Merge branches 'x86/hyperv', 'x86/kdump' and 'x86/misc' into x86/urgent, to pick...
[linux-2.6-microblaze.git] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (!transaction_cache) {
46                 pr_emerg("JBD2: failed to create transaction cache\n");
47                 return -ENOMEM;
48         }
49         return 0;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         kmem_cache_destroy(transaction_cache);
55         transaction_cache = NULL;
56 }
57
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61                 return;
62         kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70         int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71         int tags_per_block;
72
73         /* Subtract UUID */
74         tag_space -= 16;
75         if (jbd2_journal_has_csum_v2or3(journal))
76                 tag_space -= sizeof(struct jbd2_journal_block_tail);
77         /* Commit code leaves a slack space of 16 bytes at the end of block */
78         tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79         /*
80          * Revoke descriptors are accounted separately so we need to reserve
81          * space for commit block and normal transaction descriptor blocks.
82          */
83         return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84                                 tags_per_block);
85 }
86
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *      The journal MUST be locked.  We don't perform atomic mallocs on the
97  *      new transaction and we can't block without protecting against other
98  *      processes trying to touch the journal while it is in transition.
99  *
100  */
101
102 static void jbd2_get_transaction(journal_t *journal,
103                                 transaction_t *transaction)
104 {
105         transaction->t_journal = journal;
106         transaction->t_state = T_RUNNING;
107         transaction->t_start_time = ktime_get();
108         transaction->t_tid = journal->j_transaction_sequence++;
109         transaction->t_expires = jiffies + journal->j_commit_interval;
110         spin_lock_init(&transaction->t_handle_lock);
111         atomic_set(&transaction->t_updates, 0);
112         atomic_set(&transaction->t_outstanding_credits,
113                    jbd2_descriptor_blocks_per_trans(journal) +
114                    atomic_read(&journal->j_reserved_credits));
115         atomic_set(&transaction->t_outstanding_revokes, 0);
116         atomic_set(&transaction->t_handle_count, 0);
117         INIT_LIST_HEAD(&transaction->t_inode_list);
118         INIT_LIST_HEAD(&transaction->t_private_list);
119
120         /* Set up the commit timer for the new transaction. */
121         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
122         add_timer(&journal->j_commit_timer);
123
124         J_ASSERT(journal->j_running_transaction == NULL);
125         journal->j_running_transaction = transaction;
126         transaction->t_max_wait = 0;
127         transaction->t_start = jiffies;
128         transaction->t_requested = 0;
129 }
130
131 /*
132  * Handle management.
133  *
134  * A handle_t is an object which represents a single atomic update to a
135  * filesystem, and which tracks all of the modifications which form part
136  * of that one update.
137  */
138
139 /*
140  * Update transaction's maximum wait time, if debugging is enabled.
141  *
142  * In order for t_max_wait to be reliable, it must be protected by a
143  * lock.  But doing so will mean that start_this_handle() can not be
144  * run in parallel on SMP systems, which limits our scalability.  So
145  * unless debugging is enabled, we no longer update t_max_wait, which
146  * means that maximum wait time reported by the jbd2_run_stats
147  * tracepoint will always be zero.
148  */
149 static inline void update_t_max_wait(transaction_t *transaction,
150                                      unsigned long ts)
151 {
152 #ifdef CONFIG_JBD2_DEBUG
153         if (jbd2_journal_enable_debug &&
154             time_after(transaction->t_start, ts)) {
155                 ts = jbd2_time_diff(ts, transaction->t_start);
156                 spin_lock(&transaction->t_handle_lock);
157                 if (ts > transaction->t_max_wait)
158                         transaction->t_max_wait = ts;
159                 spin_unlock(&transaction->t_handle_lock);
160         }
161 #endif
162 }
163
164 /*
165  * Wait until running transaction passes to T_FLUSH state and new transaction
166  * can thus be started. Also starts the commit if needed. The function expects
167  * running transaction to exist and releases j_state_lock.
168  */
169 static void wait_transaction_locked(journal_t *journal)
170         __releases(journal->j_state_lock)
171 {
172         DEFINE_WAIT(wait);
173         int need_to_start;
174         tid_t tid = journal->j_running_transaction->t_tid;
175
176         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177                         TASK_UNINTERRUPTIBLE);
178         need_to_start = !tid_geq(journal->j_commit_request, tid);
179         read_unlock(&journal->j_state_lock);
180         if (need_to_start)
181                 jbd2_log_start_commit(journal, tid);
182         jbd2_might_wait_for_commit(journal);
183         schedule();
184         finish_wait(&journal->j_wait_transaction_locked, &wait);
185 }
186
187 /*
188  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
189  * state and new transaction can thus be started. The function releases
190  * j_state_lock.
191  */
192 static void wait_transaction_switching(journal_t *journal)
193         __releases(journal->j_state_lock)
194 {
195         DEFINE_WAIT(wait);
196
197         if (WARN_ON(!journal->j_running_transaction ||
198                     journal->j_running_transaction->t_state != T_SWITCH))
199                 return;
200         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
201                         TASK_UNINTERRUPTIBLE);
202         read_unlock(&journal->j_state_lock);
203         /*
204          * We don't call jbd2_might_wait_for_commit() here as there's no
205          * waiting for outstanding handles happening anymore in T_SWITCH state
206          * and handling of reserved handles actually relies on that for
207          * correctness.
208          */
209         schedule();
210         finish_wait(&journal->j_wait_transaction_locked, &wait);
211 }
212
213 static void sub_reserved_credits(journal_t *journal, int blocks)
214 {
215         atomic_sub(blocks, &journal->j_reserved_credits);
216         wake_up(&journal->j_wait_reserved);
217 }
218
219 /*
220  * Wait until we can add credits for handle to the running transaction.  Called
221  * with j_state_lock held for reading. Returns 0 if handle joined the running
222  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
223  * caller must retry.
224  */
225 static int add_transaction_credits(journal_t *journal, int blocks,
226                                    int rsv_blocks)
227 {
228         transaction_t *t = journal->j_running_transaction;
229         int needed;
230         int total = blocks + rsv_blocks;
231
232         /*
233          * If the current transaction is locked down for commit, wait
234          * for the lock to be released.
235          */
236         if (t->t_state != T_RUNNING) {
237                 WARN_ON_ONCE(t->t_state >= T_FLUSH);
238                 wait_transaction_locked(journal);
239                 return 1;
240         }
241
242         /*
243          * If there is not enough space left in the log to write all
244          * potential buffers requested by this operation, we need to
245          * stall pending a log checkpoint to free some more log space.
246          */
247         needed = atomic_add_return(total, &t->t_outstanding_credits);
248         if (needed > journal->j_max_transaction_buffers) {
249                 /*
250                  * If the current transaction is already too large,
251                  * then start to commit it: we can then go back and
252                  * attach this handle to a new transaction.
253                  */
254                 atomic_sub(total, &t->t_outstanding_credits);
255
256                 /*
257                  * Is the number of reserved credits in the current transaction too
258                  * big to fit this handle? Wait until reserved credits are freed.
259                  */
260                 if (atomic_read(&journal->j_reserved_credits) + total >
261                     journal->j_max_transaction_buffers) {
262                         read_unlock(&journal->j_state_lock);
263                         jbd2_might_wait_for_commit(journal);
264                         wait_event(journal->j_wait_reserved,
265                                    atomic_read(&journal->j_reserved_credits) + total <=
266                                    journal->j_max_transaction_buffers);
267                         return 1;
268                 }
269
270                 wait_transaction_locked(journal);
271                 return 1;
272         }
273
274         /*
275          * The commit code assumes that it can get enough log space
276          * without forcing a checkpoint.  This is *critical* for
277          * correctness: a checkpoint of a buffer which is also
278          * associated with a committing transaction creates a deadlock,
279          * so commit simply cannot force through checkpoints.
280          *
281          * We must therefore ensure the necessary space in the journal
282          * *before* starting to dirty potentially checkpointed buffers
283          * in the new transaction.
284          */
285         if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
286                 atomic_sub(total, &t->t_outstanding_credits);
287                 read_unlock(&journal->j_state_lock);
288                 jbd2_might_wait_for_commit(journal);
289                 write_lock(&journal->j_state_lock);
290                 if (jbd2_log_space_left(journal) <
291                                         journal->j_max_transaction_buffers)
292                         __jbd2_log_wait_for_space(journal);
293                 write_unlock(&journal->j_state_lock);
294                 return 1;
295         }
296
297         /* No reservation? We are done... */
298         if (!rsv_blocks)
299                 return 0;
300
301         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
302         /* We allow at most half of a transaction to be reserved */
303         if (needed > journal->j_max_transaction_buffers / 2) {
304                 sub_reserved_credits(journal, rsv_blocks);
305                 atomic_sub(total, &t->t_outstanding_credits);
306                 read_unlock(&journal->j_state_lock);
307                 jbd2_might_wait_for_commit(journal);
308                 wait_event(journal->j_wait_reserved,
309                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
310                          <= journal->j_max_transaction_buffers / 2);
311                 return 1;
312         }
313         return 0;
314 }
315
316 /*
317  * start_this_handle: Given a handle, deal with any locking or stalling
318  * needed to make sure that there is enough journal space for the handle
319  * to begin.  Attach the handle to a transaction and set up the
320  * transaction's buffer credits.
321  */
322
323 static int start_this_handle(journal_t *journal, handle_t *handle,
324                              gfp_t gfp_mask)
325 {
326         transaction_t   *transaction, *new_transaction = NULL;
327         int             blocks = handle->h_total_credits;
328         int             rsv_blocks = 0;
329         unsigned long ts = jiffies;
330
331         if (handle->h_rsv_handle)
332                 rsv_blocks = handle->h_rsv_handle->h_total_credits;
333
334         /*
335          * Limit the number of reserved credits to 1/2 of maximum transaction
336          * size and limit the number of total credits to not exceed maximum
337          * transaction size per operation.
338          */
339         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
340             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
341                 printk(KERN_ERR "JBD2: %s wants too many credits "
342                        "credits:%d rsv_credits:%d max:%d\n",
343                        current->comm, blocks, rsv_blocks,
344                        journal->j_max_transaction_buffers);
345                 WARN_ON(1);
346                 return -ENOSPC;
347         }
348
349 alloc_transaction:
350         if (!journal->j_running_transaction) {
351                 /*
352                  * If __GFP_FS is not present, then we may be being called from
353                  * inside the fs writeback layer, so we MUST NOT fail.
354                  */
355                 if ((gfp_mask & __GFP_FS) == 0)
356                         gfp_mask |= __GFP_NOFAIL;
357                 new_transaction = kmem_cache_zalloc(transaction_cache,
358                                                     gfp_mask);
359                 if (!new_transaction)
360                         return -ENOMEM;
361         }
362
363         jbd_debug(3, "New handle %p going live.\n", handle);
364
365         /*
366          * We need to hold j_state_lock until t_updates has been incremented,
367          * for proper journal barrier handling
368          */
369 repeat:
370         read_lock(&journal->j_state_lock);
371         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
372         if (is_journal_aborted(journal) ||
373             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
374                 read_unlock(&journal->j_state_lock);
375                 jbd2_journal_free_transaction(new_transaction);
376                 return -EROFS;
377         }
378
379         /*
380          * Wait on the journal's transaction barrier if necessary. Specifically
381          * we allow reserved handles to proceed because otherwise commit could
382          * deadlock on page writeback not being able to complete.
383          */
384         if (!handle->h_reserved && journal->j_barrier_count) {
385                 read_unlock(&journal->j_state_lock);
386                 wait_event(journal->j_wait_transaction_locked,
387                                 journal->j_barrier_count == 0);
388                 goto repeat;
389         }
390
391         if (!journal->j_running_transaction) {
392                 read_unlock(&journal->j_state_lock);
393                 if (!new_transaction)
394                         goto alloc_transaction;
395                 write_lock(&journal->j_state_lock);
396                 if (!journal->j_running_transaction &&
397                     (handle->h_reserved || !journal->j_barrier_count)) {
398                         jbd2_get_transaction(journal, new_transaction);
399                         new_transaction = NULL;
400                 }
401                 write_unlock(&journal->j_state_lock);
402                 goto repeat;
403         }
404
405         transaction = journal->j_running_transaction;
406
407         if (!handle->h_reserved) {
408                 /* We may have dropped j_state_lock - restart in that case */
409                 if (add_transaction_credits(journal, blocks, rsv_blocks))
410                         goto repeat;
411         } else {
412                 /*
413                  * We have handle reserved so we are allowed to join T_LOCKED
414                  * transaction and we don't have to check for transaction size
415                  * and journal space. But we still have to wait while running
416                  * transaction is being switched to a committing one as it
417                  * won't wait for any handles anymore.
418                  */
419                 if (transaction->t_state == T_SWITCH) {
420                         wait_transaction_switching(journal);
421                         goto repeat;
422                 }
423                 sub_reserved_credits(journal, blocks);
424                 handle->h_reserved = 0;
425         }
426
427         /* OK, account for the buffers that this operation expects to
428          * use and add the handle to the running transaction. 
429          */
430         update_t_max_wait(transaction, ts);
431         handle->h_transaction = transaction;
432         handle->h_requested_credits = blocks;
433         handle->h_revoke_credits_requested = handle->h_revoke_credits;
434         handle->h_start_jiffies = jiffies;
435         atomic_inc(&transaction->t_updates);
436         atomic_inc(&transaction->t_handle_count);
437         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
438                   handle, blocks,
439                   atomic_read(&transaction->t_outstanding_credits),
440                   jbd2_log_space_left(journal));
441         read_unlock(&journal->j_state_lock);
442         current->journal_info = handle;
443
444         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
445         jbd2_journal_free_transaction(new_transaction);
446         /*
447          * Ensure that no allocations done while the transaction is open are
448          * going to recurse back to the fs layer.
449          */
450         handle->saved_alloc_context = memalloc_nofs_save();
451         return 0;
452 }
453
454 /* Allocate a new handle.  This should probably be in a slab... */
455 static handle_t *new_handle(int nblocks)
456 {
457         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
458         if (!handle)
459                 return NULL;
460         handle->h_total_credits = nblocks;
461         handle->h_ref = 1;
462
463         return handle;
464 }
465
466 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
467                               int revoke_records, gfp_t gfp_mask,
468                               unsigned int type, unsigned int line_no)
469 {
470         handle_t *handle = journal_current_handle();
471         int err;
472
473         if (!journal)
474                 return ERR_PTR(-EROFS);
475
476         if (handle) {
477                 J_ASSERT(handle->h_transaction->t_journal == journal);
478                 handle->h_ref++;
479                 return handle;
480         }
481
482         nblocks += DIV_ROUND_UP(revoke_records,
483                                 journal->j_revoke_records_per_block);
484         handle = new_handle(nblocks);
485         if (!handle)
486                 return ERR_PTR(-ENOMEM);
487         if (rsv_blocks) {
488                 handle_t *rsv_handle;
489
490                 rsv_handle = new_handle(rsv_blocks);
491                 if (!rsv_handle) {
492                         jbd2_free_handle(handle);
493                         return ERR_PTR(-ENOMEM);
494                 }
495                 rsv_handle->h_reserved = 1;
496                 rsv_handle->h_journal = journal;
497                 handle->h_rsv_handle = rsv_handle;
498         }
499         handle->h_revoke_credits = revoke_records;
500
501         err = start_this_handle(journal, handle, gfp_mask);
502         if (err < 0) {
503                 if (handle->h_rsv_handle)
504                         jbd2_free_handle(handle->h_rsv_handle);
505                 jbd2_free_handle(handle);
506                 return ERR_PTR(err);
507         }
508         handle->h_type = type;
509         handle->h_line_no = line_no;
510         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
511                                 handle->h_transaction->t_tid, type,
512                                 line_no, nblocks);
513
514         return handle;
515 }
516 EXPORT_SYMBOL(jbd2__journal_start);
517
518
519 /**
520  * handle_t *jbd2_journal_start() - Obtain a new handle.
521  * @journal: Journal to start transaction on.
522  * @nblocks: number of block buffer we might modify
523  *
524  * We make sure that the transaction can guarantee at least nblocks of
525  * modified buffers in the log.  We block until the log can guarantee
526  * that much space. Additionally, if rsv_blocks > 0, we also create another
527  * handle with rsv_blocks reserved blocks in the journal. This handle is
528  * is stored in h_rsv_handle. It is not attached to any particular transaction
529  * and thus doesn't block transaction commit. If the caller uses this reserved
530  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
531  * on the parent handle will dispose the reserved one. Reserved handle has to
532  * be converted to a normal handle using jbd2_journal_start_reserved() before
533  * it can be used.
534  *
535  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
536  * on failure.
537  */
538 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
539 {
540         return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
541 }
542 EXPORT_SYMBOL(jbd2_journal_start);
543
544 static void __jbd2_journal_unreserve_handle(handle_t *handle)
545 {
546         journal_t *journal = handle->h_journal;
547
548         WARN_ON(!handle->h_reserved);
549         sub_reserved_credits(journal, handle->h_total_credits);
550 }
551
552 void jbd2_journal_free_reserved(handle_t *handle)
553 {
554         __jbd2_journal_unreserve_handle(handle);
555         jbd2_free_handle(handle);
556 }
557 EXPORT_SYMBOL(jbd2_journal_free_reserved);
558
559 /**
560  * int jbd2_journal_start_reserved() - start reserved handle
561  * @handle: handle to start
562  * @type: for handle statistics
563  * @line_no: for handle statistics
564  *
565  * Start handle that has been previously reserved with jbd2_journal_reserve().
566  * This attaches @handle to the running transaction (or creates one if there's
567  * not transaction running). Unlike jbd2_journal_start() this function cannot
568  * block on journal commit, checkpointing, or similar stuff. It can block on
569  * memory allocation or frozen journal though.
570  *
571  * Return 0 on success, non-zero on error - handle is freed in that case.
572  */
573 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
574                                 unsigned int line_no)
575 {
576         journal_t *journal = handle->h_journal;
577         int ret = -EIO;
578
579         if (WARN_ON(!handle->h_reserved)) {
580                 /* Someone passed in normal handle? Just stop it. */
581                 jbd2_journal_stop(handle);
582                 return ret;
583         }
584         /*
585          * Usefulness of mixing of reserved and unreserved handles is
586          * questionable. So far nobody seems to need it so just error out.
587          */
588         if (WARN_ON(current->journal_info)) {
589                 jbd2_journal_free_reserved(handle);
590                 return ret;
591         }
592
593         handle->h_journal = NULL;
594         /*
595          * GFP_NOFS is here because callers are likely from writeback or
596          * similarly constrained call sites
597          */
598         ret = start_this_handle(journal, handle, GFP_NOFS);
599         if (ret < 0) {
600                 handle->h_journal = journal;
601                 jbd2_journal_free_reserved(handle);
602                 return ret;
603         }
604         handle->h_type = type;
605         handle->h_line_no = line_no;
606         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
607                                 handle->h_transaction->t_tid, type,
608                                 line_no, handle->h_total_credits);
609         return 0;
610 }
611 EXPORT_SYMBOL(jbd2_journal_start_reserved);
612
613 /**
614  * int jbd2_journal_extend() - extend buffer credits.
615  * @handle:  handle to 'extend'
616  * @nblocks: nr blocks to try to extend by.
617  * @revoke_records: number of revoke records to try to extend by.
618  *
619  * Some transactions, such as large extends and truncates, can be done
620  * atomically all at once or in several stages.  The operation requests
621  * a credit for a number of buffer modifications in advance, but can
622  * extend its credit if it needs more.
623  *
624  * jbd2_journal_extend tries to give the running handle more buffer credits.
625  * It does not guarantee that allocation - this is a best-effort only.
626  * The calling process MUST be able to deal cleanly with a failure to
627  * extend here.
628  *
629  * Return 0 on success, non-zero on failure.
630  *
631  * return code < 0 implies an error
632  * return code > 0 implies normal transaction-full status.
633  */
634 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
635 {
636         transaction_t *transaction = handle->h_transaction;
637         journal_t *journal;
638         int result;
639         int wanted;
640
641         if (is_handle_aborted(handle))
642                 return -EROFS;
643         journal = transaction->t_journal;
644
645         result = 1;
646
647         read_lock(&journal->j_state_lock);
648
649         /* Don't extend a locked-down transaction! */
650         if (transaction->t_state != T_RUNNING) {
651                 jbd_debug(3, "denied handle %p %d blocks: "
652                           "transaction not running\n", handle, nblocks);
653                 goto error_out;
654         }
655
656         nblocks += DIV_ROUND_UP(
657                         handle->h_revoke_credits_requested + revoke_records,
658                         journal->j_revoke_records_per_block) -
659                 DIV_ROUND_UP(
660                         handle->h_revoke_credits_requested,
661                         journal->j_revoke_records_per_block);
662         spin_lock(&transaction->t_handle_lock);
663         wanted = atomic_add_return(nblocks,
664                                    &transaction->t_outstanding_credits);
665
666         if (wanted > journal->j_max_transaction_buffers) {
667                 jbd_debug(3, "denied handle %p %d blocks: "
668                           "transaction too large\n", handle, nblocks);
669                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
670                 goto unlock;
671         }
672
673         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
674                                  transaction->t_tid,
675                                  handle->h_type, handle->h_line_no,
676                                  handle->h_total_credits,
677                                  nblocks);
678
679         handle->h_total_credits += nblocks;
680         handle->h_requested_credits += nblocks;
681         handle->h_revoke_credits += revoke_records;
682         handle->h_revoke_credits_requested += revoke_records;
683         result = 0;
684
685         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
686 unlock:
687         spin_unlock(&transaction->t_handle_lock);
688 error_out:
689         read_unlock(&journal->j_state_lock);
690         return result;
691 }
692
693 static void stop_this_handle(handle_t *handle)
694 {
695         transaction_t *transaction = handle->h_transaction;
696         journal_t *journal = transaction->t_journal;
697         int revokes;
698
699         J_ASSERT(journal_current_handle() == handle);
700         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
701         current->journal_info = NULL;
702         /*
703          * Subtract necessary revoke descriptor blocks from handle credits. We
704          * take care to account only for revoke descriptor blocks the
705          * transaction will really need as large sequences of transactions with
706          * small numbers of revokes are relatively common.
707          */
708         revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
709         if (revokes) {
710                 int t_revokes, revoke_descriptors;
711                 int rr_per_blk = journal->j_revoke_records_per_block;
712
713                 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
714                                 > handle->h_total_credits);
715                 t_revokes = atomic_add_return(revokes,
716                                 &transaction->t_outstanding_revokes);
717                 revoke_descriptors =
718                         DIV_ROUND_UP(t_revokes, rr_per_blk) -
719                         DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
720                 handle->h_total_credits -= revoke_descriptors;
721         }
722         atomic_sub(handle->h_total_credits,
723                    &transaction->t_outstanding_credits);
724         if (handle->h_rsv_handle)
725                 __jbd2_journal_unreserve_handle(handle->h_rsv_handle);
726         if (atomic_dec_and_test(&transaction->t_updates))
727                 wake_up(&journal->j_wait_updates);
728
729         rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
730         /*
731          * Scope of the GFP_NOFS context is over here and so we can restore the
732          * original alloc context.
733          */
734         memalloc_nofs_restore(handle->saved_alloc_context);
735 }
736
737 /**
738  * int jbd2_journal_restart() - restart a handle .
739  * @handle:  handle to restart
740  * @nblocks: nr credits requested
741  * @revoke_records: number of revoke record credits requested
742  * @gfp_mask: memory allocation flags (for start_this_handle)
743  *
744  * Restart a handle for a multi-transaction filesystem
745  * operation.
746  *
747  * If the jbd2_journal_extend() call above fails to grant new buffer credits
748  * to a running handle, a call to jbd2_journal_restart will commit the
749  * handle's transaction so far and reattach the handle to a new
750  * transaction capable of guaranteeing the requested number of
751  * credits. We preserve reserved handle if there's any attached to the
752  * passed in handle.
753  */
754 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
755                           gfp_t gfp_mask)
756 {
757         transaction_t *transaction = handle->h_transaction;
758         journal_t *journal;
759         tid_t           tid;
760         int             need_to_start;
761         int             ret;
762
763         /* If we've had an abort of any type, don't even think about
764          * actually doing the restart! */
765         if (is_handle_aborted(handle))
766                 return 0;
767         journal = transaction->t_journal;
768         tid = transaction->t_tid;
769
770         /*
771          * First unlink the handle from its current transaction, and start the
772          * commit on that.
773          */
774         jbd_debug(2, "restarting handle %p\n", handle);
775         stop_this_handle(handle);
776         handle->h_transaction = NULL;
777
778         /*
779          * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
780          * get rid of pointless j_state_lock traffic like this.
781          */
782         read_lock(&journal->j_state_lock);
783         need_to_start = !tid_geq(journal->j_commit_request, tid);
784         read_unlock(&journal->j_state_lock);
785         if (need_to_start)
786                 jbd2_log_start_commit(journal, tid);
787         handle->h_total_credits = nblocks +
788                 DIV_ROUND_UP(revoke_records,
789                              journal->j_revoke_records_per_block);
790         handle->h_revoke_credits = revoke_records;
791         ret = start_this_handle(journal, handle, gfp_mask);
792         trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
793                                  ret ? 0 : handle->h_transaction->t_tid,
794                                  handle->h_type, handle->h_line_no,
795                                  handle->h_total_credits);
796         return ret;
797 }
798 EXPORT_SYMBOL(jbd2__journal_restart);
799
800
801 int jbd2_journal_restart(handle_t *handle, int nblocks)
802 {
803         return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
804 }
805 EXPORT_SYMBOL(jbd2_journal_restart);
806
807 /**
808  * void jbd2_journal_lock_updates () - establish a transaction barrier.
809  * @journal:  Journal to establish a barrier on.
810  *
811  * This locks out any further updates from being started, and blocks
812  * until all existing updates have completed, returning only once the
813  * journal is in a quiescent state with no updates running.
814  *
815  * The journal lock should not be held on entry.
816  */
817 void jbd2_journal_lock_updates(journal_t *journal)
818 {
819         DEFINE_WAIT(wait);
820
821         jbd2_might_wait_for_commit(journal);
822
823         write_lock(&journal->j_state_lock);
824         ++journal->j_barrier_count;
825
826         /* Wait until there are no reserved handles */
827         if (atomic_read(&journal->j_reserved_credits)) {
828                 write_unlock(&journal->j_state_lock);
829                 wait_event(journal->j_wait_reserved,
830                            atomic_read(&journal->j_reserved_credits) == 0);
831                 write_lock(&journal->j_state_lock);
832         }
833
834         /* Wait until there are no running updates */
835         while (1) {
836                 transaction_t *transaction = journal->j_running_transaction;
837
838                 if (!transaction)
839                         break;
840
841                 spin_lock(&transaction->t_handle_lock);
842                 prepare_to_wait(&journal->j_wait_updates, &wait,
843                                 TASK_UNINTERRUPTIBLE);
844                 if (!atomic_read(&transaction->t_updates)) {
845                         spin_unlock(&transaction->t_handle_lock);
846                         finish_wait(&journal->j_wait_updates, &wait);
847                         break;
848                 }
849                 spin_unlock(&transaction->t_handle_lock);
850                 write_unlock(&journal->j_state_lock);
851                 schedule();
852                 finish_wait(&journal->j_wait_updates, &wait);
853                 write_lock(&journal->j_state_lock);
854         }
855         write_unlock(&journal->j_state_lock);
856
857         /*
858          * We have now established a barrier against other normal updates, but
859          * we also need to barrier against other jbd2_journal_lock_updates() calls
860          * to make sure that we serialise special journal-locked operations
861          * too.
862          */
863         mutex_lock(&journal->j_barrier);
864 }
865
866 /**
867  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
868  * @journal:  Journal to release the barrier on.
869  *
870  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
871  *
872  * Should be called without the journal lock held.
873  */
874 void jbd2_journal_unlock_updates (journal_t *journal)
875 {
876         J_ASSERT(journal->j_barrier_count != 0);
877
878         mutex_unlock(&journal->j_barrier);
879         write_lock(&journal->j_state_lock);
880         --journal->j_barrier_count;
881         write_unlock(&journal->j_state_lock);
882         wake_up(&journal->j_wait_transaction_locked);
883 }
884
885 static void warn_dirty_buffer(struct buffer_head *bh)
886 {
887         printk(KERN_WARNING
888                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
889                "There's a risk of filesystem corruption in case of system "
890                "crash.\n",
891                bh->b_bdev, (unsigned long long)bh->b_blocknr);
892 }
893
894 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
895 static void jbd2_freeze_jh_data(struct journal_head *jh)
896 {
897         struct page *page;
898         int offset;
899         char *source;
900         struct buffer_head *bh = jh2bh(jh);
901
902         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
903         page = bh->b_page;
904         offset = offset_in_page(bh->b_data);
905         source = kmap_atomic(page);
906         /* Fire data frozen trigger just before we copy the data */
907         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
908         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
909         kunmap_atomic(source);
910
911         /*
912          * Now that the frozen data is saved off, we need to store any matching
913          * triggers.
914          */
915         jh->b_frozen_triggers = jh->b_triggers;
916 }
917
918 /*
919  * If the buffer is already part of the current transaction, then there
920  * is nothing we need to do.  If it is already part of a prior
921  * transaction which we are still committing to disk, then we need to
922  * make sure that we do not overwrite the old copy: we do copy-out to
923  * preserve the copy going to disk.  We also account the buffer against
924  * the handle's metadata buffer credits (unless the buffer is already
925  * part of the transaction, that is).
926  *
927  */
928 static int
929 do_get_write_access(handle_t *handle, struct journal_head *jh,
930                         int force_copy)
931 {
932         struct buffer_head *bh;
933         transaction_t *transaction = handle->h_transaction;
934         journal_t *journal;
935         int error;
936         char *frozen_buffer = NULL;
937         unsigned long start_lock, time_lock;
938
939         if (is_handle_aborted(handle))
940                 return -EROFS;
941         journal = transaction->t_journal;
942
943         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
944
945         JBUFFER_TRACE(jh, "entry");
946 repeat:
947         bh = jh2bh(jh);
948
949         /* @@@ Need to check for errors here at some point. */
950
951         start_lock = jiffies;
952         lock_buffer(bh);
953         spin_lock(&jh->b_state_lock);
954
955         /* If it takes too long to lock the buffer, trace it */
956         time_lock = jbd2_time_diff(start_lock, jiffies);
957         if (time_lock > HZ/10)
958                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
959                         jiffies_to_msecs(time_lock));
960
961         /* We now hold the buffer lock so it is safe to query the buffer
962          * state.  Is the buffer dirty?
963          *
964          * If so, there are two possibilities.  The buffer may be
965          * non-journaled, and undergoing a quite legitimate writeback.
966          * Otherwise, it is journaled, and we don't expect dirty buffers
967          * in that state (the buffers should be marked JBD_Dirty
968          * instead.)  So either the IO is being done under our own
969          * control and this is a bug, or it's a third party IO such as
970          * dump(8) (which may leave the buffer scheduled for read ---
971          * ie. locked but not dirty) or tune2fs (which may actually have
972          * the buffer dirtied, ugh.)  */
973
974         if (buffer_dirty(bh)) {
975                 /*
976                  * First question: is this buffer already part of the current
977                  * transaction or the existing committing transaction?
978                  */
979                 if (jh->b_transaction) {
980                         J_ASSERT_JH(jh,
981                                 jh->b_transaction == transaction ||
982                                 jh->b_transaction ==
983                                         journal->j_committing_transaction);
984                         if (jh->b_next_transaction)
985                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
986                                                         transaction);
987                         warn_dirty_buffer(bh);
988                 }
989                 /*
990                  * In any case we need to clean the dirty flag and we must
991                  * do it under the buffer lock to be sure we don't race
992                  * with running write-out.
993                  */
994                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
995                 clear_buffer_dirty(bh);
996                 set_buffer_jbddirty(bh);
997         }
998
999         unlock_buffer(bh);
1000
1001         error = -EROFS;
1002         if (is_handle_aborted(handle)) {
1003                 spin_unlock(&jh->b_state_lock);
1004                 goto out;
1005         }
1006         error = 0;
1007
1008         /*
1009          * The buffer is already part of this transaction if b_transaction or
1010          * b_next_transaction points to it
1011          */
1012         if (jh->b_transaction == transaction ||
1013             jh->b_next_transaction == transaction)
1014                 goto done;
1015
1016         /*
1017          * this is the first time this transaction is touching this buffer,
1018          * reset the modified flag
1019          */
1020         jh->b_modified = 0;
1021
1022         /*
1023          * If the buffer is not journaled right now, we need to make sure it
1024          * doesn't get written to disk before the caller actually commits the
1025          * new data
1026          */
1027         if (!jh->b_transaction) {
1028                 JBUFFER_TRACE(jh, "no transaction");
1029                 J_ASSERT_JH(jh, !jh->b_next_transaction);
1030                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1031                 /*
1032                  * Make sure all stores to jh (b_modified, b_frozen_data) are
1033                  * visible before attaching it to the running transaction.
1034                  * Paired with barrier in jbd2_write_access_granted()
1035                  */
1036                 smp_wmb();
1037                 spin_lock(&journal->j_list_lock);
1038                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1039                 spin_unlock(&journal->j_list_lock);
1040                 goto done;
1041         }
1042         /*
1043          * If there is already a copy-out version of this buffer, then we don't
1044          * need to make another one
1045          */
1046         if (jh->b_frozen_data) {
1047                 JBUFFER_TRACE(jh, "has frozen data");
1048                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1049                 goto attach_next;
1050         }
1051
1052         JBUFFER_TRACE(jh, "owned by older transaction");
1053         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1054         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1055
1056         /*
1057          * There is one case we have to be very careful about.  If the
1058          * committing transaction is currently writing this buffer out to disk
1059          * and has NOT made a copy-out, then we cannot modify the buffer
1060          * contents at all right now.  The essence of copy-out is that it is
1061          * the extra copy, not the primary copy, which gets journaled.  If the
1062          * primary copy is already going to disk then we cannot do copy-out
1063          * here.
1064          */
1065         if (buffer_shadow(bh)) {
1066                 JBUFFER_TRACE(jh, "on shadow: sleep");
1067                 spin_unlock(&jh->b_state_lock);
1068                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1069                 goto repeat;
1070         }
1071
1072         /*
1073          * Only do the copy if the currently-owning transaction still needs it.
1074          * If buffer isn't on BJ_Metadata list, the committing transaction is
1075          * past that stage (here we use the fact that BH_Shadow is set under
1076          * bh_state lock together with refiling to BJ_Shadow list and at this
1077          * point we know the buffer doesn't have BH_Shadow set).
1078          *
1079          * Subtle point, though: if this is a get_undo_access, then we will be
1080          * relying on the frozen_data to contain the new value of the
1081          * committed_data record after the transaction, so we HAVE to force the
1082          * frozen_data copy in that case.
1083          */
1084         if (jh->b_jlist == BJ_Metadata || force_copy) {
1085                 JBUFFER_TRACE(jh, "generate frozen data");
1086                 if (!frozen_buffer) {
1087                         JBUFFER_TRACE(jh, "allocate memory for buffer");
1088                         spin_unlock(&jh->b_state_lock);
1089                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1090                                                    GFP_NOFS | __GFP_NOFAIL);
1091                         goto repeat;
1092                 }
1093                 jh->b_frozen_data = frozen_buffer;
1094                 frozen_buffer = NULL;
1095                 jbd2_freeze_jh_data(jh);
1096         }
1097 attach_next:
1098         /*
1099          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1100          * before attaching it to the running transaction. Paired with barrier
1101          * in jbd2_write_access_granted()
1102          */
1103         smp_wmb();
1104         jh->b_next_transaction = transaction;
1105
1106 done:
1107         spin_unlock(&jh->b_state_lock);
1108
1109         /*
1110          * If we are about to journal a buffer, then any revoke pending on it is
1111          * no longer valid
1112          */
1113         jbd2_journal_cancel_revoke(handle, jh);
1114
1115 out:
1116         if (unlikely(frozen_buffer))    /* It's usually NULL */
1117                 jbd2_free(frozen_buffer, bh->b_size);
1118
1119         JBUFFER_TRACE(jh, "exit");
1120         return error;
1121 }
1122
1123 /* Fast check whether buffer is already attached to the required transaction */
1124 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1125                                                         bool undo)
1126 {
1127         struct journal_head *jh;
1128         bool ret = false;
1129
1130         /* Dirty buffers require special handling... */
1131         if (buffer_dirty(bh))
1132                 return false;
1133
1134         /*
1135          * RCU protects us from dereferencing freed pages. So the checks we do
1136          * are guaranteed not to oops. However the jh slab object can get freed
1137          * & reallocated while we work with it. So we have to be careful. When
1138          * we see jh attached to the running transaction, we know it must stay
1139          * so until the transaction is committed. Thus jh won't be freed and
1140          * will be attached to the same bh while we run.  However it can
1141          * happen jh gets freed, reallocated, and attached to the transaction
1142          * just after we get pointer to it from bh. So we have to be careful
1143          * and recheck jh still belongs to our bh before we return success.
1144          */
1145         rcu_read_lock();
1146         if (!buffer_jbd(bh))
1147                 goto out;
1148         /* This should be bh2jh() but that doesn't work with inline functions */
1149         jh = READ_ONCE(bh->b_private);
1150         if (!jh)
1151                 goto out;
1152         /* For undo access buffer must have data copied */
1153         if (undo && !jh->b_committed_data)
1154                 goto out;
1155         if (jh->b_transaction != handle->h_transaction &&
1156             jh->b_next_transaction != handle->h_transaction)
1157                 goto out;
1158         /*
1159          * There are two reasons for the barrier here:
1160          * 1) Make sure to fetch b_bh after we did previous checks so that we
1161          * detect when jh went through free, realloc, attach to transaction
1162          * while we were checking. Paired with implicit barrier in that path.
1163          * 2) So that access to bh done after jbd2_write_access_granted()
1164          * doesn't get reordered and see inconsistent state of concurrent
1165          * do_get_write_access().
1166          */
1167         smp_mb();
1168         if (unlikely(jh->b_bh != bh))
1169                 goto out;
1170         ret = true;
1171 out:
1172         rcu_read_unlock();
1173         return ret;
1174 }
1175
1176 /**
1177  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1178  * @handle: transaction to add buffer modifications to
1179  * @bh:     bh to be used for metadata writes
1180  *
1181  * Returns: error code or 0 on success.
1182  *
1183  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1184  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1185  */
1186
1187 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1188 {
1189         struct journal_head *jh;
1190         int rc;
1191
1192         if (jbd2_write_access_granted(handle, bh, false))
1193                 return 0;
1194
1195         jh = jbd2_journal_add_journal_head(bh);
1196         /* We do not want to get caught playing with fields which the
1197          * log thread also manipulates.  Make sure that the buffer
1198          * completes any outstanding IO before proceeding. */
1199         rc = do_get_write_access(handle, jh, 0);
1200         jbd2_journal_put_journal_head(jh);
1201         return rc;
1202 }
1203
1204
1205 /*
1206  * When the user wants to journal a newly created buffer_head
1207  * (ie. getblk() returned a new buffer and we are going to populate it
1208  * manually rather than reading off disk), then we need to keep the
1209  * buffer_head locked until it has been completely filled with new
1210  * data.  In this case, we should be able to make the assertion that
1211  * the bh is not already part of an existing transaction.
1212  *
1213  * The buffer should already be locked by the caller by this point.
1214  * There is no lock ranking violation: it was a newly created,
1215  * unlocked buffer beforehand. */
1216
1217 /**
1218  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1219  * @handle: transaction to new buffer to
1220  * @bh: new buffer.
1221  *
1222  * Call this if you create a new bh.
1223  */
1224 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1225 {
1226         transaction_t *transaction = handle->h_transaction;
1227         journal_t *journal;
1228         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1229         int err;
1230
1231         jbd_debug(5, "journal_head %p\n", jh);
1232         err = -EROFS;
1233         if (is_handle_aborted(handle))
1234                 goto out;
1235         journal = transaction->t_journal;
1236         err = 0;
1237
1238         JBUFFER_TRACE(jh, "entry");
1239         /*
1240          * The buffer may already belong to this transaction due to pre-zeroing
1241          * in the filesystem's new_block code.  It may also be on the previous,
1242          * committing transaction's lists, but it HAS to be in Forget state in
1243          * that case: the transaction must have deleted the buffer for it to be
1244          * reused here.
1245          */
1246         spin_lock(&jh->b_state_lock);
1247         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1248                 jh->b_transaction == NULL ||
1249                 (jh->b_transaction == journal->j_committing_transaction &&
1250                           jh->b_jlist == BJ_Forget)));
1251
1252         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1253         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1254
1255         if (jh->b_transaction == NULL) {
1256                 /*
1257                  * Previous jbd2_journal_forget() could have left the buffer
1258                  * with jbddirty bit set because it was being committed. When
1259                  * the commit finished, we've filed the buffer for
1260                  * checkpointing and marked it dirty. Now we are reallocating
1261                  * the buffer so the transaction freeing it must have
1262                  * committed and so it's safe to clear the dirty bit.
1263                  */
1264                 clear_buffer_dirty(jh2bh(jh));
1265                 /* first access by this transaction */
1266                 jh->b_modified = 0;
1267
1268                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1269                 spin_lock(&journal->j_list_lock);
1270                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1271                 spin_unlock(&journal->j_list_lock);
1272         } else if (jh->b_transaction == journal->j_committing_transaction) {
1273                 /* first access by this transaction */
1274                 jh->b_modified = 0;
1275
1276                 JBUFFER_TRACE(jh, "set next transaction");
1277                 spin_lock(&journal->j_list_lock);
1278                 jh->b_next_transaction = transaction;
1279                 spin_unlock(&journal->j_list_lock);
1280         }
1281         spin_unlock(&jh->b_state_lock);
1282
1283         /*
1284          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1285          * blocks which contain freed but then revoked metadata.  We need
1286          * to cancel the revoke in case we end up freeing it yet again
1287          * and the reallocating as data - this would cause a second revoke,
1288          * which hits an assertion error.
1289          */
1290         JBUFFER_TRACE(jh, "cancelling revoke");
1291         jbd2_journal_cancel_revoke(handle, jh);
1292 out:
1293         jbd2_journal_put_journal_head(jh);
1294         return err;
1295 }
1296
1297 /**
1298  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1299  *     non-rewindable consequences
1300  * @handle: transaction
1301  * @bh: buffer to undo
1302  *
1303  * Sometimes there is a need to distinguish between metadata which has
1304  * been committed to disk and that which has not.  The ext3fs code uses
1305  * this for freeing and allocating space, we have to make sure that we
1306  * do not reuse freed space until the deallocation has been committed,
1307  * since if we overwrote that space we would make the delete
1308  * un-rewindable in case of a crash.
1309  *
1310  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1311  * buffer for parts of non-rewindable operations such as delete
1312  * operations on the bitmaps.  The journaling code must keep a copy of
1313  * the buffer's contents prior to the undo_access call until such time
1314  * as we know that the buffer has definitely been committed to disk.
1315  *
1316  * We never need to know which transaction the committed data is part
1317  * of, buffers touched here are guaranteed to be dirtied later and so
1318  * will be committed to a new transaction in due course, at which point
1319  * we can discard the old committed data pointer.
1320  *
1321  * Returns error number or 0 on success.
1322  */
1323 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1324 {
1325         int err;
1326         struct journal_head *jh;
1327         char *committed_data = NULL;
1328
1329         if (jbd2_write_access_granted(handle, bh, true))
1330                 return 0;
1331
1332         jh = jbd2_journal_add_journal_head(bh);
1333         JBUFFER_TRACE(jh, "entry");
1334
1335         /*
1336          * Do this first --- it can drop the journal lock, so we want to
1337          * make sure that obtaining the committed_data is done
1338          * atomically wrt. completion of any outstanding commits.
1339          */
1340         err = do_get_write_access(handle, jh, 1);
1341         if (err)
1342                 goto out;
1343
1344 repeat:
1345         if (!jh->b_committed_data)
1346                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1347                                             GFP_NOFS|__GFP_NOFAIL);
1348
1349         spin_lock(&jh->b_state_lock);
1350         if (!jh->b_committed_data) {
1351                 /* Copy out the current buffer contents into the
1352                  * preserved, committed copy. */
1353                 JBUFFER_TRACE(jh, "generate b_committed data");
1354                 if (!committed_data) {
1355                         spin_unlock(&jh->b_state_lock);
1356                         goto repeat;
1357                 }
1358
1359                 jh->b_committed_data = committed_data;
1360                 committed_data = NULL;
1361                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1362         }
1363         spin_unlock(&jh->b_state_lock);
1364 out:
1365         jbd2_journal_put_journal_head(jh);
1366         if (unlikely(committed_data))
1367                 jbd2_free(committed_data, bh->b_size);
1368         return err;
1369 }
1370
1371 /**
1372  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1373  * @bh: buffer to trigger on
1374  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1375  *
1376  * Set any triggers on this journal_head.  This is always safe, because
1377  * triggers for a committing buffer will be saved off, and triggers for
1378  * a running transaction will match the buffer in that transaction.
1379  *
1380  * Call with NULL to clear the triggers.
1381  */
1382 void jbd2_journal_set_triggers(struct buffer_head *bh,
1383                                struct jbd2_buffer_trigger_type *type)
1384 {
1385         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1386
1387         if (WARN_ON(!jh))
1388                 return;
1389         jh->b_triggers = type;
1390         jbd2_journal_put_journal_head(jh);
1391 }
1392
1393 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1394                                 struct jbd2_buffer_trigger_type *triggers)
1395 {
1396         struct buffer_head *bh = jh2bh(jh);
1397
1398         if (!triggers || !triggers->t_frozen)
1399                 return;
1400
1401         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1402 }
1403
1404 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1405                                struct jbd2_buffer_trigger_type *triggers)
1406 {
1407         if (!triggers || !triggers->t_abort)
1408                 return;
1409
1410         triggers->t_abort(triggers, jh2bh(jh));
1411 }
1412
1413 /**
1414  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1415  * @handle: transaction to add buffer to.
1416  * @bh: buffer to mark
1417  *
1418  * mark dirty metadata which needs to be journaled as part of the current
1419  * transaction.
1420  *
1421  * The buffer must have previously had jbd2_journal_get_write_access()
1422  * called so that it has a valid journal_head attached to the buffer
1423  * head.
1424  *
1425  * The buffer is placed on the transaction's metadata list and is marked
1426  * as belonging to the transaction.
1427  *
1428  * Returns error number or 0 on success.
1429  *
1430  * Special care needs to be taken if the buffer already belongs to the
1431  * current committing transaction (in which case we should have frozen
1432  * data present for that commit).  In that case, we don't relink the
1433  * buffer: that only gets done when the old transaction finally
1434  * completes its commit.
1435  */
1436 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1437 {
1438         transaction_t *transaction = handle->h_transaction;
1439         journal_t *journal;
1440         struct journal_head *jh;
1441         int ret = 0;
1442
1443         if (is_handle_aborted(handle))
1444                 return -EROFS;
1445         if (!buffer_jbd(bh))
1446                 return -EUCLEAN;
1447
1448         /*
1449          * We don't grab jh reference here since the buffer must be part
1450          * of the running transaction.
1451          */
1452         jh = bh2jh(bh);
1453         jbd_debug(5, "journal_head %p\n", jh);
1454         JBUFFER_TRACE(jh, "entry");
1455
1456         /*
1457          * This and the following assertions are unreliable since we may see jh
1458          * in inconsistent state unless we grab bh_state lock. But this is
1459          * crucial to catch bugs so let's do a reliable check until the
1460          * lockless handling is fully proven.
1461          */
1462         if (jh->b_transaction != transaction &&
1463             jh->b_next_transaction != transaction) {
1464                 spin_lock(&jh->b_state_lock);
1465                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1466                                 jh->b_next_transaction == transaction);
1467                 spin_unlock(&jh->b_state_lock);
1468         }
1469         if (jh->b_modified == 1) {
1470                 /* If it's in our transaction it must be in BJ_Metadata list. */
1471                 if (jh->b_transaction == transaction &&
1472                     jh->b_jlist != BJ_Metadata) {
1473                         spin_lock(&jh->b_state_lock);
1474                         if (jh->b_transaction == transaction &&
1475                             jh->b_jlist != BJ_Metadata)
1476                                 pr_err("JBD2: assertion failure: h_type=%u "
1477                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1478                                        handle->h_type, handle->h_line_no,
1479                                        (unsigned long long) bh->b_blocknr,
1480                                        jh->b_jlist);
1481                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1482                                         jh->b_jlist == BJ_Metadata);
1483                         spin_unlock(&jh->b_state_lock);
1484                 }
1485                 goto out;
1486         }
1487
1488         journal = transaction->t_journal;
1489         spin_lock(&jh->b_state_lock);
1490
1491         if (jh->b_modified == 0) {
1492                 /*
1493                  * This buffer's got modified and becoming part
1494                  * of the transaction. This needs to be done
1495                  * once a transaction -bzzz
1496                  */
1497                 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1498                         ret = -ENOSPC;
1499                         goto out_unlock_bh;
1500                 }
1501                 jh->b_modified = 1;
1502                 handle->h_total_credits--;
1503         }
1504
1505         /*
1506          * fastpath, to avoid expensive locking.  If this buffer is already
1507          * on the running transaction's metadata list there is nothing to do.
1508          * Nobody can take it off again because there is a handle open.
1509          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1510          * result in this test being false, so we go in and take the locks.
1511          */
1512         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1513                 JBUFFER_TRACE(jh, "fastpath");
1514                 if (unlikely(jh->b_transaction !=
1515                              journal->j_running_transaction)) {
1516                         printk(KERN_ERR "JBD2: %s: "
1517                                "jh->b_transaction (%llu, %p, %u) != "
1518                                "journal->j_running_transaction (%p, %u)\n",
1519                                journal->j_devname,
1520                                (unsigned long long) bh->b_blocknr,
1521                                jh->b_transaction,
1522                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1523                                journal->j_running_transaction,
1524                                journal->j_running_transaction ?
1525                                journal->j_running_transaction->t_tid : 0);
1526                         ret = -EINVAL;
1527                 }
1528                 goto out_unlock_bh;
1529         }
1530
1531         set_buffer_jbddirty(bh);
1532
1533         /*
1534          * Metadata already on the current transaction list doesn't
1535          * need to be filed.  Metadata on another transaction's list must
1536          * be committing, and will be refiled once the commit completes:
1537          * leave it alone for now.
1538          */
1539         if (jh->b_transaction != transaction) {
1540                 JBUFFER_TRACE(jh, "already on other transaction");
1541                 if (unlikely(((jh->b_transaction !=
1542                                journal->j_committing_transaction)) ||
1543                              (jh->b_next_transaction != transaction))) {
1544                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1545                                "bad jh for block %llu: "
1546                                "transaction (%p, %u), "
1547                                "jh->b_transaction (%p, %u), "
1548                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1549                                journal->j_devname,
1550                                (unsigned long long) bh->b_blocknr,
1551                                transaction, transaction->t_tid,
1552                                jh->b_transaction,
1553                                jh->b_transaction ?
1554                                jh->b_transaction->t_tid : 0,
1555                                jh->b_next_transaction,
1556                                jh->b_next_transaction ?
1557                                jh->b_next_transaction->t_tid : 0,
1558                                jh->b_jlist);
1559                         WARN_ON(1);
1560                         ret = -EINVAL;
1561                 }
1562                 /* And this case is illegal: we can't reuse another
1563                  * transaction's data buffer, ever. */
1564                 goto out_unlock_bh;
1565         }
1566
1567         /* That test should have eliminated the following case: */
1568         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1569
1570         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1571         spin_lock(&journal->j_list_lock);
1572         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1573         spin_unlock(&journal->j_list_lock);
1574 out_unlock_bh:
1575         spin_unlock(&jh->b_state_lock);
1576 out:
1577         JBUFFER_TRACE(jh, "exit");
1578         return ret;
1579 }
1580
1581 /**
1582  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1583  * @handle: transaction handle
1584  * @bh:     bh to 'forget'
1585  *
1586  * We can only do the bforget if there are no commits pending against the
1587  * buffer.  If the buffer is dirty in the current running transaction we
1588  * can safely unlink it.
1589  *
1590  * bh may not be a journalled buffer at all - it may be a non-JBD
1591  * buffer which came off the hashtable.  Check for this.
1592  *
1593  * Decrements bh->b_count by one.
1594  *
1595  * Allow this call even if the handle has aborted --- it may be part of
1596  * the caller's cleanup after an abort.
1597  */
1598 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1599 {
1600         transaction_t *transaction = handle->h_transaction;
1601         journal_t *journal;
1602         struct journal_head *jh;
1603         int drop_reserve = 0;
1604         int err = 0;
1605         int was_modified = 0;
1606
1607         if (is_handle_aborted(handle))
1608                 return -EROFS;
1609         journal = transaction->t_journal;
1610
1611         BUFFER_TRACE(bh, "entry");
1612
1613         jh = jbd2_journal_grab_journal_head(bh);
1614         if (!jh) {
1615                 __bforget(bh);
1616                 return 0;
1617         }
1618
1619         spin_lock(&jh->b_state_lock);
1620
1621         /* Critical error: attempting to delete a bitmap buffer, maybe?
1622          * Don't do any jbd operations, and return an error. */
1623         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1624                          "inconsistent data on disk")) {
1625                 err = -EIO;
1626                 goto drop;
1627         }
1628
1629         /* keep track of whether or not this transaction modified us */
1630         was_modified = jh->b_modified;
1631
1632         /*
1633          * The buffer's going from the transaction, we must drop
1634          * all references -bzzz
1635          */
1636         jh->b_modified = 0;
1637
1638         if (jh->b_transaction == transaction) {
1639                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1640
1641                 /* If we are forgetting a buffer which is already part
1642                  * of this transaction, then we can just drop it from
1643                  * the transaction immediately. */
1644                 clear_buffer_dirty(bh);
1645                 clear_buffer_jbddirty(bh);
1646
1647                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1648
1649                 /*
1650                  * we only want to drop a reference if this transaction
1651                  * modified the buffer
1652                  */
1653                 if (was_modified)
1654                         drop_reserve = 1;
1655
1656                 /*
1657                  * We are no longer going to journal this buffer.
1658                  * However, the commit of this transaction is still
1659                  * important to the buffer: the delete that we are now
1660                  * processing might obsolete an old log entry, so by
1661                  * committing, we can satisfy the buffer's checkpoint.
1662                  *
1663                  * So, if we have a checkpoint on the buffer, we should
1664                  * now refile the buffer on our BJ_Forget list so that
1665                  * we know to remove the checkpoint after we commit.
1666                  */
1667
1668                 spin_lock(&journal->j_list_lock);
1669                 if (jh->b_cp_transaction) {
1670                         __jbd2_journal_temp_unlink_buffer(jh);
1671                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1672                 } else {
1673                         __jbd2_journal_unfile_buffer(jh);
1674                         jbd2_journal_put_journal_head(jh);
1675                 }
1676                 spin_unlock(&journal->j_list_lock);
1677         } else if (jh->b_transaction) {
1678                 J_ASSERT_JH(jh, (jh->b_transaction ==
1679                                  journal->j_committing_transaction));
1680                 /* However, if the buffer is still owned by a prior
1681                  * (committing) transaction, we can't drop it yet... */
1682                 JBUFFER_TRACE(jh, "belongs to older transaction");
1683                 /* ... but we CAN drop it from the new transaction through
1684                  * marking the buffer as freed and set j_next_transaction to
1685                  * the new transaction, so that not only the commit code
1686                  * knows it should clear dirty bits when it is done with the
1687                  * buffer, but also the buffer can be checkpointed only
1688                  * after the new transaction commits. */
1689
1690                 set_buffer_freed(bh);
1691
1692                 if (!jh->b_next_transaction) {
1693                         spin_lock(&journal->j_list_lock);
1694                         jh->b_next_transaction = transaction;
1695                         spin_unlock(&journal->j_list_lock);
1696                 } else {
1697                         J_ASSERT(jh->b_next_transaction == transaction);
1698
1699                         /*
1700                          * only drop a reference if this transaction modified
1701                          * the buffer
1702                          */
1703                         if (was_modified)
1704                                 drop_reserve = 1;
1705                 }
1706         } else {
1707                 /*
1708                  * Finally, if the buffer is not belongs to any
1709                  * transaction, we can just drop it now if it has no
1710                  * checkpoint.
1711                  */
1712                 spin_lock(&journal->j_list_lock);
1713                 if (!jh->b_cp_transaction) {
1714                         JBUFFER_TRACE(jh, "belongs to none transaction");
1715                         spin_unlock(&journal->j_list_lock);
1716                         goto drop;
1717                 }
1718
1719                 /*
1720                  * Otherwise, if the buffer has been written to disk,
1721                  * it is safe to remove the checkpoint and drop it.
1722                  */
1723                 if (!buffer_dirty(bh)) {
1724                         __jbd2_journal_remove_checkpoint(jh);
1725                         spin_unlock(&journal->j_list_lock);
1726                         goto drop;
1727                 }
1728
1729                 /*
1730                  * The buffer is still not written to disk, we should
1731                  * attach this buffer to current transaction so that the
1732                  * buffer can be checkpointed only after the current
1733                  * transaction commits.
1734                  */
1735                 clear_buffer_dirty(bh);
1736                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1737                 spin_unlock(&journal->j_list_lock);
1738         }
1739 drop:
1740         __brelse(bh);
1741         spin_unlock(&jh->b_state_lock);
1742         jbd2_journal_put_journal_head(jh);
1743         if (drop_reserve) {
1744                 /* no need to reserve log space for this block -bzzz */
1745                 handle->h_total_credits++;
1746         }
1747         return err;
1748 }
1749
1750 /**
1751  * int jbd2_journal_stop() - complete a transaction
1752  * @handle: transaction to complete.
1753  *
1754  * All done for a particular handle.
1755  *
1756  * There is not much action needed here.  We just return any remaining
1757  * buffer credits to the transaction and remove the handle.  The only
1758  * complication is that we need to start a commit operation if the
1759  * filesystem is marked for synchronous update.
1760  *
1761  * jbd2_journal_stop itself will not usually return an error, but it may
1762  * do so in unusual circumstances.  In particular, expect it to
1763  * return -EIO if a jbd2_journal_abort has been executed since the
1764  * transaction began.
1765  */
1766 int jbd2_journal_stop(handle_t *handle)
1767 {
1768         transaction_t *transaction = handle->h_transaction;
1769         journal_t *journal;
1770         int err = 0, wait_for_commit = 0;
1771         tid_t tid;
1772         pid_t pid;
1773
1774         if (--handle->h_ref > 0) {
1775                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1776                                                  handle->h_ref);
1777                 if (is_handle_aborted(handle))
1778                         return -EIO;
1779                 return 0;
1780         }
1781         if (!transaction) {
1782                 /*
1783                  * Handle is already detached from the transaction so there is
1784                  * nothing to do other than free the handle.
1785                  */
1786                 memalloc_nofs_restore(handle->saved_alloc_context);
1787                 goto free_and_exit;
1788         }
1789         journal = transaction->t_journal;
1790         tid = transaction->t_tid;
1791
1792         if (is_handle_aborted(handle))
1793                 err = -EIO;
1794
1795         jbd_debug(4, "Handle %p going down\n", handle);
1796         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1797                                 tid, handle->h_type, handle->h_line_no,
1798                                 jiffies - handle->h_start_jiffies,
1799                                 handle->h_sync, handle->h_requested_credits,
1800                                 (handle->h_requested_credits -
1801                                  handle->h_total_credits));
1802
1803         /*
1804          * Implement synchronous transaction batching.  If the handle
1805          * was synchronous, don't force a commit immediately.  Let's
1806          * yield and let another thread piggyback onto this
1807          * transaction.  Keep doing that while new threads continue to
1808          * arrive.  It doesn't cost much - we're about to run a commit
1809          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1810          * operations by 30x or more...
1811          *
1812          * We try and optimize the sleep time against what the
1813          * underlying disk can do, instead of having a static sleep
1814          * time.  This is useful for the case where our storage is so
1815          * fast that it is more optimal to go ahead and force a flush
1816          * and wait for the transaction to be committed than it is to
1817          * wait for an arbitrary amount of time for new writers to
1818          * join the transaction.  We achieve this by measuring how
1819          * long it takes to commit a transaction, and compare it with
1820          * how long this transaction has been running, and if run time
1821          * < commit time then we sleep for the delta and commit.  This
1822          * greatly helps super fast disks that would see slowdowns as
1823          * more threads started doing fsyncs.
1824          *
1825          * But don't do this if this process was the most recent one
1826          * to perform a synchronous write.  We do this to detect the
1827          * case where a single process is doing a stream of sync
1828          * writes.  No point in waiting for joiners in that case.
1829          *
1830          * Setting max_batch_time to 0 disables this completely.
1831          */
1832         pid = current->pid;
1833         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1834             journal->j_max_batch_time) {
1835                 u64 commit_time, trans_time;
1836
1837                 journal->j_last_sync_writer = pid;
1838
1839                 read_lock(&journal->j_state_lock);
1840                 commit_time = journal->j_average_commit_time;
1841                 read_unlock(&journal->j_state_lock);
1842
1843                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1844                                                    transaction->t_start_time));
1845
1846                 commit_time = max_t(u64, commit_time,
1847                                     1000*journal->j_min_batch_time);
1848                 commit_time = min_t(u64, commit_time,
1849                                     1000*journal->j_max_batch_time);
1850
1851                 if (trans_time < commit_time) {
1852                         ktime_t expires = ktime_add_ns(ktime_get(),
1853                                                        commit_time);
1854                         set_current_state(TASK_UNINTERRUPTIBLE);
1855                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1856                 }
1857         }
1858
1859         if (handle->h_sync)
1860                 transaction->t_synchronous_commit = 1;
1861
1862         /*
1863          * If the handle is marked SYNC, we need to set another commit
1864          * going!  We also want to force a commit if the transaction is too
1865          * old now.
1866          */
1867         if (handle->h_sync ||
1868             time_after_eq(jiffies, transaction->t_expires)) {
1869                 /* Do this even for aborted journals: an abort still
1870                  * completes the commit thread, it just doesn't write
1871                  * anything to disk. */
1872
1873                 jbd_debug(2, "transaction too old, requesting commit for "
1874                                         "handle %p\n", handle);
1875                 /* This is non-blocking */
1876                 jbd2_log_start_commit(journal, tid);
1877
1878                 /*
1879                  * Special case: JBD2_SYNC synchronous updates require us
1880                  * to wait for the commit to complete.
1881                  */
1882                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1883                         wait_for_commit = 1;
1884         }
1885
1886         /*
1887          * Once stop_this_handle() drops t_updates, the transaction could start
1888          * committing on us and eventually disappear.  So we must not
1889          * dereference transaction pointer again after calling
1890          * stop_this_handle().
1891          */
1892         stop_this_handle(handle);
1893
1894         if (wait_for_commit)
1895                 err = jbd2_log_wait_commit(journal, tid);
1896
1897 free_and_exit:
1898         if (handle->h_rsv_handle)
1899                 jbd2_free_handle(handle->h_rsv_handle);
1900         jbd2_free_handle(handle);
1901         return err;
1902 }
1903
1904 /*
1905  *
1906  * List management code snippets: various functions for manipulating the
1907  * transaction buffer lists.
1908  *
1909  */
1910
1911 /*
1912  * Append a buffer to a transaction list, given the transaction's list head
1913  * pointer.
1914  *
1915  * j_list_lock is held.
1916  *
1917  * jh->b_state_lock is held.
1918  */
1919
1920 static inline void
1921 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1922 {
1923         if (!*list) {
1924                 jh->b_tnext = jh->b_tprev = jh;
1925                 *list = jh;
1926         } else {
1927                 /* Insert at the tail of the list to preserve order */
1928                 struct journal_head *first = *list, *last = first->b_tprev;
1929                 jh->b_tprev = last;
1930                 jh->b_tnext = first;
1931                 last->b_tnext = first->b_tprev = jh;
1932         }
1933 }
1934
1935 /*
1936  * Remove a buffer from a transaction list, given the transaction's list
1937  * head pointer.
1938  *
1939  * Called with j_list_lock held, and the journal may not be locked.
1940  *
1941  * jh->b_state_lock is held.
1942  */
1943
1944 static inline void
1945 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1946 {
1947         if (*list == jh) {
1948                 *list = jh->b_tnext;
1949                 if (*list == jh)
1950                         *list = NULL;
1951         }
1952         jh->b_tprev->b_tnext = jh->b_tnext;
1953         jh->b_tnext->b_tprev = jh->b_tprev;
1954 }
1955
1956 /*
1957  * Remove a buffer from the appropriate transaction list.
1958  *
1959  * Note that this function can *change* the value of
1960  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1961  * t_reserved_list.  If the caller is holding onto a copy of one of these
1962  * pointers, it could go bad.  Generally the caller needs to re-read the
1963  * pointer from the transaction_t.
1964  *
1965  * Called under j_list_lock.
1966  */
1967 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1968 {
1969         struct journal_head **list = NULL;
1970         transaction_t *transaction;
1971         struct buffer_head *bh = jh2bh(jh);
1972
1973         lockdep_assert_held(&jh->b_state_lock);
1974         transaction = jh->b_transaction;
1975         if (transaction)
1976                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1977
1978         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1979         if (jh->b_jlist != BJ_None)
1980                 J_ASSERT_JH(jh, transaction != NULL);
1981
1982         switch (jh->b_jlist) {
1983         case BJ_None:
1984                 return;
1985         case BJ_Metadata:
1986                 transaction->t_nr_buffers--;
1987                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1988                 list = &transaction->t_buffers;
1989                 break;
1990         case BJ_Forget:
1991                 list = &transaction->t_forget;
1992                 break;
1993         case BJ_Shadow:
1994                 list = &transaction->t_shadow_list;
1995                 break;
1996         case BJ_Reserved:
1997                 list = &transaction->t_reserved_list;
1998                 break;
1999         }
2000
2001         __blist_del_buffer(list, jh);
2002         jh->b_jlist = BJ_None;
2003         if (transaction && is_journal_aborted(transaction->t_journal))
2004                 clear_buffer_jbddirty(bh);
2005         else if (test_clear_buffer_jbddirty(bh))
2006                 mark_buffer_dirty(bh);  /* Expose it to the VM */
2007 }
2008
2009 /*
2010  * Remove buffer from all transactions. The caller is responsible for dropping
2011  * the jh reference that belonged to the transaction.
2012  *
2013  * Called with bh_state lock and j_list_lock
2014  */
2015 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2016 {
2017         __jbd2_journal_temp_unlink_buffer(jh);
2018         jh->b_transaction = NULL;
2019 }
2020
2021 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2022 {
2023         struct buffer_head *bh = jh2bh(jh);
2024
2025         /* Get reference so that buffer cannot be freed before we unlock it */
2026         get_bh(bh);
2027         spin_lock(&jh->b_state_lock);
2028         spin_lock(&journal->j_list_lock);
2029         __jbd2_journal_unfile_buffer(jh);
2030         spin_unlock(&journal->j_list_lock);
2031         spin_unlock(&jh->b_state_lock);
2032         jbd2_journal_put_journal_head(jh);
2033         __brelse(bh);
2034 }
2035
2036 /*
2037  * Called from jbd2_journal_try_to_free_buffers().
2038  *
2039  * Called under jh->b_state_lock
2040  */
2041 static void
2042 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2043 {
2044         struct journal_head *jh;
2045
2046         jh = bh2jh(bh);
2047
2048         if (buffer_locked(bh) || buffer_dirty(bh))
2049                 goto out;
2050
2051         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2052                 goto out;
2053
2054         spin_lock(&journal->j_list_lock);
2055         if (jh->b_cp_transaction != NULL) {
2056                 /* written-back checkpointed metadata buffer */
2057                 JBUFFER_TRACE(jh, "remove from checkpoint list");
2058                 __jbd2_journal_remove_checkpoint(jh);
2059         }
2060         spin_unlock(&journal->j_list_lock);
2061 out:
2062         return;
2063 }
2064
2065 /**
2066  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
2067  * @journal: journal for operation
2068  * @page: to try and free
2069  * @gfp_mask: we use the mask to detect how hard should we try to release
2070  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
2071  * code to release the buffers.
2072  *
2073  *
2074  * For all the buffers on this page,
2075  * if they are fully written out ordered data, move them onto BUF_CLEAN
2076  * so try_to_free_buffers() can reap them.
2077  *
2078  * This function returns non-zero if we wish try_to_free_buffers()
2079  * to be called. We do this if the page is releasable by try_to_free_buffers().
2080  * We also do it if the page has locked or dirty buffers and the caller wants
2081  * us to perform sync or async writeout.
2082  *
2083  * This complicates JBD locking somewhat.  We aren't protected by the
2084  * BKL here.  We wish to remove the buffer from its committing or
2085  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2086  *
2087  * This may *change* the value of transaction_t->t_datalist, so anyone
2088  * who looks at t_datalist needs to lock against this function.
2089  *
2090  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2091  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2092  * will come out of the lock with the buffer dirty, which makes it
2093  * ineligible for release here.
2094  *
2095  * Who else is affected by this?  hmm...  Really the only contender
2096  * is do_get_write_access() - it could be looking at the buffer while
2097  * journal_try_to_free_buffer() is changing its state.  But that
2098  * cannot happen because we never reallocate freed data as metadata
2099  * while the data is part of a transaction.  Yes?
2100  *
2101  * Return 0 on failure, 1 on success
2102  */
2103 int jbd2_journal_try_to_free_buffers(journal_t *journal,
2104                                 struct page *page, gfp_t gfp_mask)
2105 {
2106         struct buffer_head *head;
2107         struct buffer_head *bh;
2108         int ret = 0;
2109
2110         J_ASSERT(PageLocked(page));
2111
2112         head = page_buffers(page);
2113         bh = head;
2114         do {
2115                 struct journal_head *jh;
2116
2117                 /*
2118                  * We take our own ref against the journal_head here to avoid
2119                  * having to add tons of locking around each instance of
2120                  * jbd2_journal_put_journal_head().
2121                  */
2122                 jh = jbd2_journal_grab_journal_head(bh);
2123                 if (!jh)
2124                         continue;
2125
2126                 spin_lock(&jh->b_state_lock);
2127                 __journal_try_to_free_buffer(journal, bh);
2128                 spin_unlock(&jh->b_state_lock);
2129                 jbd2_journal_put_journal_head(jh);
2130                 if (buffer_jbd(bh))
2131                         goto busy;
2132         } while ((bh = bh->b_this_page) != head);
2133
2134         ret = try_to_free_buffers(page);
2135
2136 busy:
2137         return ret;
2138 }
2139
2140 /*
2141  * This buffer is no longer needed.  If it is on an older transaction's
2142  * checkpoint list we need to record it on this transaction's forget list
2143  * to pin this buffer (and hence its checkpointing transaction) down until
2144  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2145  * release it.
2146  * Returns non-zero if JBD no longer has an interest in the buffer.
2147  *
2148  * Called under j_list_lock.
2149  *
2150  * Called under jh->b_state_lock.
2151  */
2152 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2153 {
2154         int may_free = 1;
2155         struct buffer_head *bh = jh2bh(jh);
2156
2157         if (jh->b_cp_transaction) {
2158                 JBUFFER_TRACE(jh, "on running+cp transaction");
2159                 __jbd2_journal_temp_unlink_buffer(jh);
2160                 /*
2161                  * We don't want to write the buffer anymore, clear the
2162                  * bit so that we don't confuse checks in
2163                  * __journal_file_buffer
2164                  */
2165                 clear_buffer_dirty(bh);
2166                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2167                 may_free = 0;
2168         } else {
2169                 JBUFFER_TRACE(jh, "on running transaction");
2170                 __jbd2_journal_unfile_buffer(jh);
2171                 jbd2_journal_put_journal_head(jh);
2172         }
2173         return may_free;
2174 }
2175
2176 /*
2177  * jbd2_journal_invalidatepage
2178  *
2179  * This code is tricky.  It has a number of cases to deal with.
2180  *
2181  * There are two invariants which this code relies on:
2182  *
2183  * i_size must be updated on disk before we start calling invalidatepage on the
2184  * data.
2185  *
2186  *  This is done in ext3 by defining an ext3_setattr method which
2187  *  updates i_size before truncate gets going.  By maintaining this
2188  *  invariant, we can be sure that it is safe to throw away any buffers
2189  *  attached to the current transaction: once the transaction commits,
2190  *  we know that the data will not be needed.
2191  *
2192  *  Note however that we can *not* throw away data belonging to the
2193  *  previous, committing transaction!
2194  *
2195  * Any disk blocks which *are* part of the previous, committing
2196  * transaction (and which therefore cannot be discarded immediately) are
2197  * not going to be reused in the new running transaction
2198  *
2199  *  The bitmap committed_data images guarantee this: any block which is
2200  *  allocated in one transaction and removed in the next will be marked
2201  *  as in-use in the committed_data bitmap, so cannot be reused until
2202  *  the next transaction to delete the block commits.  This means that
2203  *  leaving committing buffers dirty is quite safe: the disk blocks
2204  *  cannot be reallocated to a different file and so buffer aliasing is
2205  *  not possible.
2206  *
2207  *
2208  * The above applies mainly to ordered data mode.  In writeback mode we
2209  * don't make guarantees about the order in which data hits disk --- in
2210  * particular we don't guarantee that new dirty data is flushed before
2211  * transaction commit --- so it is always safe just to discard data
2212  * immediately in that mode.  --sct
2213  */
2214
2215 /*
2216  * The journal_unmap_buffer helper function returns zero if the buffer
2217  * concerned remains pinned as an anonymous buffer belonging to an older
2218  * transaction.
2219  *
2220  * We're outside-transaction here.  Either or both of j_running_transaction
2221  * and j_committing_transaction may be NULL.
2222  */
2223 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2224                                 int partial_page)
2225 {
2226         transaction_t *transaction;
2227         struct journal_head *jh;
2228         int may_free = 1;
2229
2230         BUFFER_TRACE(bh, "entry");
2231
2232         /*
2233          * It is safe to proceed here without the j_list_lock because the
2234          * buffers cannot be stolen by try_to_free_buffers as long as we are
2235          * holding the page lock. --sct
2236          */
2237
2238         jh = jbd2_journal_grab_journal_head(bh);
2239         if (!jh)
2240                 goto zap_buffer_unlocked;
2241
2242         /* OK, we have data buffer in journaled mode */
2243         write_lock(&journal->j_state_lock);
2244         spin_lock(&jh->b_state_lock);
2245         spin_lock(&journal->j_list_lock);
2246
2247         /*
2248          * We cannot remove the buffer from checkpoint lists until the
2249          * transaction adding inode to orphan list (let's call it T)
2250          * is committed.  Otherwise if the transaction changing the
2251          * buffer would be cleaned from the journal before T is
2252          * committed, a crash will cause that the correct contents of
2253          * the buffer will be lost.  On the other hand we have to
2254          * clear the buffer dirty bit at latest at the moment when the
2255          * transaction marking the buffer as freed in the filesystem
2256          * structures is committed because from that moment on the
2257          * block can be reallocated and used by a different page.
2258          * Since the block hasn't been freed yet but the inode has
2259          * already been added to orphan list, it is safe for us to add
2260          * the buffer to BJ_Forget list of the newest transaction.
2261          *
2262          * Also we have to clear buffer_mapped flag of a truncated buffer
2263          * because the buffer_head may be attached to the page straddling
2264          * i_size (can happen only when blocksize < pagesize) and thus the
2265          * buffer_head can be reused when the file is extended again. So we end
2266          * up keeping around invalidated buffers attached to transactions'
2267          * BJ_Forget list just to stop checkpointing code from cleaning up
2268          * the transaction this buffer was modified in.
2269          */
2270         transaction = jh->b_transaction;
2271         if (transaction == NULL) {
2272                 /* First case: not on any transaction.  If it
2273                  * has no checkpoint link, then we can zap it:
2274                  * it's a writeback-mode buffer so we don't care
2275                  * if it hits disk safely. */
2276                 if (!jh->b_cp_transaction) {
2277                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2278                         goto zap_buffer;
2279                 }
2280
2281                 if (!buffer_dirty(bh)) {
2282                         /* bdflush has written it.  We can drop it now */
2283                         __jbd2_journal_remove_checkpoint(jh);
2284                         goto zap_buffer;
2285                 }
2286
2287                 /* OK, it must be in the journal but still not
2288                  * written fully to disk: it's metadata or
2289                  * journaled data... */
2290
2291                 if (journal->j_running_transaction) {
2292                         /* ... and once the current transaction has
2293                          * committed, the buffer won't be needed any
2294                          * longer. */
2295                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2296                         may_free = __dispose_buffer(jh,
2297                                         journal->j_running_transaction);
2298                         goto zap_buffer;
2299                 } else {
2300                         /* There is no currently-running transaction. So the
2301                          * orphan record which we wrote for this file must have
2302                          * passed into commit.  We must attach this buffer to
2303                          * the committing transaction, if it exists. */
2304                         if (journal->j_committing_transaction) {
2305                                 JBUFFER_TRACE(jh, "give to committing trans");
2306                                 may_free = __dispose_buffer(jh,
2307                                         journal->j_committing_transaction);
2308                                 goto zap_buffer;
2309                         } else {
2310                                 /* The orphan record's transaction has
2311                                  * committed.  We can cleanse this buffer */
2312                                 clear_buffer_jbddirty(bh);
2313                                 __jbd2_journal_remove_checkpoint(jh);
2314                                 goto zap_buffer;
2315                         }
2316                 }
2317         } else if (transaction == journal->j_committing_transaction) {
2318                 JBUFFER_TRACE(jh, "on committing transaction");
2319                 /*
2320                  * The buffer is committing, we simply cannot touch
2321                  * it. If the page is straddling i_size we have to wait
2322                  * for commit and try again.
2323                  */
2324                 if (partial_page) {
2325                         spin_unlock(&journal->j_list_lock);
2326                         spin_unlock(&jh->b_state_lock);
2327                         write_unlock(&journal->j_state_lock);
2328                         jbd2_journal_put_journal_head(jh);
2329                         return -EBUSY;
2330                 }
2331                 /*
2332                  * OK, buffer won't be reachable after truncate. We just set
2333                  * j_next_transaction to the running transaction (if there is
2334                  * one) and mark buffer as freed so that commit code knows it
2335                  * should clear dirty bits when it is done with the buffer.
2336                  */
2337                 set_buffer_freed(bh);
2338                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2339                         jh->b_next_transaction = journal->j_running_transaction;
2340                 spin_unlock(&journal->j_list_lock);
2341                 spin_unlock(&jh->b_state_lock);
2342                 write_unlock(&journal->j_state_lock);
2343                 jbd2_journal_put_journal_head(jh);
2344                 return 0;
2345         } else {
2346                 /* Good, the buffer belongs to the running transaction.
2347                  * We are writing our own transaction's data, not any
2348                  * previous one's, so it is safe to throw it away
2349                  * (remember that we expect the filesystem to have set
2350                  * i_size already for this truncate so recovery will not
2351                  * expose the disk blocks we are discarding here.) */
2352                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2353                 JBUFFER_TRACE(jh, "on running transaction");
2354                 may_free = __dispose_buffer(jh, transaction);
2355         }
2356
2357 zap_buffer:
2358         /*
2359          * This is tricky. Although the buffer is truncated, it may be reused
2360          * if blocksize < pagesize and it is attached to the page straddling
2361          * EOF. Since the buffer might have been added to BJ_Forget list of the
2362          * running transaction, journal_get_write_access() won't clear
2363          * b_modified and credit accounting gets confused. So clear b_modified
2364          * here.
2365          */
2366         jh->b_modified = 0;
2367         spin_unlock(&journal->j_list_lock);
2368         spin_unlock(&jh->b_state_lock);
2369         write_unlock(&journal->j_state_lock);
2370         jbd2_journal_put_journal_head(jh);
2371 zap_buffer_unlocked:
2372         clear_buffer_dirty(bh);
2373         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2374         clear_buffer_mapped(bh);
2375         clear_buffer_req(bh);
2376         clear_buffer_new(bh);
2377         clear_buffer_delay(bh);
2378         clear_buffer_unwritten(bh);
2379         bh->b_bdev = NULL;
2380         return may_free;
2381 }
2382
2383 /**
2384  * void jbd2_journal_invalidatepage()
2385  * @journal: journal to use for flush...
2386  * @page:    page to flush
2387  * @offset:  start of the range to invalidate
2388  * @length:  length of the range to invalidate
2389  *
2390  * Reap page buffers containing data after in the specified range in page.
2391  * Can return -EBUSY if buffers are part of the committing transaction and
2392  * the page is straddling i_size. Caller then has to wait for current commit
2393  * and try again.
2394  */
2395 int jbd2_journal_invalidatepage(journal_t *journal,
2396                                 struct page *page,
2397                                 unsigned int offset,
2398                                 unsigned int length)
2399 {
2400         struct buffer_head *head, *bh, *next;
2401         unsigned int stop = offset + length;
2402         unsigned int curr_off = 0;
2403         int partial_page = (offset || length < PAGE_SIZE);
2404         int may_free = 1;
2405         int ret = 0;
2406
2407         if (!PageLocked(page))
2408                 BUG();
2409         if (!page_has_buffers(page))
2410                 return 0;
2411
2412         BUG_ON(stop > PAGE_SIZE || stop < length);
2413
2414         /* We will potentially be playing with lists other than just the
2415          * data lists (especially for journaled data mode), so be
2416          * cautious in our locking. */
2417
2418         head = bh = page_buffers(page);
2419         do {
2420                 unsigned int next_off = curr_off + bh->b_size;
2421                 next = bh->b_this_page;
2422
2423                 if (next_off > stop)
2424                         return 0;
2425
2426                 if (offset <= curr_off) {
2427                         /* This block is wholly outside the truncation point */
2428                         lock_buffer(bh);
2429                         ret = journal_unmap_buffer(journal, bh, partial_page);
2430                         unlock_buffer(bh);
2431                         if (ret < 0)
2432                                 return ret;
2433                         may_free &= ret;
2434                 }
2435                 curr_off = next_off;
2436                 bh = next;
2437
2438         } while (bh != head);
2439
2440         if (!partial_page) {
2441                 if (may_free && try_to_free_buffers(page))
2442                         J_ASSERT(!page_has_buffers(page));
2443         }
2444         return 0;
2445 }
2446
2447 /*
2448  * File a buffer on the given transaction list.
2449  */
2450 void __jbd2_journal_file_buffer(struct journal_head *jh,
2451                         transaction_t *transaction, int jlist)
2452 {
2453         struct journal_head **list = NULL;
2454         int was_dirty = 0;
2455         struct buffer_head *bh = jh2bh(jh);
2456
2457         lockdep_assert_held(&jh->b_state_lock);
2458         assert_spin_locked(&transaction->t_journal->j_list_lock);
2459
2460         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2461         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2462                                 jh->b_transaction == NULL);
2463
2464         if (jh->b_transaction && jh->b_jlist == jlist)
2465                 return;
2466
2467         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2468             jlist == BJ_Shadow || jlist == BJ_Forget) {
2469                 /*
2470                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2471                  * instead of buffer_dirty. We should not see a dirty bit set
2472                  * here because we clear it in do_get_write_access but e.g.
2473                  * tune2fs can modify the sb and set the dirty bit at any time
2474                  * so we try to gracefully handle that.
2475                  */
2476                 if (buffer_dirty(bh))
2477                         warn_dirty_buffer(bh);
2478                 if (test_clear_buffer_dirty(bh) ||
2479                     test_clear_buffer_jbddirty(bh))
2480                         was_dirty = 1;
2481         }
2482
2483         if (jh->b_transaction)
2484                 __jbd2_journal_temp_unlink_buffer(jh);
2485         else
2486                 jbd2_journal_grab_journal_head(bh);
2487         jh->b_transaction = transaction;
2488
2489         switch (jlist) {
2490         case BJ_None:
2491                 J_ASSERT_JH(jh, !jh->b_committed_data);
2492                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2493                 return;
2494         case BJ_Metadata:
2495                 transaction->t_nr_buffers++;
2496                 list = &transaction->t_buffers;
2497                 break;
2498         case BJ_Forget:
2499                 list = &transaction->t_forget;
2500                 break;
2501         case BJ_Shadow:
2502                 list = &transaction->t_shadow_list;
2503                 break;
2504         case BJ_Reserved:
2505                 list = &transaction->t_reserved_list;
2506                 break;
2507         }
2508
2509         __blist_add_buffer(list, jh);
2510         jh->b_jlist = jlist;
2511
2512         if (was_dirty)
2513                 set_buffer_jbddirty(bh);
2514 }
2515
2516 void jbd2_journal_file_buffer(struct journal_head *jh,
2517                                 transaction_t *transaction, int jlist)
2518 {
2519         spin_lock(&jh->b_state_lock);
2520         spin_lock(&transaction->t_journal->j_list_lock);
2521         __jbd2_journal_file_buffer(jh, transaction, jlist);
2522         spin_unlock(&transaction->t_journal->j_list_lock);
2523         spin_unlock(&jh->b_state_lock);
2524 }
2525
2526 /*
2527  * Remove a buffer from its current buffer list in preparation for
2528  * dropping it from its current transaction entirely.  If the buffer has
2529  * already started to be used by a subsequent transaction, refile the
2530  * buffer on that transaction's metadata list.
2531  *
2532  * Called under j_list_lock
2533  * Called under jh->b_state_lock
2534  *
2535  * When this function returns true, there's no next transaction to refile to
2536  * and the caller has to drop jh reference through
2537  * jbd2_journal_put_journal_head().
2538  */
2539 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2540 {
2541         int was_dirty, jlist;
2542         struct buffer_head *bh = jh2bh(jh);
2543
2544         lockdep_assert_held(&jh->b_state_lock);
2545         if (jh->b_transaction)
2546                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2547
2548         /* If the buffer is now unused, just drop it. */
2549         if (jh->b_next_transaction == NULL) {
2550                 __jbd2_journal_unfile_buffer(jh);
2551                 return true;
2552         }
2553
2554         /*
2555          * It has been modified by a later transaction: add it to the new
2556          * transaction's metadata list.
2557          */
2558
2559         was_dirty = test_clear_buffer_jbddirty(bh);
2560         __jbd2_journal_temp_unlink_buffer(jh);
2561         /*
2562          * We set b_transaction here because b_next_transaction will inherit
2563          * our jh reference and thus __jbd2_journal_file_buffer() must not
2564          * take a new one.
2565          */
2566         jh->b_transaction = jh->b_next_transaction;
2567         jh->b_next_transaction = NULL;
2568         if (buffer_freed(bh))
2569                 jlist = BJ_Forget;
2570         else if (jh->b_modified)
2571                 jlist = BJ_Metadata;
2572         else
2573                 jlist = BJ_Reserved;
2574         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2575         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2576
2577         if (was_dirty)
2578                 set_buffer_jbddirty(bh);
2579         return false;
2580 }
2581
2582 /*
2583  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2584  * bh reference so that we can safely unlock bh.
2585  *
2586  * The jh and bh may be freed by this call.
2587  */
2588 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2589 {
2590         bool drop;
2591
2592         spin_lock(&jh->b_state_lock);
2593         spin_lock(&journal->j_list_lock);
2594         drop = __jbd2_journal_refile_buffer(jh);
2595         spin_unlock(&jh->b_state_lock);
2596         spin_unlock(&journal->j_list_lock);
2597         if (drop)
2598                 jbd2_journal_put_journal_head(jh);
2599 }
2600
2601 /*
2602  * File inode in the inode list of the handle's transaction
2603  */
2604 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2605                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2606 {
2607         transaction_t *transaction = handle->h_transaction;
2608         journal_t *journal;
2609
2610         if (is_handle_aborted(handle))
2611                 return -EROFS;
2612         journal = transaction->t_journal;
2613
2614         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2615                         transaction->t_tid);
2616
2617         spin_lock(&journal->j_list_lock);
2618         jinode->i_flags |= flags;
2619
2620         if (jinode->i_dirty_end) {
2621                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2622                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2623         } else {
2624                 jinode->i_dirty_start = start_byte;
2625                 jinode->i_dirty_end = end_byte;
2626         }
2627
2628         /* Is inode already attached where we need it? */
2629         if (jinode->i_transaction == transaction ||
2630             jinode->i_next_transaction == transaction)
2631                 goto done;
2632
2633         /*
2634          * We only ever set this variable to 1 so the test is safe. Since
2635          * t_need_data_flush is likely to be set, we do the test to save some
2636          * cacheline bouncing
2637          */
2638         if (!transaction->t_need_data_flush)
2639                 transaction->t_need_data_flush = 1;
2640         /* On some different transaction's list - should be
2641          * the committing one */
2642         if (jinode->i_transaction) {
2643                 J_ASSERT(jinode->i_next_transaction == NULL);
2644                 J_ASSERT(jinode->i_transaction ==
2645                                         journal->j_committing_transaction);
2646                 jinode->i_next_transaction = transaction;
2647                 goto done;
2648         }
2649         /* Not on any transaction list... */
2650         J_ASSERT(!jinode->i_next_transaction);
2651         jinode->i_transaction = transaction;
2652         list_add(&jinode->i_list, &transaction->t_inode_list);
2653 done:
2654         spin_unlock(&journal->j_list_lock);
2655
2656         return 0;
2657 }
2658
2659 int jbd2_journal_inode_ranged_write(handle_t *handle,
2660                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2661 {
2662         return jbd2_journal_file_inode(handle, jinode,
2663                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2664                         start_byte + length - 1);
2665 }
2666
2667 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2668                 loff_t start_byte, loff_t length)
2669 {
2670         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2671                         start_byte, start_byte + length - 1);
2672 }
2673
2674 /*
2675  * File truncate and transaction commit interact with each other in a
2676  * non-trivial way.  If a transaction writing data block A is
2677  * committing, we cannot discard the data by truncate until we have
2678  * written them.  Otherwise if we crashed after the transaction with
2679  * write has committed but before the transaction with truncate has
2680  * committed, we could see stale data in block A.  This function is a
2681  * helper to solve this problem.  It starts writeout of the truncated
2682  * part in case it is in the committing transaction.
2683  *
2684  * Filesystem code must call this function when inode is journaled in
2685  * ordered mode before truncation happens and after the inode has been
2686  * placed on orphan list with the new inode size. The second condition
2687  * avoids the race that someone writes new data and we start
2688  * committing the transaction after this function has been called but
2689  * before a transaction for truncate is started (and furthermore it
2690  * allows us to optimize the case where the addition to orphan list
2691  * happens in the same transaction as write --- we don't have to write
2692  * any data in such case).
2693  */
2694 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2695                                         struct jbd2_inode *jinode,
2696                                         loff_t new_size)
2697 {
2698         transaction_t *inode_trans, *commit_trans;
2699         int ret = 0;
2700
2701         /* This is a quick check to avoid locking if not necessary */
2702         if (!jinode->i_transaction)
2703                 goto out;
2704         /* Locks are here just to force reading of recent values, it is
2705          * enough that the transaction was not committing before we started
2706          * a transaction adding the inode to orphan list */
2707         read_lock(&journal->j_state_lock);
2708         commit_trans = journal->j_committing_transaction;
2709         read_unlock(&journal->j_state_lock);
2710         spin_lock(&journal->j_list_lock);
2711         inode_trans = jinode->i_transaction;
2712         spin_unlock(&journal->j_list_lock);
2713         if (inode_trans == commit_trans) {
2714                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2715                         new_size, LLONG_MAX);
2716                 if (ret)
2717                         jbd2_journal_abort(journal, ret);
2718         }
2719 out:
2720         return ret;
2721 }