Merge tag 'docs-5.6-fixes' of git://git.lwn.net/linux
[linux-2.6-microblaze.git] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (!transaction_cache) {
46                 pr_emerg("JBD2: failed to create transaction cache\n");
47                 return -ENOMEM;
48         }
49         return 0;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         kmem_cache_destroy(transaction_cache);
55         transaction_cache = NULL;
56 }
57
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61                 return;
62         kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70         int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71         int tags_per_block;
72
73         /* Subtract UUID */
74         tag_space -= 16;
75         if (jbd2_journal_has_csum_v2or3(journal))
76                 tag_space -= sizeof(struct jbd2_journal_block_tail);
77         /* Commit code leaves a slack space of 16 bytes at the end of block */
78         tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79         /*
80          * Revoke descriptors are accounted separately so we need to reserve
81          * space for commit block and normal transaction descriptor blocks.
82          */
83         return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84                                 tags_per_block);
85 }
86
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *      The journal MUST be locked.  We don't perform atomic mallocs on the
97  *      new transaction and we can't block without protecting against other
98  *      processes trying to touch the journal while it is in transition.
99  *
100  */
101
102 static void jbd2_get_transaction(journal_t *journal,
103                                 transaction_t *transaction)
104 {
105         transaction->t_journal = journal;
106         transaction->t_state = T_RUNNING;
107         transaction->t_start_time = ktime_get();
108         transaction->t_tid = journal->j_transaction_sequence++;
109         transaction->t_expires = jiffies + journal->j_commit_interval;
110         spin_lock_init(&transaction->t_handle_lock);
111         atomic_set(&transaction->t_updates, 0);
112         atomic_set(&transaction->t_outstanding_credits,
113                    jbd2_descriptor_blocks_per_trans(journal) +
114                    atomic_read(&journal->j_reserved_credits));
115         atomic_set(&transaction->t_outstanding_revokes, 0);
116         atomic_set(&transaction->t_handle_count, 0);
117         INIT_LIST_HEAD(&transaction->t_inode_list);
118         INIT_LIST_HEAD(&transaction->t_private_list);
119
120         /* Set up the commit timer for the new transaction. */
121         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
122         add_timer(&journal->j_commit_timer);
123
124         J_ASSERT(journal->j_running_transaction == NULL);
125         journal->j_running_transaction = transaction;
126         transaction->t_max_wait = 0;
127         transaction->t_start = jiffies;
128         transaction->t_requested = 0;
129 }
130
131 /*
132  * Handle management.
133  *
134  * A handle_t is an object which represents a single atomic update to a
135  * filesystem, and which tracks all of the modifications which form part
136  * of that one update.
137  */
138
139 /*
140  * Update transaction's maximum wait time, if debugging is enabled.
141  *
142  * In order for t_max_wait to be reliable, it must be protected by a
143  * lock.  But doing so will mean that start_this_handle() can not be
144  * run in parallel on SMP systems, which limits our scalability.  So
145  * unless debugging is enabled, we no longer update t_max_wait, which
146  * means that maximum wait time reported by the jbd2_run_stats
147  * tracepoint will always be zero.
148  */
149 static inline void update_t_max_wait(transaction_t *transaction,
150                                      unsigned long ts)
151 {
152 #ifdef CONFIG_JBD2_DEBUG
153         if (jbd2_journal_enable_debug &&
154             time_after(transaction->t_start, ts)) {
155                 ts = jbd2_time_diff(ts, transaction->t_start);
156                 spin_lock(&transaction->t_handle_lock);
157                 if (ts > transaction->t_max_wait)
158                         transaction->t_max_wait = ts;
159                 spin_unlock(&transaction->t_handle_lock);
160         }
161 #endif
162 }
163
164 /*
165  * Wait until running transaction passes to T_FLUSH state and new transaction
166  * can thus be started. Also starts the commit if needed. The function expects
167  * running transaction to exist and releases j_state_lock.
168  */
169 static void wait_transaction_locked(journal_t *journal)
170         __releases(journal->j_state_lock)
171 {
172         DEFINE_WAIT(wait);
173         int need_to_start;
174         tid_t tid = journal->j_running_transaction->t_tid;
175
176         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177                         TASK_UNINTERRUPTIBLE);
178         need_to_start = !tid_geq(journal->j_commit_request, tid);
179         read_unlock(&journal->j_state_lock);
180         if (need_to_start)
181                 jbd2_log_start_commit(journal, tid);
182         jbd2_might_wait_for_commit(journal);
183         schedule();
184         finish_wait(&journal->j_wait_transaction_locked, &wait);
185 }
186
187 /*
188  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
189  * state and new transaction can thus be started. The function releases
190  * j_state_lock.
191  */
192 static void wait_transaction_switching(journal_t *journal)
193         __releases(journal->j_state_lock)
194 {
195         DEFINE_WAIT(wait);
196
197         if (WARN_ON(!journal->j_running_transaction ||
198                     journal->j_running_transaction->t_state != T_SWITCH))
199                 return;
200         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
201                         TASK_UNINTERRUPTIBLE);
202         read_unlock(&journal->j_state_lock);
203         /*
204          * We don't call jbd2_might_wait_for_commit() here as there's no
205          * waiting for outstanding handles happening anymore in T_SWITCH state
206          * and handling of reserved handles actually relies on that for
207          * correctness.
208          */
209         schedule();
210         finish_wait(&journal->j_wait_transaction_locked, &wait);
211 }
212
213 static void sub_reserved_credits(journal_t *journal, int blocks)
214 {
215         atomic_sub(blocks, &journal->j_reserved_credits);
216         wake_up(&journal->j_wait_reserved);
217 }
218
219 /*
220  * Wait until we can add credits for handle to the running transaction.  Called
221  * with j_state_lock held for reading. Returns 0 if handle joined the running
222  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
223  * caller must retry.
224  */
225 static int add_transaction_credits(journal_t *journal, int blocks,
226                                    int rsv_blocks)
227 {
228         transaction_t *t = journal->j_running_transaction;
229         int needed;
230         int total = blocks + rsv_blocks;
231
232         /*
233          * If the current transaction is locked down for commit, wait
234          * for the lock to be released.
235          */
236         if (t->t_state != T_RUNNING) {
237                 WARN_ON_ONCE(t->t_state >= T_FLUSH);
238                 wait_transaction_locked(journal);
239                 return 1;
240         }
241
242         /*
243          * If there is not enough space left in the log to write all
244          * potential buffers requested by this operation, we need to
245          * stall pending a log checkpoint to free some more log space.
246          */
247         needed = atomic_add_return(total, &t->t_outstanding_credits);
248         if (needed > journal->j_max_transaction_buffers) {
249                 /*
250                  * If the current transaction is already too large,
251                  * then start to commit it: we can then go back and
252                  * attach this handle to a new transaction.
253                  */
254                 atomic_sub(total, &t->t_outstanding_credits);
255
256                 /*
257                  * Is the number of reserved credits in the current transaction too
258                  * big to fit this handle? Wait until reserved credits are freed.
259                  */
260                 if (atomic_read(&journal->j_reserved_credits) + total >
261                     journal->j_max_transaction_buffers) {
262                         read_unlock(&journal->j_state_lock);
263                         jbd2_might_wait_for_commit(journal);
264                         wait_event(journal->j_wait_reserved,
265                                    atomic_read(&journal->j_reserved_credits) + total <=
266                                    journal->j_max_transaction_buffers);
267                         return 1;
268                 }
269
270                 wait_transaction_locked(journal);
271                 return 1;
272         }
273
274         /*
275          * The commit code assumes that it can get enough log space
276          * without forcing a checkpoint.  This is *critical* for
277          * correctness: a checkpoint of a buffer which is also
278          * associated with a committing transaction creates a deadlock,
279          * so commit simply cannot force through checkpoints.
280          *
281          * We must therefore ensure the necessary space in the journal
282          * *before* starting to dirty potentially checkpointed buffers
283          * in the new transaction.
284          */
285         if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
286                 atomic_sub(total, &t->t_outstanding_credits);
287                 read_unlock(&journal->j_state_lock);
288                 jbd2_might_wait_for_commit(journal);
289                 write_lock(&journal->j_state_lock);
290                 if (jbd2_log_space_left(journal) <
291                                         journal->j_max_transaction_buffers)
292                         __jbd2_log_wait_for_space(journal);
293                 write_unlock(&journal->j_state_lock);
294                 return 1;
295         }
296
297         /* No reservation? We are done... */
298         if (!rsv_blocks)
299                 return 0;
300
301         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
302         /* We allow at most half of a transaction to be reserved */
303         if (needed > journal->j_max_transaction_buffers / 2) {
304                 sub_reserved_credits(journal, rsv_blocks);
305                 atomic_sub(total, &t->t_outstanding_credits);
306                 read_unlock(&journal->j_state_lock);
307                 jbd2_might_wait_for_commit(journal);
308                 wait_event(journal->j_wait_reserved,
309                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
310                          <= journal->j_max_transaction_buffers / 2);
311                 return 1;
312         }
313         return 0;
314 }
315
316 /*
317  * start_this_handle: Given a handle, deal with any locking or stalling
318  * needed to make sure that there is enough journal space for the handle
319  * to begin.  Attach the handle to a transaction and set up the
320  * transaction's buffer credits.
321  */
322
323 static int start_this_handle(journal_t *journal, handle_t *handle,
324                              gfp_t gfp_mask)
325 {
326         transaction_t   *transaction, *new_transaction = NULL;
327         int             blocks = handle->h_total_credits;
328         int             rsv_blocks = 0;
329         unsigned long ts = jiffies;
330
331         if (handle->h_rsv_handle)
332                 rsv_blocks = handle->h_rsv_handle->h_total_credits;
333
334         /*
335          * Limit the number of reserved credits to 1/2 of maximum transaction
336          * size and limit the number of total credits to not exceed maximum
337          * transaction size per operation.
338          */
339         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
340             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
341                 printk(KERN_ERR "JBD2: %s wants too many credits "
342                        "credits:%d rsv_credits:%d max:%d\n",
343                        current->comm, blocks, rsv_blocks,
344                        journal->j_max_transaction_buffers);
345                 WARN_ON(1);
346                 return -ENOSPC;
347         }
348
349 alloc_transaction:
350         if (!journal->j_running_transaction) {
351                 /*
352                  * If __GFP_FS is not present, then we may be being called from
353                  * inside the fs writeback layer, so we MUST NOT fail.
354                  */
355                 if ((gfp_mask & __GFP_FS) == 0)
356                         gfp_mask |= __GFP_NOFAIL;
357                 new_transaction = kmem_cache_zalloc(transaction_cache,
358                                                     gfp_mask);
359                 if (!new_transaction)
360                         return -ENOMEM;
361         }
362
363         jbd_debug(3, "New handle %p going live.\n", handle);
364
365         /*
366          * We need to hold j_state_lock until t_updates has been incremented,
367          * for proper journal barrier handling
368          */
369 repeat:
370         read_lock(&journal->j_state_lock);
371         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
372         if (is_journal_aborted(journal) ||
373             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
374                 read_unlock(&journal->j_state_lock);
375                 jbd2_journal_free_transaction(new_transaction);
376                 return -EROFS;
377         }
378
379         /*
380          * Wait on the journal's transaction barrier if necessary. Specifically
381          * we allow reserved handles to proceed because otherwise commit could
382          * deadlock on page writeback not being able to complete.
383          */
384         if (!handle->h_reserved && journal->j_barrier_count) {
385                 read_unlock(&journal->j_state_lock);
386                 wait_event(journal->j_wait_transaction_locked,
387                                 journal->j_barrier_count == 0);
388                 goto repeat;
389         }
390
391         if (!journal->j_running_transaction) {
392                 read_unlock(&journal->j_state_lock);
393                 if (!new_transaction)
394                         goto alloc_transaction;
395                 write_lock(&journal->j_state_lock);
396                 if (!journal->j_running_transaction &&
397                     (handle->h_reserved || !journal->j_barrier_count)) {
398                         jbd2_get_transaction(journal, new_transaction);
399                         new_transaction = NULL;
400                 }
401                 write_unlock(&journal->j_state_lock);
402                 goto repeat;
403         }
404
405         transaction = journal->j_running_transaction;
406
407         if (!handle->h_reserved) {
408                 /* We may have dropped j_state_lock - restart in that case */
409                 if (add_transaction_credits(journal, blocks, rsv_blocks))
410                         goto repeat;
411         } else {
412                 /*
413                  * We have handle reserved so we are allowed to join T_LOCKED
414                  * transaction and we don't have to check for transaction size
415                  * and journal space. But we still have to wait while running
416                  * transaction is being switched to a committing one as it
417                  * won't wait for any handles anymore.
418                  */
419                 if (transaction->t_state == T_SWITCH) {
420                         wait_transaction_switching(journal);
421                         goto repeat;
422                 }
423                 sub_reserved_credits(journal, blocks);
424                 handle->h_reserved = 0;
425         }
426
427         /* OK, account for the buffers that this operation expects to
428          * use and add the handle to the running transaction. 
429          */
430         update_t_max_wait(transaction, ts);
431         handle->h_transaction = transaction;
432         handle->h_requested_credits = blocks;
433         handle->h_revoke_credits_requested = handle->h_revoke_credits;
434         handle->h_start_jiffies = jiffies;
435         atomic_inc(&transaction->t_updates);
436         atomic_inc(&transaction->t_handle_count);
437         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
438                   handle, blocks,
439                   atomic_read(&transaction->t_outstanding_credits),
440                   jbd2_log_space_left(journal));
441         read_unlock(&journal->j_state_lock);
442         current->journal_info = handle;
443
444         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
445         jbd2_journal_free_transaction(new_transaction);
446         /*
447          * Ensure that no allocations done while the transaction is open are
448          * going to recurse back to the fs layer.
449          */
450         handle->saved_alloc_context = memalloc_nofs_save();
451         return 0;
452 }
453
454 /* Allocate a new handle.  This should probably be in a slab... */
455 static handle_t *new_handle(int nblocks)
456 {
457         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
458         if (!handle)
459                 return NULL;
460         handle->h_total_credits = nblocks;
461         handle->h_ref = 1;
462
463         return handle;
464 }
465
466 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
467                               int revoke_records, gfp_t gfp_mask,
468                               unsigned int type, unsigned int line_no)
469 {
470         handle_t *handle = journal_current_handle();
471         int err;
472
473         if (!journal)
474                 return ERR_PTR(-EROFS);
475
476         if (handle) {
477                 J_ASSERT(handle->h_transaction->t_journal == journal);
478                 handle->h_ref++;
479                 return handle;
480         }
481
482         nblocks += DIV_ROUND_UP(revoke_records,
483                                 journal->j_revoke_records_per_block);
484         handle = new_handle(nblocks);
485         if (!handle)
486                 return ERR_PTR(-ENOMEM);
487         if (rsv_blocks) {
488                 handle_t *rsv_handle;
489
490                 rsv_handle = new_handle(rsv_blocks);
491                 if (!rsv_handle) {
492                         jbd2_free_handle(handle);
493                         return ERR_PTR(-ENOMEM);
494                 }
495                 rsv_handle->h_reserved = 1;
496                 rsv_handle->h_journal = journal;
497                 handle->h_rsv_handle = rsv_handle;
498         }
499         handle->h_revoke_credits = revoke_records;
500
501         err = start_this_handle(journal, handle, gfp_mask);
502         if (err < 0) {
503                 if (handle->h_rsv_handle)
504                         jbd2_free_handle(handle->h_rsv_handle);
505                 jbd2_free_handle(handle);
506                 return ERR_PTR(err);
507         }
508         handle->h_type = type;
509         handle->h_line_no = line_no;
510         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
511                                 handle->h_transaction->t_tid, type,
512                                 line_no, nblocks);
513
514         return handle;
515 }
516 EXPORT_SYMBOL(jbd2__journal_start);
517
518
519 /**
520  * handle_t *jbd2_journal_start() - Obtain a new handle.
521  * @journal: Journal to start transaction on.
522  * @nblocks: number of block buffer we might modify
523  *
524  * We make sure that the transaction can guarantee at least nblocks of
525  * modified buffers in the log.  We block until the log can guarantee
526  * that much space. Additionally, if rsv_blocks > 0, we also create another
527  * handle with rsv_blocks reserved blocks in the journal. This handle is
528  * stored in h_rsv_handle. It is not attached to any particular transaction
529  * and thus doesn't block transaction commit. If the caller uses this reserved
530  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
531  * on the parent handle will dispose the reserved one. Reserved handle has to
532  * be converted to a normal handle using jbd2_journal_start_reserved() before
533  * it can be used.
534  *
535  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
536  * on failure.
537  */
538 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
539 {
540         return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
541 }
542 EXPORT_SYMBOL(jbd2_journal_start);
543
544 static void __jbd2_journal_unreserve_handle(handle_t *handle)
545 {
546         journal_t *journal = handle->h_journal;
547
548         WARN_ON(!handle->h_reserved);
549         sub_reserved_credits(journal, handle->h_total_credits);
550 }
551
552 void jbd2_journal_free_reserved(handle_t *handle)
553 {
554         __jbd2_journal_unreserve_handle(handle);
555         jbd2_free_handle(handle);
556 }
557 EXPORT_SYMBOL(jbd2_journal_free_reserved);
558
559 /**
560  * int jbd2_journal_start_reserved() - start reserved handle
561  * @handle: handle to start
562  * @type: for handle statistics
563  * @line_no: for handle statistics
564  *
565  * Start handle that has been previously reserved with jbd2_journal_reserve().
566  * This attaches @handle to the running transaction (or creates one if there's
567  * not transaction running). Unlike jbd2_journal_start() this function cannot
568  * block on journal commit, checkpointing, or similar stuff. It can block on
569  * memory allocation or frozen journal though.
570  *
571  * Return 0 on success, non-zero on error - handle is freed in that case.
572  */
573 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
574                                 unsigned int line_no)
575 {
576         journal_t *journal = handle->h_journal;
577         int ret = -EIO;
578
579         if (WARN_ON(!handle->h_reserved)) {
580                 /* Someone passed in normal handle? Just stop it. */
581                 jbd2_journal_stop(handle);
582                 return ret;
583         }
584         /*
585          * Usefulness of mixing of reserved and unreserved handles is
586          * questionable. So far nobody seems to need it so just error out.
587          */
588         if (WARN_ON(current->journal_info)) {
589                 jbd2_journal_free_reserved(handle);
590                 return ret;
591         }
592
593         handle->h_journal = NULL;
594         /*
595          * GFP_NOFS is here because callers are likely from writeback or
596          * similarly constrained call sites
597          */
598         ret = start_this_handle(journal, handle, GFP_NOFS);
599         if (ret < 0) {
600                 handle->h_journal = journal;
601                 jbd2_journal_free_reserved(handle);
602                 return ret;
603         }
604         handle->h_type = type;
605         handle->h_line_no = line_no;
606         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
607                                 handle->h_transaction->t_tid, type,
608                                 line_no, handle->h_total_credits);
609         return 0;
610 }
611 EXPORT_SYMBOL(jbd2_journal_start_reserved);
612
613 /**
614  * int jbd2_journal_extend() - extend buffer credits.
615  * @handle:  handle to 'extend'
616  * @nblocks: nr blocks to try to extend by.
617  * @revoke_records: number of revoke records to try to extend by.
618  *
619  * Some transactions, such as large extends and truncates, can be done
620  * atomically all at once or in several stages.  The operation requests
621  * a credit for a number of buffer modifications in advance, but can
622  * extend its credit if it needs more.
623  *
624  * jbd2_journal_extend tries to give the running handle more buffer credits.
625  * It does not guarantee that allocation - this is a best-effort only.
626  * The calling process MUST be able to deal cleanly with a failure to
627  * extend here.
628  *
629  * Return 0 on success, non-zero on failure.
630  *
631  * return code < 0 implies an error
632  * return code > 0 implies normal transaction-full status.
633  */
634 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
635 {
636         transaction_t *transaction = handle->h_transaction;
637         journal_t *journal;
638         int result;
639         int wanted;
640
641         if (is_handle_aborted(handle))
642                 return -EROFS;
643         journal = transaction->t_journal;
644
645         result = 1;
646
647         read_lock(&journal->j_state_lock);
648
649         /* Don't extend a locked-down transaction! */
650         if (transaction->t_state != T_RUNNING) {
651                 jbd_debug(3, "denied handle %p %d blocks: "
652                           "transaction not running\n", handle, nblocks);
653                 goto error_out;
654         }
655
656         nblocks += DIV_ROUND_UP(
657                         handle->h_revoke_credits_requested + revoke_records,
658                         journal->j_revoke_records_per_block) -
659                 DIV_ROUND_UP(
660                         handle->h_revoke_credits_requested,
661                         journal->j_revoke_records_per_block);
662         spin_lock(&transaction->t_handle_lock);
663         wanted = atomic_add_return(nblocks,
664                                    &transaction->t_outstanding_credits);
665
666         if (wanted > journal->j_max_transaction_buffers) {
667                 jbd_debug(3, "denied handle %p %d blocks: "
668                           "transaction too large\n", handle, nblocks);
669                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
670                 goto unlock;
671         }
672
673         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
674                                  transaction->t_tid,
675                                  handle->h_type, handle->h_line_no,
676                                  handle->h_total_credits,
677                                  nblocks);
678
679         handle->h_total_credits += nblocks;
680         handle->h_requested_credits += nblocks;
681         handle->h_revoke_credits += revoke_records;
682         handle->h_revoke_credits_requested += revoke_records;
683         result = 0;
684
685         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
686 unlock:
687         spin_unlock(&transaction->t_handle_lock);
688 error_out:
689         read_unlock(&journal->j_state_lock);
690         return result;
691 }
692
693 static void stop_this_handle(handle_t *handle)
694 {
695         transaction_t *transaction = handle->h_transaction;
696         journal_t *journal = transaction->t_journal;
697         int revokes;
698
699         J_ASSERT(journal_current_handle() == handle);
700         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
701         current->journal_info = NULL;
702         /*
703          * Subtract necessary revoke descriptor blocks from handle credits. We
704          * take care to account only for revoke descriptor blocks the
705          * transaction will really need as large sequences of transactions with
706          * small numbers of revokes are relatively common.
707          */
708         revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
709         if (revokes) {
710                 int t_revokes, revoke_descriptors;
711                 int rr_per_blk = journal->j_revoke_records_per_block;
712
713                 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
714                                 > handle->h_total_credits);
715                 t_revokes = atomic_add_return(revokes,
716                                 &transaction->t_outstanding_revokes);
717                 revoke_descriptors =
718                         DIV_ROUND_UP(t_revokes, rr_per_blk) -
719                         DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
720                 handle->h_total_credits -= revoke_descriptors;
721         }
722         atomic_sub(handle->h_total_credits,
723                    &transaction->t_outstanding_credits);
724         if (handle->h_rsv_handle)
725                 __jbd2_journal_unreserve_handle(handle->h_rsv_handle);
726         if (atomic_dec_and_test(&transaction->t_updates))
727                 wake_up(&journal->j_wait_updates);
728
729         rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
730         /*
731          * Scope of the GFP_NOFS context is over here and so we can restore the
732          * original alloc context.
733          */
734         memalloc_nofs_restore(handle->saved_alloc_context);
735 }
736
737 /**
738  * int jbd2_journal_restart() - restart a handle .
739  * @handle:  handle to restart
740  * @nblocks: nr credits requested
741  * @revoke_records: number of revoke record credits requested
742  * @gfp_mask: memory allocation flags (for start_this_handle)
743  *
744  * Restart a handle for a multi-transaction filesystem
745  * operation.
746  *
747  * If the jbd2_journal_extend() call above fails to grant new buffer credits
748  * to a running handle, a call to jbd2_journal_restart will commit the
749  * handle's transaction so far and reattach the handle to a new
750  * transaction capable of guaranteeing the requested number of
751  * credits. We preserve reserved handle if there's any attached to the
752  * passed in handle.
753  */
754 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
755                           gfp_t gfp_mask)
756 {
757         transaction_t *transaction = handle->h_transaction;
758         journal_t *journal;
759         tid_t           tid;
760         int             need_to_start;
761         int             ret;
762
763         /* If we've had an abort of any type, don't even think about
764          * actually doing the restart! */
765         if (is_handle_aborted(handle))
766                 return 0;
767         journal = transaction->t_journal;
768         tid = transaction->t_tid;
769
770         /*
771          * First unlink the handle from its current transaction, and start the
772          * commit on that.
773          */
774         jbd_debug(2, "restarting handle %p\n", handle);
775         stop_this_handle(handle);
776         handle->h_transaction = NULL;
777
778         /*
779          * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
780          * get rid of pointless j_state_lock traffic like this.
781          */
782         read_lock(&journal->j_state_lock);
783         need_to_start = !tid_geq(journal->j_commit_request, tid);
784         read_unlock(&journal->j_state_lock);
785         if (need_to_start)
786                 jbd2_log_start_commit(journal, tid);
787         handle->h_total_credits = nblocks +
788                 DIV_ROUND_UP(revoke_records,
789                              journal->j_revoke_records_per_block);
790         handle->h_revoke_credits = revoke_records;
791         ret = start_this_handle(journal, handle, gfp_mask);
792         trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
793                                  ret ? 0 : handle->h_transaction->t_tid,
794                                  handle->h_type, handle->h_line_no,
795                                  handle->h_total_credits);
796         return ret;
797 }
798 EXPORT_SYMBOL(jbd2__journal_restart);
799
800
801 int jbd2_journal_restart(handle_t *handle, int nblocks)
802 {
803         return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
804 }
805 EXPORT_SYMBOL(jbd2_journal_restart);
806
807 /**
808  * void jbd2_journal_lock_updates () - establish a transaction barrier.
809  * @journal:  Journal to establish a barrier on.
810  *
811  * This locks out any further updates from being started, and blocks
812  * until all existing updates have completed, returning only once the
813  * journal is in a quiescent state with no updates running.
814  *
815  * The journal lock should not be held on entry.
816  */
817 void jbd2_journal_lock_updates(journal_t *journal)
818 {
819         DEFINE_WAIT(wait);
820
821         jbd2_might_wait_for_commit(journal);
822
823         write_lock(&journal->j_state_lock);
824         ++journal->j_barrier_count;
825
826         /* Wait until there are no reserved handles */
827         if (atomic_read(&journal->j_reserved_credits)) {
828                 write_unlock(&journal->j_state_lock);
829                 wait_event(journal->j_wait_reserved,
830                            atomic_read(&journal->j_reserved_credits) == 0);
831                 write_lock(&journal->j_state_lock);
832         }
833
834         /* Wait until there are no running updates */
835         while (1) {
836                 transaction_t *transaction = journal->j_running_transaction;
837
838                 if (!transaction)
839                         break;
840
841                 spin_lock(&transaction->t_handle_lock);
842                 prepare_to_wait(&journal->j_wait_updates, &wait,
843                                 TASK_UNINTERRUPTIBLE);
844                 if (!atomic_read(&transaction->t_updates)) {
845                         spin_unlock(&transaction->t_handle_lock);
846                         finish_wait(&journal->j_wait_updates, &wait);
847                         break;
848                 }
849                 spin_unlock(&transaction->t_handle_lock);
850                 write_unlock(&journal->j_state_lock);
851                 schedule();
852                 finish_wait(&journal->j_wait_updates, &wait);
853                 write_lock(&journal->j_state_lock);
854         }
855         write_unlock(&journal->j_state_lock);
856
857         /*
858          * We have now established a barrier against other normal updates, but
859          * we also need to barrier against other jbd2_journal_lock_updates() calls
860          * to make sure that we serialise special journal-locked operations
861          * too.
862          */
863         mutex_lock(&journal->j_barrier);
864 }
865
866 /**
867  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
868  * @journal:  Journal to release the barrier on.
869  *
870  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
871  *
872  * Should be called without the journal lock held.
873  */
874 void jbd2_journal_unlock_updates (journal_t *journal)
875 {
876         J_ASSERT(journal->j_barrier_count != 0);
877
878         mutex_unlock(&journal->j_barrier);
879         write_lock(&journal->j_state_lock);
880         --journal->j_barrier_count;
881         write_unlock(&journal->j_state_lock);
882         wake_up(&journal->j_wait_transaction_locked);
883 }
884
885 static void warn_dirty_buffer(struct buffer_head *bh)
886 {
887         printk(KERN_WARNING
888                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
889                "There's a risk of filesystem corruption in case of system "
890                "crash.\n",
891                bh->b_bdev, (unsigned long long)bh->b_blocknr);
892 }
893
894 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
895 static void jbd2_freeze_jh_data(struct journal_head *jh)
896 {
897         struct page *page;
898         int offset;
899         char *source;
900         struct buffer_head *bh = jh2bh(jh);
901
902         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
903         page = bh->b_page;
904         offset = offset_in_page(bh->b_data);
905         source = kmap_atomic(page);
906         /* Fire data frozen trigger just before we copy the data */
907         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
908         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
909         kunmap_atomic(source);
910
911         /*
912          * Now that the frozen data is saved off, we need to store any matching
913          * triggers.
914          */
915         jh->b_frozen_triggers = jh->b_triggers;
916 }
917
918 /*
919  * If the buffer is already part of the current transaction, then there
920  * is nothing we need to do.  If it is already part of a prior
921  * transaction which we are still committing to disk, then we need to
922  * make sure that we do not overwrite the old copy: we do copy-out to
923  * preserve the copy going to disk.  We also account the buffer against
924  * the handle's metadata buffer credits (unless the buffer is already
925  * part of the transaction, that is).
926  *
927  */
928 static int
929 do_get_write_access(handle_t *handle, struct journal_head *jh,
930                         int force_copy)
931 {
932         struct buffer_head *bh;
933         transaction_t *transaction = handle->h_transaction;
934         journal_t *journal;
935         int error;
936         char *frozen_buffer = NULL;
937         unsigned long start_lock, time_lock;
938
939         journal = transaction->t_journal;
940
941         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
942
943         JBUFFER_TRACE(jh, "entry");
944 repeat:
945         bh = jh2bh(jh);
946
947         /* @@@ Need to check for errors here at some point. */
948
949         start_lock = jiffies;
950         lock_buffer(bh);
951         spin_lock(&jh->b_state_lock);
952
953         /* If it takes too long to lock the buffer, trace it */
954         time_lock = jbd2_time_diff(start_lock, jiffies);
955         if (time_lock > HZ/10)
956                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
957                         jiffies_to_msecs(time_lock));
958
959         /* We now hold the buffer lock so it is safe to query the buffer
960          * state.  Is the buffer dirty?
961          *
962          * If so, there are two possibilities.  The buffer may be
963          * non-journaled, and undergoing a quite legitimate writeback.
964          * Otherwise, it is journaled, and we don't expect dirty buffers
965          * in that state (the buffers should be marked JBD_Dirty
966          * instead.)  So either the IO is being done under our own
967          * control and this is a bug, or it's a third party IO such as
968          * dump(8) (which may leave the buffer scheduled for read ---
969          * ie. locked but not dirty) or tune2fs (which may actually have
970          * the buffer dirtied, ugh.)  */
971
972         if (buffer_dirty(bh)) {
973                 /*
974                  * First question: is this buffer already part of the current
975                  * transaction or the existing committing transaction?
976                  */
977                 if (jh->b_transaction) {
978                         J_ASSERT_JH(jh,
979                                 jh->b_transaction == transaction ||
980                                 jh->b_transaction ==
981                                         journal->j_committing_transaction);
982                         if (jh->b_next_transaction)
983                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
984                                                         transaction);
985                         warn_dirty_buffer(bh);
986                 }
987                 /*
988                  * In any case we need to clean the dirty flag and we must
989                  * do it under the buffer lock to be sure we don't race
990                  * with running write-out.
991                  */
992                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
993                 clear_buffer_dirty(bh);
994                 set_buffer_jbddirty(bh);
995         }
996
997         unlock_buffer(bh);
998
999         error = -EROFS;
1000         if (is_handle_aborted(handle)) {
1001                 spin_unlock(&jh->b_state_lock);
1002                 goto out;
1003         }
1004         error = 0;
1005
1006         /*
1007          * The buffer is already part of this transaction if b_transaction or
1008          * b_next_transaction points to it
1009          */
1010         if (jh->b_transaction == transaction ||
1011             jh->b_next_transaction == transaction)
1012                 goto done;
1013
1014         /*
1015          * this is the first time this transaction is touching this buffer,
1016          * reset the modified flag
1017          */
1018         jh->b_modified = 0;
1019
1020         /*
1021          * If the buffer is not journaled right now, we need to make sure it
1022          * doesn't get written to disk before the caller actually commits the
1023          * new data
1024          */
1025         if (!jh->b_transaction) {
1026                 JBUFFER_TRACE(jh, "no transaction");
1027                 J_ASSERT_JH(jh, !jh->b_next_transaction);
1028                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1029                 /*
1030                  * Make sure all stores to jh (b_modified, b_frozen_data) are
1031                  * visible before attaching it to the running transaction.
1032                  * Paired with barrier in jbd2_write_access_granted()
1033                  */
1034                 smp_wmb();
1035                 spin_lock(&journal->j_list_lock);
1036                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1037                 spin_unlock(&journal->j_list_lock);
1038                 goto done;
1039         }
1040         /*
1041          * If there is already a copy-out version of this buffer, then we don't
1042          * need to make another one
1043          */
1044         if (jh->b_frozen_data) {
1045                 JBUFFER_TRACE(jh, "has frozen data");
1046                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1047                 goto attach_next;
1048         }
1049
1050         JBUFFER_TRACE(jh, "owned by older transaction");
1051         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1052         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1053
1054         /*
1055          * There is one case we have to be very careful about.  If the
1056          * committing transaction is currently writing this buffer out to disk
1057          * and has NOT made a copy-out, then we cannot modify the buffer
1058          * contents at all right now.  The essence of copy-out is that it is
1059          * the extra copy, not the primary copy, which gets journaled.  If the
1060          * primary copy is already going to disk then we cannot do copy-out
1061          * here.
1062          */
1063         if (buffer_shadow(bh)) {
1064                 JBUFFER_TRACE(jh, "on shadow: sleep");
1065                 spin_unlock(&jh->b_state_lock);
1066                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1067                 goto repeat;
1068         }
1069
1070         /*
1071          * Only do the copy if the currently-owning transaction still needs it.
1072          * If buffer isn't on BJ_Metadata list, the committing transaction is
1073          * past that stage (here we use the fact that BH_Shadow is set under
1074          * bh_state lock together with refiling to BJ_Shadow list and at this
1075          * point we know the buffer doesn't have BH_Shadow set).
1076          *
1077          * Subtle point, though: if this is a get_undo_access, then we will be
1078          * relying on the frozen_data to contain the new value of the
1079          * committed_data record after the transaction, so we HAVE to force the
1080          * frozen_data copy in that case.
1081          */
1082         if (jh->b_jlist == BJ_Metadata || force_copy) {
1083                 JBUFFER_TRACE(jh, "generate frozen data");
1084                 if (!frozen_buffer) {
1085                         JBUFFER_TRACE(jh, "allocate memory for buffer");
1086                         spin_unlock(&jh->b_state_lock);
1087                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1088                                                    GFP_NOFS | __GFP_NOFAIL);
1089                         goto repeat;
1090                 }
1091                 jh->b_frozen_data = frozen_buffer;
1092                 frozen_buffer = NULL;
1093                 jbd2_freeze_jh_data(jh);
1094         }
1095 attach_next:
1096         /*
1097          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1098          * before attaching it to the running transaction. Paired with barrier
1099          * in jbd2_write_access_granted()
1100          */
1101         smp_wmb();
1102         jh->b_next_transaction = transaction;
1103
1104 done:
1105         spin_unlock(&jh->b_state_lock);
1106
1107         /*
1108          * If we are about to journal a buffer, then any revoke pending on it is
1109          * no longer valid
1110          */
1111         jbd2_journal_cancel_revoke(handle, jh);
1112
1113 out:
1114         if (unlikely(frozen_buffer))    /* It's usually NULL */
1115                 jbd2_free(frozen_buffer, bh->b_size);
1116
1117         JBUFFER_TRACE(jh, "exit");
1118         return error;
1119 }
1120
1121 /* Fast check whether buffer is already attached to the required transaction */
1122 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1123                                                         bool undo)
1124 {
1125         struct journal_head *jh;
1126         bool ret = false;
1127
1128         /* Dirty buffers require special handling... */
1129         if (buffer_dirty(bh))
1130                 return false;
1131
1132         /*
1133          * RCU protects us from dereferencing freed pages. So the checks we do
1134          * are guaranteed not to oops. However the jh slab object can get freed
1135          * & reallocated while we work with it. So we have to be careful. When
1136          * we see jh attached to the running transaction, we know it must stay
1137          * so until the transaction is committed. Thus jh won't be freed and
1138          * will be attached to the same bh while we run.  However it can
1139          * happen jh gets freed, reallocated, and attached to the transaction
1140          * just after we get pointer to it from bh. So we have to be careful
1141          * and recheck jh still belongs to our bh before we return success.
1142          */
1143         rcu_read_lock();
1144         if (!buffer_jbd(bh))
1145                 goto out;
1146         /* This should be bh2jh() but that doesn't work with inline functions */
1147         jh = READ_ONCE(bh->b_private);
1148         if (!jh)
1149                 goto out;
1150         /* For undo access buffer must have data copied */
1151         if (undo && !jh->b_committed_data)
1152                 goto out;
1153         if (jh->b_transaction != handle->h_transaction &&
1154             jh->b_next_transaction != handle->h_transaction)
1155                 goto out;
1156         /*
1157          * There are two reasons for the barrier here:
1158          * 1) Make sure to fetch b_bh after we did previous checks so that we
1159          * detect when jh went through free, realloc, attach to transaction
1160          * while we were checking. Paired with implicit barrier in that path.
1161          * 2) So that access to bh done after jbd2_write_access_granted()
1162          * doesn't get reordered and see inconsistent state of concurrent
1163          * do_get_write_access().
1164          */
1165         smp_mb();
1166         if (unlikely(jh->b_bh != bh))
1167                 goto out;
1168         ret = true;
1169 out:
1170         rcu_read_unlock();
1171         return ret;
1172 }
1173
1174 /**
1175  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1176  * @handle: transaction to add buffer modifications to
1177  * @bh:     bh to be used for metadata writes
1178  *
1179  * Returns: error code or 0 on success.
1180  *
1181  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1182  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1183  */
1184
1185 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1186 {
1187         struct journal_head *jh;
1188         int rc;
1189
1190         if (is_handle_aborted(handle))
1191                 return -EROFS;
1192
1193         if (jbd2_write_access_granted(handle, bh, false))
1194                 return 0;
1195
1196         jh = jbd2_journal_add_journal_head(bh);
1197         /* We do not want to get caught playing with fields which the
1198          * log thread also manipulates.  Make sure that the buffer
1199          * completes any outstanding IO before proceeding. */
1200         rc = do_get_write_access(handle, jh, 0);
1201         jbd2_journal_put_journal_head(jh);
1202         return rc;
1203 }
1204
1205
1206 /*
1207  * When the user wants to journal a newly created buffer_head
1208  * (ie. getblk() returned a new buffer and we are going to populate it
1209  * manually rather than reading off disk), then we need to keep the
1210  * buffer_head locked until it has been completely filled with new
1211  * data.  In this case, we should be able to make the assertion that
1212  * the bh is not already part of an existing transaction.
1213  *
1214  * The buffer should already be locked by the caller by this point.
1215  * There is no lock ranking violation: it was a newly created,
1216  * unlocked buffer beforehand. */
1217
1218 /**
1219  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1220  * @handle: transaction to new buffer to
1221  * @bh: new buffer.
1222  *
1223  * Call this if you create a new bh.
1224  */
1225 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1226 {
1227         transaction_t *transaction = handle->h_transaction;
1228         journal_t *journal;
1229         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1230         int err;
1231
1232         jbd_debug(5, "journal_head %p\n", jh);
1233         err = -EROFS;
1234         if (is_handle_aborted(handle))
1235                 goto out;
1236         journal = transaction->t_journal;
1237         err = 0;
1238
1239         JBUFFER_TRACE(jh, "entry");
1240         /*
1241          * The buffer may already belong to this transaction due to pre-zeroing
1242          * in the filesystem's new_block code.  It may also be on the previous,
1243          * committing transaction's lists, but it HAS to be in Forget state in
1244          * that case: the transaction must have deleted the buffer for it to be
1245          * reused here.
1246          */
1247         spin_lock(&jh->b_state_lock);
1248         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1249                 jh->b_transaction == NULL ||
1250                 (jh->b_transaction == journal->j_committing_transaction &&
1251                           jh->b_jlist == BJ_Forget)));
1252
1253         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1254         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1255
1256         if (jh->b_transaction == NULL) {
1257                 /*
1258                  * Previous jbd2_journal_forget() could have left the buffer
1259                  * with jbddirty bit set because it was being committed. When
1260                  * the commit finished, we've filed the buffer for
1261                  * checkpointing and marked it dirty. Now we are reallocating
1262                  * the buffer so the transaction freeing it must have
1263                  * committed and so it's safe to clear the dirty bit.
1264                  */
1265                 clear_buffer_dirty(jh2bh(jh));
1266                 /* first access by this transaction */
1267                 jh->b_modified = 0;
1268
1269                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1270                 spin_lock(&journal->j_list_lock);
1271                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1272                 spin_unlock(&journal->j_list_lock);
1273         } else if (jh->b_transaction == journal->j_committing_transaction) {
1274                 /* first access by this transaction */
1275                 jh->b_modified = 0;
1276
1277                 JBUFFER_TRACE(jh, "set next transaction");
1278                 spin_lock(&journal->j_list_lock);
1279                 jh->b_next_transaction = transaction;
1280                 spin_unlock(&journal->j_list_lock);
1281         }
1282         spin_unlock(&jh->b_state_lock);
1283
1284         /*
1285          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1286          * blocks which contain freed but then revoked metadata.  We need
1287          * to cancel the revoke in case we end up freeing it yet again
1288          * and the reallocating as data - this would cause a second revoke,
1289          * which hits an assertion error.
1290          */
1291         JBUFFER_TRACE(jh, "cancelling revoke");
1292         jbd2_journal_cancel_revoke(handle, jh);
1293 out:
1294         jbd2_journal_put_journal_head(jh);
1295         return err;
1296 }
1297
1298 /**
1299  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1300  *     non-rewindable consequences
1301  * @handle: transaction
1302  * @bh: buffer to undo
1303  *
1304  * Sometimes there is a need to distinguish between metadata which has
1305  * been committed to disk and that which has not.  The ext3fs code uses
1306  * this for freeing and allocating space, we have to make sure that we
1307  * do not reuse freed space until the deallocation has been committed,
1308  * since if we overwrote that space we would make the delete
1309  * un-rewindable in case of a crash.
1310  *
1311  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1312  * buffer for parts of non-rewindable operations such as delete
1313  * operations on the bitmaps.  The journaling code must keep a copy of
1314  * the buffer's contents prior to the undo_access call until such time
1315  * as we know that the buffer has definitely been committed to disk.
1316  *
1317  * We never need to know which transaction the committed data is part
1318  * of, buffers touched here are guaranteed to be dirtied later and so
1319  * will be committed to a new transaction in due course, at which point
1320  * we can discard the old committed data pointer.
1321  *
1322  * Returns error number or 0 on success.
1323  */
1324 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1325 {
1326         int err;
1327         struct journal_head *jh;
1328         char *committed_data = NULL;
1329
1330         if (is_handle_aborted(handle))
1331                 return -EROFS;
1332
1333         if (jbd2_write_access_granted(handle, bh, true))
1334                 return 0;
1335
1336         jh = jbd2_journal_add_journal_head(bh);
1337         JBUFFER_TRACE(jh, "entry");
1338
1339         /*
1340          * Do this first --- it can drop the journal lock, so we want to
1341          * make sure that obtaining the committed_data is done
1342          * atomically wrt. completion of any outstanding commits.
1343          */
1344         err = do_get_write_access(handle, jh, 1);
1345         if (err)
1346                 goto out;
1347
1348 repeat:
1349         if (!jh->b_committed_data)
1350                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1351                                             GFP_NOFS|__GFP_NOFAIL);
1352
1353         spin_lock(&jh->b_state_lock);
1354         if (!jh->b_committed_data) {
1355                 /* Copy out the current buffer contents into the
1356                  * preserved, committed copy. */
1357                 JBUFFER_TRACE(jh, "generate b_committed data");
1358                 if (!committed_data) {
1359                         spin_unlock(&jh->b_state_lock);
1360                         goto repeat;
1361                 }
1362
1363                 jh->b_committed_data = committed_data;
1364                 committed_data = NULL;
1365                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1366         }
1367         spin_unlock(&jh->b_state_lock);
1368 out:
1369         jbd2_journal_put_journal_head(jh);
1370         if (unlikely(committed_data))
1371                 jbd2_free(committed_data, bh->b_size);
1372         return err;
1373 }
1374
1375 /**
1376  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1377  * @bh: buffer to trigger on
1378  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1379  *
1380  * Set any triggers on this journal_head.  This is always safe, because
1381  * triggers for a committing buffer will be saved off, and triggers for
1382  * a running transaction will match the buffer in that transaction.
1383  *
1384  * Call with NULL to clear the triggers.
1385  */
1386 void jbd2_journal_set_triggers(struct buffer_head *bh,
1387                                struct jbd2_buffer_trigger_type *type)
1388 {
1389         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1390
1391         if (WARN_ON(!jh))
1392                 return;
1393         jh->b_triggers = type;
1394         jbd2_journal_put_journal_head(jh);
1395 }
1396
1397 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1398                                 struct jbd2_buffer_trigger_type *triggers)
1399 {
1400         struct buffer_head *bh = jh2bh(jh);
1401
1402         if (!triggers || !triggers->t_frozen)
1403                 return;
1404
1405         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1406 }
1407
1408 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1409                                struct jbd2_buffer_trigger_type *triggers)
1410 {
1411         if (!triggers || !triggers->t_abort)
1412                 return;
1413
1414         triggers->t_abort(triggers, jh2bh(jh));
1415 }
1416
1417 /**
1418  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1419  * @handle: transaction to add buffer to.
1420  * @bh: buffer to mark
1421  *
1422  * mark dirty metadata which needs to be journaled as part of the current
1423  * transaction.
1424  *
1425  * The buffer must have previously had jbd2_journal_get_write_access()
1426  * called so that it has a valid journal_head attached to the buffer
1427  * head.
1428  *
1429  * The buffer is placed on the transaction's metadata list and is marked
1430  * as belonging to the transaction.
1431  *
1432  * Returns error number or 0 on success.
1433  *
1434  * Special care needs to be taken if the buffer already belongs to the
1435  * current committing transaction (in which case we should have frozen
1436  * data present for that commit).  In that case, we don't relink the
1437  * buffer: that only gets done when the old transaction finally
1438  * completes its commit.
1439  */
1440 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1441 {
1442         transaction_t *transaction = handle->h_transaction;
1443         journal_t *journal;
1444         struct journal_head *jh;
1445         int ret = 0;
1446
1447         if (is_handle_aborted(handle))
1448                 return -EROFS;
1449         if (!buffer_jbd(bh))
1450                 return -EUCLEAN;
1451
1452         /*
1453          * We don't grab jh reference here since the buffer must be part
1454          * of the running transaction.
1455          */
1456         jh = bh2jh(bh);
1457         jbd_debug(5, "journal_head %p\n", jh);
1458         JBUFFER_TRACE(jh, "entry");
1459
1460         /*
1461          * This and the following assertions are unreliable since we may see jh
1462          * in inconsistent state unless we grab bh_state lock. But this is
1463          * crucial to catch bugs so let's do a reliable check until the
1464          * lockless handling is fully proven.
1465          */
1466         if (jh->b_transaction != transaction &&
1467             jh->b_next_transaction != transaction) {
1468                 spin_lock(&jh->b_state_lock);
1469                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1470                                 jh->b_next_transaction == transaction);
1471                 spin_unlock(&jh->b_state_lock);
1472         }
1473         if (jh->b_modified == 1) {
1474                 /* If it's in our transaction it must be in BJ_Metadata list. */
1475                 if (jh->b_transaction == transaction &&
1476                     jh->b_jlist != BJ_Metadata) {
1477                         spin_lock(&jh->b_state_lock);
1478                         if (jh->b_transaction == transaction &&
1479                             jh->b_jlist != BJ_Metadata)
1480                                 pr_err("JBD2: assertion failure: h_type=%u "
1481                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1482                                        handle->h_type, handle->h_line_no,
1483                                        (unsigned long long) bh->b_blocknr,
1484                                        jh->b_jlist);
1485                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1486                                         jh->b_jlist == BJ_Metadata);
1487                         spin_unlock(&jh->b_state_lock);
1488                 }
1489                 goto out;
1490         }
1491
1492         journal = transaction->t_journal;
1493         spin_lock(&jh->b_state_lock);
1494
1495         if (jh->b_modified == 0) {
1496                 /*
1497                  * This buffer's got modified and becoming part
1498                  * of the transaction. This needs to be done
1499                  * once a transaction -bzzz
1500                  */
1501                 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1502                         ret = -ENOSPC;
1503                         goto out_unlock_bh;
1504                 }
1505                 jh->b_modified = 1;
1506                 handle->h_total_credits--;
1507         }
1508
1509         /*
1510          * fastpath, to avoid expensive locking.  If this buffer is already
1511          * on the running transaction's metadata list there is nothing to do.
1512          * Nobody can take it off again because there is a handle open.
1513          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1514          * result in this test being false, so we go in and take the locks.
1515          */
1516         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1517                 JBUFFER_TRACE(jh, "fastpath");
1518                 if (unlikely(jh->b_transaction !=
1519                              journal->j_running_transaction)) {
1520                         printk(KERN_ERR "JBD2: %s: "
1521                                "jh->b_transaction (%llu, %p, %u) != "
1522                                "journal->j_running_transaction (%p, %u)\n",
1523                                journal->j_devname,
1524                                (unsigned long long) bh->b_blocknr,
1525                                jh->b_transaction,
1526                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1527                                journal->j_running_transaction,
1528                                journal->j_running_transaction ?
1529                                journal->j_running_transaction->t_tid : 0);
1530                         ret = -EINVAL;
1531                 }
1532                 goto out_unlock_bh;
1533         }
1534
1535         set_buffer_jbddirty(bh);
1536
1537         /*
1538          * Metadata already on the current transaction list doesn't
1539          * need to be filed.  Metadata on another transaction's list must
1540          * be committing, and will be refiled once the commit completes:
1541          * leave it alone for now.
1542          */
1543         if (jh->b_transaction != transaction) {
1544                 JBUFFER_TRACE(jh, "already on other transaction");
1545                 if (unlikely(((jh->b_transaction !=
1546                                journal->j_committing_transaction)) ||
1547                              (jh->b_next_transaction != transaction))) {
1548                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1549                                "bad jh for block %llu: "
1550                                "transaction (%p, %u), "
1551                                "jh->b_transaction (%p, %u), "
1552                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1553                                journal->j_devname,
1554                                (unsigned long long) bh->b_blocknr,
1555                                transaction, transaction->t_tid,
1556                                jh->b_transaction,
1557                                jh->b_transaction ?
1558                                jh->b_transaction->t_tid : 0,
1559                                jh->b_next_transaction,
1560                                jh->b_next_transaction ?
1561                                jh->b_next_transaction->t_tid : 0,
1562                                jh->b_jlist);
1563                         WARN_ON(1);
1564                         ret = -EINVAL;
1565                 }
1566                 /* And this case is illegal: we can't reuse another
1567                  * transaction's data buffer, ever. */
1568                 goto out_unlock_bh;
1569         }
1570
1571         /* That test should have eliminated the following case: */
1572         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1573
1574         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1575         spin_lock(&journal->j_list_lock);
1576         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1577         spin_unlock(&journal->j_list_lock);
1578 out_unlock_bh:
1579         spin_unlock(&jh->b_state_lock);
1580 out:
1581         JBUFFER_TRACE(jh, "exit");
1582         return ret;
1583 }
1584
1585 /**
1586  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1587  * @handle: transaction handle
1588  * @bh:     bh to 'forget'
1589  *
1590  * We can only do the bforget if there are no commits pending against the
1591  * buffer.  If the buffer is dirty in the current running transaction we
1592  * can safely unlink it.
1593  *
1594  * bh may not be a journalled buffer at all - it may be a non-JBD
1595  * buffer which came off the hashtable.  Check for this.
1596  *
1597  * Decrements bh->b_count by one.
1598  *
1599  * Allow this call even if the handle has aborted --- it may be part of
1600  * the caller's cleanup after an abort.
1601  */
1602 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1603 {
1604         transaction_t *transaction = handle->h_transaction;
1605         journal_t *journal;
1606         struct journal_head *jh;
1607         int drop_reserve = 0;
1608         int err = 0;
1609         int was_modified = 0;
1610
1611         if (is_handle_aborted(handle))
1612                 return -EROFS;
1613         journal = transaction->t_journal;
1614
1615         BUFFER_TRACE(bh, "entry");
1616
1617         jh = jbd2_journal_grab_journal_head(bh);
1618         if (!jh) {
1619                 __bforget(bh);
1620                 return 0;
1621         }
1622
1623         spin_lock(&jh->b_state_lock);
1624
1625         /* Critical error: attempting to delete a bitmap buffer, maybe?
1626          * Don't do any jbd operations, and return an error. */
1627         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1628                          "inconsistent data on disk")) {
1629                 err = -EIO;
1630                 goto drop;
1631         }
1632
1633         /* keep track of whether or not this transaction modified us */
1634         was_modified = jh->b_modified;
1635
1636         /*
1637          * The buffer's going from the transaction, we must drop
1638          * all references -bzzz
1639          */
1640         jh->b_modified = 0;
1641
1642         if (jh->b_transaction == transaction) {
1643                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1644
1645                 /* If we are forgetting a buffer which is already part
1646                  * of this transaction, then we can just drop it from
1647                  * the transaction immediately. */
1648                 clear_buffer_dirty(bh);
1649                 clear_buffer_jbddirty(bh);
1650
1651                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1652
1653                 /*
1654                  * we only want to drop a reference if this transaction
1655                  * modified the buffer
1656                  */
1657                 if (was_modified)
1658                         drop_reserve = 1;
1659
1660                 /*
1661                  * We are no longer going to journal this buffer.
1662                  * However, the commit of this transaction is still
1663                  * important to the buffer: the delete that we are now
1664                  * processing might obsolete an old log entry, so by
1665                  * committing, we can satisfy the buffer's checkpoint.
1666                  *
1667                  * So, if we have a checkpoint on the buffer, we should
1668                  * now refile the buffer on our BJ_Forget list so that
1669                  * we know to remove the checkpoint after we commit.
1670                  */
1671
1672                 spin_lock(&journal->j_list_lock);
1673                 if (jh->b_cp_transaction) {
1674                         __jbd2_journal_temp_unlink_buffer(jh);
1675                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1676                 } else {
1677                         __jbd2_journal_unfile_buffer(jh);
1678                         jbd2_journal_put_journal_head(jh);
1679                 }
1680                 spin_unlock(&journal->j_list_lock);
1681         } else if (jh->b_transaction) {
1682                 J_ASSERT_JH(jh, (jh->b_transaction ==
1683                                  journal->j_committing_transaction));
1684                 /* However, if the buffer is still owned by a prior
1685                  * (committing) transaction, we can't drop it yet... */
1686                 JBUFFER_TRACE(jh, "belongs to older transaction");
1687                 /* ... but we CAN drop it from the new transaction through
1688                  * marking the buffer as freed and set j_next_transaction to
1689                  * the new transaction, so that not only the commit code
1690                  * knows it should clear dirty bits when it is done with the
1691                  * buffer, but also the buffer can be checkpointed only
1692                  * after the new transaction commits. */
1693
1694                 set_buffer_freed(bh);
1695
1696                 if (!jh->b_next_transaction) {
1697                         spin_lock(&journal->j_list_lock);
1698                         jh->b_next_transaction = transaction;
1699                         spin_unlock(&journal->j_list_lock);
1700                 } else {
1701                         J_ASSERT(jh->b_next_transaction == transaction);
1702
1703                         /*
1704                          * only drop a reference if this transaction modified
1705                          * the buffer
1706                          */
1707                         if (was_modified)
1708                                 drop_reserve = 1;
1709                 }
1710         } else {
1711                 /*
1712                  * Finally, if the buffer is not belongs to any
1713                  * transaction, we can just drop it now if it has no
1714                  * checkpoint.
1715                  */
1716                 spin_lock(&journal->j_list_lock);
1717                 if (!jh->b_cp_transaction) {
1718                         JBUFFER_TRACE(jh, "belongs to none transaction");
1719                         spin_unlock(&journal->j_list_lock);
1720                         goto drop;
1721                 }
1722
1723                 /*
1724                  * Otherwise, if the buffer has been written to disk,
1725                  * it is safe to remove the checkpoint and drop it.
1726                  */
1727                 if (!buffer_dirty(bh)) {
1728                         __jbd2_journal_remove_checkpoint(jh);
1729                         spin_unlock(&journal->j_list_lock);
1730                         goto drop;
1731                 }
1732
1733                 /*
1734                  * The buffer is still not written to disk, we should
1735                  * attach this buffer to current transaction so that the
1736                  * buffer can be checkpointed only after the current
1737                  * transaction commits.
1738                  */
1739                 clear_buffer_dirty(bh);
1740                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1741                 spin_unlock(&journal->j_list_lock);
1742         }
1743 drop:
1744         __brelse(bh);
1745         spin_unlock(&jh->b_state_lock);
1746         jbd2_journal_put_journal_head(jh);
1747         if (drop_reserve) {
1748                 /* no need to reserve log space for this block -bzzz */
1749                 handle->h_total_credits++;
1750         }
1751         return err;
1752 }
1753
1754 /**
1755  * int jbd2_journal_stop() - complete a transaction
1756  * @handle: transaction to complete.
1757  *
1758  * All done for a particular handle.
1759  *
1760  * There is not much action needed here.  We just return any remaining
1761  * buffer credits to the transaction and remove the handle.  The only
1762  * complication is that we need to start a commit operation if the
1763  * filesystem is marked for synchronous update.
1764  *
1765  * jbd2_journal_stop itself will not usually return an error, but it may
1766  * do so in unusual circumstances.  In particular, expect it to
1767  * return -EIO if a jbd2_journal_abort has been executed since the
1768  * transaction began.
1769  */
1770 int jbd2_journal_stop(handle_t *handle)
1771 {
1772         transaction_t *transaction = handle->h_transaction;
1773         journal_t *journal;
1774         int err = 0, wait_for_commit = 0;
1775         tid_t tid;
1776         pid_t pid;
1777
1778         if (--handle->h_ref > 0) {
1779                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1780                                                  handle->h_ref);
1781                 if (is_handle_aborted(handle))
1782                         return -EIO;
1783                 return 0;
1784         }
1785         if (!transaction) {
1786                 /*
1787                  * Handle is already detached from the transaction so there is
1788                  * nothing to do other than free the handle.
1789                  */
1790                 memalloc_nofs_restore(handle->saved_alloc_context);
1791                 goto free_and_exit;
1792         }
1793         journal = transaction->t_journal;
1794         tid = transaction->t_tid;
1795
1796         if (is_handle_aborted(handle))
1797                 err = -EIO;
1798
1799         jbd_debug(4, "Handle %p going down\n", handle);
1800         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1801                                 tid, handle->h_type, handle->h_line_no,
1802                                 jiffies - handle->h_start_jiffies,
1803                                 handle->h_sync, handle->h_requested_credits,
1804                                 (handle->h_requested_credits -
1805                                  handle->h_total_credits));
1806
1807         /*
1808          * Implement synchronous transaction batching.  If the handle
1809          * was synchronous, don't force a commit immediately.  Let's
1810          * yield and let another thread piggyback onto this
1811          * transaction.  Keep doing that while new threads continue to
1812          * arrive.  It doesn't cost much - we're about to run a commit
1813          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1814          * operations by 30x or more...
1815          *
1816          * We try and optimize the sleep time against what the
1817          * underlying disk can do, instead of having a static sleep
1818          * time.  This is useful for the case where our storage is so
1819          * fast that it is more optimal to go ahead and force a flush
1820          * and wait for the transaction to be committed than it is to
1821          * wait for an arbitrary amount of time for new writers to
1822          * join the transaction.  We achieve this by measuring how
1823          * long it takes to commit a transaction, and compare it with
1824          * how long this transaction has been running, and if run time
1825          * < commit time then we sleep for the delta and commit.  This
1826          * greatly helps super fast disks that would see slowdowns as
1827          * more threads started doing fsyncs.
1828          *
1829          * But don't do this if this process was the most recent one
1830          * to perform a synchronous write.  We do this to detect the
1831          * case where a single process is doing a stream of sync
1832          * writes.  No point in waiting for joiners in that case.
1833          *
1834          * Setting max_batch_time to 0 disables this completely.
1835          */
1836         pid = current->pid;
1837         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1838             journal->j_max_batch_time) {
1839                 u64 commit_time, trans_time;
1840
1841                 journal->j_last_sync_writer = pid;
1842
1843                 read_lock(&journal->j_state_lock);
1844                 commit_time = journal->j_average_commit_time;
1845                 read_unlock(&journal->j_state_lock);
1846
1847                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1848                                                    transaction->t_start_time));
1849
1850                 commit_time = max_t(u64, commit_time,
1851                                     1000*journal->j_min_batch_time);
1852                 commit_time = min_t(u64, commit_time,
1853                                     1000*journal->j_max_batch_time);
1854
1855                 if (trans_time < commit_time) {
1856                         ktime_t expires = ktime_add_ns(ktime_get(),
1857                                                        commit_time);
1858                         set_current_state(TASK_UNINTERRUPTIBLE);
1859                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1860                 }
1861         }
1862
1863         if (handle->h_sync)
1864                 transaction->t_synchronous_commit = 1;
1865
1866         /*
1867          * If the handle is marked SYNC, we need to set another commit
1868          * going!  We also want to force a commit if the transaction is too
1869          * old now.
1870          */
1871         if (handle->h_sync ||
1872             time_after_eq(jiffies, transaction->t_expires)) {
1873                 /* Do this even for aborted journals: an abort still
1874                  * completes the commit thread, it just doesn't write
1875                  * anything to disk. */
1876
1877                 jbd_debug(2, "transaction too old, requesting commit for "
1878                                         "handle %p\n", handle);
1879                 /* This is non-blocking */
1880                 jbd2_log_start_commit(journal, tid);
1881
1882                 /*
1883                  * Special case: JBD2_SYNC synchronous updates require us
1884                  * to wait for the commit to complete.
1885                  */
1886                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1887                         wait_for_commit = 1;
1888         }
1889
1890         /*
1891          * Once stop_this_handle() drops t_updates, the transaction could start
1892          * committing on us and eventually disappear.  So we must not
1893          * dereference transaction pointer again after calling
1894          * stop_this_handle().
1895          */
1896         stop_this_handle(handle);
1897
1898         if (wait_for_commit)
1899                 err = jbd2_log_wait_commit(journal, tid);
1900
1901 free_and_exit:
1902         if (handle->h_rsv_handle)
1903                 jbd2_free_handle(handle->h_rsv_handle);
1904         jbd2_free_handle(handle);
1905         return err;
1906 }
1907
1908 /*
1909  *
1910  * List management code snippets: various functions for manipulating the
1911  * transaction buffer lists.
1912  *
1913  */
1914
1915 /*
1916  * Append a buffer to a transaction list, given the transaction's list head
1917  * pointer.
1918  *
1919  * j_list_lock is held.
1920  *
1921  * jh->b_state_lock is held.
1922  */
1923
1924 static inline void
1925 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1926 {
1927         if (!*list) {
1928                 jh->b_tnext = jh->b_tprev = jh;
1929                 *list = jh;
1930         } else {
1931                 /* Insert at the tail of the list to preserve order */
1932                 struct journal_head *first = *list, *last = first->b_tprev;
1933                 jh->b_tprev = last;
1934                 jh->b_tnext = first;
1935                 last->b_tnext = first->b_tprev = jh;
1936         }
1937 }
1938
1939 /*
1940  * Remove a buffer from a transaction list, given the transaction's list
1941  * head pointer.
1942  *
1943  * Called with j_list_lock held, and the journal may not be locked.
1944  *
1945  * jh->b_state_lock is held.
1946  */
1947
1948 static inline void
1949 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1950 {
1951         if (*list == jh) {
1952                 *list = jh->b_tnext;
1953                 if (*list == jh)
1954                         *list = NULL;
1955         }
1956         jh->b_tprev->b_tnext = jh->b_tnext;
1957         jh->b_tnext->b_tprev = jh->b_tprev;
1958 }
1959
1960 /*
1961  * Remove a buffer from the appropriate transaction list.
1962  *
1963  * Note that this function can *change* the value of
1964  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1965  * t_reserved_list.  If the caller is holding onto a copy of one of these
1966  * pointers, it could go bad.  Generally the caller needs to re-read the
1967  * pointer from the transaction_t.
1968  *
1969  * Called under j_list_lock.
1970  */
1971 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1972 {
1973         struct journal_head **list = NULL;
1974         transaction_t *transaction;
1975         struct buffer_head *bh = jh2bh(jh);
1976
1977         lockdep_assert_held(&jh->b_state_lock);
1978         transaction = jh->b_transaction;
1979         if (transaction)
1980                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1981
1982         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1983         if (jh->b_jlist != BJ_None)
1984                 J_ASSERT_JH(jh, transaction != NULL);
1985
1986         switch (jh->b_jlist) {
1987         case BJ_None:
1988                 return;
1989         case BJ_Metadata:
1990                 transaction->t_nr_buffers--;
1991                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1992                 list = &transaction->t_buffers;
1993                 break;
1994         case BJ_Forget:
1995                 list = &transaction->t_forget;
1996                 break;
1997         case BJ_Shadow:
1998                 list = &transaction->t_shadow_list;
1999                 break;
2000         case BJ_Reserved:
2001                 list = &transaction->t_reserved_list;
2002                 break;
2003         }
2004
2005         __blist_del_buffer(list, jh);
2006         jh->b_jlist = BJ_None;
2007         if (transaction && is_journal_aborted(transaction->t_journal))
2008                 clear_buffer_jbddirty(bh);
2009         else if (test_clear_buffer_jbddirty(bh))
2010                 mark_buffer_dirty(bh);  /* Expose it to the VM */
2011 }
2012
2013 /*
2014  * Remove buffer from all transactions. The caller is responsible for dropping
2015  * the jh reference that belonged to the transaction.
2016  *
2017  * Called with bh_state lock and j_list_lock
2018  */
2019 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2020 {
2021         __jbd2_journal_temp_unlink_buffer(jh);
2022         jh->b_transaction = NULL;
2023 }
2024
2025 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2026 {
2027         struct buffer_head *bh = jh2bh(jh);
2028
2029         /* Get reference so that buffer cannot be freed before we unlock it */
2030         get_bh(bh);
2031         spin_lock(&jh->b_state_lock);
2032         spin_lock(&journal->j_list_lock);
2033         __jbd2_journal_unfile_buffer(jh);
2034         spin_unlock(&journal->j_list_lock);
2035         spin_unlock(&jh->b_state_lock);
2036         jbd2_journal_put_journal_head(jh);
2037         __brelse(bh);
2038 }
2039
2040 /*
2041  * Called from jbd2_journal_try_to_free_buffers().
2042  *
2043  * Called under jh->b_state_lock
2044  */
2045 static void
2046 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2047 {
2048         struct journal_head *jh;
2049
2050         jh = bh2jh(bh);
2051
2052         if (buffer_locked(bh) || buffer_dirty(bh))
2053                 goto out;
2054
2055         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2056                 goto out;
2057
2058         spin_lock(&journal->j_list_lock);
2059         if (jh->b_cp_transaction != NULL) {
2060                 /* written-back checkpointed metadata buffer */
2061                 JBUFFER_TRACE(jh, "remove from checkpoint list");
2062                 __jbd2_journal_remove_checkpoint(jh);
2063         }
2064         spin_unlock(&journal->j_list_lock);
2065 out:
2066         return;
2067 }
2068
2069 /**
2070  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
2071  * @journal: journal for operation
2072  * @page: to try and free
2073  * @gfp_mask: we use the mask to detect how hard should we try to release
2074  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
2075  * code to release the buffers.
2076  *
2077  *
2078  * For all the buffers on this page,
2079  * if they are fully written out ordered data, move them onto BUF_CLEAN
2080  * so try_to_free_buffers() can reap them.
2081  *
2082  * This function returns non-zero if we wish try_to_free_buffers()
2083  * to be called. We do this if the page is releasable by try_to_free_buffers().
2084  * We also do it if the page has locked or dirty buffers and the caller wants
2085  * us to perform sync or async writeout.
2086  *
2087  * This complicates JBD locking somewhat.  We aren't protected by the
2088  * BKL here.  We wish to remove the buffer from its committing or
2089  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2090  *
2091  * This may *change* the value of transaction_t->t_datalist, so anyone
2092  * who looks at t_datalist needs to lock against this function.
2093  *
2094  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2095  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2096  * will come out of the lock with the buffer dirty, which makes it
2097  * ineligible for release here.
2098  *
2099  * Who else is affected by this?  hmm...  Really the only contender
2100  * is do_get_write_access() - it could be looking at the buffer while
2101  * journal_try_to_free_buffer() is changing its state.  But that
2102  * cannot happen because we never reallocate freed data as metadata
2103  * while the data is part of a transaction.  Yes?
2104  *
2105  * Return 0 on failure, 1 on success
2106  */
2107 int jbd2_journal_try_to_free_buffers(journal_t *journal,
2108                                 struct page *page, gfp_t gfp_mask)
2109 {
2110         struct buffer_head *head;
2111         struct buffer_head *bh;
2112         int ret = 0;
2113
2114         J_ASSERT(PageLocked(page));
2115
2116         head = page_buffers(page);
2117         bh = head;
2118         do {
2119                 struct journal_head *jh;
2120
2121                 /*
2122                  * We take our own ref against the journal_head here to avoid
2123                  * having to add tons of locking around each instance of
2124                  * jbd2_journal_put_journal_head().
2125                  */
2126                 jh = jbd2_journal_grab_journal_head(bh);
2127                 if (!jh)
2128                         continue;
2129
2130                 spin_lock(&jh->b_state_lock);
2131                 __journal_try_to_free_buffer(journal, bh);
2132                 spin_unlock(&jh->b_state_lock);
2133                 jbd2_journal_put_journal_head(jh);
2134                 if (buffer_jbd(bh))
2135                         goto busy;
2136         } while ((bh = bh->b_this_page) != head);
2137
2138         ret = try_to_free_buffers(page);
2139
2140 busy:
2141         return ret;
2142 }
2143
2144 /*
2145  * This buffer is no longer needed.  If it is on an older transaction's
2146  * checkpoint list we need to record it on this transaction's forget list
2147  * to pin this buffer (and hence its checkpointing transaction) down until
2148  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2149  * release it.
2150  * Returns non-zero if JBD no longer has an interest in the buffer.
2151  *
2152  * Called under j_list_lock.
2153  *
2154  * Called under jh->b_state_lock.
2155  */
2156 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2157 {
2158         int may_free = 1;
2159         struct buffer_head *bh = jh2bh(jh);
2160
2161         if (jh->b_cp_transaction) {
2162                 JBUFFER_TRACE(jh, "on running+cp transaction");
2163                 __jbd2_journal_temp_unlink_buffer(jh);
2164                 /*
2165                  * We don't want to write the buffer anymore, clear the
2166                  * bit so that we don't confuse checks in
2167                  * __journal_file_buffer
2168                  */
2169                 clear_buffer_dirty(bh);
2170                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2171                 may_free = 0;
2172         } else {
2173                 JBUFFER_TRACE(jh, "on running transaction");
2174                 __jbd2_journal_unfile_buffer(jh);
2175                 jbd2_journal_put_journal_head(jh);
2176         }
2177         return may_free;
2178 }
2179
2180 /*
2181  * jbd2_journal_invalidatepage
2182  *
2183  * This code is tricky.  It has a number of cases to deal with.
2184  *
2185  * There are two invariants which this code relies on:
2186  *
2187  * i_size must be updated on disk before we start calling invalidatepage on the
2188  * data.
2189  *
2190  *  This is done in ext3 by defining an ext3_setattr method which
2191  *  updates i_size before truncate gets going.  By maintaining this
2192  *  invariant, we can be sure that it is safe to throw away any buffers
2193  *  attached to the current transaction: once the transaction commits,
2194  *  we know that the data will not be needed.
2195  *
2196  *  Note however that we can *not* throw away data belonging to the
2197  *  previous, committing transaction!
2198  *
2199  * Any disk blocks which *are* part of the previous, committing
2200  * transaction (and which therefore cannot be discarded immediately) are
2201  * not going to be reused in the new running transaction
2202  *
2203  *  The bitmap committed_data images guarantee this: any block which is
2204  *  allocated in one transaction and removed in the next will be marked
2205  *  as in-use in the committed_data bitmap, so cannot be reused until
2206  *  the next transaction to delete the block commits.  This means that
2207  *  leaving committing buffers dirty is quite safe: the disk blocks
2208  *  cannot be reallocated to a different file and so buffer aliasing is
2209  *  not possible.
2210  *
2211  *
2212  * The above applies mainly to ordered data mode.  In writeback mode we
2213  * don't make guarantees about the order in which data hits disk --- in
2214  * particular we don't guarantee that new dirty data is flushed before
2215  * transaction commit --- so it is always safe just to discard data
2216  * immediately in that mode.  --sct
2217  */
2218
2219 /*
2220  * The journal_unmap_buffer helper function returns zero if the buffer
2221  * concerned remains pinned as an anonymous buffer belonging to an older
2222  * transaction.
2223  *
2224  * We're outside-transaction here.  Either or both of j_running_transaction
2225  * and j_committing_transaction may be NULL.
2226  */
2227 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2228                                 int partial_page)
2229 {
2230         transaction_t *transaction;
2231         struct journal_head *jh;
2232         int may_free = 1;
2233
2234         BUFFER_TRACE(bh, "entry");
2235
2236         /*
2237          * It is safe to proceed here without the j_list_lock because the
2238          * buffers cannot be stolen by try_to_free_buffers as long as we are
2239          * holding the page lock. --sct
2240          */
2241
2242         jh = jbd2_journal_grab_journal_head(bh);
2243         if (!jh)
2244                 goto zap_buffer_unlocked;
2245
2246         /* OK, we have data buffer in journaled mode */
2247         write_lock(&journal->j_state_lock);
2248         spin_lock(&jh->b_state_lock);
2249         spin_lock(&journal->j_list_lock);
2250
2251         /*
2252          * We cannot remove the buffer from checkpoint lists until the
2253          * transaction adding inode to orphan list (let's call it T)
2254          * is committed.  Otherwise if the transaction changing the
2255          * buffer would be cleaned from the journal before T is
2256          * committed, a crash will cause that the correct contents of
2257          * the buffer will be lost.  On the other hand we have to
2258          * clear the buffer dirty bit at latest at the moment when the
2259          * transaction marking the buffer as freed in the filesystem
2260          * structures is committed because from that moment on the
2261          * block can be reallocated and used by a different page.
2262          * Since the block hasn't been freed yet but the inode has
2263          * already been added to orphan list, it is safe for us to add
2264          * the buffer to BJ_Forget list of the newest transaction.
2265          *
2266          * Also we have to clear buffer_mapped flag of a truncated buffer
2267          * because the buffer_head may be attached to the page straddling
2268          * i_size (can happen only when blocksize < pagesize) and thus the
2269          * buffer_head can be reused when the file is extended again. So we end
2270          * up keeping around invalidated buffers attached to transactions'
2271          * BJ_Forget list just to stop checkpointing code from cleaning up
2272          * the transaction this buffer was modified in.
2273          */
2274         transaction = jh->b_transaction;
2275         if (transaction == NULL) {
2276                 /* First case: not on any transaction.  If it
2277                  * has no checkpoint link, then we can zap it:
2278                  * it's a writeback-mode buffer so we don't care
2279                  * if it hits disk safely. */
2280                 if (!jh->b_cp_transaction) {
2281                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2282                         goto zap_buffer;
2283                 }
2284
2285                 if (!buffer_dirty(bh)) {
2286                         /* bdflush has written it.  We can drop it now */
2287                         __jbd2_journal_remove_checkpoint(jh);
2288                         goto zap_buffer;
2289                 }
2290
2291                 /* OK, it must be in the journal but still not
2292                  * written fully to disk: it's metadata or
2293                  * journaled data... */
2294
2295                 if (journal->j_running_transaction) {
2296                         /* ... and once the current transaction has
2297                          * committed, the buffer won't be needed any
2298                          * longer. */
2299                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2300                         may_free = __dispose_buffer(jh,
2301                                         journal->j_running_transaction);
2302                         goto zap_buffer;
2303                 } else {
2304                         /* There is no currently-running transaction. So the
2305                          * orphan record which we wrote for this file must have
2306                          * passed into commit.  We must attach this buffer to
2307                          * the committing transaction, if it exists. */
2308                         if (journal->j_committing_transaction) {
2309                                 JBUFFER_TRACE(jh, "give to committing trans");
2310                                 may_free = __dispose_buffer(jh,
2311                                         journal->j_committing_transaction);
2312                                 goto zap_buffer;
2313                         } else {
2314                                 /* The orphan record's transaction has
2315                                  * committed.  We can cleanse this buffer */
2316                                 clear_buffer_jbddirty(bh);
2317                                 __jbd2_journal_remove_checkpoint(jh);
2318                                 goto zap_buffer;
2319                         }
2320                 }
2321         } else if (transaction == journal->j_committing_transaction) {
2322                 JBUFFER_TRACE(jh, "on committing transaction");
2323                 /*
2324                  * The buffer is committing, we simply cannot touch
2325                  * it. If the page is straddling i_size we have to wait
2326                  * for commit and try again.
2327                  */
2328                 if (partial_page) {
2329                         spin_unlock(&journal->j_list_lock);
2330                         spin_unlock(&jh->b_state_lock);
2331                         write_unlock(&journal->j_state_lock);
2332                         jbd2_journal_put_journal_head(jh);
2333                         return -EBUSY;
2334                 }
2335                 /*
2336                  * OK, buffer won't be reachable after truncate. We just clear
2337                  * b_modified to not confuse transaction credit accounting, and
2338                  * set j_next_transaction to the running transaction (if there
2339                  * is one) and mark buffer as freed so that commit code knows
2340                  * it should clear dirty bits when it is done with the buffer.
2341                  */
2342                 set_buffer_freed(bh);
2343                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2344                         jh->b_next_transaction = journal->j_running_transaction;
2345                 jh->b_modified = 0;
2346                 spin_unlock(&journal->j_list_lock);
2347                 spin_unlock(&jh->b_state_lock);
2348                 write_unlock(&journal->j_state_lock);
2349                 jbd2_journal_put_journal_head(jh);
2350                 return 0;
2351         } else {
2352                 /* Good, the buffer belongs to the running transaction.
2353                  * We are writing our own transaction's data, not any
2354                  * previous one's, so it is safe to throw it away
2355                  * (remember that we expect the filesystem to have set
2356                  * i_size already for this truncate so recovery will not
2357                  * expose the disk blocks we are discarding here.) */
2358                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2359                 JBUFFER_TRACE(jh, "on running transaction");
2360                 may_free = __dispose_buffer(jh, transaction);
2361         }
2362
2363 zap_buffer:
2364         /*
2365          * This is tricky. Although the buffer is truncated, it may be reused
2366          * if blocksize < pagesize and it is attached to the page straddling
2367          * EOF. Since the buffer might have been added to BJ_Forget list of the
2368          * running transaction, journal_get_write_access() won't clear
2369          * b_modified and credit accounting gets confused. So clear b_modified
2370          * here.
2371          */
2372         jh->b_modified = 0;
2373         spin_unlock(&journal->j_list_lock);
2374         spin_unlock(&jh->b_state_lock);
2375         write_unlock(&journal->j_state_lock);
2376         jbd2_journal_put_journal_head(jh);
2377 zap_buffer_unlocked:
2378         clear_buffer_dirty(bh);
2379         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2380         clear_buffer_mapped(bh);
2381         clear_buffer_req(bh);
2382         clear_buffer_new(bh);
2383         clear_buffer_delay(bh);
2384         clear_buffer_unwritten(bh);
2385         bh->b_bdev = NULL;
2386         return may_free;
2387 }
2388
2389 /**
2390  * void jbd2_journal_invalidatepage()
2391  * @journal: journal to use for flush...
2392  * @page:    page to flush
2393  * @offset:  start of the range to invalidate
2394  * @length:  length of the range to invalidate
2395  *
2396  * Reap page buffers containing data after in the specified range in page.
2397  * Can return -EBUSY if buffers are part of the committing transaction and
2398  * the page is straddling i_size. Caller then has to wait for current commit
2399  * and try again.
2400  */
2401 int jbd2_journal_invalidatepage(journal_t *journal,
2402                                 struct page *page,
2403                                 unsigned int offset,
2404                                 unsigned int length)
2405 {
2406         struct buffer_head *head, *bh, *next;
2407         unsigned int stop = offset + length;
2408         unsigned int curr_off = 0;
2409         int partial_page = (offset || length < PAGE_SIZE);
2410         int may_free = 1;
2411         int ret = 0;
2412
2413         if (!PageLocked(page))
2414                 BUG();
2415         if (!page_has_buffers(page))
2416                 return 0;
2417
2418         BUG_ON(stop > PAGE_SIZE || stop < length);
2419
2420         /* We will potentially be playing with lists other than just the
2421          * data lists (especially for journaled data mode), so be
2422          * cautious in our locking. */
2423
2424         head = bh = page_buffers(page);
2425         do {
2426                 unsigned int next_off = curr_off + bh->b_size;
2427                 next = bh->b_this_page;
2428
2429                 if (next_off > stop)
2430                         return 0;
2431
2432                 if (offset <= curr_off) {
2433                         /* This block is wholly outside the truncation point */
2434                         lock_buffer(bh);
2435                         ret = journal_unmap_buffer(journal, bh, partial_page);
2436                         unlock_buffer(bh);
2437                         if (ret < 0)
2438                                 return ret;
2439                         may_free &= ret;
2440                 }
2441                 curr_off = next_off;
2442                 bh = next;
2443
2444         } while (bh != head);
2445
2446         if (!partial_page) {
2447                 if (may_free && try_to_free_buffers(page))
2448                         J_ASSERT(!page_has_buffers(page));
2449         }
2450         return 0;
2451 }
2452
2453 /*
2454  * File a buffer on the given transaction list.
2455  */
2456 void __jbd2_journal_file_buffer(struct journal_head *jh,
2457                         transaction_t *transaction, int jlist)
2458 {
2459         struct journal_head **list = NULL;
2460         int was_dirty = 0;
2461         struct buffer_head *bh = jh2bh(jh);
2462
2463         lockdep_assert_held(&jh->b_state_lock);
2464         assert_spin_locked(&transaction->t_journal->j_list_lock);
2465
2466         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2467         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2468                                 jh->b_transaction == NULL);
2469
2470         if (jh->b_transaction && jh->b_jlist == jlist)
2471                 return;
2472
2473         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2474             jlist == BJ_Shadow || jlist == BJ_Forget) {
2475                 /*
2476                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2477                  * instead of buffer_dirty. We should not see a dirty bit set
2478                  * here because we clear it in do_get_write_access but e.g.
2479                  * tune2fs can modify the sb and set the dirty bit at any time
2480                  * so we try to gracefully handle that.
2481                  */
2482                 if (buffer_dirty(bh))
2483                         warn_dirty_buffer(bh);
2484                 if (test_clear_buffer_dirty(bh) ||
2485                     test_clear_buffer_jbddirty(bh))
2486                         was_dirty = 1;
2487         }
2488
2489         if (jh->b_transaction)
2490                 __jbd2_journal_temp_unlink_buffer(jh);
2491         else
2492                 jbd2_journal_grab_journal_head(bh);
2493         jh->b_transaction = transaction;
2494
2495         switch (jlist) {
2496         case BJ_None:
2497                 J_ASSERT_JH(jh, !jh->b_committed_data);
2498                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2499                 return;
2500         case BJ_Metadata:
2501                 transaction->t_nr_buffers++;
2502                 list = &transaction->t_buffers;
2503                 break;
2504         case BJ_Forget:
2505                 list = &transaction->t_forget;
2506                 break;
2507         case BJ_Shadow:
2508                 list = &transaction->t_shadow_list;
2509                 break;
2510         case BJ_Reserved:
2511                 list = &transaction->t_reserved_list;
2512                 break;
2513         }
2514
2515         __blist_add_buffer(list, jh);
2516         jh->b_jlist = jlist;
2517
2518         if (was_dirty)
2519                 set_buffer_jbddirty(bh);
2520 }
2521
2522 void jbd2_journal_file_buffer(struct journal_head *jh,
2523                                 transaction_t *transaction, int jlist)
2524 {
2525         spin_lock(&jh->b_state_lock);
2526         spin_lock(&transaction->t_journal->j_list_lock);
2527         __jbd2_journal_file_buffer(jh, transaction, jlist);
2528         spin_unlock(&transaction->t_journal->j_list_lock);
2529         spin_unlock(&jh->b_state_lock);
2530 }
2531
2532 /*
2533  * Remove a buffer from its current buffer list in preparation for
2534  * dropping it from its current transaction entirely.  If the buffer has
2535  * already started to be used by a subsequent transaction, refile the
2536  * buffer on that transaction's metadata list.
2537  *
2538  * Called under j_list_lock
2539  * Called under jh->b_state_lock
2540  *
2541  * When this function returns true, there's no next transaction to refile to
2542  * and the caller has to drop jh reference through
2543  * jbd2_journal_put_journal_head().
2544  */
2545 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2546 {
2547         int was_dirty, jlist;
2548         struct buffer_head *bh = jh2bh(jh);
2549
2550         lockdep_assert_held(&jh->b_state_lock);
2551         if (jh->b_transaction)
2552                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2553
2554         /* If the buffer is now unused, just drop it. */
2555         if (jh->b_next_transaction == NULL) {
2556                 __jbd2_journal_unfile_buffer(jh);
2557                 return true;
2558         }
2559
2560         /*
2561          * It has been modified by a later transaction: add it to the new
2562          * transaction's metadata list.
2563          */
2564
2565         was_dirty = test_clear_buffer_jbddirty(bh);
2566         __jbd2_journal_temp_unlink_buffer(jh);
2567         /*
2568          * We set b_transaction here because b_next_transaction will inherit
2569          * our jh reference and thus __jbd2_journal_file_buffer() must not
2570          * take a new one.
2571          */
2572         jh->b_transaction = jh->b_next_transaction;
2573         jh->b_next_transaction = NULL;
2574         if (buffer_freed(bh))
2575                 jlist = BJ_Forget;
2576         else if (jh->b_modified)
2577                 jlist = BJ_Metadata;
2578         else
2579                 jlist = BJ_Reserved;
2580         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2581         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2582
2583         if (was_dirty)
2584                 set_buffer_jbddirty(bh);
2585         return false;
2586 }
2587
2588 /*
2589  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2590  * bh reference so that we can safely unlock bh.
2591  *
2592  * The jh and bh may be freed by this call.
2593  */
2594 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2595 {
2596         bool drop;
2597
2598         spin_lock(&jh->b_state_lock);
2599         spin_lock(&journal->j_list_lock);
2600         drop = __jbd2_journal_refile_buffer(jh);
2601         spin_unlock(&jh->b_state_lock);
2602         spin_unlock(&journal->j_list_lock);
2603         if (drop)
2604                 jbd2_journal_put_journal_head(jh);
2605 }
2606
2607 /*
2608  * File inode in the inode list of the handle's transaction
2609  */
2610 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2611                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2612 {
2613         transaction_t *transaction = handle->h_transaction;
2614         journal_t *journal;
2615
2616         if (is_handle_aborted(handle))
2617                 return -EROFS;
2618         journal = transaction->t_journal;
2619
2620         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2621                         transaction->t_tid);
2622
2623         spin_lock(&journal->j_list_lock);
2624         jinode->i_flags |= flags;
2625
2626         if (jinode->i_dirty_end) {
2627                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2628                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2629         } else {
2630                 jinode->i_dirty_start = start_byte;
2631                 jinode->i_dirty_end = end_byte;
2632         }
2633
2634         /* Is inode already attached where we need it? */
2635         if (jinode->i_transaction == transaction ||
2636             jinode->i_next_transaction == transaction)
2637                 goto done;
2638
2639         /*
2640          * We only ever set this variable to 1 so the test is safe. Since
2641          * t_need_data_flush is likely to be set, we do the test to save some
2642          * cacheline bouncing
2643          */
2644         if (!transaction->t_need_data_flush)
2645                 transaction->t_need_data_flush = 1;
2646         /* On some different transaction's list - should be
2647          * the committing one */
2648         if (jinode->i_transaction) {
2649                 J_ASSERT(jinode->i_next_transaction == NULL);
2650                 J_ASSERT(jinode->i_transaction ==
2651                                         journal->j_committing_transaction);
2652                 jinode->i_next_transaction = transaction;
2653                 goto done;
2654         }
2655         /* Not on any transaction list... */
2656         J_ASSERT(!jinode->i_next_transaction);
2657         jinode->i_transaction = transaction;
2658         list_add(&jinode->i_list, &transaction->t_inode_list);
2659 done:
2660         spin_unlock(&journal->j_list_lock);
2661
2662         return 0;
2663 }
2664
2665 int jbd2_journal_inode_ranged_write(handle_t *handle,
2666                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2667 {
2668         return jbd2_journal_file_inode(handle, jinode,
2669                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2670                         start_byte + length - 1);
2671 }
2672
2673 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2674                 loff_t start_byte, loff_t length)
2675 {
2676         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2677                         start_byte, start_byte + length - 1);
2678 }
2679
2680 /*
2681  * File truncate and transaction commit interact with each other in a
2682  * non-trivial way.  If a transaction writing data block A is
2683  * committing, we cannot discard the data by truncate until we have
2684  * written them.  Otherwise if we crashed after the transaction with
2685  * write has committed but before the transaction with truncate has
2686  * committed, we could see stale data in block A.  This function is a
2687  * helper to solve this problem.  It starts writeout of the truncated
2688  * part in case it is in the committing transaction.
2689  *
2690  * Filesystem code must call this function when inode is journaled in
2691  * ordered mode before truncation happens and after the inode has been
2692  * placed on orphan list with the new inode size. The second condition
2693  * avoids the race that someone writes new data and we start
2694  * committing the transaction after this function has been called but
2695  * before a transaction for truncate is started (and furthermore it
2696  * allows us to optimize the case where the addition to orphan list
2697  * happens in the same transaction as write --- we don't have to write
2698  * any data in such case).
2699  */
2700 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2701                                         struct jbd2_inode *jinode,
2702                                         loff_t new_size)
2703 {
2704         transaction_t *inode_trans, *commit_trans;
2705         int ret = 0;
2706
2707         /* This is a quick check to avoid locking if not necessary */
2708         if (!jinode->i_transaction)
2709                 goto out;
2710         /* Locks are here just to force reading of recent values, it is
2711          * enough that the transaction was not committing before we started
2712          * a transaction adding the inode to orphan list */
2713         read_lock(&journal->j_state_lock);
2714         commit_trans = journal->j_committing_transaction;
2715         read_unlock(&journal->j_state_lock);
2716         spin_lock(&journal->j_list_lock);
2717         inode_trans = jinode->i_transaction;
2718         spin_unlock(&journal->j_list_lock);
2719         if (inode_trans == commit_trans) {
2720                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2721                         new_size, LLONG_MAX);
2722                 if (ret)
2723                         jbd2_journal_abort(journal, ret);
2724         }
2725 out:
2726         return ret;
2727 }