }
3133
3134         if (dir_inode->i_op->atomic_open) {
3135                 error = atomic_open(nd, dentry, path, file, op, open_flag,
3136                                     mode, opened);
3137                 if (unlikely(error == -ENOENT) && create_error)
3138                         error = create_error;
3139                 return error;
3140         }
3141
3142 no_open:
3143         if (d_in_lookup(dentry)) {
3144                 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3145                                                              nd->flags);
3146                 d_lookup_done(dentry);
3147                 if (unlikely(res)) {
3148                         if (IS_ERR(res)) {
3149                                 error = PTR_ERR(res);
3150                                 goto out_dput;
3151                         }
3152                         dput(dentry);
3153                         dentry = res;
3154                 }
3155         }
3156
3157         /* Negative dentry, just create the file */
3158         if (!dentry->d_inode && (open_flag & O_CREAT)) {
3159                 *opened |= FILE_CREATED;
3160                 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3161                 if (!dir_inode->i_op->create) {
3162                         error = -EACCES;
3163                         goto out_dput;
3164                 }
3165                 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3166                                                 open_flag & O_EXCL);
3167                 if (error)
3168                         goto out_dput;
3169                 fsnotify_create(dir_inode, dentry);
3170         }
3171         if (unlikely(create_error) && !dentry->d_inode) {
3172                 error = create_error;
3173                 goto out_dput;
3174         }
3175 out_no_open:
3176         path->dentry = dentry;
3177         path->mnt = nd->path.mnt;
3178         return 1;
3179
3180 out_dput:
3181         dput(dentry);
3182         return error;
3183 }
3184
3185 /*
3186  * Handle the last step of open()
3187  */
3188 static int do_last(struct nameidata *nd,
3189                    struct file *file, const struct open_flags *op,
3190                    int *opened)
3191 {
3192         struct dentry *dir = nd->path.dentry;
3193         int open_flag = op->open_flag;
3194         bool will_truncate = (open_flag & O_TRUNC) != 0;
3195         bool got_write = false;
3196         int acc_mode = op->acc_mode;
3197         unsigned seq;
3198         struct inode *inode;
3199         struct path path;
3200         int error;
3201
3202         nd->flags &= ~LOOKUP_PARENT;
3203         nd->flags |= op->intent;
3204
3205         if (nd->last_type != LAST_NORM) {
3206                 error = handle_dots(nd, nd->last_type);
3207                 if (unlikely(error))
3208                         return error;
3209                 goto finish_open;
3210         }
3211
3212         if (!(open_flag & O_CREAT)) {
3213                 if (nd->last.name[nd->last.len])
3214                         nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3215                 /* we _can_ be in RCU mode here */
3216                 error = lookup_fast(nd, &path, &inode, &seq);
3217                 if (likely(error > 0))
3218                         goto finish_lookup;
3219
3220                 if (error < 0)
3221                         return error;
3222
3223                 BUG_ON(nd->inode != dir->d_inode);
3224                 BUG_ON(nd->flags & LOOKUP_RCU);
3225         } else {
3226                 /* create side of things */
3227                 /*
3228                  * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3229                  * has been cleared when we got to the last component we are
3230                  * about to look up
3231                  */
3232                 error = complete_walk(nd);
3233                 if (error)
3234                         return error;
3235
3236                 audit_inode(nd->name, dir, LOOKUP_PARENT);
3237                 /* trailing slashes? */
3238                 if (unlikely(nd->last.name[nd->last.len]))
3239                         return -EISDIR;
3240         }
3241
3242         if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3243                 error = mnt_want_write(nd->path.mnt);
3244                 if (!error)
3245                         got_write = true;
3246                 /*
3247                  * do _not_ fail yet - we might not need that or fail with
3248                  * a different error; let lookup_open() decide; we'll be
3249                  * dropping this one anyway.
3250                  */
3251         }
3252         if (open_flag & O_CREAT)
3253                 inode_lock(dir->d_inode);
3254         else
3255                 inode_lock_shared(dir->d_inode);
3256         error = lookup_open(nd, &path, file, op, got_write, opened);
3257         if (open_flag & O_CREAT)
3258                 inode_unlock(dir->d_inode);
3259         else
3260                 inode_unlock_shared(dir->d_inode);
3261
3262         if (error <= 0) {
3263                 if (error)
3264                         goto out;
3265
3266                 if ((*opened & FILE_CREATED) ||
3267                     !S_ISREG(file_inode(file)->i_mode))
3268                         will_truncate = false;
3269
3270                 audit_inode(nd->name, file->f_path.dentry, 0);
3271                 goto opened;
3272         }
3273
3274         if (*opened & FILE_CREATED) {
3275                 /* Don't check for write permission, don't truncate */
3276                 open_flag &= ~O_TRUNC;
3277                 will_truncate = false;
3278                 acc_mode = 0;
3279                 path_to_nameidata(&path, nd);
3280                 goto finish_open_created;
3281         }
3282
3283         /*
3284          * If atomic_open() acquired write access it is dropped now due to
3285          * possible mount and symlink following (this might be optimized away if
3286          * necessary...)
3287          */
3288         if (got_write) {
3289                 mnt_drop_write(nd->path.mnt);
3290                 got_write = false;
3291         }
3292
3293         error = follow_managed(&path, nd);
3294         if (unlikely(error < 0))
3295                 return error;
3296
3297         if (unlikely(d_is_negative(path.dentry))) {
3298                 path_to_nameidata(&path, nd);
3299                 return -ENOENT;
3300         }
3301
3302         /*
3303          * create/update audit record if it already exists.
3304          */
3305         audit_inode(nd->name, path.dentry, 0);
3306
3307         if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3308                 path_to_nameidata(&path, nd);
3309                 return -EEXIST;
3310         }
3311
3312         seq = 0;        /* out of RCU mode, so the value doesn't matter */
3313         inode = d_backing_inode(path.dentry);
3314 finish_lookup:
3315         error = step_into(nd, &path, 0, inode, seq);
3316         if (unlikely(error))
3317                 return error;
3318 finish_open:
3319         /* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3320         error = complete_walk(nd);
3321         if (error)
3322                 return error;
3323         audit_inode(nd->name, nd->path.dentry, 0);
3324         error = -EISDIR;
3325         if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3326                 goto out;
3327         error = -ENOTDIR;
3328         if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3329                 goto out;
3330         if (!d_is_reg(nd->path.dentry))
3331                 will_truncate = false;
3332
3333         if (will_truncate) {
3334                 error = mnt_want_write(nd->path.mnt);
3335                 if (error)
3336                         goto out;
3337                 got_write = true;
3338         }
3339 finish_open_created:
3340         error = may_open(&nd->path, acc_mode, open_flag);
3341         if (error)
3342                 goto out;
3343         BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3344         error = vfs_open(&nd->path, file, current_cred());
3345         if (error)
3346                 goto out;
3347         *opened |= FILE_OPENED;
3348 opened:
3349         error = open_check_o_direct(file);
3350         if (!error)
3351                 error = ima_file_check(file, op->acc_mode, *opened);
3352         if (!error && will_truncate)
3353                 error = handle_truncate(file);
3354 out:
3355         if (unlikely(error) && (*opened & FILE_OPENED))
3356                 fput(file);
3357         if (unlikely(error > 0)) {
3358                 WARN_ON(1);
3359                 error = -EINVAL;
3360         }
3361         if (got_write)
3362                 mnt_drop_write(nd->path.mnt);
3363         return error;
3364 }
3365
3366 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3367 {
3368         static const struct qstr name = QSTR_INIT("/", 1);
3369         struct dentry *child = NULL;
3370         struct inode *dir = dentry->d_inode;
3371         struct inode *inode;
3372         int error;
3373
3374         /* we want directory to be writable */
3375         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3376         if (error)
3377                 goto out_err;
3378         error = -EOPNOTSUPP;
3379         if (!dir->i_op->tmpfile)
3380                 goto out_err;
3381         error = -ENOMEM;
3382         child = d_alloc(dentry, &name);
3383         if (unlikely(!child))
3384                 goto out_err;
3385         error = dir->i_op->tmpfile(dir, child, mode);
3386         if (error)
3387                 goto out_err;
3388         error = -ENOENT;
3389         inode = child->d_inode;
3390         if (unlikely(!inode))
3391                 goto out_err;
3392         if (!(open_flag & O_EXCL)) {
3393                 spin_lock(&inode->i_lock);
3394                 inode->i_state |= I_LINKABLE;
3395                 spin_unlock(&inode->i_lock);
3396         }
3397         return child;
3398
3399 out_err:
3400         dput(child);
3401         return ERR_PTR(error);
3402 }
3403 EXPORT_SYMBOL(vfs_tmpfile);
3404
3405 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3406                 const struct open_flags *op,
3407                 struct file *file, int *opened)
3408 {
3409         struct dentry *child;
3410         struct path path;
3411         int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3412         if (unlikely(error))
3413                 return error;
3414         error = mnt_want_write(path.mnt);
3415         if (unlikely(error))
3416                 goto out;
3417         child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3418         error = PTR_ERR(child);
3419         if (unlikely(IS_ERR(child)))
3420                 goto out2;
3421         dput(path.dentry);
3422         path.dentry = child;
3423         audit_inode(nd->name, child, 0);
3424         /* Don't check for other permissions, the inode was just created */
3425         error = may_open(&path, 0, op->open_flag);
3426         if (error)
3427                 goto out2;
3428         file->f_path.mnt = path.mnt;
3429         error = finish_open(file, child, NULL, opened);
3430         if (error)
3431                 goto out2;
3432         error = open_check_o_direct(file);
3433         if (error)
3434                 fput(file);
3435 out2:
3436         mnt_drop_write(path.mnt);
3437 out:
3438         path_put(&path);
3439         return error;
3440 }
3441
3442 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3443 {
3444         struct path path;
3445         int error = path_lookupat(nd, flags, &path);
3446         if (!error) {
3447                 audit_inode(nd->name, path.dentry, 0);
3448                 error = vfs_open(&path, file, current_cred());
3449                 path_put(&path);
3450         }
3451         return error;
3452 }
3453
3454 static struct file *path_openat(struct nameidata *nd,
3455                         const struct open_flags *op, unsigned flags)
3456 {
3457         const char *s;
3458         struct file *file;
3459         int opened = 0;
3460         int error;
3461
3462         file = get_empty_filp();
3463         if (IS_ERR(file))
3464                 return file;
3465
3466         file->f_flags = op->open_flag;
3467
3468         if (unlikely(file->f_flags & __O_TMPFILE)) {
3469                 error = do_tmpfile(nd, flags, op, file, &opened);
3470                 goto out2;
3471         }
3472
3473         if (unlikely(file->f_flags & O_PATH)) {
3474                 error = do_o_path(nd, flags, file);
3475                 if (!error)
3476                         opened |= FILE_OPENED;
3477                 goto out2;
3478         }
3479
3480         s = path_init(nd, flags);
3481         if (IS_ERR(s)) {
3482                 put_filp(file);
3483                 return ERR_CAST(s);
3484         }
3485         while (!(error = link_path_walk(s, nd)) &&
3486                 (error = do_last(nd, file, op, &opened)) > 0) {
3487                 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3488                 s = trailing_symlink(nd);
3489                 if (IS_ERR(s)) {
3490                         error = PTR_ERR(s);
3491                         break;
3492                 }
3493         }
3494         terminate_walk(nd);
3495 out2:
3496         if (!(opened & FILE_OPENED)) {
3497                 BUG_ON(!error);
3498                 put_filp(file);
3499         }
3500         if (unlikely(error)) {
3501                 if (error == -EOPENSTALE) {
3502                         if (flags & LOOKUP_RCU)
3503                                 error = -ECHILD;
3504                         else
3505                                 error = -ESTALE;
3506                 }
3507                 file = ERR_PTR(error);
3508         }
3509         return file;
3510 }
3511
3512 struct file *do_filp_open(int dfd, struct filename *pathname,
3513                 const struct open_flags *op)
3514 {
3515         struct nameidata nd;
3516         int flags = op->lookup_flags;
3517         struct file *filp;
3518
3519         set_nameidata(&nd, dfd, pathname);
3520         filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3521         if (unlikely(filp == ERR_PTR(-ECHILD)))
3522                 filp = path_openat(&nd, op, flags);
3523         if (unlikely(filp == ERR_PTR(-ESTALE)))
3524                 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3525         restore_nameidata();
3526         return filp;
3527 }
3528
3529 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3530                 const char *name, const struct open_flags *op)
3531 {
3532         struct nameidata nd;
3533         struct file *file;
3534         struct filename *filename;
3535         int flags = op->lookup_flags | LOOKUP_ROOT;
3536
3537         nd.root.mnt = mnt;
3538         nd.root.dentry = dentry;
3539
3540         if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3541                 return ERR_PTR(-ELOOP);
3542
3543         filename = getname_kernel(name);
3544         if (IS_ERR(filename))
3545                 return ERR_CAST(filename);
3546
3547         set_nameidata(&nd, -1, filename);
3548         file = path_openat(&nd, op, flags | LOOKUP_RCU);
3549         if (unlikely(file == ERR_PTR(-ECHILD)))
3550                 file = path_openat(&nd, op, flags);
3551         if (unlikely(file == ERR_PTR(-ESTALE)))
3552                 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3553         restore_nameidata();
3554         putname(filename);
3555         return file;
3556 }
3557
3558 static struct dentry *filename_create(int dfd, struct filename *name,
3559                                 struct path *path, unsigned int lookup_flags)
3560 {
3561         struct dentry *dentry = ERR_PTR(-EEXIST);
3562         struct qstr last;
3563         int type;
3564         int err2;
3565         int error;
3566         bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3567
3568         /*
3569          * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3570          * other flags passed in are ignored!
3571          */
3572         lookup_flags &= LOOKUP_REVAL;
3573
3574         name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3575         if (IS_ERR(name))
3576                 return ERR_CAST(name);
3577
3578         /*
3579          * Yucky last component or no last component at all?
3580          * (foo/., foo/.., /////)
3581          */
3582         if (unlikely(type != LAST_NORM))
3583                 goto out;
3584
3585         /* don't fail immediately if it's r/o, at least try to report other errors */
3586         err2 = mnt_want_write(path->mnt);
3587         /*
3588          * Do the final lookup.
3589          */
3590         lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3591         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3592         dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3593         if (IS_ERR(dentry))
3594                 goto unlock;
3595
3596         error = -EEXIST;
3597         if (d_is_positive(dentry))
3598                 goto fail;
3599
3600         /*
3601          * Special case - lookup gave negative, but... we had foo/bar/
3602          * From the vfs_mknod() POV we just have a negative dentry -
3603          * all is fine. Let's be bastards - you had / on the end, you've
3604          * been asking for (non-existent) directory. -ENOENT for you.
3605          */
3606         if (unlikely(!is_dir && last.name[last.len])) {
3607                 error = -ENOENT;
3608                 goto fail;
3609         }
3610         if (unlikely(err2)) {
3611                 error = err2;
3612                 goto fail;
3613         }
3614         putname(name);
3615         return dentry;
3616 fail:
3617         dput(dentry);
3618         dentry = ERR_PTR(error);
3619 unlock:
3620         inode_unlock(path->dentry->d_inode);
3621         if (!err2)
3622                 mnt_drop_write(path->mnt);
3623 out:
3624         path_put(path);
3625         putname(name);
3626         return dentry;
3627 }
3628
3629 struct dentry *kern_path_create(int dfd, const char *pathname,
3630                                 struct path *path, unsigned int lookup_flags)
3631 {
3632         return filename_create(dfd, getname_kernel(pathname),
3633                                 path, lookup_flags);
3634 }
3635 EXPORT_SYMBOL(kern_path_create);
3636
3637 void done_path_create(struct path *path, struct dentry *dentry)
3638 {
3639         dput(dentry);
3640         inode_unlock(path->dentry->d_inode);
3641         mnt_drop_write(path->mnt);
3642         path_put(path);
3643 }
3644 EXPORT_SYMBOL(done_path_create);
3645
3646 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3647                                 struct path *path, unsigned int lookup_flags)
3648 {
3649         return filename_create(dfd, getname(pathname), path, lookup_flags);
3650 }
3651 EXPORT_SYMBOL(user_path_create);
3652
3653 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3654 {
3655         int error = may_create(dir, dentry);
3656
3657         if (error)
3658                 return error;
3659
3660         if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3661                 return -EPERM;
3662
3663         if (!dir->i_op->mknod)
3664                 return -EPERM;
3665
3666         error = devcgroup_inode_mknod(mode, dev);
3667         if (error)
3668                 return error;
3669
3670         error = security_inode_mknod(dir, dentry, mode, dev);
3671         if (error)
3672                 return error;
3673
3674         error = dir->i_op->mknod(dir, dentry, mode, dev);
3675         if (!error)
3676                 fsnotify_create(dir, dentry);
3677         return error;
3678 }
3679 EXPORT_SYMBOL(vfs_mknod);
3680
3681 static int may_mknod(umode_t mode)
3682 {
3683         switch (mode & S_IFMT) {
3684         case S_IFREG:
3685         case S_IFCHR:
3686         case S_IFBLK:
3687         case S_IFIFO:
3688         case S_IFSOCK:
3689         case 0: /* zero mode translates to S_IFREG */
3690                 return 0;
3691         case S_IFDIR:
3692                 return -EPERM;
3693         default:
3694                 return -EINVAL;
3695         }
3696 }
3697
3698 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3699                 unsigned, dev)
3700 {
3701         struct dentry *dentry;
3702         struct path path;
3703         int error;
3704         unsigned int lookup_flags = 0;
3705
3706         error = may_mknod(mode);
3707         if (error)
3708                 return error;
3709 retry:
3710         dentry = user_path_create(dfd, filename, &path, lookup_flags);
3711         if (IS_ERR(dentry))
3712                 return PTR_ERR(dentry);
3713
3714         if (!IS_POSIXACL(path.dentry->d_inode))
3715                 mode &= ~current_umask();
3716         error = security_path_mknod(&path, dentry, mode, dev);
3717         if (error)
3718                 goto out;
3719         switch (mode & S_IFMT) {
3720                 case 0: case S_IFREG:
3721                         error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3722                         if (!error)
3723                                 ima_post_path_mknod(dentry);
3724                         break;
3725                 case S_IFCHR: case S_IFBLK:
3726                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3727                                         new_decode_dev(dev));
3728                         break;
3729                 case S_IFIFO: case S_IFSOCK:
3730                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3731                         break;
3732         }
3733 out:
3734         done_path_create(&path, dentry);
3735         if (retry_estale(error, lookup_flags)) {
3736                 lookup_flags |= LOOKUP_REVAL;
3737                 goto retry;
3738         }
3739         return error;
3740 }
3741
3742 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3743 {
3744         return sys_mknodat(AT_FDCWD, filename, mode, dev);
3745 }
3746
3747 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3748 {
3749         int error = may_create(dir, dentry);
3750         unsigned max_links = dir->i_sb->s_max_links;
3751
3752         if (error)
3753                 return error;
3754
3755         if (!dir->i_op->mkdir)
3756                 return -EPERM;
3757
3758         mode &= (S_IRWXUGO|S_ISVTX);
3759         error = security_inode_mkdir(dir, dentry, mode);
3760         if (error)
3761                 return error;
3762
3763         if (max_links && dir->i_nlink >= max_links)
3764                 return -EMLINK;
3765
3766         error = dir->i_op->mkdir(dir, dentry, mode);
3767         if (!error)
3768                 fsnotify_mkdir(dir, dentry);
3769         return error;
3770 }
3771 EXPORT_SYMBOL(vfs_mkdir);
3772
3773 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3774 {
3775         struct dentry *dentry;
3776         struct path path;
3777         int error;
3778         unsigned int lookup_flags = LOOKUP_DIRECTORY;
3779
3780 retry:
3781         dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3782         if (IS_ERR(dentry))
3783                 return PTR_ERR(dentry);
3784
3785         if (!IS_POSIXACL(path.dentry->d_inode))
3786                 mode &= ~current_umask();
3787         error = security_path_mkdir(&path, dentry, mode);
3788         if (!error)
3789                 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3790         done_path_create(&path, dentry);
3791         if (retry_estale(error, lookup_flags)) {
3792                 lookup_flags |= LOOKUP_REVAL;
3793                 goto retry;
3794         }
3795         return error;
3796 }
3797
3798 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3799 {
3800         return sys_mkdirat(AT_FDCWD, pathname, mode);
3801 }
3802
3803 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3804 {
3805         int error = may_delete(dir, dentry, 1);
3806
3807         if (error)
3808                 return error;
3809
3810         if (!dir->i_op->rmdir)
3811                 return -EPERM;
3812
3813         dget(dentry);
3814         inode_lock(dentry->d_inode);
3815
3816         error = -EBUSY;
3817         if (is_local_mountpoint(dentry))
3818                 goto out;
3819
3820         error = security_inode_rmdir(dir, dentry);
3821         if (error)
3822                 goto out;
3823
3824         shrink_dcache_parent(dentry);
3825         error = dir->i_op->rmdir(dir, dentry);
3826         if (error)
3827                 goto out;
3828
3829         dentry->d_inode->i_flags |= S_DEAD;
3830         dont_mount(dentry);
3831         detach_mounts(dentry);
3832
3833 out:
3834         inode_unlock(dentry->d_inode);
3835         dput(dentry);
3836         if (!error)
3837                 d_delete(dentry);
3838         return error;
3839 }
3840 EXPORT_SYMBOL(vfs_rmdir);
3841
3842 static long do_rmdir(int dfd, const char __user *pathname)
3843 {
3844         int error = 0;
3845         struct filename *name;
3846         struct dentry *dentry;
3847         struct path path;
3848         struct qstr last;
3849         int type;
3850         unsigned int lookup_flags = 0;
3851 retry:
3852         name = filename_parentat(dfd, getname(pathname), lookup_flags,
3853                                 &path, &last, &type);
3854         if (IS_ERR(name))
3855                 return PTR_ERR(name);
3856
3857         switch (type) {
3858         case LAST_DOTDOT:
3859                 error = -ENOTEMPTY;
3860                 goto exit1;
3861         case LAST_DOT:
3862                 error = -EINVAL;
3863                 goto exit1;
3864         case LAST_ROOT:
3865                 error = -EBUSY;
3866                 goto exit1;
3867         }
3868
3869         error = mnt_want_write(path.mnt);
3870         if (error)
3871                 goto exit1;
3872
3873         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3874         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3875         error = PTR_ERR(dentry);
3876         if (IS_ERR(dentry))
3877                 goto exit2;
3878         if (!dentry->d_inode) {
3879                 error = -ENOENT;
3880                 goto exit3;
3881         }
3882         error = security_path_rmdir(&path, dentry);
3883         if (error)
3884                 goto exit3;
3885         error = vfs_rmdir(path.dentry->d_inode, dentry);
3886 exit3:
3887         dput(dentry);
3888 exit2:
3889         inode_unlock(path.dentry->d_inode);
3890         mnt_drop_write(path.mnt);
3891 exit1:
3892         path_put(&path);
3893         putname(name);
3894         if (retry_estale(error, lookup_flags)) {
3895                 lookup_flags |= LOOKUP_REVAL;
3896                 goto retry;
3897         }
3898         return error;
3899 }
3900
3901 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3902 {
3903         return do_rmdir(AT_FDCWD, pathname);
3904 }
3905
3906 /**
3907  * vfs_unlink - unlink a filesystem object
3908  * @dir:        parent directory
3909  * @dentry:     victim
3910  * @delegated_inode: returns victim inode, if the inode is delegated.
3911  *
3912  * The caller must hold dir->i_mutex.
3913  *
3914  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3915  * return a reference to the inode in delegated_inode.  The caller
3916  * should then break the delegation on that inode and retry.  Because
3917  * breaking a delegation may take a long time, the caller should drop
3918  * dir->i_mutex before doing so.
3919  *
3920  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3921  * be appropriate for callers that expect the underlying filesystem not
3922  * to be NFS exported.
3923  */
3924 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3925 {
3926         struct inode *target = dentry->d_inode;
3927         int error = may_delete(dir, dentry, 0);
3928
3929         if (error)
3930                 return error;
3931
3932         if (!dir->i_op->unlink)
3933                 return -EPERM;
3934
3935         inode_lock(target);
3936         if (is_local_mountpoint(dentry))
3937                 error = -EBUSY;
3938         else {
3939                 error = security_inode_unlink(dir, dentry);
3940                 if (!error) {
3941                         error = try_break_deleg(target, delegated_inode);
3942                         if (error)
3943                                 goto out;
3944                         error = dir->i_op->unlink(dir, dentry);
3945                         if (!error) {
3946                                 dont_mount(dentry);
3947                                 detach_mounts(dentry);
3948                         }
3949                 }
3950         }
3951 out:
3952         inode_unlock(target);
3953
3954         /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3955         if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3956                 fsnotify_link_count(target);
3957                 d_delete(dentry);
3958         }
3959
3960         return error;
3961 }
3962 EXPORT_SYMBOL(vfs_unlink);
3963
3964 /*
3965  * Make sure that the actual truncation of the file will occur outside its
3966  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3967  * writeout happening, and we don't want to prevent access to the directory
3968  * while waiting on the I/O.
3969  */
3970 static long do_unlinkat(int dfd, const char __user *pathname)
3971 {
3972         int error;
3973         struct filename *name;
3974         struct dentry *dentry;
3975         struct path path;
3976         struct qstr last;
3977         int type;
3978         struct inode *inode = NULL;
3979         struct inode *delegated_inode = NULL;
3980         unsigned int lookup_flags = 0;
3981 retry:
3982         name = filename_parentat(dfd, getname(pathname), lookup_flags,
3983                                 &path, &last, &type);
3984         if (IS_ERR(name))
3985                 return PTR_ERR(name);
3986
3987         error = -EISDIR;
3988         if (type != LAST_NORM)
3989                 goto exit1;
3990
3991         error = mnt_want_write(path.mnt);
3992         if (error)
3993                 goto exit1;
3994 retry_deleg:
3995         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3996         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3997         error = PTR_ERR(dentry);
3998         if (!IS_ERR(dentry)) {
3999                 /* Why not before? Because we want correct error value */
4000                 if (last.name[last.len])
4001                         goto slashes;
4002                 inode = dentry->d_inode;
4003                 if (d_is_negative(dentry))
4004                         goto slashes;
4005                 ihold(inode);
4006                 error = security_path_unlink(&path, dentry);
4007                 if (error)
4008                         goto exit2;
4009                 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4010 exit2:
4011                 dput(dentry);
4012         }
4013         inode_unlock(path.dentry->d_inode);
4014         if (inode)
4015                 iput(inode);    /* truncate the inode here */
4016         inode = NULL;
4017         if (delegated_inode) {
4018                 error = break_deleg_wait(&delegated_inode);
4019                 if (!error)
4020                         goto retry_deleg;
4021         }
4022         mnt_drop_write(path.mnt);
4023 exit1:
4024         path_put(&path);
4025         putname(name);
4026         if (retry_estale(error, lookup_flags)) {
4027                 lookup_flags |= LOOKUP_REVAL;
4028                 inode = NULL;
4029                 goto retry;
4030         }
4031         return error;
4032
4033 slashes:
4034         if (d_is_negative(dentry))
4035                 error = -ENOENT;
4036         else if (d_is_dir(dentry))
4037                 error = -EISDIR;
4038         else
4039                 error = -ENOTDIR;
4040         goto exit2;
4041 }
4042
4043 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4044 {
4045         if ((flag & ~AT_REMOVEDIR) != 0)
4046                 return -EINVAL;
4047
4048         if (flag & AT_REMOVEDIR)
4049                 return do_rmdir(dfd, pathname);
4050
4051         return do_unlinkat(dfd, pathname);
4052 }
4053
4054 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4055 {
4056         return do_unlinkat(AT_FDCWD, pathname);
4057 }
4058
4059 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4060 {
4061         int error = may_create(dir, dentry);
4062
4063         if (error)
4064                 return error;
4065
4066         if (!dir->i_op->symlink)
4067                 return -EPERM;
4068
4069         error = security_inode_symlink(dir, dentry, oldname);
4070         if (error)
4071                 return error;
4072
4073         error = dir->i_op->symlink(dir, dentry, oldname);
4074         if (!error)
4075                 fsnotify_create(dir, dentry);
4076         return error;
4077 }
4078 EXPORT_SYMBOL(vfs_symlink);
4079
4080 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4081                 int, newdfd, const char __user *, newname)
4082 {
4083         int error;
4084         struct filename *from;
4085         struct dentry *dentry;
4086         struct path path;
4087         unsigned int lookup_flags = 0;
4088
4089         from = getname(oldname);
4090         if (IS_ERR(from))
4091                 return PTR_ERR(from);
4092 retry:
4093         dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4094         error = PTR_ERR(dentry);
4095         if (IS_ERR(dentry))
4096                 goto out_putname;
4097
4098         error = security_path_symlink(&path, dentry, from->name);
4099         if (!error)
4100                 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4101         done_path_create(&path, dentry);
4102         if (retry_estale(error, lookup_flags)) {
4103                 lookup_flags |= LOOKUP_REVAL;
4104                 goto retry;
4105         }
4106 out_putname:
4107         putname(from);
4108         return error;
4109 }
4110
4111 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4112 {
4113         return sys_symlinkat(oldname, AT_FDCWD, newname);
4114 }
4115
4116 /**
4117  * vfs_link - create a new link
4118  * @old_dentry: object to be linked
4119  * @dir:        new parent
4120  * @new_dentry: where to create the new link
4121  * @delegated_inode: returns inode needing a delegation break
4122  *
4123  * The caller must hold dir->i_mutex
4124  *
4125  * If vfs_link discovers a delegation on the to-be-linked file in need
4126  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4127  * inode in delegated_inode.  The caller should then break the delegation
4128  * and retry.  Because breaking a delegation may take a long time, the
4129  * caller should drop the i_mutex before doing so.
4130  *
4131  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4132  * be appropriate for callers that expect the underlying filesystem not
4133  * to be NFS exported.
4134  */
4135 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4136 {
4137         struct inode *inode = old_dentry->d_inode;
4138         unsigned max_links = dir->i_sb->s_max_links;
4139         int error;
4140
4141         if (!inode)
4142                 return -ENOENT;
4143
4144         error = may_create(dir, new_dentry);
4145         if (error)
4146                 return error;
4147
4148         if (dir->i_sb != inode->i_sb)
4149                 return -EXDEV;
4150
4151         /*
4152          * A link to an append-only or immutable file cannot be created.
4153          */
4154         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4155                 return -EPERM;
4156         /*
4157          * Updating the link count will likely cause i_uid and i_gid to
4158          * be writen back improperly if their true value is unknown to
4159          * the vfs.
4160          */
4161         if (HAS_UNMAPPED_ID(inode))
4162                 return -EPERM;
4163         if (!dir->i_op->link)
4164                 return -EPERM;
4165         if (S_ISDIR(inode->i_mode))
4166                 return -EPERM;
4167
4168         error = security_inode_link(old_dentry, dir, new_dentry);
4169         if (error)
4170                 return error;
4171
4172         inode_lock(inode);
4173         /* Make sure we don't allow creating hardlink to an unlinked file */
4174         if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4175                 error =  -ENOENT;
4176         else if (max_links && inode->i_nlink >= max_links)
4177                 error = -EMLINK;
4178         else {
4179                 error = try_break_deleg(inode, delegated_inode);
4180                 if (!error)
4181                         error = dir->i_op->link(old_dentry, dir, new_dentry);
4182         }
4183
4184         if (!error && (inode->i_state & I_LINKABLE)) {
4185                 spin_lock(&inode->i_lock);
4186                 inode->i_state &= ~I_LINKABLE;
4187                 spin_unlock(&inode->i_lock);
4188         }
4189         inode_unlock(inode);
4190         if (!error)
4191                 fsnotify_link(dir, inode, new_dentry);
4192         return error;
4193 }
4194 EXPORT_SYMBOL(vfs_link);
4195
4196 /*
4197  * Hardlinks are often used in delicate situations.  We avoid
4198  * security-related surprises by not following symlinks on the
4199  * newname.  --KAB
4200  *
4201  * We don't follow them on the oldname either to be compatible
4202  * with linux 2.0, and to avoid hard-linking to directories
4203  * and other special files.  --ADM
4204  */
4205 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4206                 int, newdfd, const char __user *, newname, int, flags)
4207 {
4208         struct dentry *new_dentry;
4209         struct path old_path, new_path;
4210         struct inode *delegated_inode = NULL;
4211         int how = 0;
4212         int error;
4213
4214         if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4215                 return -EINVAL;
4216         /*
4217          * To use null names we require CAP_DAC_READ_SEARCH
4218          * This ensures that not everyone will be able to create
4219          * handlink using the passed filedescriptor.
4220          */
4221         if (flags & AT_EMPTY_PATH) {
4222                 if (!capable(CAP_DAC_READ_SEARCH))
4223                         return -ENOENT;
4224                 how = LOOKUP_EMPTY;
4225         }
4226
4227         if (flags & AT_SYMLINK_FOLLOW)
4228                 how |= LOOKUP_FOLLOW;
4229 retry:
4230         error = user_path_at(olddfd, oldname, how, &old_path);
4231         if (error)
4232                 return error;
4233
4234         new_dentry = user_path_create(newdfd, newname, &new_path,
4235                                         (how & LOOKUP_REVAL));
4236         error = PTR_ERR(new_dentry);
4237         if (IS_ERR(new_dentry))
4238                 goto out;
4239
4240         error = -EXDEV;
4241         if (old_path.mnt != new_path.mnt)
4242                 goto out_dput;
4243         error = may_linkat(&old_path);
4244         if (unlikely(error))
4245                 goto out_dput;
4246         error = security_path_link(old_path.dentry, &new_path, new_dentry);
4247         if (error)
4248                 goto out_dput;
4249         error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4250 out_dput:
4251         done_path_create(&new_path, new_dentry);
4252         if (delegated_inode) {
4253                 error = break_deleg_wait(&delegated_inode);
4254                 if (!error) {
4255                         path_put(&old_path);
4256                         goto retry;
4257                 }
4258         }
4259         if (retry_estale(error, how)) {
4260                 path_put(&old_path);
4261                 how |= LOOKUP_REVAL;
4262                 goto retry;
4263         }
4264 out:
4265         path_put(&old_path);
4266
4267         return error;
4268 }
4269
4270 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4271 {
4272         return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4273 }
4274
4275 /**
4276  * vfs_rename - rename a filesystem object
4277  * @old_dir:    parent of source
4278  * @old_dentry: source
4279  * @new_dir:    parent of destination
4280  * @new_dentry: destination
4281  * @delegated_inode: returns an inode needing a delegation break
4282  * @flags:      rename flags
4283  *
4284  * The caller must hold multiple mutexes--see lock_rename()).
4285  *
4286  * If vfs_rename discovers a delegation in need of breaking at either
4287  * the source or destination, it will return -EWOULDBLOCK and return a
4288  * reference to the inode in delegated_inode.  The caller should then
4289  * break the delegation and retry.  Because breaking a delegation may
4290  * take a long time, the caller should drop all locks before doing
4291  * so.
4292  *
4293  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4294  * be appropriate for callers that expect the underlying filesystem not
4295  * to be NFS exported.
4296  *
4297  * The worst of all namespace operations - renaming directory. "Perverted"
4298  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4299  * Problems:
4300  *      a) we can get into loop creation.
4301  *      b) race potential - two innocent renames can create a loop together.
4302  *         That's where 4.4 screws up. Current fix: serialization on
4303  *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4304  *         story.
4305  *      c) we have to lock _four_ objects - parents and victim (if it exists),
4306  *         and source (if it is not a directory).
4307  *         And that - after we got ->i_mutex on parents (until then we don't know
4308  *         whether the target exists).  Solution: try to be smart with locking
4309  *         order for inodes.  We rely on the fact that tree topology may change
4310  *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
4311  *         move will be locked.  Thus we can rank directories by the tree
4312  *         (ancestors first) and rank all non-directories after them.
4313  *         That works since everybody except rename does "lock parent, lookup,
4314  *         lock child" and rename is under ->s_vfs_rename_mutex.
4315  *         HOWEVER, it relies on the assumption that any object with ->lookup()
4316  *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
4317  *         we'd better make sure that there's no link(2) for them.
4318  *      d) conversion from fhandle to dentry may come in the wrong moment - when
4319  *         we are removing the target. Solution: we will have to grab ->i_mutex
4320  *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4321  *         ->i_mutex on parents, which works but leads to some truly excessive
4322  *         locking].
4323  */
4324 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4325                struct inode *new_dir, struct dentry *new_dentry,
4326                struct inode **delegated_inode, unsigned int flags)
4327 {
4328         int error;
4329         bool is_dir = d_is_dir(old_dentry);
4330         const unsigned char *old_name;
4331         struct inode *source = old_dentry->d_inode;
4332         struct inode *target = new_dentry->d_inode;
4333         bool new_is_dir = false;
4334         unsigned max_links = new_dir->i_sb->s_max_links;
4335
4336         if (source == target)
4337                 return 0;
4338
4339         error = may_delete(old_dir, old_dentry, is_dir);
4340         if (error)
4341                 return error;
4342
4343         if (!target) {
4344                 error = may_create(new_dir, new_dentry);
4345         } else {
4346                 new_is_dir = d_is_dir(new_dentry);
4347
4348                 if (!(flags & RENAME_EXCHANGE))
4349                         error = may_delete(new_dir, new_dentry, is_dir);
4350                 else
4351                         error = may_delete(new_dir, new_dentry, new_is_dir);
4352         }
4353         if (error)
4354                 return error;
4355
4356         if (!old_dir->i_op->rename)
4357                 return -EPERM;
4358
4359         /*
4360          * If we are going to change the parent - check write permissions,
4361          * we'll need to flip '..'.
4362          */
4363         if (new_dir != old_dir) {
4364                 if (is_dir) {
4365                         error = inode_permission(source, MAY_WRITE);
4366                         if (error)
4367                                 return error;
4368                 }
4369                 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4370                         error = inode_permission(target, MAY_WRITE);
4371                         if (error)
4372                                 return error;
4373                 }
4374         }
4375
4376         error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4377                                       flags);
4378         if (error)
4379                 return error;
4380
4381         old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4382         dget(new_dentry);
4383         if (!is_dir || (flags & RENAME_EXCHANGE))
4384                 lock_two_nondirectories(source, target);
4385         else if (target)
4386                 inode_lock(target);
4387
4388         error = -EBUSY;
4389         if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4390                 goto out;
4391
4392         if (max_links && new_dir != old_dir) {
4393                 error = -EMLINK;
4394                 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4395                         goto out;
4396                 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4397                     old_dir->i_nlink >= max_links)
4398                         goto out;
4399         }
4400         if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4401                 shrink_dcache_parent(new_dentry);
4402         if (!is_dir) {
4403                 error = try_break_deleg(source, delegated_inode);
4404                 if (error)
4405                         goto out;
4406         }
4407         if (target && !new_is_dir) {
4408                 error = try_break_deleg(target, delegated_inode);
4409                 if (error)
4410                         goto out;
4411         }
4412         error = old_dir->i_op->rename(old_dir, old_dentry,
4413                                        new_dir, new_dentry, flags);
4414         if (error)
4415                 goto out;
4416
4417         if (!(flags & RENAME_EXCHANGE) && target) {
4418                 if (is_dir)
4419                         target->i_flags |= S_DEAD;
4420                 dont_mount(new_dentry);
4421                 detach_mounts(new_dentry);
4422         }
4423         if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4424                 if (!(flags & RENAME_EXCHANGE))
4425                         d_move(old_dentry, new_dentry);
4426                 else
4427                         d_exchange(old_dentry, new_dentry);
4428         }
4429 out:
4430         if (!is_dir || (flags & RENAME_EXCHANGE))
4431                 unlock_two_nondirectories(source, target);
4432         else if (target)
4433                 inode_unlock(target);
4434         dput(new_dentry);
4435         if (!error) {
4436                 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4437                               !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4438                 if (flags & RENAME_EXCHANGE) {
4439                         fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4440                                       new_is_dir, NULL, new_dentry);
4441                 }
4442         }
4443         fsnotify_oldname_free(old_name);
4444
4445         return error;
4446 }
4447 EXPORT_SYMBOL(vfs_rename);
4448
4449 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4450                 int, newdfd, const char __user *, newname, unsigned int, flags)
4451 {
4452         struct dentry *old_dentry, *new_dentry;
4453         struct dentry *trap;
4454         struct path old_path, new_path;
4455         struct qstr old_last, new_last;
4456         int old_type, new_type;
4457         struct inode *delegated_inode = NULL;
4458         struct filename *from;
4459         struct filename *to;
4460         unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4461         bool should_retry = false;
4462         int error;
4463
4464         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4465                 return -EINVAL;
4466
4467         if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4468             (flags & RENAME_EXCHANGE))
4469                 return -EINVAL;
4470
4471         if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4472                 return -EPERM;
4473
4474         if (flags & RENAME_EXCHANGE)
4475                 target_flags = 0;
4476
4477 retry:
4478         from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4479                                 &old_path, &old_last, &old_type);
4480         if (IS_ERR(from)) {
4481                 error = PTR_ERR(from);
4482                 goto exit;
4483         }
4484
4485         to = filename_parentat(newdfd, getname(newname), lookup_flags,
4486                                 &new_path, &new_last, &new_type);
4487         if (IS_ERR(to)) {
4488                 error = PTR_ERR(to);
4489                 goto exit1;
4490         }
4491
4492         error = -EXDEV;
4493         if (old_path.mnt != new_path.mnt)
4494                 goto exit2;
4495
4496         error = -EBUSY;
4497         if (old_type != LAST_NORM)
4498                 goto exit2;
4499
4500         if (flags & RENAME_NOREPLACE)
4501                 error = -EEXIST;
4502         if (new_type != LAST_NORM)
4503                 goto exit2;
4504
4505         error = mnt_want_write(old_path.mnt);
4506         if (error)
4507                 goto exit2;
4508
4509 retry_deleg:
4510         trap = lock_rename(new_path.dentry, old_path.dentry);
4511
4512         old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4513         error = PTR_ERR(old_dentry);
4514         if (IS_ERR(old_dentry))
4515                 goto exit3;
4516         /* source must exist */
4517         error = -ENOENT;
4518         if (d_is_negative(old_dentry))
4519                 goto exit4;
4520         new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4521         error = PTR_ERR(new_dentry);
4522         if (IS_ERR(new_dentry))
4523                 goto exit4;
4524         error = -EEXIST;
4525         if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4526                 goto exit5;
4527         if (flags & RENAME_EXCHANGE) {
4528                 error = -ENOENT;
4529                 if (d_is_negative(new_dentry))
4530                         goto exit5;
4531
4532                 if (!d_is_dir(new_dentry)) {
4533                         error = -ENOTDIR;
4534                         if (new_last.name[new_last.len])
4535                                 goto exit5;
4536                 }
4537         }
4538         /* unless the source is a directory trailing slashes give -ENOTDIR */
4539         if (!d_is_dir(old_dentry)) {
4540                 error = -ENOTDIR;
4541                 if (old_last.name[old_last.len])
4542                         goto exit5;
4543                 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4544                         goto exit5;
4545         }
4546         /* source should not be ancestor of target */
4547         error = -EINVAL;
4548         if (old_dentry == trap)
4549                 goto exit5;
4550         /* target should not be an ancestor of source */
4551         if (!(flags & RENAME_EXCHANGE))
4552                 error = -ENOTEMPTY;
4553         if (new_dentry == trap)
4554                 goto exit5;
4555
4556         error = security_path_rename(&old_path, old_dentry,
4557                                      &new_path, new_dentry, flags);
4558         if (error)
4559                 goto exit5;
4560         error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4561                            new_path.dentry->d_inode, new_dentry,
4562                            &delegated_inode, flags);
4563 exit5:
4564         dput(new_dentry);
4565 exit4:
4566         dput(old_dentry);
4567 exit3:
4568         unlock_rename(new_path.dentry, old_path.dentry);
4569         if (delegated_inode) {
4570                 error = break_deleg_wait(&delegated_inode);
4571                 if (!error)
4572                         goto retry_deleg;
4573         }
4574         mnt_drop_write(old_path.mnt);
4575 exit2:
4576         if (retry_estale(error, lookup_flags))
4577                 should_retry = true;
4578         path_put(&new_path);
4579         putname(to);
4580 exit1:
4581         path_put(&old_path);
4582         putname(from);
4583         if (should_retry) {
4584                 should_retry = false;
4585                 lookup_flags |= LOOKUP_REVAL;
4586                 goto retry;
4587         }
4588 exit:
4589         return error;
4590 }
4591
4592 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4593                 int, newdfd, const char __user *, newname)
4594 {
4595         return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4596 }
4597
4598 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4599 {
4600         return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4601 }
4602
4603 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4604 {
4605         int error = may_create(dir, dentry);
4606         if (error)
4607                 return error;
4608
4609         if (!dir->i_op->mknod)
4610                 return -EPERM;
4611
4612         return dir->i_op->mknod(dir, dentry,
4613                                 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4614 }
4615 EXPORT_SYMBOL(vfs_whiteout);
4616
4617 int readlink_copy(char __user *buffer, int buflen, const char *link)
4618 {
4619         int len = PTR_ERR(link);
4620         if (IS_ERR(link))
4621                 goto out;
4622
4623         len = strlen(link);
4624         if (len > (unsigned) buflen)
4625                 len = buflen;
4626         if (copy_to_user(buffer, link, len))
4627                 len = -EFAULT;
4628 out:
4629         return len;
4630 }
4631
4632 /*
4633  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4634  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4635  * for any given inode is up to filesystem.
4636  */
4637 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4638                             int buflen)
4639 {
4640         DEFINE_DELAYED_CALL(done);
4641         struct inode *inode = d_inode(dentry);
4642         const char *link = inode->i_link;
4643         int res;
4644
4645         if (!link) {
4646                 link = inode->i_op->get_link(dentry, inode, &done);
4647                 if (IS_ERR(link))
4648                         return PTR_ERR(link);
4649         }
4650         res = readlink_copy(buffer, buflen, link);
4651         do_delayed_call(&done);
4652         return res;
4653 }
4654
4655 /**
4656  * vfs_readlink - copy symlink body into userspace buffer
4657  * @dentry: dentry on which to get symbolic link
4658  * @buffer: user memory pointer
4659  * @buflen: size of buffer
4660  *
4661  * Does not touch atime.  That's up to the caller if necessary
4662  *
4663  * Does not call security hook.
4664  */
4665 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4666 {
4667         struct inode *inode = d_inode(dentry);
4668
4669         if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4670                 if (unlikely(inode->i_op->readlink))
4671                         return inode->i_op->readlink(dentry, buffer, buflen);
4672
4673                 if (!d_is_symlink(dentry))
4674                         return -EINVAL;
4675
4676                 spin_lock(&inode->i_lock);
4677                 inode->i_opflags |= IOP_DEFAULT_READLINK;
4678                 spin_unlock(&inode->i_lock);
4679         }
4680
4681         return generic_readlink(dentry, buffer, buflen);
4682 }
4683 EXPORT_SYMBOL(vfs_readlink);
4684
4685 /**
4686  * vfs_get_link - get symlink body
4687  * @dentry: dentry on which to get symbolic link
4688  * @done: caller needs to free returned data with this
4689  *
4690  * Calls security hook and i_op->get_link() on the supplied inode.
4691  *
4692  * It does not touch atime.  That's up to the caller if necessary.
4693  *
4694  * Does not work on "special" symlinks like /proc/$$/fd/N
4695  */
4696 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4697 {
4698         const char *res = ERR_PTR(-EINVAL);
4699         struct inode *inode = d_inode(dentry);
4700
4701         if (d_is_symlink(dentry)) {
4702                 res = ERR_PTR(security_inode_readlink(dentry));
4703                 if (!res)
4704                         res = inode->i_op->get_link(dentry, inode, done);
4705         }
4706         return res;
4707 }
4708 EXPORT_SYMBOL(vfs_get_link);
4709
4710 /* get the link contents into pagecache */
4711 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4712                           struct delayed_call *callback)
4713 {
4714         char *kaddr;
4715         struct page *page;
4716         struct address_space *mapping = inode->i_mapping;
4717
4718         if (!dentry) {
4719                 page = find_get_page(mapping, 0);
4720                 if (!page)
4721                         return ERR_PTR(-ECHILD);
4722                 if (!PageUptodate(page)) {
4723                         put_page(page);
4724                         return ERR_PTR(-ECHILD);
4725                 }
4726         } else {
4727                 page = read_mapping_page(mapping, 0, NULL);
4728                 if (IS_ERR(page))
4729                         return (char*)page;
4730         }
4731         set_delayed_call(callback, page_put_link, page);
4732         BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4733         kaddr = page_address(page);
4734         nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4735         return kaddr;
4736 }
4737
4738 EXPORT_SYMBOL(page_get_link);
4739
4740 void page_put_link(void *arg)
4741 {
4742         put_page(arg);
4743 }
4744 EXPORT_SYMBOL(page_put_link);
4745
4746 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4747 {
4748         DEFINE_DELAYED_CALL(done);
4749         int res = readlink_copy(buffer, buflen,
4750                                 page_get_link(dentry, d_inode(dentry),
4751                                               &done));
4752         do_delayed_call(&done);
4753         return res;
4754 }
4755 EXPORT_SYMBOL(page_readlink);
4756
4757 /*
4758  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4759  */
4760 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4761 {
4762         struct address_space *mapping = inode->i_mapping;
4763         struct page *page;
4764         void *fsdata;
4765         int err;
4766         unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4767         if (nofs)
4768                 flags |= AOP_FLAG_NOFS;
4769
4770 retry:
4771         err = pagecache_write_begin(NULL, mapping, 0, len-1,
4772                                 flags, &page, &fsdata);
4773         if (err)
4774                 goto fail;
4775
4776         memcpy(page_address(page), symname, len-1);
4777
4778         err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4779                                                         page, fsdata);
4780         if (err < 0)
4781                 goto fail;
4782         if (err < len-1)
4783                 goto retry;
4784
4785         mark_inode_dirty(inode);
4786         return 0;
4787 fail:
4788         return err;
4789 }
4790 EXPORT_SYMBOL(__page_symlink);
4791
4792 int page_symlink(struct inode *inode, const char *symname, int len)
4793 {
4794         return __page_symlink(inode, symname, len,
4795                         !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4796 }
4797 EXPORT_SYMBOL(page_symlink);
4798
4799 const struct inode_operations page_symlink_inode_operations = {
4800         .get_link       = page_get_link,
4801 };
4802 EXPORT_SYMBOL(page_symlink_inode_operations);