1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * Some corrections by tytso.
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
94 * [10-Sep-98 Alan Modra] Another symlink change.
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
128 getname_flags(const char __user *filename, int flags, int *empty)
130 struct filename *result;
134 result = audit_reusename(filename);
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
143 * First, try to embed the struct filename inside the names_cache
146 kname = (char *)result->iname;
147 result->name = kname;
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
173 return ERR_PTR(-ENOMEM);
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
182 if (unlikely(len == PATH_MAX)) {
185 return ERR_PTR(-ENAMETOOLONG);
190 /* The empty path is special. */
191 if (unlikely(!len)) {
194 if (!(flags & LOOKUP_EMPTY)) {
196 return ERR_PTR(-ENOENT);
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
207 getname(const char __user * filename)
209 return getname_flags(filename, 0, NULL);
213 getname_kernel(const char * filename)
215 struct filename *result;
216 int len = strlen(filename) + 1;
218 result = __getname();
219 if (unlikely(!result))
220 return ERR_PTR(-ENOMEM);
222 if (len <= EMBEDDED_NAME_MAX) {
223 result->name = (char *)result->iname;
224 } else if (len <= PATH_MAX) {
225 const size_t size = offsetof(struct filename, iname[1]);
226 struct filename *tmp;
228 tmp = kmalloc(size, GFP_KERNEL);
229 if (unlikely(!tmp)) {
231 return ERR_PTR(-ENOMEM);
233 tmp->name = (char *)result;
237 return ERR_PTR(-ENAMETOOLONG);
239 memcpy((char *)result->name, filename, len);
241 result->aname = NULL;
243 audit_getname(result);
248 void putname(struct filename *name)
250 BUG_ON(name->refcnt <= 0);
252 if (--name->refcnt > 0)
255 if (name->name != name->iname) {
256 __putname(name->name);
263 * check_acl - perform ACL permission checking
264 * @mnt_userns: user namespace of the mount the inode was found from
265 * @inode: inode to check permissions on
266 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
268 * This function performs the ACL permission checking. Since this function
269 * retrieve POSIX acls it needs to know whether it is called from a blocking or
270 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
272 * If the inode has been found through an idmapped mount the user namespace of
273 * the vfsmount must be passed through @mnt_userns. This function will then take
274 * care to map the inode according to @mnt_userns before checking permissions.
275 * On non-idmapped mounts or if permission checking is to be performed on the
276 * raw inode simply passs init_user_ns.
278 static int check_acl(struct user_namespace *mnt_userns,
279 struct inode *inode, int mask)
281 #ifdef CONFIG_FS_POSIX_ACL
282 struct posix_acl *acl;
284 if (mask & MAY_NOT_BLOCK) {
285 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
288 /* no ->get_acl() calls in RCU mode... */
289 if (is_uncached_acl(acl))
291 return posix_acl_permission(mnt_userns, inode, acl, mask);
294 acl = get_acl(inode, ACL_TYPE_ACCESS);
298 int error = posix_acl_permission(mnt_userns, inode, acl, mask);
299 posix_acl_release(acl);
308 * acl_permission_check - perform basic UNIX permission checking
309 * @mnt_userns: user namespace of the mount the inode was found from
310 * @inode: inode to check permissions on
311 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
313 * This function performs the basic UNIX permission checking. Since this
314 * function may retrieve POSIX acls it needs to know whether it is called from a
315 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
317 * If the inode has been found through an idmapped mount the user namespace of
318 * the vfsmount must be passed through @mnt_userns. This function will then take
319 * care to map the inode according to @mnt_userns before checking permissions.
320 * On non-idmapped mounts or if permission checking is to be performed on the
321 * raw inode simply passs init_user_ns.
323 static int acl_permission_check(struct user_namespace *mnt_userns,
324 struct inode *inode, int mask)
326 unsigned int mode = inode->i_mode;
329 /* Are we the owner? If so, ACL's don't matter */
330 i_uid = i_uid_into_mnt(mnt_userns, inode);
331 if (likely(uid_eq(current_fsuid(), i_uid))) {
334 return (mask & ~mode) ? -EACCES : 0;
337 /* Do we have ACL's? */
338 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
339 int error = check_acl(mnt_userns, inode, mask);
340 if (error != -EAGAIN)
344 /* Only RWX matters for group/other mode bits */
348 * Are the group permissions different from
349 * the other permissions in the bits we care
350 * about? Need to check group ownership if so.
352 if (mask & (mode ^ (mode >> 3))) {
353 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
354 if (in_group_p(kgid))
358 /* Bits in 'mode' clear that we require? */
359 return (mask & ~mode) ? -EACCES : 0;
363 * generic_permission - check for access rights on a Posix-like filesystem
364 * @mnt_userns: user namespace of the mount the inode was found from
365 * @inode: inode to check access rights for
366 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
367 * %MAY_NOT_BLOCK ...)
369 * Used to check for read/write/execute permissions on a file.
370 * We use "fsuid" for this, letting us set arbitrary permissions
371 * for filesystem access without changing the "normal" uids which
372 * are used for other things.
374 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
375 * request cannot be satisfied (eg. requires blocking or too much complexity).
376 * It would then be called again in ref-walk mode.
378 * If the inode has been found through an idmapped mount the user namespace of
379 * the vfsmount must be passed through @mnt_userns. This function will then take
380 * care to map the inode according to @mnt_userns before checking permissions.
381 * On non-idmapped mounts or if permission checking is to be performed on the
382 * raw inode simply passs init_user_ns.
384 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
390 * Do the basic permission checks.
392 ret = acl_permission_check(mnt_userns, inode, mask);
396 if (S_ISDIR(inode->i_mode)) {
397 /* DACs are overridable for directories */
398 if (!(mask & MAY_WRITE))
399 if (capable_wrt_inode_uidgid(mnt_userns, inode,
400 CAP_DAC_READ_SEARCH))
402 if (capable_wrt_inode_uidgid(mnt_userns, inode,
409 * Searching includes executable on directories, else just read.
411 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
412 if (mask == MAY_READ)
413 if (capable_wrt_inode_uidgid(mnt_userns, inode,
414 CAP_DAC_READ_SEARCH))
417 * Read/write DACs are always overridable.
418 * Executable DACs are overridable when there is
419 * at least one exec bit set.
421 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
422 if (capable_wrt_inode_uidgid(mnt_userns, inode,
428 EXPORT_SYMBOL(generic_permission);
431 * do_inode_permission - UNIX permission checking
432 * @mnt_userns: user namespace of the mount the inode was found from
433 * @inode: inode to check permissions on
434 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
436 * We _really_ want to just do "generic_permission()" without
437 * even looking at the inode->i_op values. So we keep a cache
438 * flag in inode->i_opflags, that says "this has not special
439 * permission function, use the fast case".
441 static inline int do_inode_permission(struct user_namespace *mnt_userns,
442 struct inode *inode, int mask)
444 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
445 if (likely(inode->i_op->permission))
446 return inode->i_op->permission(mnt_userns, inode, mask);
448 /* This gets set once for the inode lifetime */
449 spin_lock(&inode->i_lock);
450 inode->i_opflags |= IOP_FASTPERM;
451 spin_unlock(&inode->i_lock);
453 return generic_permission(mnt_userns, inode, mask);
457 * sb_permission - Check superblock-level permissions
458 * @sb: Superblock of inode to check permission on
459 * @inode: Inode to check permission on
460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
462 * Separate out file-system wide checks from inode-specific permission checks.
464 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
466 if (unlikely(mask & MAY_WRITE)) {
467 umode_t mode = inode->i_mode;
469 /* Nobody gets write access to a read-only fs. */
470 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
477 * inode_permission - Check for access rights to a given inode
478 * @mnt_userns: User namespace of the mount the inode was found from
479 * @inode: Inode to check permission on
480 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
482 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
483 * this, letting us set arbitrary permissions for filesystem access without
484 * changing the "normal" UIDs which are used for other things.
486 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
488 int inode_permission(struct user_namespace *mnt_userns,
489 struct inode *inode, int mask)
493 retval = sb_permission(inode->i_sb, inode, mask);
497 if (unlikely(mask & MAY_WRITE)) {
499 * Nobody gets write access to an immutable file.
501 if (IS_IMMUTABLE(inode))
505 * Updating mtime will likely cause i_uid and i_gid to be
506 * written back improperly if their true value is unknown
509 if (HAS_UNMAPPED_ID(mnt_userns, inode))
513 retval = do_inode_permission(mnt_userns, inode, mask);
517 retval = devcgroup_inode_permission(inode, mask);
521 return security_inode_permission(inode, mask);
523 EXPORT_SYMBOL(inode_permission);
526 * path_get - get a reference to a path
527 * @path: path to get the reference to
529 * Given a path increment the reference count to the dentry and the vfsmount.
531 void path_get(const struct path *path)
536 EXPORT_SYMBOL(path_get);
539 * path_put - put a reference to a path
540 * @path: path to put the reference to
542 * Given a path decrement the reference count to the dentry and the vfsmount.
544 void path_put(const struct path *path)
549 EXPORT_SYMBOL(path_put);
551 #define EMBEDDED_LEVELS 2
556 struct inode *inode; /* path.dentry.d_inode */
558 unsigned seq, m_seq, r_seq;
561 int total_link_count;
564 struct delayed_call done;
567 } *stack, internal[EMBEDDED_LEVELS];
568 struct filename *name;
569 struct nameidata *saved;
574 } __randomize_layout;
576 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
578 struct nameidata *old = current->nameidata;
579 p->stack = p->internal;
583 p->path.dentry = NULL;
584 p->total_link_count = old ? old->total_link_count : 0;
586 current->nameidata = p;
589 static void restore_nameidata(void)
591 struct nameidata *now = current->nameidata, *old = now->saved;
593 current->nameidata = old;
595 old->total_link_count = now->total_link_count;
596 if (now->stack != now->internal)
600 static bool nd_alloc_stack(struct nameidata *nd)
604 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
605 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
608 memcpy(p, nd->internal, sizeof(nd->internal));
614 * path_connected - Verify that a dentry is below mnt.mnt_root
616 * Rename can sometimes move a file or directory outside of a bind
617 * mount, path_connected allows those cases to be detected.
619 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
621 struct super_block *sb = mnt->mnt_sb;
623 /* Bind mounts can have disconnected paths */
624 if (mnt->mnt_root == sb->s_root)
627 return is_subdir(dentry, mnt->mnt_root);
630 static void drop_links(struct nameidata *nd)
634 struct saved *last = nd->stack + i;
635 do_delayed_call(&last->done);
636 clear_delayed_call(&last->done);
640 static void terminate_walk(struct nameidata *nd)
643 if (!(nd->flags & LOOKUP_RCU)) {
646 for (i = 0; i < nd->depth; i++)
647 path_put(&nd->stack[i].link);
648 if (nd->flags & LOOKUP_ROOT_GRABBED) {
650 nd->flags &= ~LOOKUP_ROOT_GRABBED;
653 nd->flags &= ~LOOKUP_RCU;
658 nd->path.dentry = NULL;
661 /* path_put is needed afterwards regardless of success or failure */
662 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
664 int res = __legitimize_mnt(path->mnt, mseq);
671 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
675 return !read_seqcount_retry(&path->dentry->d_seq, seq);
678 static inline bool legitimize_path(struct nameidata *nd,
679 struct path *path, unsigned seq)
681 return __legitimize_path(path, seq, nd->m_seq);
684 static bool legitimize_links(struct nameidata *nd)
687 if (unlikely(nd->flags & LOOKUP_CACHED)) {
692 for (i = 0; i < nd->depth; i++) {
693 struct saved *last = nd->stack + i;
694 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
703 static bool legitimize_root(struct nameidata *nd)
706 * For scoped-lookups (where nd->root has been zeroed), we need to
707 * restart the whole lookup from scratch -- because set_root() is wrong
708 * for these lookups (nd->dfd is the root, not the filesystem root).
710 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
712 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
713 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
715 nd->flags |= LOOKUP_ROOT_GRABBED;
716 return legitimize_path(nd, &nd->root, nd->root_seq);
720 * Path walking has 2 modes, rcu-walk and ref-walk (see
721 * Documentation/filesystems/path-lookup.txt). In situations when we can't
722 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
723 * normal reference counts on dentries and vfsmounts to transition to ref-walk
724 * mode. Refcounts are grabbed at the last known good point before rcu-walk
725 * got stuck, so ref-walk may continue from there. If this is not successful
726 * (eg. a seqcount has changed), then failure is returned and it's up to caller
727 * to restart the path walk from the beginning in ref-walk mode.
731 * try_to_unlazy - try to switch to ref-walk mode.
732 * @nd: nameidata pathwalk data
733 * Returns: true on success, false on failure
735 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
737 * Must be called from rcu-walk context.
738 * Nothing should touch nameidata between try_to_unlazy() failure and
741 static bool try_to_unlazy(struct nameidata *nd)
743 struct dentry *parent = nd->path.dentry;
745 BUG_ON(!(nd->flags & LOOKUP_RCU));
747 nd->flags &= ~LOOKUP_RCU;
748 if (unlikely(!legitimize_links(nd)))
750 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
752 if (unlikely(!legitimize_root(nd)))
755 BUG_ON(nd->inode != parent->d_inode);
760 nd->path.dentry = NULL;
767 * try_to_unlazy_next - try to switch to ref-walk mode.
768 * @nd: nameidata pathwalk data
769 * @dentry: next dentry to step into
770 * @seq: seq number to check @dentry against
771 * Returns: true on success, false on failure
773 * Similar to to try_to_unlazy(), but here we have the next dentry already
774 * picked by rcu-walk and want to legitimize that in addition to the current
775 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
776 * Nothing should touch nameidata between try_to_unlazy_next() failure and
779 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
781 BUG_ON(!(nd->flags & LOOKUP_RCU));
783 nd->flags &= ~LOOKUP_RCU;
784 if (unlikely(!legitimize_links(nd)))
786 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
788 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
792 * We need to move both the parent and the dentry from the RCU domain
793 * to be properly refcounted. And the sequence number in the dentry
794 * validates *both* dentry counters, since we checked the sequence
795 * number of the parent after we got the child sequence number. So we
796 * know the parent must still be valid if the child sequence number is
798 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
800 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
803 * Sequence counts matched. Now make sure that the root is
804 * still valid and get it if required.
806 if (unlikely(!legitimize_root(nd)))
814 nd->path.dentry = NULL;
824 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
826 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
827 return dentry->d_op->d_revalidate(dentry, flags);
833 * complete_walk - successful completion of path walk
834 * @nd: pointer nameidata
836 * If we had been in RCU mode, drop out of it and legitimize nd->path.
837 * Revalidate the final result, unless we'd already done that during
838 * the path walk or the filesystem doesn't ask for it. Return 0 on
839 * success, -error on failure. In case of failure caller does not
840 * need to drop nd->path.
842 static int complete_walk(struct nameidata *nd)
844 struct dentry *dentry = nd->path.dentry;
847 if (nd->flags & LOOKUP_RCU) {
849 * We don't want to zero nd->root for scoped-lookups or
850 * externally-managed nd->root.
852 if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
854 nd->flags &= ~LOOKUP_CACHED;
855 if (!try_to_unlazy(nd))
859 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
861 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
862 * ever step outside the root during lookup" and should already
863 * be guaranteed by the rest of namei, we want to avoid a namei
864 * BUG resulting in userspace being given a path that was not
865 * scoped within the root at some point during the lookup.
867 * So, do a final sanity-check to make sure that in the
868 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
869 * we won't silently return an fd completely outside of the
870 * requested root to userspace.
872 * Userspace could move the path outside the root after this
873 * check, but as discussed elsewhere this is not a concern (the
874 * resolved file was inside the root at some point).
876 if (!path_is_under(&nd->path, &nd->root))
880 if (likely(!(nd->flags & LOOKUP_JUMPED)))
883 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
886 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
896 static int set_root(struct nameidata *nd)
898 struct fs_struct *fs = current->fs;
901 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
902 * still have to ensure it doesn't happen because it will cause a breakout
905 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
906 return -ENOTRECOVERABLE;
908 if (nd->flags & LOOKUP_RCU) {
912 seq = read_seqcount_begin(&fs->seq);
914 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
915 } while (read_seqcount_retry(&fs->seq, seq));
917 get_fs_root(fs, &nd->root);
918 nd->flags |= LOOKUP_ROOT_GRABBED;
923 static int nd_jump_root(struct nameidata *nd)
925 if (unlikely(nd->flags & LOOKUP_BENEATH))
927 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
928 /* Absolute path arguments to path_init() are allowed. */
929 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
933 int error = set_root(nd);
937 if (nd->flags & LOOKUP_RCU) {
941 nd->inode = d->d_inode;
942 nd->seq = nd->root_seq;
943 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
949 nd->inode = nd->path.dentry->d_inode;
951 nd->flags |= LOOKUP_JUMPED;
956 * Helper to directly jump to a known parsed path from ->get_link,
957 * caller must have taken a reference to path beforehand.
959 int nd_jump_link(struct path *path)
962 struct nameidata *nd = current->nameidata;
964 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
968 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
969 if (nd->path.mnt != path->mnt)
972 /* Not currently safe for scoped-lookups. */
973 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
978 nd->inode = nd->path.dentry->d_inode;
979 nd->flags |= LOOKUP_JUMPED;
987 static inline void put_link(struct nameidata *nd)
989 struct saved *last = nd->stack + --nd->depth;
990 do_delayed_call(&last->done);
991 if (!(nd->flags & LOOKUP_RCU))
992 path_put(&last->link);
995 int sysctl_protected_symlinks __read_mostly = 0;
996 int sysctl_protected_hardlinks __read_mostly = 0;
997 int sysctl_protected_fifos __read_mostly;
998 int sysctl_protected_regular __read_mostly;
1001 * may_follow_link - Check symlink following for unsafe situations
1002 * @nd: nameidata pathwalk data
1004 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1005 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1006 * in a sticky world-writable directory. This is to protect privileged
1007 * processes from failing races against path names that may change out
1008 * from under them by way of other users creating malicious symlinks.
1009 * It will permit symlinks to be followed only when outside a sticky
1010 * world-writable directory, or when the uid of the symlink and follower
1011 * match, or when the directory owner matches the symlink's owner.
1013 * Returns 0 if following the symlink is allowed, -ve on error.
1015 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1017 struct user_namespace *mnt_userns;
1020 if (!sysctl_protected_symlinks)
1023 mnt_userns = mnt_user_ns(nd->path.mnt);
1024 i_uid = i_uid_into_mnt(mnt_userns, inode);
1025 /* Allowed if owner and follower match. */
1026 if (uid_eq(current_cred()->fsuid, i_uid))
1029 /* Allowed if parent directory not sticky and world-writable. */
1030 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1033 /* Allowed if parent directory and link owner match. */
1034 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1037 if (nd->flags & LOOKUP_RCU)
1040 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1041 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1046 * safe_hardlink_source - Check for safe hardlink conditions
1047 * @mnt_userns: user namespace of the mount the inode was found from
1048 * @inode: the source inode to hardlink from
1050 * Return false if at least one of the following conditions:
1051 * - inode is not a regular file
1053 * - inode is setgid and group-exec
1054 * - access failure for read and write
1056 * Otherwise returns true.
1058 static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1059 struct inode *inode)
1061 umode_t mode = inode->i_mode;
1063 /* Special files should not get pinned to the filesystem. */
1067 /* Setuid files should not get pinned to the filesystem. */
1071 /* Executable setgid files should not get pinned to the filesystem. */
1072 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1075 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1076 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1083 * may_linkat - Check permissions for creating a hardlink
1084 * @mnt_userns: user namespace of the mount the inode was found from
1085 * @link: the source to hardlink from
1087 * Block hardlink when all of:
1088 * - sysctl_protected_hardlinks enabled
1089 * - fsuid does not match inode
1090 * - hardlink source is unsafe (see safe_hardlink_source() above)
1091 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1093 * If the inode has been found through an idmapped mount the user namespace of
1094 * the vfsmount must be passed through @mnt_userns. This function will then take
1095 * care to map the inode according to @mnt_userns before checking permissions.
1096 * On non-idmapped mounts or if permission checking is to be performed on the
1097 * raw inode simply passs init_user_ns.
1099 * Returns 0 if successful, -ve on error.
1101 int may_linkat(struct user_namespace *mnt_userns, struct path *link)
1103 struct inode *inode = link->dentry->d_inode;
1105 /* Inode writeback is not safe when the uid or gid are invalid. */
1106 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1107 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1110 if (!sysctl_protected_hardlinks)
1113 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1114 * otherwise, it must be a safe source.
1116 if (safe_hardlink_source(mnt_userns, inode) ||
1117 inode_owner_or_capable(mnt_userns, inode))
1120 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1125 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1126 * should be allowed, or not, on files that already
1128 * @mnt_userns: user namespace of the mount the inode was found from
1129 * @nd: nameidata pathwalk data
1130 * @inode: the inode of the file to open
1132 * Block an O_CREAT open of a FIFO (or a regular file) when:
1133 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1134 * - the file already exists
1135 * - we are in a sticky directory
1136 * - we don't own the file
1137 * - the owner of the directory doesn't own the file
1138 * - the directory is world writable
1139 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1140 * the directory doesn't have to be world writable: being group writable will
1143 * If the inode has been found through an idmapped mount the user namespace of
1144 * the vfsmount must be passed through @mnt_userns. This function will then take
1145 * care to map the inode according to @mnt_userns before checking permissions.
1146 * On non-idmapped mounts or if permission checking is to be performed on the
1147 * raw inode simply passs init_user_ns.
1149 * Returns 0 if the open is allowed, -ve on error.
1151 static int may_create_in_sticky(struct user_namespace *mnt_userns,
1152 struct nameidata *nd, struct inode *const inode)
1154 umode_t dir_mode = nd->dir_mode;
1155 kuid_t dir_uid = nd->dir_uid;
1157 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1158 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1159 likely(!(dir_mode & S_ISVTX)) ||
1160 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1161 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1164 if (likely(dir_mode & 0002) ||
1166 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1167 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1168 const char *operation = S_ISFIFO(inode->i_mode) ?
1169 "sticky_create_fifo" :
1170 "sticky_create_regular";
1171 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1178 * follow_up - Find the mountpoint of path's vfsmount
1180 * Given a path, find the mountpoint of its source file system.
1181 * Replace @path with the path of the mountpoint in the parent mount.
1184 * Return 1 if we went up a level and 0 if we were already at the
1187 int follow_up(struct path *path)
1189 struct mount *mnt = real_mount(path->mnt);
1190 struct mount *parent;
1191 struct dentry *mountpoint;
1193 read_seqlock_excl(&mount_lock);
1194 parent = mnt->mnt_parent;
1195 if (parent == mnt) {
1196 read_sequnlock_excl(&mount_lock);
1199 mntget(&parent->mnt);
1200 mountpoint = dget(mnt->mnt_mountpoint);
1201 read_sequnlock_excl(&mount_lock);
1203 path->dentry = mountpoint;
1205 path->mnt = &parent->mnt;
1208 EXPORT_SYMBOL(follow_up);
1210 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1211 struct path *path, unsigned *seqp)
1213 while (mnt_has_parent(m)) {
1214 struct dentry *mountpoint = m->mnt_mountpoint;
1217 if (unlikely(root->dentry == mountpoint &&
1218 root->mnt == &m->mnt))
1220 if (mountpoint != m->mnt.mnt_root) {
1221 path->mnt = &m->mnt;
1222 path->dentry = mountpoint;
1223 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1230 static bool choose_mountpoint(struct mount *m, const struct path *root,
1237 unsigned seq, mseq = read_seqbegin(&mount_lock);
1239 found = choose_mountpoint_rcu(m, root, path, &seq);
1240 if (unlikely(!found)) {
1241 if (!read_seqretry(&mount_lock, mseq))
1244 if (likely(__legitimize_path(path, seq, mseq)))
1256 * Perform an automount
1257 * - return -EISDIR to tell follow_managed() to stop and return the path we
1260 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1262 struct dentry *dentry = path->dentry;
1264 /* We don't want to mount if someone's just doing a stat -
1265 * unless they're stat'ing a directory and appended a '/' to
1268 * We do, however, want to mount if someone wants to open or
1269 * create a file of any type under the mountpoint, wants to
1270 * traverse through the mountpoint or wants to open the
1271 * mounted directory. Also, autofs may mark negative dentries
1272 * as being automount points. These will need the attentions
1273 * of the daemon to instantiate them before they can be used.
1275 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1276 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1280 if (count && (*count)++ >= MAXSYMLINKS)
1283 return finish_automount(dentry->d_op->d_automount(path), path);
1287 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1288 * dentries are pinned but not locked here, so negative dentry can go
1289 * positive right under us. Use of smp_load_acquire() provides a barrier
1290 * sufficient for ->d_inode and ->d_flags consistency.
1292 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1293 int *count, unsigned lookup_flags)
1295 struct vfsmount *mnt = path->mnt;
1296 bool need_mntput = false;
1299 while (flags & DCACHE_MANAGED_DENTRY) {
1300 /* Allow the filesystem to manage the transit without i_mutex
1302 if (flags & DCACHE_MANAGE_TRANSIT) {
1303 ret = path->dentry->d_op->d_manage(path, false);
1304 flags = smp_load_acquire(&path->dentry->d_flags);
1309 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1310 struct vfsmount *mounted = lookup_mnt(path);
1311 if (mounted) { // ... in our namespace
1315 path->mnt = mounted;
1316 path->dentry = dget(mounted->mnt_root);
1317 // here we know it's positive
1318 flags = path->dentry->d_flags;
1324 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1327 // uncovered automount point
1328 ret = follow_automount(path, count, lookup_flags);
1329 flags = smp_load_acquire(&path->dentry->d_flags);
1336 // possible if you race with several mount --move
1337 if (need_mntput && path->mnt == mnt)
1339 if (!ret && unlikely(d_flags_negative(flags)))
1341 *jumped = need_mntput;
1345 static inline int traverse_mounts(struct path *path, bool *jumped,
1346 int *count, unsigned lookup_flags)
1348 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1351 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1353 if (unlikely(d_flags_negative(flags)))
1357 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1360 int follow_down_one(struct path *path)
1362 struct vfsmount *mounted;
1364 mounted = lookup_mnt(path);
1368 path->mnt = mounted;
1369 path->dentry = dget(mounted->mnt_root);
1374 EXPORT_SYMBOL(follow_down_one);
1377 * Follow down to the covering mount currently visible to userspace. At each
1378 * point, the filesystem owning that dentry may be queried as to whether the
1379 * caller is permitted to proceed or not.
1381 int follow_down(struct path *path)
1383 struct vfsmount *mnt = path->mnt;
1385 int ret = traverse_mounts(path, &jumped, NULL, 0);
1387 if (path->mnt != mnt)
1391 EXPORT_SYMBOL(follow_down);
1394 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1395 * we meet a managed dentry that would need blocking.
1397 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1398 struct inode **inode, unsigned *seqp)
1400 struct dentry *dentry = path->dentry;
1401 unsigned int flags = dentry->d_flags;
1403 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1406 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1411 * Don't forget we might have a non-mountpoint managed dentry
1412 * that wants to block transit.
1414 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1415 int res = dentry->d_op->d_manage(path, true);
1417 return res == -EISDIR;
1418 flags = dentry->d_flags;
1421 if (flags & DCACHE_MOUNTED) {
1422 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1424 path->mnt = &mounted->mnt;
1425 dentry = path->dentry = mounted->mnt.mnt_root;
1426 nd->flags |= LOOKUP_JUMPED;
1427 *seqp = read_seqcount_begin(&dentry->d_seq);
1428 *inode = dentry->d_inode;
1430 * We don't need to re-check ->d_seq after this
1431 * ->d_inode read - there will be an RCU delay
1432 * between mount hash removal and ->mnt_root
1433 * becoming unpinned.
1435 flags = dentry->d_flags;
1438 if (read_seqretry(&mount_lock, nd->m_seq))
1441 return !(flags & DCACHE_NEED_AUTOMOUNT);
1445 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1446 struct path *path, struct inode **inode,
1452 path->mnt = nd->path.mnt;
1453 path->dentry = dentry;
1454 if (nd->flags & LOOKUP_RCU) {
1455 unsigned int seq = *seqp;
1456 if (unlikely(!*inode))
1458 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1460 if (!try_to_unlazy_next(nd, dentry, seq))
1462 // *path might've been clobbered by __follow_mount_rcu()
1463 path->mnt = nd->path.mnt;
1464 path->dentry = dentry;
1466 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1468 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1471 nd->flags |= LOOKUP_JUMPED;
1473 if (unlikely(ret)) {
1475 if (path->mnt != nd->path.mnt)
1478 *inode = d_backing_inode(path->dentry);
1479 *seqp = 0; /* out of RCU mode, so the value doesn't matter */
1485 * This looks up the name in dcache and possibly revalidates the found dentry.
1486 * NULL is returned if the dentry does not exist in the cache.
1488 static struct dentry *lookup_dcache(const struct qstr *name,
1492 struct dentry *dentry = d_lookup(dir, name);
1494 int error = d_revalidate(dentry, flags);
1495 if (unlikely(error <= 0)) {
1497 d_invalidate(dentry);
1499 return ERR_PTR(error);
1506 * Parent directory has inode locked exclusive. This is one
1507 * and only case when ->lookup() gets called on non in-lookup
1508 * dentries - as the matter of fact, this only gets called
1509 * when directory is guaranteed to have no in-lookup children
1512 static struct dentry *__lookup_hash(const struct qstr *name,
1513 struct dentry *base, unsigned int flags)
1515 struct dentry *dentry = lookup_dcache(name, base, flags);
1517 struct inode *dir = base->d_inode;
1522 /* Don't create child dentry for a dead directory. */
1523 if (unlikely(IS_DEADDIR(dir)))
1524 return ERR_PTR(-ENOENT);
1526 dentry = d_alloc(base, name);
1527 if (unlikely(!dentry))
1528 return ERR_PTR(-ENOMEM);
1530 old = dir->i_op->lookup(dir, dentry, flags);
1531 if (unlikely(old)) {
1538 static struct dentry *lookup_fast(struct nameidata *nd,
1539 struct inode **inode,
1542 struct dentry *dentry, *parent = nd->path.dentry;
1546 * Rename seqlock is not required here because in the off chance
1547 * of a false negative due to a concurrent rename, the caller is
1548 * going to fall back to non-racy lookup.
1550 if (nd->flags & LOOKUP_RCU) {
1552 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1553 if (unlikely(!dentry)) {
1554 if (!try_to_unlazy(nd))
1555 return ERR_PTR(-ECHILD);
1560 * This sequence count validates that the inode matches
1561 * the dentry name information from lookup.
1563 *inode = d_backing_inode(dentry);
1564 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1565 return ERR_PTR(-ECHILD);
1568 * This sequence count validates that the parent had no
1569 * changes while we did the lookup of the dentry above.
1571 * The memory barrier in read_seqcount_begin of child is
1572 * enough, we can use __read_seqcount_retry here.
1574 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1575 return ERR_PTR(-ECHILD);
1578 status = d_revalidate(dentry, nd->flags);
1579 if (likely(status > 0))
1581 if (!try_to_unlazy_next(nd, dentry, seq))
1582 return ERR_PTR(-ECHILD);
1583 if (status == -ECHILD)
1584 /* we'd been told to redo it in non-rcu mode */
1585 status = d_revalidate(dentry, nd->flags);
1587 dentry = __d_lookup(parent, &nd->last);
1588 if (unlikely(!dentry))
1590 status = d_revalidate(dentry, nd->flags);
1592 if (unlikely(status <= 0)) {
1594 d_invalidate(dentry);
1596 return ERR_PTR(status);
1601 /* Fast lookup failed, do it the slow way */
1602 static struct dentry *__lookup_slow(const struct qstr *name,
1606 struct dentry *dentry, *old;
1607 struct inode *inode = dir->d_inode;
1608 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1610 /* Don't go there if it's already dead */
1611 if (unlikely(IS_DEADDIR(inode)))
1612 return ERR_PTR(-ENOENT);
1614 dentry = d_alloc_parallel(dir, name, &wq);
1617 if (unlikely(!d_in_lookup(dentry))) {
1618 int error = d_revalidate(dentry, flags);
1619 if (unlikely(error <= 0)) {
1621 d_invalidate(dentry);
1626 dentry = ERR_PTR(error);
1629 old = inode->i_op->lookup(inode, dentry, flags);
1630 d_lookup_done(dentry);
1631 if (unlikely(old)) {
1639 static struct dentry *lookup_slow(const struct qstr *name,
1643 struct inode *inode = dir->d_inode;
1645 inode_lock_shared(inode);
1646 res = __lookup_slow(name, dir, flags);
1647 inode_unlock_shared(inode);
1651 static inline int may_lookup(struct user_namespace *mnt_userns,
1652 struct nameidata *nd)
1654 if (nd->flags & LOOKUP_RCU) {
1655 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1656 if (err != -ECHILD || !try_to_unlazy(nd))
1659 return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1662 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1664 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1667 if (likely(nd->depth != EMBEDDED_LEVELS))
1669 if (likely(nd->stack != nd->internal))
1671 if (likely(nd_alloc_stack(nd)))
1674 if (nd->flags & LOOKUP_RCU) {
1675 // we need to grab link before we do unlazy. And we can't skip
1676 // unlazy even if we fail to grab the link - cleanup needs it
1677 bool grabbed_link = legitimize_path(nd, link, seq);
1679 if (!try_to_unlazy(nd) != 0 || !grabbed_link)
1682 if (nd_alloc_stack(nd))
1688 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1690 static const char *pick_link(struct nameidata *nd, struct path *link,
1691 struct inode *inode, unsigned seq, int flags)
1695 int error = reserve_stack(nd, link, seq);
1697 if (unlikely(error)) {
1698 if (!(nd->flags & LOOKUP_RCU))
1700 return ERR_PTR(error);
1702 last = nd->stack + nd->depth++;
1704 clear_delayed_call(&last->done);
1707 if (flags & WALK_TRAILING) {
1708 error = may_follow_link(nd, inode);
1709 if (unlikely(error))
1710 return ERR_PTR(error);
1713 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1714 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1715 return ERR_PTR(-ELOOP);
1717 if (!(nd->flags & LOOKUP_RCU)) {
1718 touch_atime(&last->link);
1720 } else if (atime_needs_update(&last->link, inode)) {
1721 if (!try_to_unlazy(nd))
1722 return ERR_PTR(-ECHILD);
1723 touch_atime(&last->link);
1726 error = security_inode_follow_link(link->dentry, inode,
1727 nd->flags & LOOKUP_RCU);
1728 if (unlikely(error))
1729 return ERR_PTR(error);
1731 res = READ_ONCE(inode->i_link);
1733 const char * (*get)(struct dentry *, struct inode *,
1734 struct delayed_call *);
1735 get = inode->i_op->get_link;
1736 if (nd->flags & LOOKUP_RCU) {
1737 res = get(NULL, inode, &last->done);
1738 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1739 res = get(link->dentry, inode, &last->done);
1741 res = get(link->dentry, inode, &last->done);
1749 error = nd_jump_root(nd);
1750 if (unlikely(error))
1751 return ERR_PTR(error);
1752 while (unlikely(*++res == '/'))
1757 all_done: // pure jump
1763 * Do we need to follow links? We _really_ want to be able
1764 * to do this check without having to look at inode->i_op,
1765 * so we keep a cache of "no, this doesn't need follow_link"
1766 * for the common case.
1768 static const char *step_into(struct nameidata *nd, int flags,
1769 struct dentry *dentry, struct inode *inode, unsigned seq)
1772 int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1775 return ERR_PTR(err);
1776 if (likely(!d_is_symlink(path.dentry)) ||
1777 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1778 (flags & WALK_NOFOLLOW)) {
1779 /* not a symlink or should not follow */
1780 if (!(nd->flags & LOOKUP_RCU)) {
1781 dput(nd->path.dentry);
1782 if (nd->path.mnt != path.mnt)
1783 mntput(nd->path.mnt);
1790 if (nd->flags & LOOKUP_RCU) {
1791 /* make sure that d_is_symlink above matches inode */
1792 if (read_seqcount_retry(&path.dentry->d_seq, seq))
1793 return ERR_PTR(-ECHILD);
1795 if (path.mnt == nd->path.mnt)
1798 return pick_link(nd, &path, inode, seq, flags);
1801 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1802 struct inode **inodep,
1805 struct dentry *parent, *old;
1807 if (path_equal(&nd->path, &nd->root))
1809 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1812 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1813 &nd->root, &path, &seq))
1815 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1816 return ERR_PTR(-ECHILD);
1818 nd->inode = path.dentry->d_inode;
1820 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1821 return ERR_PTR(-ECHILD);
1822 /* we know that mountpoint was pinned */
1824 old = nd->path.dentry;
1825 parent = old->d_parent;
1826 *inodep = parent->d_inode;
1827 *seqp = read_seqcount_begin(&parent->d_seq);
1828 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1829 return ERR_PTR(-ECHILD);
1830 if (unlikely(!path_connected(nd->path.mnt, parent)))
1831 return ERR_PTR(-ECHILD);
1834 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1835 return ERR_PTR(-ECHILD);
1836 if (unlikely(nd->flags & LOOKUP_BENEATH))
1837 return ERR_PTR(-ECHILD);
1841 static struct dentry *follow_dotdot(struct nameidata *nd,
1842 struct inode **inodep,
1845 struct dentry *parent;
1847 if (path_equal(&nd->path, &nd->root))
1849 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1852 if (!choose_mountpoint(real_mount(nd->path.mnt),
1855 path_put(&nd->path);
1857 nd->inode = path.dentry->d_inode;
1858 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1859 return ERR_PTR(-EXDEV);
1861 /* rare case of legitimate dget_parent()... */
1862 parent = dget_parent(nd->path.dentry);
1863 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1865 return ERR_PTR(-ENOENT);
1868 *inodep = parent->d_inode;
1872 if (unlikely(nd->flags & LOOKUP_BENEATH))
1873 return ERR_PTR(-EXDEV);
1874 dget(nd->path.dentry);
1878 static const char *handle_dots(struct nameidata *nd, int type)
1880 if (type == LAST_DOTDOT) {
1881 const char *error = NULL;
1882 struct dentry *parent;
1883 struct inode *inode;
1886 if (!nd->root.mnt) {
1887 error = ERR_PTR(set_root(nd));
1891 if (nd->flags & LOOKUP_RCU)
1892 parent = follow_dotdot_rcu(nd, &inode, &seq);
1894 parent = follow_dotdot(nd, &inode, &seq);
1896 return ERR_CAST(parent);
1897 if (unlikely(!parent))
1898 error = step_into(nd, WALK_NOFOLLOW,
1899 nd->path.dentry, nd->inode, nd->seq);
1901 error = step_into(nd, WALK_NOFOLLOW,
1902 parent, inode, seq);
1903 if (unlikely(error))
1906 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1908 * If there was a racing rename or mount along our
1909 * path, then we can't be sure that ".." hasn't jumped
1910 * above nd->root (and so userspace should retry or use
1914 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1915 return ERR_PTR(-EAGAIN);
1916 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1917 return ERR_PTR(-EAGAIN);
1923 static const char *walk_component(struct nameidata *nd, int flags)
1925 struct dentry *dentry;
1926 struct inode *inode;
1929 * "." and ".." are special - ".." especially so because it has
1930 * to be able to know about the current root directory and
1931 * parent relationships.
1933 if (unlikely(nd->last_type != LAST_NORM)) {
1934 if (!(flags & WALK_MORE) && nd->depth)
1936 return handle_dots(nd, nd->last_type);
1938 dentry = lookup_fast(nd, &inode, &seq);
1940 return ERR_CAST(dentry);
1941 if (unlikely(!dentry)) {
1942 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1944 return ERR_CAST(dentry);
1946 if (!(flags & WALK_MORE) && nd->depth)
1948 return step_into(nd, flags, dentry, inode, seq);
1952 * We can do the critical dentry name comparison and hashing
1953 * operations one word at a time, but we are limited to:
1955 * - Architectures with fast unaligned word accesses. We could
1956 * do a "get_unaligned()" if this helps and is sufficiently
1959 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1960 * do not trap on the (extremely unlikely) case of a page
1961 * crossing operation.
1963 * - Furthermore, we need an efficient 64-bit compile for the
1964 * 64-bit case in order to generate the "number of bytes in
1965 * the final mask". Again, that could be replaced with a
1966 * efficient population count instruction or similar.
1968 #ifdef CONFIG_DCACHE_WORD_ACCESS
1970 #include <asm/word-at-a-time.h>
1974 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1976 #elif defined(CONFIG_64BIT)
1978 * Register pressure in the mixing function is an issue, particularly
1979 * on 32-bit x86, but almost any function requires one state value and
1980 * one temporary. Instead, use a function designed for two state values
1981 * and no temporaries.
1983 * This function cannot create a collision in only two iterations, so
1984 * we have two iterations to achieve avalanche. In those two iterations,
1985 * we have six layers of mixing, which is enough to spread one bit's
1986 * influence out to 2^6 = 64 state bits.
1988 * Rotate constants are scored by considering either 64 one-bit input
1989 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1990 * probability of that delta causing a change to each of the 128 output
1991 * bits, using a sample of random initial states.
1993 * The Shannon entropy of the computed probabilities is then summed
1994 * to produce a score. Ideally, any input change has a 50% chance of
1995 * toggling any given output bit.
1997 * Mixing scores (in bits) for (12,45):
1998 * Input delta: 1-bit 2-bit
1999 * 1 round: 713.3 42542.6
2000 * 2 rounds: 2753.7 140389.8
2001 * 3 rounds: 5954.1 233458.2
2002 * 4 rounds: 7862.6 256672.2
2003 * Perfect: 8192 258048
2004 * (64*128) (64*63/2 * 128)
2006 #define HASH_MIX(x, y, a) \
2008 y ^= x, x = rol64(x,12),\
2009 x += y, y = rol64(y,45),\
2013 * Fold two longs into one 32-bit hash value. This must be fast, but
2014 * latency isn't quite as critical, as there is a fair bit of additional
2015 * work done before the hash value is used.
2017 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2019 y ^= x * GOLDEN_RATIO_64;
2020 y *= GOLDEN_RATIO_64;
2024 #else /* 32-bit case */
2027 * Mixing scores (in bits) for (7,20):
2028 * Input delta: 1-bit 2-bit
2029 * 1 round: 330.3 9201.6
2030 * 2 rounds: 1246.4 25475.4
2031 * 3 rounds: 1907.1 31295.1
2032 * 4 rounds: 2042.3 31718.6
2033 * Perfect: 2048 31744
2034 * (32*64) (32*31/2 * 64)
2036 #define HASH_MIX(x, y, a) \
2038 y ^= x, x = rol32(x, 7),\
2039 x += y, y = rol32(y,20),\
2042 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2044 /* Use arch-optimized multiply if one exists */
2045 return __hash_32(y ^ __hash_32(x));
2051 * Return the hash of a string of known length. This is carfully
2052 * designed to match hash_name(), which is the more critical function.
2053 * In particular, we must end by hashing a final word containing 0..7
2054 * payload bytes, to match the way that hash_name() iterates until it
2055 * finds the delimiter after the name.
2057 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2059 unsigned long a, x = 0, y = (unsigned long)salt;
2064 a = load_unaligned_zeropad(name);
2065 if (len < sizeof(unsigned long))
2068 name += sizeof(unsigned long);
2069 len -= sizeof(unsigned long);
2071 x ^= a & bytemask_from_count(len);
2073 return fold_hash(x, y);
2075 EXPORT_SYMBOL(full_name_hash);
2077 /* Return the "hash_len" (hash and length) of a null-terminated string */
2078 u64 hashlen_string(const void *salt, const char *name)
2080 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2081 unsigned long adata, mask, len;
2082 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2089 len += sizeof(unsigned long);
2091 a = load_unaligned_zeropad(name+len);
2092 } while (!has_zero(a, &adata, &constants));
2094 adata = prep_zero_mask(a, adata, &constants);
2095 mask = create_zero_mask(adata);
2096 x ^= a & zero_bytemask(mask);
2098 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2100 EXPORT_SYMBOL(hashlen_string);
2103 * Calculate the length and hash of the path component, and
2104 * return the "hash_len" as the result.
2106 static inline u64 hash_name(const void *salt, const char *name)
2108 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2109 unsigned long adata, bdata, mask, len;
2110 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2117 len += sizeof(unsigned long);
2119 a = load_unaligned_zeropad(name+len);
2120 b = a ^ REPEAT_BYTE('/');
2121 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2123 adata = prep_zero_mask(a, adata, &constants);
2124 bdata = prep_zero_mask(b, bdata, &constants);
2125 mask = create_zero_mask(adata | bdata);
2126 x ^= a & zero_bytemask(mask);
2128 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2131 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2133 /* Return the hash of a string of known length */
2134 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2136 unsigned long hash = init_name_hash(salt);
2138 hash = partial_name_hash((unsigned char)*name++, hash);
2139 return end_name_hash(hash);
2141 EXPORT_SYMBOL(full_name_hash);
2143 /* Return the "hash_len" (hash and length) of a null-terminated string */
2144 u64 hashlen_string(const void *salt, const char *name)
2146 unsigned long hash = init_name_hash(salt);
2147 unsigned long len = 0, c;
2149 c = (unsigned char)*name;
2152 hash = partial_name_hash(c, hash);
2153 c = (unsigned char)name[len];
2155 return hashlen_create(end_name_hash(hash), len);
2157 EXPORT_SYMBOL(hashlen_string);
2160 * We know there's a real path component here of at least
2163 static inline u64 hash_name(const void *salt, const char *name)
2165 unsigned long hash = init_name_hash(salt);
2166 unsigned long len = 0, c;
2168 c = (unsigned char)*name;
2171 hash = partial_name_hash(c, hash);
2172 c = (unsigned char)name[len];
2173 } while (c && c != '/');
2174 return hashlen_create(end_name_hash(hash), len);
2181 * This is the basic name resolution function, turning a pathname into
2182 * the final dentry. We expect 'base' to be positive and a directory.
2184 * Returns 0 and nd will have valid dentry and mnt on success.
2185 * Returns error and drops reference to input namei data on failure.
2187 static int link_path_walk(const char *name, struct nameidata *nd)
2189 int depth = 0; // depth <= nd->depth
2192 nd->last_type = LAST_ROOT;
2193 nd->flags |= LOOKUP_PARENT;
2195 return PTR_ERR(name);
2199 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2203 /* At this point we know we have a real path component. */
2205 struct user_namespace *mnt_userns;
2210 mnt_userns = mnt_user_ns(nd->path.mnt);
2211 err = may_lookup(mnt_userns, nd);
2215 hash_len = hash_name(nd->path.dentry, name);
2218 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2220 if (name[1] == '.') {
2222 nd->flags |= LOOKUP_JUMPED;
2228 if (likely(type == LAST_NORM)) {
2229 struct dentry *parent = nd->path.dentry;
2230 nd->flags &= ~LOOKUP_JUMPED;
2231 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2232 struct qstr this = { { .hash_len = hash_len }, .name = name };
2233 err = parent->d_op->d_hash(parent, &this);
2236 hash_len = this.hash_len;
2241 nd->last.hash_len = hash_len;
2242 nd->last.name = name;
2243 nd->last_type = type;
2245 name += hashlen_len(hash_len);
2249 * If it wasn't NUL, we know it was '/'. Skip that
2250 * slash, and continue until no more slashes.
2254 } while (unlikely(*name == '/'));
2255 if (unlikely(!*name)) {
2257 /* pathname or trailing symlink, done */
2259 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2260 nd->dir_mode = nd->inode->i_mode;
2261 nd->flags &= ~LOOKUP_PARENT;
2264 /* last component of nested symlink */
2265 name = nd->stack[--depth].name;
2266 link = walk_component(nd, 0);
2268 /* not the last component */
2269 link = walk_component(nd, WALK_MORE);
2271 if (unlikely(link)) {
2273 return PTR_ERR(link);
2274 /* a symlink to follow */
2275 nd->stack[depth++].name = name;
2279 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2280 if (nd->flags & LOOKUP_RCU) {
2281 if (!try_to_unlazy(nd))
2289 /* must be paired with terminate_walk() */
2290 static const char *path_init(struct nameidata *nd, unsigned flags)
2293 const char *s = nd->name->name;
2295 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2296 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2297 return ERR_PTR(-EAGAIN);
2300 flags &= ~LOOKUP_RCU;
2301 if (flags & LOOKUP_RCU)
2304 nd->flags = flags | LOOKUP_JUMPED;
2307 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2308 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2311 if (flags & LOOKUP_ROOT) {
2312 struct dentry *root = nd->root.dentry;
2313 struct inode *inode = root->d_inode;
2314 if (*s && unlikely(!d_can_lookup(root)))
2315 return ERR_PTR(-ENOTDIR);
2316 nd->path = nd->root;
2318 if (flags & LOOKUP_RCU) {
2319 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2320 nd->root_seq = nd->seq;
2322 path_get(&nd->path);
2327 nd->root.mnt = NULL;
2329 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2330 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2331 error = nd_jump_root(nd);
2332 if (unlikely(error))
2333 return ERR_PTR(error);
2337 /* Relative pathname -- get the starting-point it is relative to. */
2338 if (nd->dfd == AT_FDCWD) {
2339 if (flags & LOOKUP_RCU) {
2340 struct fs_struct *fs = current->fs;
2344 seq = read_seqcount_begin(&fs->seq);
2346 nd->inode = nd->path.dentry->d_inode;
2347 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2348 } while (read_seqcount_retry(&fs->seq, seq));
2350 get_fs_pwd(current->fs, &nd->path);
2351 nd->inode = nd->path.dentry->d_inode;
2354 /* Caller must check execute permissions on the starting path component */
2355 struct fd f = fdget_raw(nd->dfd);
2356 struct dentry *dentry;
2359 return ERR_PTR(-EBADF);
2361 dentry = f.file->f_path.dentry;
2363 if (*s && unlikely(!d_can_lookup(dentry))) {
2365 return ERR_PTR(-ENOTDIR);
2368 nd->path = f.file->f_path;
2369 if (flags & LOOKUP_RCU) {
2370 nd->inode = nd->path.dentry->d_inode;
2371 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2373 path_get(&nd->path);
2374 nd->inode = nd->path.dentry->d_inode;
2379 /* For scoped-lookups we need to set the root to the dirfd as well. */
2380 if (flags & LOOKUP_IS_SCOPED) {
2381 nd->root = nd->path;
2382 if (flags & LOOKUP_RCU) {
2383 nd->root_seq = nd->seq;
2385 path_get(&nd->root);
2386 nd->flags |= LOOKUP_ROOT_GRABBED;
2392 static inline const char *lookup_last(struct nameidata *nd)
2394 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2395 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2397 return walk_component(nd, WALK_TRAILING);
2400 static int handle_lookup_down(struct nameidata *nd)
2402 if (!(nd->flags & LOOKUP_RCU))
2403 dget(nd->path.dentry);
2404 return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2405 nd->path.dentry, nd->inode, nd->seq));
2408 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2409 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2411 const char *s = path_init(nd, flags);
2414 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2415 err = handle_lookup_down(nd);
2416 if (unlikely(err < 0))
2420 while (!(err = link_path_walk(s, nd)) &&
2421 (s = lookup_last(nd)) != NULL)
2423 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2424 err = handle_lookup_down(nd);
2425 nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please...
2428 err = complete_walk(nd);
2430 if (!err && nd->flags & LOOKUP_DIRECTORY)
2431 if (!d_can_lookup(nd->path.dentry))
2435 nd->path.mnt = NULL;
2436 nd->path.dentry = NULL;
2442 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2443 struct path *path, struct path *root)
2446 struct nameidata nd;
2448 return PTR_ERR(name);
2449 if (unlikely(root)) {
2451 flags |= LOOKUP_ROOT;
2453 set_nameidata(&nd, dfd, name);
2454 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2455 if (unlikely(retval == -ECHILD))
2456 retval = path_lookupat(&nd, flags, path);
2457 if (unlikely(retval == -ESTALE))
2458 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2460 if (likely(!retval))
2461 audit_inode(name, path->dentry,
2462 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2463 restore_nameidata();
2468 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2469 static int path_parentat(struct nameidata *nd, unsigned flags,
2470 struct path *parent)
2472 const char *s = path_init(nd, flags);
2473 int err = link_path_walk(s, nd);
2475 err = complete_walk(nd);
2478 nd->path.mnt = NULL;
2479 nd->path.dentry = NULL;
2485 static struct filename *filename_parentat(int dfd, struct filename *name,
2486 unsigned int flags, struct path *parent,
2487 struct qstr *last, int *type)
2490 struct nameidata nd;
2494 set_nameidata(&nd, dfd, name);
2495 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2496 if (unlikely(retval == -ECHILD))
2497 retval = path_parentat(&nd, flags, parent);
2498 if (unlikely(retval == -ESTALE))
2499 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2500 if (likely(!retval)) {
2502 *type = nd.last_type;
2503 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2506 name = ERR_PTR(retval);
2508 restore_nameidata();
2512 /* does lookup, returns the object with parent locked */
2513 struct dentry *kern_path_locked(const char *name, struct path *path)
2515 struct filename *filename;
2520 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2522 if (IS_ERR(filename))
2523 return ERR_CAST(filename);
2524 if (unlikely(type != LAST_NORM)) {
2527 return ERR_PTR(-EINVAL);
2529 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2530 d = __lookup_hash(&last, path->dentry, 0);
2532 inode_unlock(path->dentry->d_inode);
2539 int kern_path(const char *name, unsigned int flags, struct path *path)
2541 return filename_lookup(AT_FDCWD, getname_kernel(name),
2544 EXPORT_SYMBOL(kern_path);
2547 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2548 * @dentry: pointer to dentry of the base directory
2549 * @mnt: pointer to vfs mount of the base directory
2550 * @name: pointer to file name
2551 * @flags: lookup flags
2552 * @path: pointer to struct path to fill
2554 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2555 const char *name, unsigned int flags,
2558 struct path root = {.mnt = mnt, .dentry = dentry};
2559 /* the first argument of filename_lookup() is ignored with root */
2560 return filename_lookup(AT_FDCWD, getname_kernel(name),
2561 flags , path, &root);
2563 EXPORT_SYMBOL(vfs_path_lookup);
2565 static int lookup_one_len_common(const char *name, struct dentry *base,
2566 int len, struct qstr *this)
2570 this->hash = full_name_hash(base, name, len);
2574 if (unlikely(name[0] == '.')) {
2575 if (len < 2 || (len == 2 && name[1] == '.'))
2580 unsigned int c = *(const unsigned char *)name++;
2581 if (c == '/' || c == '\0')
2585 * See if the low-level filesystem might want
2586 * to use its own hash..
2588 if (base->d_flags & DCACHE_OP_HASH) {
2589 int err = base->d_op->d_hash(base, this);
2594 return inode_permission(&init_user_ns, base->d_inode, MAY_EXEC);
2598 * try_lookup_one_len - filesystem helper to lookup single pathname component
2599 * @name: pathname component to lookup
2600 * @base: base directory to lookup from
2601 * @len: maximum length @len should be interpreted to
2603 * Look up a dentry by name in the dcache, returning NULL if it does not
2604 * currently exist. The function does not try to create a dentry.
2606 * Note that this routine is purely a helper for filesystem usage and should
2607 * not be called by generic code.
2609 * The caller must hold base->i_mutex.
2611 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2616 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2618 err = lookup_one_len_common(name, base, len, &this);
2620 return ERR_PTR(err);
2622 return lookup_dcache(&this, base, 0);
2624 EXPORT_SYMBOL(try_lookup_one_len);
2627 * lookup_one_len - filesystem helper to lookup single pathname component
2628 * @name: pathname component to lookup
2629 * @base: base directory to lookup from
2630 * @len: maximum length @len should be interpreted to
2632 * Note that this routine is purely a helper for filesystem usage and should
2633 * not be called by generic code.
2635 * The caller must hold base->i_mutex.
2637 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2639 struct dentry *dentry;
2643 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2645 err = lookup_one_len_common(name, base, len, &this);
2647 return ERR_PTR(err);
2649 dentry = lookup_dcache(&this, base, 0);
2650 return dentry ? dentry : __lookup_slow(&this, base, 0);
2652 EXPORT_SYMBOL(lookup_one_len);
2655 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2656 * @name: pathname component to lookup
2657 * @base: base directory to lookup from
2658 * @len: maximum length @len should be interpreted to
2660 * Note that this routine is purely a helper for filesystem usage and should
2661 * not be called by generic code.
2663 * Unlike lookup_one_len, it should be called without the parent
2664 * i_mutex held, and will take the i_mutex itself if necessary.
2666 struct dentry *lookup_one_len_unlocked(const char *name,
2667 struct dentry *base, int len)
2673 err = lookup_one_len_common(name, base, len, &this);
2675 return ERR_PTR(err);
2677 ret = lookup_dcache(&this, base, 0);
2679 ret = lookup_slow(&this, base, 0);
2682 EXPORT_SYMBOL(lookup_one_len_unlocked);
2685 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2686 * on negatives. Returns known positive or ERR_PTR(); that's what
2687 * most of the users want. Note that pinned negative with unlocked parent
2688 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2689 * need to be very careful; pinned positives have ->d_inode stable, so
2690 * this one avoids such problems.
2692 struct dentry *lookup_positive_unlocked(const char *name,
2693 struct dentry *base, int len)
2695 struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2696 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2698 ret = ERR_PTR(-ENOENT);
2702 EXPORT_SYMBOL(lookup_positive_unlocked);
2704 #ifdef CONFIG_UNIX98_PTYS
2705 int path_pts(struct path *path)
2707 /* Find something mounted on "pts" in the same directory as
2710 struct dentry *parent = dget_parent(path->dentry);
2711 struct dentry *child;
2712 struct qstr this = QSTR_INIT("pts", 3);
2714 if (unlikely(!path_connected(path->mnt, parent))) {
2719 path->dentry = parent;
2720 child = d_hash_and_lookup(parent, &this);
2724 path->dentry = child;
2731 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2732 struct path *path, int *empty)
2734 return filename_lookup(dfd, getname_flags(name, flags, empty),
2737 EXPORT_SYMBOL(user_path_at_empty);
2739 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2740 struct inode *inode)
2742 kuid_t fsuid = current_fsuid();
2744 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2746 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2748 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2750 EXPORT_SYMBOL(__check_sticky);
2753 * Check whether we can remove a link victim from directory dir, check
2754 * whether the type of victim is right.
2755 * 1. We can't do it if dir is read-only (done in permission())
2756 * 2. We should have write and exec permissions on dir
2757 * 3. We can't remove anything from append-only dir
2758 * 4. We can't do anything with immutable dir (done in permission())
2759 * 5. If the sticky bit on dir is set we should either
2760 * a. be owner of dir, or
2761 * b. be owner of victim, or
2762 * c. have CAP_FOWNER capability
2763 * 6. If the victim is append-only or immutable we can't do antyhing with
2764 * links pointing to it.
2765 * 7. If the victim has an unknown uid or gid we can't change the inode.
2766 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2767 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2768 * 10. We can't remove a root or mountpoint.
2769 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2770 * nfs_async_unlink().
2772 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2773 struct dentry *victim, bool isdir)
2775 struct inode *inode = d_backing_inode(victim);
2778 if (d_is_negative(victim))
2782 BUG_ON(victim->d_parent->d_inode != dir);
2784 /* Inode writeback is not safe when the uid or gid are invalid. */
2785 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2786 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2789 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2791 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2797 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2798 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2799 HAS_UNMAPPED_ID(mnt_userns, inode))
2802 if (!d_is_dir(victim))
2804 if (IS_ROOT(victim))
2806 } else if (d_is_dir(victim))
2808 if (IS_DEADDIR(dir))
2810 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2815 /* Check whether we can create an object with dentry child in directory
2817 * 1. We can't do it if child already exists (open has special treatment for
2818 * this case, but since we are inlined it's OK)
2819 * 2. We can't do it if dir is read-only (done in permission())
2820 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2821 * 4. We should have write and exec permissions on dir
2822 * 5. We can't do it if dir is immutable (done in permission())
2824 static inline int may_create(struct user_namespace *mnt_userns,
2825 struct inode *dir, struct dentry *child)
2827 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2830 if (IS_DEADDIR(dir))
2832 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
2835 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2839 * p1 and p2 should be directories on the same fs.
2841 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2846 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2850 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2852 p = d_ancestor(p2, p1);
2854 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2855 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2859 p = d_ancestor(p1, p2);
2861 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2862 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2866 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2867 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2870 EXPORT_SYMBOL(lock_rename);
2872 void unlock_rename(struct dentry *p1, struct dentry *p2)
2874 inode_unlock(p1->d_inode);
2876 inode_unlock(p2->d_inode);
2877 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2880 EXPORT_SYMBOL(unlock_rename);
2883 * vfs_create - create new file
2884 * @mnt_userns: user namespace of the mount the inode was found from
2885 * @dir: inode of @dentry
2886 * @dentry: pointer to dentry of the base directory
2887 * @mode: mode of the new file
2888 * @want_excl: whether the file must not yet exist
2890 * Create a new file.
2892 * If the inode has been found through an idmapped mount the user namespace of
2893 * the vfsmount must be passed through @mnt_userns. This function will then take
2894 * care to map the inode according to @mnt_userns before checking permissions.
2895 * On non-idmapped mounts or if permission checking is to be performed on the
2896 * raw inode simply passs init_user_ns.
2898 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2899 struct dentry *dentry, umode_t mode, bool want_excl)
2901 int error = may_create(mnt_userns, dir, dentry);
2905 if (!dir->i_op->create)
2906 return -EACCES; /* shouldn't it be ENOSYS? */
2909 error = security_inode_create(dir, dentry, mode);
2912 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
2914 fsnotify_create(dir, dentry);
2917 EXPORT_SYMBOL(vfs_create);
2919 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2920 int (*f)(struct dentry *, umode_t, void *),
2923 struct inode *dir = dentry->d_parent->d_inode;
2924 int error = may_create(&init_user_ns, dir, dentry);
2930 error = security_inode_create(dir, dentry, mode);
2933 error = f(dentry, mode, arg);
2935 fsnotify_create(dir, dentry);
2938 EXPORT_SYMBOL(vfs_mkobj);
2940 bool may_open_dev(const struct path *path)
2942 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2943 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2946 static int may_open(struct user_namespace *mnt_userns, const struct path *path,
2947 int acc_mode, int flag)
2949 struct dentry *dentry = path->dentry;
2950 struct inode *inode = dentry->d_inode;
2956 switch (inode->i_mode & S_IFMT) {
2960 if (acc_mode & MAY_WRITE)
2962 if (acc_mode & MAY_EXEC)
2967 if (!may_open_dev(path))
2972 if (acc_mode & MAY_EXEC)
2977 if ((acc_mode & MAY_EXEC) && path_noexec(path))
2982 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
2987 * An append-only file must be opened in append mode for writing.
2989 if (IS_APPEND(inode)) {
2990 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2996 /* O_NOATIME can only be set by the owner or superuser */
2997 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3003 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3005 const struct path *path = &filp->f_path;
3006 struct inode *inode = path->dentry->d_inode;
3007 int error = get_write_access(inode);
3011 * Refuse to truncate files with mandatory locks held on them.
3013 error = locks_verify_locked(filp);
3015 error = security_path_truncate(path);
3017 error = do_truncate(mnt_userns, path->dentry, 0,
3018 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3021 put_write_access(inode);
3025 static inline int open_to_namei_flags(int flag)
3027 if ((flag & O_ACCMODE) == 3)
3032 static int may_o_create(struct user_namespace *mnt_userns,
3033 const struct path *dir, struct dentry *dentry,
3036 int error = security_path_mknod(dir, dentry, mode, 0);
3040 if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns))
3043 error = inode_permission(mnt_userns, dir->dentry->d_inode,
3044 MAY_WRITE | MAY_EXEC);
3048 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3052 * Attempt to atomically look up, create and open a file from a negative
3055 * Returns 0 if successful. The file will have been created and attached to
3056 * @file by the filesystem calling finish_open().
3058 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3059 * be set. The caller will need to perform the open themselves. @path will
3060 * have been updated to point to the new dentry. This may be negative.
3062 * Returns an error code otherwise.
3064 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3066 int open_flag, umode_t mode)
3068 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3069 struct inode *dir = nd->path.dentry->d_inode;
3072 if (nd->flags & LOOKUP_DIRECTORY)
3073 open_flag |= O_DIRECTORY;
3075 file->f_path.dentry = DENTRY_NOT_SET;
3076 file->f_path.mnt = nd->path.mnt;
3077 error = dir->i_op->atomic_open(dir, dentry, file,
3078 open_to_namei_flags(open_flag), mode);
3079 d_lookup_done(dentry);
3081 if (file->f_mode & FMODE_OPENED) {
3082 if (unlikely(dentry != file->f_path.dentry)) {
3084 dentry = dget(file->f_path.dentry);
3086 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3089 if (file->f_path.dentry) {
3091 dentry = file->f_path.dentry;
3093 if (unlikely(d_is_negative(dentry)))
3099 dentry = ERR_PTR(error);
3105 * Look up and maybe create and open the last component.
3107 * Must be called with parent locked (exclusive in O_CREAT case).
3109 * Returns 0 on success, that is, if
3110 * the file was successfully atomically created (if necessary) and opened, or
3111 * the file was not completely opened at this time, though lookups and
3112 * creations were performed.
3113 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3114 * In the latter case dentry returned in @path might be negative if O_CREAT
3115 * hadn't been specified.
3117 * An error code is returned on failure.
3119 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3120 const struct open_flags *op,
3123 struct user_namespace *mnt_userns;
3124 struct dentry *dir = nd->path.dentry;
3125 struct inode *dir_inode = dir->d_inode;
3126 int open_flag = op->open_flag;
3127 struct dentry *dentry;
3128 int error, create_error = 0;
3129 umode_t mode = op->mode;
3130 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3132 if (unlikely(IS_DEADDIR(dir_inode)))
3133 return ERR_PTR(-ENOENT);
3135 file->f_mode &= ~FMODE_CREATED;
3136 dentry = d_lookup(dir, &nd->last);
3139 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3143 if (d_in_lookup(dentry))
3146 error = d_revalidate(dentry, nd->flags);
3147 if (likely(error > 0))
3151 d_invalidate(dentry);
3155 if (dentry->d_inode) {
3156 /* Cached positive dentry: will open in f_op->open */
3161 * Checking write permission is tricky, bacuse we don't know if we are
3162 * going to actually need it: O_CREAT opens should work as long as the
3163 * file exists. But checking existence breaks atomicity. The trick is
3164 * to check access and if not granted clear O_CREAT from the flags.
3166 * Another problem is returing the "right" error value (e.g. for an
3167 * O_EXCL open we want to return EEXIST not EROFS).
3169 if (unlikely(!got_write))
3170 open_flag &= ~O_TRUNC;
3171 mnt_userns = mnt_user_ns(nd->path.mnt);
3172 if (open_flag & O_CREAT) {
3173 if (open_flag & O_EXCL)
3174 open_flag &= ~O_TRUNC;
3175 if (!IS_POSIXACL(dir->d_inode))
3176 mode &= ~current_umask();
3177 if (likely(got_write))
3178 create_error = may_o_create(mnt_userns, &nd->path,
3181 create_error = -EROFS;
3184 open_flag &= ~O_CREAT;
3185 if (dir_inode->i_op->atomic_open) {
3186 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3187 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3188 dentry = ERR_PTR(create_error);
3192 if (d_in_lookup(dentry)) {
3193 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3195 d_lookup_done(dentry);
3196 if (unlikely(res)) {
3198 error = PTR_ERR(res);
3206 /* Negative dentry, just create the file */
3207 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3208 file->f_mode |= FMODE_CREATED;
3209 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3210 if (!dir_inode->i_op->create) {
3215 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3216 mode, open_flag & O_EXCL);
3220 if (unlikely(create_error) && !dentry->d_inode) {
3221 error = create_error;
3228 return ERR_PTR(error);
3231 static const char *open_last_lookups(struct nameidata *nd,
3232 struct file *file, const struct open_flags *op)
3234 struct dentry *dir = nd->path.dentry;
3235 int open_flag = op->open_flag;
3236 bool got_write = false;
3238 struct inode *inode;
3239 struct dentry *dentry;
3242 nd->flags |= op->intent;
3244 if (nd->last_type != LAST_NORM) {
3247 return handle_dots(nd, nd->last_type);
3250 if (!(open_flag & O_CREAT)) {
3251 if (nd->last.name[nd->last.len])
3252 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3253 /* we _can_ be in RCU mode here */
3254 dentry = lookup_fast(nd, &inode, &seq);
3256 return ERR_CAST(dentry);
3260 BUG_ON(nd->flags & LOOKUP_RCU);
3262 /* create side of things */
3263 if (nd->flags & LOOKUP_RCU) {
3264 if (!try_to_unlazy(nd))
3265 return ERR_PTR(-ECHILD);
3267 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3268 /* trailing slashes? */
3269 if (unlikely(nd->last.name[nd->last.len]))
3270 return ERR_PTR(-EISDIR);
3273 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3274 got_write = !mnt_want_write(nd->path.mnt);
3276 * do _not_ fail yet - we might not need that or fail with
3277 * a different error; let lookup_open() decide; we'll be
3278 * dropping this one anyway.
3281 if (open_flag & O_CREAT)
3282 inode_lock(dir->d_inode);
3284 inode_lock_shared(dir->d_inode);
3285 dentry = lookup_open(nd, file, op, got_write);
3286 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3287 fsnotify_create(dir->d_inode, dentry);
3288 if (open_flag & O_CREAT)
3289 inode_unlock(dir->d_inode);
3291 inode_unlock_shared(dir->d_inode);
3294 mnt_drop_write(nd->path.mnt);
3297 return ERR_CAST(dentry);
3299 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3300 dput(nd->path.dentry);
3301 nd->path.dentry = dentry;
3308 res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3310 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3315 * Handle the last step of open()
3317 static int do_open(struct nameidata *nd,
3318 struct file *file, const struct open_flags *op)
3320 struct user_namespace *mnt_userns;
3321 int open_flag = op->open_flag;
3326 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3327 error = complete_walk(nd);
3331 if (!(file->f_mode & FMODE_CREATED))
3332 audit_inode(nd->name, nd->path.dentry, 0);
3333 mnt_userns = mnt_user_ns(nd->path.mnt);
3334 if (open_flag & O_CREAT) {
3335 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3337 if (d_is_dir(nd->path.dentry))
3339 error = may_create_in_sticky(mnt_userns, nd,
3340 d_backing_inode(nd->path.dentry));
3341 if (unlikely(error))
3344 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3347 do_truncate = false;
3348 acc_mode = op->acc_mode;
3349 if (file->f_mode & FMODE_CREATED) {
3350 /* Don't check for write permission, don't truncate */
3351 open_flag &= ~O_TRUNC;
3353 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3354 error = mnt_want_write(nd->path.mnt);
3359 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3360 if (!error && !(file->f_mode & FMODE_OPENED))
3361 error = vfs_open(&nd->path, file);
3363 error = ima_file_check(file, op->acc_mode);
3364 if (!error && do_truncate)
3365 error = handle_truncate(mnt_userns, file);
3366 if (unlikely(error > 0)) {
3371 mnt_drop_write(nd->path.mnt);
3376 * vfs_tmpfile - create tmpfile
3377 * @mnt_userns: user namespace of the mount the inode was found from
3378 * @dentry: pointer to dentry of the base directory
3379 * @mode: mode of the new tmpfile
3382 * Create a temporary file.
3384 * If the inode has been found through an idmapped mount the user namespace of
3385 * the vfsmount must be passed through @mnt_userns. This function will then take
3386 * care to map the inode according to @mnt_userns before checking permissions.
3387 * On non-idmapped mounts or if permission checking is to be performed on the
3388 * raw inode simply passs init_user_ns.
3390 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns,
3391 struct dentry *dentry, umode_t mode, int open_flag)
3393 struct dentry *child = NULL;
3394 struct inode *dir = dentry->d_inode;
3395 struct inode *inode;
3398 /* we want directory to be writable */
3399 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3402 error = -EOPNOTSUPP;
3403 if (!dir->i_op->tmpfile)
3406 child = d_alloc(dentry, &slash_name);
3407 if (unlikely(!child))
3409 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode);
3413 inode = child->d_inode;
3414 if (unlikely(!inode))
3416 if (!(open_flag & O_EXCL)) {
3417 spin_lock(&inode->i_lock);
3418 inode->i_state |= I_LINKABLE;
3419 spin_unlock(&inode->i_lock);
3421 ima_post_create_tmpfile(mnt_userns, inode);
3426 return ERR_PTR(error);
3428 EXPORT_SYMBOL(vfs_tmpfile);
3430 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3431 const struct open_flags *op,
3434 struct user_namespace *mnt_userns;
3435 struct dentry *child;
3437 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3438 if (unlikely(error))
3440 error = mnt_want_write(path.mnt);
3441 if (unlikely(error))
3443 mnt_userns = mnt_user_ns(path.mnt);
3444 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag);
3445 error = PTR_ERR(child);
3449 path.dentry = child;
3450 audit_inode(nd->name, child, 0);
3451 /* Don't check for other permissions, the inode was just created */
3452 error = may_open(mnt_userns, &path, 0, op->open_flag);
3454 error = vfs_open(&path, file);
3456 mnt_drop_write(path.mnt);
3462 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3465 int error = path_lookupat(nd, flags, &path);
3467 audit_inode(nd->name, path.dentry, 0);
3468 error = vfs_open(&path, file);
3474 static struct file *path_openat(struct nameidata *nd,
3475 const struct open_flags *op, unsigned flags)
3480 file = alloc_empty_file(op->open_flag, current_cred());
3484 if (unlikely(file->f_flags & __O_TMPFILE)) {
3485 error = do_tmpfile(nd, flags, op, file);
3486 } else if (unlikely(file->f_flags & O_PATH)) {
3487 error = do_o_path(nd, flags, file);
3489 const char *s = path_init(nd, flags);
3490 while (!(error = link_path_walk(s, nd)) &&
3491 (s = open_last_lookups(nd, file, op)) != NULL)
3494 error = do_open(nd, file, op);
3497 if (likely(!error)) {
3498 if (likely(file->f_mode & FMODE_OPENED))
3504 if (error == -EOPENSTALE) {
3505 if (flags & LOOKUP_RCU)
3510 return ERR_PTR(error);
3513 struct file *do_filp_open(int dfd, struct filename *pathname,
3514 const struct open_flags *op)
3516 struct nameidata nd;
3517 int flags = op->lookup_flags;
3520 set_nameidata(&nd, dfd, pathname);
3521 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3522 if (unlikely(filp == ERR_PTR(-ECHILD)))
3523 filp = path_openat(&nd, op, flags);
3524 if (unlikely(filp == ERR_PTR(-ESTALE)))
3525 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3526 restore_nameidata();
3530 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3531 const char *name, const struct open_flags *op)
3533 struct nameidata nd;
3535 struct filename *filename;
3536 int flags = op->lookup_flags | LOOKUP_ROOT;
3539 nd.root.dentry = dentry;
3541 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3542 return ERR_PTR(-ELOOP);
3544 filename = getname_kernel(name);
3545 if (IS_ERR(filename))
3546 return ERR_CAST(filename);
3548 set_nameidata(&nd, -1, filename);
3549 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3550 if (unlikely(file == ERR_PTR(-ECHILD)))
3551 file = path_openat(&nd, op, flags);
3552 if (unlikely(file == ERR_PTR(-ESTALE)))
3553 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3554 restore_nameidata();
3559 static struct dentry *filename_create(int dfd, struct filename *name,
3560 struct path *path, unsigned int lookup_flags)
3562 struct dentry *dentry = ERR_PTR(-EEXIST);
3567 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3570 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3571 * other flags passed in are ignored!
3573 lookup_flags &= LOOKUP_REVAL;
3575 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3577 return ERR_CAST(name);
3580 * Yucky last component or no last component at all?
3581 * (foo/., foo/.., /////)
3583 if (unlikely(type != LAST_NORM))
3586 /* don't fail immediately if it's r/o, at least try to report other errors */
3587 err2 = mnt_want_write(path->mnt);
3589 * Do the final lookup.
3591 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3592 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3593 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3598 if (d_is_positive(dentry))
3602 * Special case - lookup gave negative, but... we had foo/bar/
3603 * From the vfs_mknod() POV we just have a negative dentry -
3604 * all is fine. Let's be bastards - you had / on the end, you've
3605 * been asking for (non-existent) directory. -ENOENT for you.
3607 if (unlikely(!is_dir && last.name[last.len])) {
3611 if (unlikely(err2)) {
3619 dentry = ERR_PTR(error);
3621 inode_unlock(path->dentry->d_inode);
3623 mnt_drop_write(path->mnt);
3630 struct dentry *kern_path_create(int dfd, const char *pathname,
3631 struct path *path, unsigned int lookup_flags)
3633 return filename_create(dfd, getname_kernel(pathname),
3634 path, lookup_flags);
3636 EXPORT_SYMBOL(kern_path_create);
3638 void done_path_create(struct path *path, struct dentry *dentry)
3641 inode_unlock(path->dentry->d_inode);
3642 mnt_drop_write(path->mnt);
3645 EXPORT_SYMBOL(done_path_create);
3647 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3648 struct path *path, unsigned int lookup_flags)
3650 return filename_create(dfd, getname(pathname), path, lookup_flags);
3652 EXPORT_SYMBOL(user_path_create);
3655 * vfs_mknod - create device node or file
3656 * @mnt_userns: user namespace of the mount the inode was found from
3657 * @dir: inode of @dentry
3658 * @dentry: pointer to dentry of the base directory
3659 * @mode: mode of the new device node or file
3660 * @dev: device number of device to create
3662 * Create a device node or file.
3664 * If the inode has been found through an idmapped mount the user namespace of
3665 * the vfsmount must be passed through @mnt_userns. This function will then take
3666 * care to map the inode according to @mnt_userns before checking permissions.
3667 * On non-idmapped mounts or if permission checking is to be performed on the
3668 * raw inode simply passs init_user_ns.
3670 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3671 struct dentry *dentry, umode_t mode, dev_t dev)
3673 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3674 int error = may_create(mnt_userns, dir, dentry);
3679 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3680 !capable(CAP_MKNOD))
3683 if (!dir->i_op->mknod)
3686 error = devcgroup_inode_mknod(mode, dev);
3690 error = security_inode_mknod(dir, dentry, mode, dev);
3694 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3696 fsnotify_create(dir, dentry);
3699 EXPORT_SYMBOL(vfs_mknod);
3701 static int may_mknod(umode_t mode)
3703 switch (mode & S_IFMT) {
3709 case 0: /* zero mode translates to S_IFREG */
3718 static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3721 struct user_namespace *mnt_userns;
3722 struct dentry *dentry;
3725 unsigned int lookup_flags = 0;
3727 error = may_mknod(mode);
3731 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3733 return PTR_ERR(dentry);
3735 if (!IS_POSIXACL(path.dentry->d_inode))
3736 mode &= ~current_umask();
3737 error = security_path_mknod(&path, dentry, mode, dev);
3741 mnt_userns = mnt_user_ns(path.mnt);
3742 switch (mode & S_IFMT) {
3743 case 0: case S_IFREG:
3744 error = vfs_create(mnt_userns, path.dentry->d_inode,
3745 dentry, mode, true);
3747 ima_post_path_mknod(mnt_userns, dentry);
3749 case S_IFCHR: case S_IFBLK:
3750 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3751 dentry, mode, new_decode_dev(dev));
3753 case S_IFIFO: case S_IFSOCK:
3754 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3759 done_path_create(&path, dentry);
3760 if (retry_estale(error, lookup_flags)) {
3761 lookup_flags |= LOOKUP_REVAL;
3767 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3770 return do_mknodat(dfd, filename, mode, dev);
3773 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3775 return do_mknodat(AT_FDCWD, filename, mode, dev);
3779 * vfs_mkdir - create directory
3780 * @mnt_userns: user namespace of the mount the inode was found from
3781 * @dir: inode of @dentry
3782 * @dentry: pointer to dentry of the base directory
3783 * @mode: mode of the new directory
3785 * Create a directory.
3787 * If the inode has been found through an idmapped mount the user namespace of
3788 * the vfsmount must be passed through @mnt_userns. This function will then take
3789 * care to map the inode according to @mnt_userns before checking permissions.
3790 * On non-idmapped mounts or if permission checking is to be performed on the
3791 * raw inode simply passs init_user_ns.
3793 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
3794 struct dentry *dentry, umode_t mode)
3796 int error = may_create(mnt_userns, dir, dentry);
3797 unsigned max_links = dir->i_sb->s_max_links;
3802 if (!dir->i_op->mkdir)
3805 mode &= (S_IRWXUGO|S_ISVTX);
3806 error = security_inode_mkdir(dir, dentry, mode);
3810 if (max_links && dir->i_nlink >= max_links)
3813 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
3815 fsnotify_mkdir(dir, dentry);
3818 EXPORT_SYMBOL(vfs_mkdir);
3820 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3822 struct dentry *dentry;
3825 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3828 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3830 return PTR_ERR(dentry);
3832 if (!IS_POSIXACL(path.dentry->d_inode))
3833 mode &= ~current_umask();
3834 error = security_path_mkdir(&path, dentry, mode);
3836 struct user_namespace *mnt_userns;
3837 mnt_userns = mnt_user_ns(path.mnt);
3838 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
3841 done_path_create(&path, dentry);
3842 if (retry_estale(error, lookup_flags)) {
3843 lookup_flags |= LOOKUP_REVAL;
3849 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3851 return do_mkdirat(dfd, pathname, mode);
3854 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3856 return do_mkdirat(AT_FDCWD, pathname, mode);
3860 * vfs_rmdir - remove directory
3861 * @mnt_userns: user namespace of the mount the inode was found from
3862 * @dir: inode of @dentry
3863 * @dentry: pointer to dentry of the base directory
3865 * Remove a directory.
3867 * If the inode has been found through an idmapped mount the user namespace of
3868 * the vfsmount must be passed through @mnt_userns. This function will then take
3869 * care to map the inode according to @mnt_userns before checking permissions.
3870 * On non-idmapped mounts or if permission checking is to be performed on the
3871 * raw inode simply passs init_user_ns.
3873 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
3874 struct dentry *dentry)
3876 int error = may_delete(mnt_userns, dir, dentry, 1);
3881 if (!dir->i_op->rmdir)
3885 inode_lock(dentry->d_inode);
3888 if (is_local_mountpoint(dentry))
3891 error = security_inode_rmdir(dir, dentry);
3895 error = dir->i_op->rmdir(dir, dentry);
3899 shrink_dcache_parent(dentry);
3900 dentry->d_inode->i_flags |= S_DEAD;
3902 detach_mounts(dentry);
3903 fsnotify_rmdir(dir, dentry);
3906 inode_unlock(dentry->d_inode);
3912 EXPORT_SYMBOL(vfs_rmdir);
3914 long do_rmdir(int dfd, struct filename *name)
3916 struct user_namespace *mnt_userns;
3918 struct dentry *dentry;
3922 unsigned int lookup_flags = 0;
3924 name = filename_parentat(dfd, name, lookup_flags,
3925 &path, &last, &type);
3927 return PTR_ERR(name);
3941 error = mnt_want_write(path.mnt);
3945 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3946 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3947 error = PTR_ERR(dentry);
3950 if (!dentry->d_inode) {
3954 error = security_path_rmdir(&path, dentry);
3957 mnt_userns = mnt_user_ns(path.mnt);
3958 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
3962 inode_unlock(path.dentry->d_inode);
3963 mnt_drop_write(path.mnt);
3966 if (retry_estale(error, lookup_flags)) {
3967 lookup_flags |= LOOKUP_REVAL;
3974 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3976 return do_rmdir(AT_FDCWD, getname(pathname));
3980 * vfs_unlink - unlink a filesystem object
3981 * @mnt_userns: user namespace of the mount the inode was found from
3982 * @dir: parent directory
3984 * @delegated_inode: returns victim inode, if the inode is delegated.
3986 * The caller must hold dir->i_mutex.
3988 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3989 * return a reference to the inode in delegated_inode. The caller
3990 * should then break the delegation on that inode and retry. Because
3991 * breaking a delegation may take a long time, the caller should drop
3992 * dir->i_mutex before doing so.
3994 * Alternatively, a caller may pass NULL for delegated_inode. This may
3995 * be appropriate for callers that expect the underlying filesystem not
3996 * to be NFS exported.
3998 * If the inode has been found through an idmapped mount the user namespace of
3999 * the vfsmount must be passed through @mnt_userns. This function will then take
4000 * care to map the inode according to @mnt_userns before checking permissions.
4001 * On non-idmapped mounts or if permission checking is to be performed on the
4002 * raw inode simply passs init_user_ns.
4004 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4005 struct dentry *dentry, struct inode **delegated_inode)
4007 struct inode *target = dentry->d_inode;
4008 int error = may_delete(mnt_userns, dir, dentry, 0);
4013 if (!dir->i_op->unlink)
4017 if (is_local_mountpoint(dentry))
4020 error = security_inode_unlink(dir, dentry);
4022 error = try_break_deleg(target, delegated_inode);
4025 error = dir->i_op->unlink(dir, dentry);
4028 detach_mounts(dentry);
4029 fsnotify_unlink(dir, dentry);
4034 inode_unlock(target);
4036 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4037 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4038 fsnotify_link_count(target);
4044 EXPORT_SYMBOL(vfs_unlink);
4047 * Make sure that the actual truncation of the file will occur outside its
4048 * directory's i_mutex. Truncate can take a long time if there is a lot of
4049 * writeout happening, and we don't want to prevent access to the directory
4050 * while waiting on the I/O.
4052 long do_unlinkat(int dfd, struct filename *name)
4055 struct dentry *dentry;
4059 struct inode *inode = NULL;
4060 struct inode *delegated_inode = NULL;
4061 unsigned int lookup_flags = 0;
4063 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4065 return PTR_ERR(name);
4068 if (type != LAST_NORM)
4071 error = mnt_want_write(path.mnt);
4075 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4076 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4077 error = PTR_ERR(dentry);
4078 if (!IS_ERR(dentry)) {
4079 struct user_namespace *mnt_userns;
4081 /* Why not before? Because we want correct error value */
4082 if (last.name[last.len])
4084 inode = dentry->d_inode;
4085 if (d_is_negative(dentry))
4088 error = security_path_unlink(&path, dentry);
4091 mnt_userns = mnt_user_ns(path.mnt);
4092 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4097 inode_unlock(path.dentry->d_inode);
4099 iput(inode); /* truncate the inode here */
4101 if (delegated_inode) {
4102 error = break_deleg_wait(&delegated_inode);
4106 mnt_drop_write(path.mnt);
4109 if (retry_estale(error, lookup_flags)) {
4110 lookup_flags |= LOOKUP_REVAL;
4118 if (d_is_negative(dentry))
4120 else if (d_is_dir(dentry))
4127 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4129 if ((flag & ~AT_REMOVEDIR) != 0)
4132 if (flag & AT_REMOVEDIR)
4133 return do_rmdir(dfd, getname(pathname));
4134 return do_unlinkat(dfd, getname(pathname));
4137 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4139 return do_unlinkat(AT_FDCWD, getname(pathname));
4143 * vfs_symlink - create symlink
4144 * @mnt_userns: user namespace of the mount the inode was found from
4145 * @dir: inode of @dentry
4146 * @dentry: pointer to dentry of the base directory
4147 * @oldname: name of the file to link to
4151 * If the inode has been found through an idmapped mount the user namespace of
4152 * the vfsmount must be passed through @mnt_userns. This function will then take
4153 * care to map the inode according to @mnt_userns before checking permissions.
4154 * On non-idmapped mounts or if permission checking is to be performed on the
4155 * raw inode simply passs init_user_ns.
4157 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4158 struct dentry *dentry, const char *oldname)
4160 int error = may_create(mnt_userns, dir, dentry);
4165 if (!dir->i_op->symlink)
4168 error = security_inode_symlink(dir, dentry, oldname);
4172 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4174 fsnotify_create(dir, dentry);
4177 EXPORT_SYMBOL(vfs_symlink);
4179 static long do_symlinkat(const char __user *oldname, int newdfd,
4180 const char __user *newname)
4183 struct filename *from;
4184 struct dentry *dentry;
4186 unsigned int lookup_flags = 0;
4188 from = getname(oldname);
4190 return PTR_ERR(from);
4192 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4193 error = PTR_ERR(dentry);
4197 error = security_path_symlink(&path, dentry, from->name);
4199 struct user_namespace *mnt_userns;
4201 mnt_userns = mnt_user_ns(path.mnt);
4202 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4205 done_path_create(&path, dentry);
4206 if (retry_estale(error, lookup_flags)) {
4207 lookup_flags |= LOOKUP_REVAL;
4215 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4216 int, newdfd, const char __user *, newname)
4218 return do_symlinkat(oldname, newdfd, newname);
4221 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4223 return do_symlinkat(oldname, AT_FDCWD, newname);
4227 * vfs_link - create a new link
4228 * @old_dentry: object to be linked
4229 * @mnt_userns: the user namespace of the mount
4231 * @new_dentry: where to create the new link
4232 * @delegated_inode: returns inode needing a delegation break
4234 * The caller must hold dir->i_mutex
4236 * If vfs_link discovers a delegation on the to-be-linked file in need
4237 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4238 * inode in delegated_inode. The caller should then break the delegation
4239 * and retry. Because breaking a delegation may take a long time, the
4240 * caller should drop the i_mutex before doing so.
4242 * Alternatively, a caller may pass NULL for delegated_inode. This may
4243 * be appropriate for callers that expect the underlying filesystem not
4244 * to be NFS exported.
4246 * If the inode has been found through an idmapped mount the user namespace of
4247 * the vfsmount must be passed through @mnt_userns. This function will then take
4248 * care to map the inode according to @mnt_userns before checking permissions.
4249 * On non-idmapped mounts or if permission checking is to be performed on the
4250 * raw inode simply passs init_user_ns.
4252 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4253 struct inode *dir, struct dentry *new_dentry,
4254 struct inode **delegated_inode)
4256 struct inode *inode = old_dentry->d_inode;
4257 unsigned max_links = dir->i_sb->s_max_links;
4263 error = may_create(mnt_userns, dir, new_dentry);
4267 if (dir->i_sb != inode->i_sb)
4271 * A link to an append-only or immutable file cannot be created.
4273 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4276 * Updating the link count will likely cause i_uid and i_gid to
4277 * be writen back improperly if their true value is unknown to
4280 if (HAS_UNMAPPED_ID(mnt_userns, inode))
4282 if (!dir->i_op->link)
4284 if (S_ISDIR(inode->i_mode))
4287 error = security_inode_link(old_dentry, dir, new_dentry);
4292 /* Make sure we don't allow creating hardlink to an unlinked file */
4293 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4295 else if (max_links && inode->i_nlink >= max_links)
4298 error = try_break_deleg(inode, delegated_inode);
4300 error = dir->i_op->link(old_dentry, dir, new_dentry);
4303 if (!error && (inode->i_state & I_LINKABLE)) {
4304 spin_lock(&inode->i_lock);
4305 inode->i_state &= ~I_LINKABLE;
4306 spin_unlock(&inode->i_lock);
4308 inode_unlock(inode);
4310 fsnotify_link(dir, inode, new_dentry);
4313 EXPORT_SYMBOL(vfs_link);
4316 * Hardlinks are often used in delicate situations. We avoid
4317 * security-related surprises by not following symlinks on the
4320 * We don't follow them on the oldname either to be compatible
4321 * with linux 2.0, and to avoid hard-linking to directories
4322 * and other special files. --ADM
4324 static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4325 const char __user *newname, int flags)
4327 struct user_namespace *mnt_userns;
4328 struct dentry *new_dentry;
4329 struct path old_path, new_path;
4330 struct inode *delegated_inode = NULL;
4334 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4337 * To use null names we require CAP_DAC_READ_SEARCH
4338 * This ensures that not everyone will be able to create
4339 * handlink using the passed filedescriptor.
4341 if (flags & AT_EMPTY_PATH) {
4342 if (!capable(CAP_DAC_READ_SEARCH))
4347 if (flags & AT_SYMLINK_FOLLOW)
4348 how |= LOOKUP_FOLLOW;
4350 error = user_path_at(olddfd, oldname, how, &old_path);
4354 new_dentry = user_path_create(newdfd, newname, &new_path,
4355 (how & LOOKUP_REVAL));
4356 error = PTR_ERR(new_dentry);
4357 if (IS_ERR(new_dentry))
4361 if (old_path.mnt != new_path.mnt)
4363 mnt_userns = mnt_user_ns(new_path.mnt);
4364 error = may_linkat(mnt_userns, &old_path);
4365 if (unlikely(error))
4367 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4370 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4371 new_dentry, &delegated_inode);
4373 done_path_create(&new_path, new_dentry);
4374 if (delegated_inode) {
4375 error = break_deleg_wait(&delegated_inode);
4377 path_put(&old_path);
4381 if (retry_estale(error, how)) {
4382 path_put(&old_path);
4383 how |= LOOKUP_REVAL;
4387 path_put(&old_path);
4392 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4393 int, newdfd, const char __user *, newname, int, flags)
4395 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4398 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4400 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4404 * vfs_rename - rename a filesystem object
4405 * @rd: pointer to &struct renamedata info
4407 * The caller must hold multiple mutexes--see lock_rename()).
4409 * If vfs_rename discovers a delegation in need of breaking at either
4410 * the source or destination, it will return -EWOULDBLOCK and return a
4411 * reference to the inode in delegated_inode. The caller should then
4412 * break the delegation and retry. Because breaking a delegation may
4413 * take a long time, the caller should drop all locks before doing
4416 * Alternatively, a caller may pass NULL for delegated_inode. This may
4417 * be appropriate for callers that expect the underlying filesystem not
4418 * to be NFS exported.
4420 * The worst of all namespace operations - renaming directory. "Perverted"
4421 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4424 * a) we can get into loop creation.
4425 * b) race potential - two innocent renames can create a loop together.
4426 * That's where 4.4 screws up. Current fix: serialization on
4427 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4429 * c) we have to lock _four_ objects - parents and victim (if it exists),
4430 * and source (if it is not a directory).
4431 * And that - after we got ->i_mutex on parents (until then we don't know
4432 * whether the target exists). Solution: try to be smart with locking
4433 * order for inodes. We rely on the fact that tree topology may change
4434 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4435 * move will be locked. Thus we can rank directories by the tree
4436 * (ancestors first) and rank all non-directories after them.
4437 * That works since everybody except rename does "lock parent, lookup,
4438 * lock child" and rename is under ->s_vfs_rename_mutex.
4439 * HOWEVER, it relies on the assumption that any object with ->lookup()
4440 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4441 * we'd better make sure that there's no link(2) for them.
4442 * d) conversion from fhandle to dentry may come in the wrong moment - when
4443 * we are removing the target. Solution: we will have to grab ->i_mutex
4444 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4445 * ->i_mutex on parents, which works but leads to some truly excessive
4448 int vfs_rename(struct renamedata *rd)
4451 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4452 struct dentry *old_dentry = rd->old_dentry;
4453 struct dentry *new_dentry = rd->new_dentry;
4454 struct inode **delegated_inode = rd->delegated_inode;
4455 unsigned int flags = rd->flags;
4456 bool is_dir = d_is_dir(old_dentry);
4457 struct inode *source = old_dentry->d_inode;
4458 struct inode *target = new_dentry->d_inode;
4459 bool new_is_dir = false;
4460 unsigned max_links = new_dir->i_sb->s_max_links;
4461 struct name_snapshot old_name;
4463 if (source == target)
4466 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4471 error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4473 new_is_dir = d_is_dir(new_dentry);
4475 if (!(flags & RENAME_EXCHANGE))
4476 error = may_delete(rd->new_mnt_userns, new_dir,
4477 new_dentry, is_dir);
4479 error = may_delete(rd->new_mnt_userns, new_dir,
4480 new_dentry, new_is_dir);
4485 if (!old_dir->i_op->rename)
4489 * If we are going to change the parent - check write permissions,
4490 * we'll need to flip '..'.
4492 if (new_dir != old_dir) {
4494 error = inode_permission(rd->old_mnt_userns, source,
4499 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4500 error = inode_permission(rd->new_mnt_userns, target,
4507 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4512 take_dentry_name_snapshot(&old_name, old_dentry);
4514 if (!is_dir || (flags & RENAME_EXCHANGE))
4515 lock_two_nondirectories(source, target);
4520 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4523 if (max_links && new_dir != old_dir) {
4525 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4527 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4528 old_dir->i_nlink >= max_links)
4532 error = try_break_deleg(source, delegated_inode);
4536 if (target && !new_is_dir) {
4537 error = try_break_deleg(target, delegated_inode);
4541 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4542 new_dir, new_dentry, flags);
4546 if (!(flags & RENAME_EXCHANGE) && target) {
4548 shrink_dcache_parent(new_dentry);
4549 target->i_flags |= S_DEAD;
4551 dont_mount(new_dentry);
4552 detach_mounts(new_dentry);
4554 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4555 if (!(flags & RENAME_EXCHANGE))
4556 d_move(old_dentry, new_dentry);
4558 d_exchange(old_dentry, new_dentry);
4561 if (!is_dir || (flags & RENAME_EXCHANGE))
4562 unlock_two_nondirectories(source, target);
4564 inode_unlock(target);
4567 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4568 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4569 if (flags & RENAME_EXCHANGE) {
4570 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4571 new_is_dir, NULL, new_dentry);
4574 release_dentry_name_snapshot(&old_name);
4578 EXPORT_SYMBOL(vfs_rename);
4580 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4581 struct filename *to, unsigned int flags)
4583 struct renamedata rd;
4584 struct dentry *old_dentry, *new_dentry;
4585 struct dentry *trap;
4586 struct path old_path, new_path;
4587 struct qstr old_last, new_last;
4588 int old_type, new_type;
4589 struct inode *delegated_inode = NULL;
4590 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4591 bool should_retry = false;
4592 int error = -EINVAL;
4594 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4597 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4598 (flags & RENAME_EXCHANGE))
4601 if (flags & RENAME_EXCHANGE)
4605 from = filename_parentat(olddfd, from, lookup_flags, &old_path,
4606 &old_last, &old_type);
4608 error = PTR_ERR(from);
4612 to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4615 error = PTR_ERR(to);
4620 if (old_path.mnt != new_path.mnt)
4624 if (old_type != LAST_NORM)
4627 if (flags & RENAME_NOREPLACE)
4629 if (new_type != LAST_NORM)
4632 error = mnt_want_write(old_path.mnt);
4637 trap = lock_rename(new_path.dentry, old_path.dentry);
4639 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4640 error = PTR_ERR(old_dentry);
4641 if (IS_ERR(old_dentry))
4643 /* source must exist */
4645 if (d_is_negative(old_dentry))
4647 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4648 error = PTR_ERR(new_dentry);
4649 if (IS_ERR(new_dentry))
4652 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4654 if (flags & RENAME_EXCHANGE) {
4656 if (d_is_negative(new_dentry))
4659 if (!d_is_dir(new_dentry)) {
4661 if (new_last.name[new_last.len])
4665 /* unless the source is a directory trailing slashes give -ENOTDIR */
4666 if (!d_is_dir(old_dentry)) {
4668 if (old_last.name[old_last.len])
4670 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4673 /* source should not be ancestor of target */
4675 if (old_dentry == trap)
4677 /* target should not be an ancestor of source */
4678 if (!(flags & RENAME_EXCHANGE))
4680 if (new_dentry == trap)
4683 error = security_path_rename(&old_path, old_dentry,
4684 &new_path, new_dentry, flags);
4688 rd.old_dir = old_path.dentry->d_inode;
4689 rd.old_dentry = old_dentry;
4690 rd.old_mnt_userns = mnt_user_ns(old_path.mnt);
4691 rd.new_dir = new_path.dentry->d_inode;
4692 rd.new_dentry = new_dentry;
4693 rd.new_mnt_userns = mnt_user_ns(new_path.mnt);
4694 rd.delegated_inode = &delegated_inode;
4696 error = vfs_rename(&rd);
4702 unlock_rename(new_path.dentry, old_path.dentry);
4703 if (delegated_inode) {
4704 error = break_deleg_wait(&delegated_inode);
4708 mnt_drop_write(old_path.mnt);
4710 if (retry_estale(error, lookup_flags))
4711 should_retry = true;
4712 path_put(&new_path);
4714 path_put(&old_path);
4716 should_retry = false;
4717 lookup_flags |= LOOKUP_REVAL;
4729 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4730 int, newdfd, const char __user *, newname, unsigned int, flags)
4732 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4736 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4737 int, newdfd, const char __user *, newname)
4739 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4743 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4745 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4746 getname(newname), 0);
4749 int readlink_copy(char __user *buffer, int buflen, const char *link)
4751 int len = PTR_ERR(link);
4756 if (len > (unsigned) buflen)
4758 if (copy_to_user(buffer, link, len))
4765 * vfs_readlink - copy symlink body into userspace buffer
4766 * @dentry: dentry on which to get symbolic link
4767 * @buffer: user memory pointer
4768 * @buflen: size of buffer
4770 * Does not touch atime. That's up to the caller if necessary
4772 * Does not call security hook.
4774 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4776 struct inode *inode = d_inode(dentry);
4777 DEFINE_DELAYED_CALL(done);
4781 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4782 if (unlikely(inode->i_op->readlink))
4783 return inode->i_op->readlink(dentry, buffer, buflen);
4785 if (!d_is_symlink(dentry))
4788 spin_lock(&inode->i_lock);
4789 inode->i_opflags |= IOP_DEFAULT_READLINK;
4790 spin_unlock(&inode->i_lock);
4793 link = READ_ONCE(inode->i_link);
4795 link = inode->i_op->get_link(dentry, inode, &done);
4797 return PTR_ERR(link);
4799 res = readlink_copy(buffer, buflen, link);
4800 do_delayed_call(&done);
4803 EXPORT_SYMBOL(vfs_readlink);
4806 * vfs_get_link - get symlink body
4807 * @dentry: dentry on which to get symbolic link
4808 * @done: caller needs to free returned data with this
4810 * Calls security hook and i_op->get_link() on the supplied inode.
4812 * It does not touch atime. That's up to the caller if necessary.
4814 * Does not work on "special" symlinks like /proc/$$/fd/N
4816 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4818 const char *res = ERR_PTR(-EINVAL);
4819 struct inode *inode = d_inode(dentry);
4821 if (d_is_symlink(dentry)) {
4822 res = ERR_PTR(security_inode_readlink(dentry));
4824 res = inode->i_op->get_link(dentry, inode, done);
4828 EXPORT_SYMBOL(vfs_get_link);
4830 /* get the link contents into pagecache */
4831 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4832 struct delayed_call *callback)
4836 struct address_space *mapping = inode->i_mapping;
4839 page = find_get_page(mapping, 0);
4841 return ERR_PTR(-ECHILD);
4842 if (!PageUptodate(page)) {
4844 return ERR_PTR(-ECHILD);
4847 page = read_mapping_page(mapping, 0, NULL);
4851 set_delayed_call(callback, page_put_link, page);
4852 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4853 kaddr = page_address(page);
4854 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4858 EXPORT_SYMBOL(page_get_link);
4860 void page_put_link(void *arg)
4864 EXPORT_SYMBOL(page_put_link);
4866 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4868 DEFINE_DELAYED_CALL(done);
4869 int res = readlink_copy(buffer, buflen,
4870 page_get_link(dentry, d_inode(dentry),
4872 do_delayed_call(&done);
4875 EXPORT_SYMBOL(page_readlink);
4878 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4880 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4882 struct address_space *mapping = inode->i_mapping;
4886 unsigned int flags = 0;
4888 flags |= AOP_FLAG_NOFS;
4891 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4892 flags, &page, &fsdata);
4896 memcpy(page_address(page), symname, len-1);
4898 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4905 mark_inode_dirty(inode);
4910 EXPORT_SYMBOL(__page_symlink);
4912 int page_symlink(struct inode *inode, const char *symname, int len)
4914 return __page_symlink(inode, symname, len,
4915 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4917 EXPORT_SYMBOL(page_symlink);
4919 const struct inode_operations page_symlink_inode_operations = {
4920 .get_link = page_get_link,
4922 EXPORT_SYMBOL(page_symlink_inode_operations);