Merge tag 'soundwire-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[linux-2.6-microblaze.git] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (!transaction_cache) {
46                 pr_emerg("JBD2: failed to create transaction cache\n");
47                 return -ENOMEM;
48         }
49         return 0;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         kmem_cache_destroy(transaction_cache);
55         transaction_cache = NULL;
56 }
57
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61                 return;
62         kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70         int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71         int tags_per_block;
72
73         /* Subtract UUID */
74         tag_space -= 16;
75         if (jbd2_journal_has_csum_v2or3(journal))
76                 tag_space -= sizeof(struct jbd2_journal_block_tail);
77         /* Commit code leaves a slack space of 16 bytes at the end of block */
78         tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79         /*
80          * Revoke descriptors are accounted separately so we need to reserve
81          * space for commit block and normal transaction descriptor blocks.
82          */
83         return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84                                 tags_per_block);
85 }
86
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *      The journal MUST be locked.  We don't perform atomic mallocs on the
97  *      new transaction and we can't block without protecting against other
98  *      processes trying to touch the journal while it is in transition.
99  *
100  */
101
102 static void jbd2_get_transaction(journal_t *journal,
103                                 transaction_t *transaction)
104 {
105         transaction->t_journal = journal;
106         transaction->t_state = T_RUNNING;
107         transaction->t_start_time = ktime_get();
108         transaction->t_tid = journal->j_transaction_sequence++;
109         transaction->t_expires = jiffies + journal->j_commit_interval;
110         spin_lock_init(&transaction->t_handle_lock);
111         atomic_set(&transaction->t_updates, 0);
112         atomic_set(&transaction->t_outstanding_credits,
113                    jbd2_descriptor_blocks_per_trans(journal) +
114                    atomic_read(&journal->j_reserved_credits));
115         atomic_set(&transaction->t_outstanding_revokes, 0);
116         atomic_set(&transaction->t_handle_count, 0);
117         INIT_LIST_HEAD(&transaction->t_inode_list);
118         INIT_LIST_HEAD(&transaction->t_private_list);
119
120         /* Set up the commit timer for the new transaction. */
121         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
122         add_timer(&journal->j_commit_timer);
123
124         J_ASSERT(journal->j_running_transaction == NULL);
125         journal->j_running_transaction = transaction;
126         transaction->t_max_wait = 0;
127         transaction->t_start = jiffies;
128         transaction->t_requested = 0;
129 }
130
131 /*
132  * Handle management.
133  *
134  * A handle_t is an object which represents a single atomic update to a
135  * filesystem, and which tracks all of the modifications which form part
136  * of that one update.
137  */
138
139 /*
140  * Update transaction's maximum wait time, if debugging is enabled.
141  *
142  * In order for t_max_wait to be reliable, it must be protected by a
143  * lock.  But doing so will mean that start_this_handle() can not be
144  * run in parallel on SMP systems, which limits our scalability.  So
145  * unless debugging is enabled, we no longer update t_max_wait, which
146  * means that maximum wait time reported by the jbd2_run_stats
147  * tracepoint will always be zero.
148  */
149 static inline void update_t_max_wait(transaction_t *transaction,
150                                      unsigned long ts)
151 {
152 #ifdef CONFIG_JBD2_DEBUG
153         if (jbd2_journal_enable_debug &&
154             time_after(transaction->t_start, ts)) {
155                 ts = jbd2_time_diff(ts, transaction->t_start);
156                 spin_lock(&transaction->t_handle_lock);
157                 if (ts > transaction->t_max_wait)
158                         transaction->t_max_wait = ts;
159                 spin_unlock(&transaction->t_handle_lock);
160         }
161 #endif
162 }
163
164 /*
165  * Wait until running transaction passes to T_FLUSH state and new transaction
166  * can thus be started. Also starts the commit if needed. The function expects
167  * running transaction to exist and releases j_state_lock.
168  */
169 static void wait_transaction_locked(journal_t *journal)
170         __releases(journal->j_state_lock)
171 {
172         DEFINE_WAIT(wait);
173         int need_to_start;
174         tid_t tid = journal->j_running_transaction->t_tid;
175
176         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177                         TASK_UNINTERRUPTIBLE);
178         need_to_start = !tid_geq(journal->j_commit_request, tid);
179         read_unlock(&journal->j_state_lock);
180         if (need_to_start)
181                 jbd2_log_start_commit(journal, tid);
182         jbd2_might_wait_for_commit(journal);
183         schedule();
184         finish_wait(&journal->j_wait_transaction_locked, &wait);
185 }
186
187 /*
188  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
189  * state and new transaction can thus be started. The function releases
190  * j_state_lock.
191  */
192 static void wait_transaction_switching(journal_t *journal)
193         __releases(journal->j_state_lock)
194 {
195         DEFINE_WAIT(wait);
196
197         if (WARN_ON(!journal->j_running_transaction ||
198                     journal->j_running_transaction->t_state != T_SWITCH))
199                 return;
200         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
201                         TASK_UNINTERRUPTIBLE);
202         read_unlock(&journal->j_state_lock);
203         /*
204          * We don't call jbd2_might_wait_for_commit() here as there's no
205          * waiting for outstanding handles happening anymore in T_SWITCH state
206          * and handling of reserved handles actually relies on that for
207          * correctness.
208          */
209         schedule();
210         finish_wait(&journal->j_wait_transaction_locked, &wait);
211 }
212
213 static void sub_reserved_credits(journal_t *journal, int blocks)
214 {
215         atomic_sub(blocks, &journal->j_reserved_credits);
216         wake_up(&journal->j_wait_reserved);
217 }
218
219 /*
220  * Wait until we can add credits for handle to the running transaction.  Called
221  * with j_state_lock held for reading. Returns 0 if handle joined the running
222  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
223  * caller must retry.
224  */
225 static int add_transaction_credits(journal_t *journal, int blocks,
226                                    int rsv_blocks)
227 {
228         transaction_t *t = journal->j_running_transaction;
229         int needed;
230         int total = blocks + rsv_blocks;
231
232         /*
233          * If the current transaction is locked down for commit, wait
234          * for the lock to be released.
235          */
236         if (t->t_state != T_RUNNING) {
237                 WARN_ON_ONCE(t->t_state >= T_FLUSH);
238                 wait_transaction_locked(journal);
239                 return 1;
240         }
241
242         /*
243          * If there is not enough space left in the log to write all
244          * potential buffers requested by this operation, we need to
245          * stall pending a log checkpoint to free some more log space.
246          */
247         needed = atomic_add_return(total, &t->t_outstanding_credits);
248         if (needed > journal->j_max_transaction_buffers) {
249                 /*
250                  * If the current transaction is already too large,
251                  * then start to commit it: we can then go back and
252                  * attach this handle to a new transaction.
253                  */
254                 atomic_sub(total, &t->t_outstanding_credits);
255
256                 /*
257                  * Is the number of reserved credits in the current transaction too
258                  * big to fit this handle? Wait until reserved credits are freed.
259                  */
260                 if (atomic_read(&journal->j_reserved_credits) + total >
261                     journal->j_max_transaction_buffers) {
262                         read_unlock(&journal->j_state_lock);
263                         jbd2_might_wait_for_commit(journal);
264                         wait_event(journal->j_wait_reserved,
265                                    atomic_read(&journal->j_reserved_credits) + total <=
266                                    journal->j_max_transaction_buffers);
267                         return 1;
268                 }
269
270                 wait_transaction_locked(journal);
271                 return 1;
272         }
273
274         /*
275          * The commit code assumes that it can get enough log space
276          * without forcing a checkpoint.  This is *critical* for
277          * correctness: a checkpoint of a buffer which is also
278          * associated with a committing transaction creates a deadlock,
279          * so commit simply cannot force through checkpoints.
280          *
281          * We must therefore ensure the necessary space in the journal
282          * *before* starting to dirty potentially checkpointed buffers
283          * in the new transaction.
284          */
285         if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
286                 atomic_sub(total, &t->t_outstanding_credits);
287                 read_unlock(&journal->j_state_lock);
288                 jbd2_might_wait_for_commit(journal);
289                 write_lock(&journal->j_state_lock);
290                 if (jbd2_log_space_left(journal) <
291                                         journal->j_max_transaction_buffers)
292                         __jbd2_log_wait_for_space(journal);
293                 write_unlock(&journal->j_state_lock);
294                 return 1;
295         }
296
297         /* No reservation? We are done... */
298         if (!rsv_blocks)
299                 return 0;
300
301         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
302         /* We allow at most half of a transaction to be reserved */
303         if (needed > journal->j_max_transaction_buffers / 2) {
304                 sub_reserved_credits(journal, rsv_blocks);
305                 atomic_sub(total, &t->t_outstanding_credits);
306                 read_unlock(&journal->j_state_lock);
307                 jbd2_might_wait_for_commit(journal);
308                 wait_event(journal->j_wait_reserved,
309                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
310                          <= journal->j_max_transaction_buffers / 2);
311                 return 1;
312         }
313         return 0;
314 }
315
316 /*
317  * start_this_handle: Given a handle, deal with any locking or stalling
318  * needed to make sure that there is enough journal space for the handle
319  * to begin.  Attach the handle to a transaction and set up the
320  * transaction's buffer credits.
321  */
322
323 static int start_this_handle(journal_t *journal, handle_t *handle,
324                              gfp_t gfp_mask)
325 {
326         transaction_t   *transaction, *new_transaction = NULL;
327         int             blocks = handle->h_total_credits;
328         int             rsv_blocks = 0;
329         unsigned long ts = jiffies;
330
331         if (handle->h_rsv_handle)
332                 rsv_blocks = handle->h_rsv_handle->h_total_credits;
333
334         /*
335          * Limit the number of reserved credits to 1/2 of maximum transaction
336          * size and limit the number of total credits to not exceed maximum
337          * transaction size per operation.
338          */
339         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
340             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
341                 printk(KERN_ERR "JBD2: %s wants too many credits "
342                        "credits:%d rsv_credits:%d max:%d\n",
343                        current->comm, blocks, rsv_blocks,
344                        journal->j_max_transaction_buffers);
345                 WARN_ON(1);
346                 return -ENOSPC;
347         }
348
349 alloc_transaction:
350         if (!journal->j_running_transaction) {
351                 /*
352                  * If __GFP_FS is not present, then we may be being called from
353                  * inside the fs writeback layer, so we MUST NOT fail.
354                  */
355                 if ((gfp_mask & __GFP_FS) == 0)
356                         gfp_mask |= __GFP_NOFAIL;
357                 new_transaction = kmem_cache_zalloc(transaction_cache,
358                                                     gfp_mask);
359                 if (!new_transaction)
360                         return -ENOMEM;
361         }
362
363         jbd_debug(3, "New handle %p going live.\n", handle);
364
365         /*
366          * We need to hold j_state_lock until t_updates has been incremented,
367          * for proper journal barrier handling
368          */
369 repeat:
370         read_lock(&journal->j_state_lock);
371         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
372         if (is_journal_aborted(journal) ||
373             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
374                 read_unlock(&journal->j_state_lock);
375                 jbd2_journal_free_transaction(new_transaction);
376                 return -EROFS;
377         }
378
379         /*
380          * Wait on the journal's transaction barrier if necessary. Specifically
381          * we allow reserved handles to proceed because otherwise commit could
382          * deadlock on page writeback not being able to complete.
383          */
384         if (!handle->h_reserved && journal->j_barrier_count) {
385                 read_unlock(&journal->j_state_lock);
386                 wait_event(journal->j_wait_transaction_locked,
387                                 journal->j_barrier_count == 0);
388                 goto repeat;
389         }
390
391         if (!journal->j_running_transaction) {
392                 read_unlock(&journal->j_state_lock);
393                 if (!new_transaction)
394                         goto alloc_transaction;
395                 write_lock(&journal->j_state_lock);
396                 if (!journal->j_running_transaction &&
397                     (handle->h_reserved || !journal->j_barrier_count)) {
398                         jbd2_get_transaction(journal, new_transaction);
399                         new_transaction = NULL;
400                 }
401                 write_unlock(&journal->j_state_lock);
402                 goto repeat;
403         }
404
405         transaction = journal->j_running_transaction;
406
407         if (!handle->h_reserved) {
408                 /* We may have dropped j_state_lock - restart in that case */
409                 if (add_transaction_credits(journal, blocks, rsv_blocks))
410                         goto repeat;
411         } else {
412                 /*
413                  * We have handle reserved so we are allowed to join T_LOCKED
414                  * transaction and we don't have to check for transaction size
415                  * and journal space. But we still have to wait while running
416                  * transaction is being switched to a committing one as it
417                  * won't wait for any handles anymore.
418                  */
419                 if (transaction->t_state == T_SWITCH) {
420                         wait_transaction_switching(journal);
421                         goto repeat;
422                 }
423                 sub_reserved_credits(journal, blocks);
424                 handle->h_reserved = 0;
425         }
426
427         /* OK, account for the buffers that this operation expects to
428          * use and add the handle to the running transaction. 
429          */
430         update_t_max_wait(transaction, ts);
431         handle->h_transaction = transaction;
432         handle->h_requested_credits = blocks;
433         handle->h_revoke_credits_requested = handle->h_revoke_credits;
434         handle->h_start_jiffies = jiffies;
435         atomic_inc(&transaction->t_updates);
436         atomic_inc(&transaction->t_handle_count);
437         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
438                   handle, blocks,
439                   atomic_read(&transaction->t_outstanding_credits),
440                   jbd2_log_space_left(journal));
441         read_unlock(&journal->j_state_lock);
442         current->journal_info = handle;
443
444         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
445         jbd2_journal_free_transaction(new_transaction);
446         /*
447          * Ensure that no allocations done while the transaction is open are
448          * going to recurse back to the fs layer.
449          */
450         handle->saved_alloc_context = memalloc_nofs_save();
451         return 0;
452 }
453
454 /* Allocate a new handle.  This should probably be in a slab... */
455 static handle_t *new_handle(int nblocks)
456 {
457         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
458         if (!handle)
459                 return NULL;
460         handle->h_total_credits = nblocks;
461         handle->h_ref = 1;
462
463         return handle;
464 }
465
466 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
467                               int revoke_records, gfp_t gfp_mask,
468                               unsigned int type, unsigned int line_no)
469 {
470         handle_t *handle = journal_current_handle();
471         int err;
472
473         if (!journal)
474                 return ERR_PTR(-EROFS);
475
476         if (handle) {
477                 J_ASSERT(handle->h_transaction->t_journal == journal);
478                 handle->h_ref++;
479                 return handle;
480         }
481
482         nblocks += DIV_ROUND_UP(revoke_records,
483                                 journal->j_revoke_records_per_block);
484         handle = new_handle(nblocks);
485         if (!handle)
486                 return ERR_PTR(-ENOMEM);
487         if (rsv_blocks) {
488                 handle_t *rsv_handle;
489
490                 rsv_handle = new_handle(rsv_blocks);
491                 if (!rsv_handle) {
492                         jbd2_free_handle(handle);
493                         return ERR_PTR(-ENOMEM);
494                 }
495                 rsv_handle->h_reserved = 1;
496                 rsv_handle->h_journal = journal;
497                 handle->h_rsv_handle = rsv_handle;
498         }
499         handle->h_revoke_credits = revoke_records;
500
501         err = start_this_handle(journal, handle, gfp_mask);
502         if (err < 0) {
503                 if (handle->h_rsv_handle)
504                         jbd2_free_handle(handle->h_rsv_handle);
505                 jbd2_free_handle(handle);
506                 return ERR_PTR(err);
507         }
508         handle->h_type = type;
509         handle->h_line_no = line_no;
510         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
511                                 handle->h_transaction->t_tid, type,
512                                 line_no, nblocks);
513
514         return handle;
515 }
516 EXPORT_SYMBOL(jbd2__journal_start);
517
518
519 /**
520  * handle_t *jbd2_journal_start() - Obtain a new handle.
521  * @journal: Journal to start transaction on.
522  * @nblocks: number of block buffer we might modify
523  *
524  * We make sure that the transaction can guarantee at least nblocks of
525  * modified buffers in the log.  We block until the log can guarantee
526  * that much space. Additionally, if rsv_blocks > 0, we also create another
527  * handle with rsv_blocks reserved blocks in the journal. This handle is
528  * stored in h_rsv_handle. It is not attached to any particular transaction
529  * and thus doesn't block transaction commit. If the caller uses this reserved
530  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
531  * on the parent handle will dispose the reserved one. Reserved handle has to
532  * be converted to a normal handle using jbd2_journal_start_reserved() before
533  * it can be used.
534  *
535  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
536  * on failure.
537  */
538 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
539 {
540         return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
541 }
542 EXPORT_SYMBOL(jbd2_journal_start);
543
544 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
545 {
546         journal_t *journal = handle->h_journal;
547
548         WARN_ON(!handle->h_reserved);
549         sub_reserved_credits(journal, handle->h_total_credits);
550         if (t)
551                 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
552 }
553
554 void jbd2_journal_free_reserved(handle_t *handle)
555 {
556         journal_t *journal = handle->h_journal;
557
558         /* Get j_state_lock to pin running transaction if it exists */
559         read_lock(&journal->j_state_lock);
560         __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
561         read_unlock(&journal->j_state_lock);
562         jbd2_free_handle(handle);
563 }
564 EXPORT_SYMBOL(jbd2_journal_free_reserved);
565
566 /**
567  * int jbd2_journal_start_reserved() - start reserved handle
568  * @handle: handle to start
569  * @type: for handle statistics
570  * @line_no: for handle statistics
571  *
572  * Start handle that has been previously reserved with jbd2_journal_reserve().
573  * This attaches @handle to the running transaction (or creates one if there's
574  * not transaction running). Unlike jbd2_journal_start() this function cannot
575  * block on journal commit, checkpointing, or similar stuff. It can block on
576  * memory allocation or frozen journal though.
577  *
578  * Return 0 on success, non-zero on error - handle is freed in that case.
579  */
580 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
581                                 unsigned int line_no)
582 {
583         journal_t *journal = handle->h_journal;
584         int ret = -EIO;
585
586         if (WARN_ON(!handle->h_reserved)) {
587                 /* Someone passed in normal handle? Just stop it. */
588                 jbd2_journal_stop(handle);
589                 return ret;
590         }
591         /*
592          * Usefulness of mixing of reserved and unreserved handles is
593          * questionable. So far nobody seems to need it so just error out.
594          */
595         if (WARN_ON(current->journal_info)) {
596                 jbd2_journal_free_reserved(handle);
597                 return ret;
598         }
599
600         handle->h_journal = NULL;
601         /*
602          * GFP_NOFS is here because callers are likely from writeback or
603          * similarly constrained call sites
604          */
605         ret = start_this_handle(journal, handle, GFP_NOFS);
606         if (ret < 0) {
607                 handle->h_journal = journal;
608                 jbd2_journal_free_reserved(handle);
609                 return ret;
610         }
611         handle->h_type = type;
612         handle->h_line_no = line_no;
613         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
614                                 handle->h_transaction->t_tid, type,
615                                 line_no, handle->h_total_credits);
616         return 0;
617 }
618 EXPORT_SYMBOL(jbd2_journal_start_reserved);
619
620 /**
621  * int jbd2_journal_extend() - extend buffer credits.
622  * @handle:  handle to 'extend'
623  * @nblocks: nr blocks to try to extend by.
624  * @revoke_records: number of revoke records to try to extend by.
625  *
626  * Some transactions, such as large extends and truncates, can be done
627  * atomically all at once or in several stages.  The operation requests
628  * a credit for a number of buffer modifications in advance, but can
629  * extend its credit if it needs more.
630  *
631  * jbd2_journal_extend tries to give the running handle more buffer credits.
632  * It does not guarantee that allocation - this is a best-effort only.
633  * The calling process MUST be able to deal cleanly with a failure to
634  * extend here.
635  *
636  * Return 0 on success, non-zero on failure.
637  *
638  * return code < 0 implies an error
639  * return code > 0 implies normal transaction-full status.
640  */
641 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
642 {
643         transaction_t *transaction = handle->h_transaction;
644         journal_t *journal;
645         int result;
646         int wanted;
647
648         if (is_handle_aborted(handle))
649                 return -EROFS;
650         journal = transaction->t_journal;
651
652         result = 1;
653
654         read_lock(&journal->j_state_lock);
655
656         /* Don't extend a locked-down transaction! */
657         if (transaction->t_state != T_RUNNING) {
658                 jbd_debug(3, "denied handle %p %d blocks: "
659                           "transaction not running\n", handle, nblocks);
660                 goto error_out;
661         }
662
663         nblocks += DIV_ROUND_UP(
664                         handle->h_revoke_credits_requested + revoke_records,
665                         journal->j_revoke_records_per_block) -
666                 DIV_ROUND_UP(
667                         handle->h_revoke_credits_requested,
668                         journal->j_revoke_records_per_block);
669         spin_lock(&transaction->t_handle_lock);
670         wanted = atomic_add_return(nblocks,
671                                    &transaction->t_outstanding_credits);
672
673         if (wanted > journal->j_max_transaction_buffers) {
674                 jbd_debug(3, "denied handle %p %d blocks: "
675                           "transaction too large\n", handle, nblocks);
676                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
677                 goto unlock;
678         }
679
680         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
681                                  transaction->t_tid,
682                                  handle->h_type, handle->h_line_no,
683                                  handle->h_total_credits,
684                                  nblocks);
685
686         handle->h_total_credits += nblocks;
687         handle->h_requested_credits += nblocks;
688         handle->h_revoke_credits += revoke_records;
689         handle->h_revoke_credits_requested += revoke_records;
690         result = 0;
691
692         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
693 unlock:
694         spin_unlock(&transaction->t_handle_lock);
695 error_out:
696         read_unlock(&journal->j_state_lock);
697         return result;
698 }
699
700 static void stop_this_handle(handle_t *handle)
701 {
702         transaction_t *transaction = handle->h_transaction;
703         journal_t *journal = transaction->t_journal;
704         int revokes;
705
706         J_ASSERT(journal_current_handle() == handle);
707         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
708         current->journal_info = NULL;
709         /*
710          * Subtract necessary revoke descriptor blocks from handle credits. We
711          * take care to account only for revoke descriptor blocks the
712          * transaction will really need as large sequences of transactions with
713          * small numbers of revokes are relatively common.
714          */
715         revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
716         if (revokes) {
717                 int t_revokes, revoke_descriptors;
718                 int rr_per_blk = journal->j_revoke_records_per_block;
719
720                 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
721                                 > handle->h_total_credits);
722                 t_revokes = atomic_add_return(revokes,
723                                 &transaction->t_outstanding_revokes);
724                 revoke_descriptors =
725                         DIV_ROUND_UP(t_revokes, rr_per_blk) -
726                         DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
727                 handle->h_total_credits -= revoke_descriptors;
728         }
729         atomic_sub(handle->h_total_credits,
730                    &transaction->t_outstanding_credits);
731         if (handle->h_rsv_handle)
732                 __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
733                                                 transaction);
734         if (atomic_dec_and_test(&transaction->t_updates))
735                 wake_up(&journal->j_wait_updates);
736
737         rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
738         /*
739          * Scope of the GFP_NOFS context is over here and so we can restore the
740          * original alloc context.
741          */
742         memalloc_nofs_restore(handle->saved_alloc_context);
743 }
744
745 /**
746  * int jbd2_journal_restart() - restart a handle .
747  * @handle:  handle to restart
748  * @nblocks: nr credits requested
749  * @revoke_records: number of revoke record credits requested
750  * @gfp_mask: memory allocation flags (for start_this_handle)
751  *
752  * Restart a handle for a multi-transaction filesystem
753  * operation.
754  *
755  * If the jbd2_journal_extend() call above fails to grant new buffer credits
756  * to a running handle, a call to jbd2_journal_restart will commit the
757  * handle's transaction so far and reattach the handle to a new
758  * transaction capable of guaranteeing the requested number of
759  * credits. We preserve reserved handle if there's any attached to the
760  * passed in handle.
761  */
762 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
763                           gfp_t gfp_mask)
764 {
765         transaction_t *transaction = handle->h_transaction;
766         journal_t *journal;
767         tid_t           tid;
768         int             need_to_start;
769         int             ret;
770
771         /* If we've had an abort of any type, don't even think about
772          * actually doing the restart! */
773         if (is_handle_aborted(handle))
774                 return 0;
775         journal = transaction->t_journal;
776         tid = transaction->t_tid;
777
778         /*
779          * First unlink the handle from its current transaction, and start the
780          * commit on that.
781          */
782         jbd_debug(2, "restarting handle %p\n", handle);
783         stop_this_handle(handle);
784         handle->h_transaction = NULL;
785
786         /*
787          * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
788          * get rid of pointless j_state_lock traffic like this.
789          */
790         read_lock(&journal->j_state_lock);
791         need_to_start = !tid_geq(journal->j_commit_request, tid);
792         read_unlock(&journal->j_state_lock);
793         if (need_to_start)
794                 jbd2_log_start_commit(journal, tid);
795         handle->h_total_credits = nblocks +
796                 DIV_ROUND_UP(revoke_records,
797                              journal->j_revoke_records_per_block);
798         handle->h_revoke_credits = revoke_records;
799         ret = start_this_handle(journal, handle, gfp_mask);
800         trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
801                                  ret ? 0 : handle->h_transaction->t_tid,
802                                  handle->h_type, handle->h_line_no,
803                                  handle->h_total_credits);
804         return ret;
805 }
806 EXPORT_SYMBOL(jbd2__journal_restart);
807
808
809 int jbd2_journal_restart(handle_t *handle, int nblocks)
810 {
811         return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
812 }
813 EXPORT_SYMBOL(jbd2_journal_restart);
814
815 /**
816  * void jbd2_journal_lock_updates () - establish a transaction barrier.
817  * @journal:  Journal to establish a barrier on.
818  *
819  * This locks out any further updates from being started, and blocks
820  * until all existing updates have completed, returning only once the
821  * journal is in a quiescent state with no updates running.
822  *
823  * The journal lock should not be held on entry.
824  */
825 void jbd2_journal_lock_updates(journal_t *journal)
826 {
827         DEFINE_WAIT(wait);
828
829         jbd2_might_wait_for_commit(journal);
830
831         write_lock(&journal->j_state_lock);
832         ++journal->j_barrier_count;
833
834         /* Wait until there are no reserved handles */
835         if (atomic_read(&journal->j_reserved_credits)) {
836                 write_unlock(&journal->j_state_lock);
837                 wait_event(journal->j_wait_reserved,
838                            atomic_read(&journal->j_reserved_credits) == 0);
839                 write_lock(&journal->j_state_lock);
840         }
841
842         /* Wait until there are no running updates */
843         while (1) {
844                 transaction_t *transaction = journal->j_running_transaction;
845
846                 if (!transaction)
847                         break;
848
849                 spin_lock(&transaction->t_handle_lock);
850                 prepare_to_wait(&journal->j_wait_updates, &wait,
851                                 TASK_UNINTERRUPTIBLE);
852                 if (!atomic_read(&transaction->t_updates)) {
853                         spin_unlock(&transaction->t_handle_lock);
854                         finish_wait(&journal->j_wait_updates, &wait);
855                         break;
856                 }
857                 spin_unlock(&transaction->t_handle_lock);
858                 write_unlock(&journal->j_state_lock);
859                 schedule();
860                 finish_wait(&journal->j_wait_updates, &wait);
861                 write_lock(&journal->j_state_lock);
862         }
863         write_unlock(&journal->j_state_lock);
864
865         /*
866          * We have now established a barrier against other normal updates, but
867          * we also need to barrier against other jbd2_journal_lock_updates() calls
868          * to make sure that we serialise special journal-locked operations
869          * too.
870          */
871         mutex_lock(&journal->j_barrier);
872 }
873
874 /**
875  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
876  * @journal:  Journal to release the barrier on.
877  *
878  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
879  *
880  * Should be called without the journal lock held.
881  */
882 void jbd2_journal_unlock_updates (journal_t *journal)
883 {
884         J_ASSERT(journal->j_barrier_count != 0);
885
886         mutex_unlock(&journal->j_barrier);
887         write_lock(&journal->j_state_lock);
888         --journal->j_barrier_count;
889         write_unlock(&journal->j_state_lock);
890         wake_up(&journal->j_wait_transaction_locked);
891 }
892
893 static void warn_dirty_buffer(struct buffer_head *bh)
894 {
895         printk(KERN_WARNING
896                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
897                "There's a risk of filesystem corruption in case of system "
898                "crash.\n",
899                bh->b_bdev, (unsigned long long)bh->b_blocknr);
900 }
901
902 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
903 static void jbd2_freeze_jh_data(struct journal_head *jh)
904 {
905         struct page *page;
906         int offset;
907         char *source;
908         struct buffer_head *bh = jh2bh(jh);
909
910         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
911         page = bh->b_page;
912         offset = offset_in_page(bh->b_data);
913         source = kmap_atomic(page);
914         /* Fire data frozen trigger just before we copy the data */
915         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
916         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
917         kunmap_atomic(source);
918
919         /*
920          * Now that the frozen data is saved off, we need to store any matching
921          * triggers.
922          */
923         jh->b_frozen_triggers = jh->b_triggers;
924 }
925
926 /*
927  * If the buffer is already part of the current transaction, then there
928  * is nothing we need to do.  If it is already part of a prior
929  * transaction which we are still committing to disk, then we need to
930  * make sure that we do not overwrite the old copy: we do copy-out to
931  * preserve the copy going to disk.  We also account the buffer against
932  * the handle's metadata buffer credits (unless the buffer is already
933  * part of the transaction, that is).
934  *
935  */
936 static int
937 do_get_write_access(handle_t *handle, struct journal_head *jh,
938                         int force_copy)
939 {
940         struct buffer_head *bh;
941         transaction_t *transaction = handle->h_transaction;
942         journal_t *journal;
943         int error;
944         char *frozen_buffer = NULL;
945         unsigned long start_lock, time_lock;
946
947         journal = transaction->t_journal;
948
949         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
950
951         JBUFFER_TRACE(jh, "entry");
952 repeat:
953         bh = jh2bh(jh);
954
955         /* @@@ Need to check for errors here at some point. */
956
957         start_lock = jiffies;
958         lock_buffer(bh);
959         spin_lock(&jh->b_state_lock);
960
961         /* If it takes too long to lock the buffer, trace it */
962         time_lock = jbd2_time_diff(start_lock, jiffies);
963         if (time_lock > HZ/10)
964                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
965                         jiffies_to_msecs(time_lock));
966
967         /* We now hold the buffer lock so it is safe to query the buffer
968          * state.  Is the buffer dirty?
969          *
970          * If so, there are two possibilities.  The buffer may be
971          * non-journaled, and undergoing a quite legitimate writeback.
972          * Otherwise, it is journaled, and we don't expect dirty buffers
973          * in that state (the buffers should be marked JBD_Dirty
974          * instead.)  So either the IO is being done under our own
975          * control and this is a bug, or it's a third party IO such as
976          * dump(8) (which may leave the buffer scheduled for read ---
977          * ie. locked but not dirty) or tune2fs (which may actually have
978          * the buffer dirtied, ugh.)  */
979
980         if (buffer_dirty(bh)) {
981                 /*
982                  * First question: is this buffer already part of the current
983                  * transaction or the existing committing transaction?
984                  */
985                 if (jh->b_transaction) {
986                         J_ASSERT_JH(jh,
987                                 jh->b_transaction == transaction ||
988                                 jh->b_transaction ==
989                                         journal->j_committing_transaction);
990                         if (jh->b_next_transaction)
991                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
992                                                         transaction);
993                         warn_dirty_buffer(bh);
994                 }
995                 /*
996                  * In any case we need to clean the dirty flag and we must
997                  * do it under the buffer lock to be sure we don't race
998                  * with running write-out.
999                  */
1000                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1001                 clear_buffer_dirty(bh);
1002                 set_buffer_jbddirty(bh);
1003         }
1004
1005         unlock_buffer(bh);
1006
1007         error = -EROFS;
1008         if (is_handle_aborted(handle)) {
1009                 spin_unlock(&jh->b_state_lock);
1010                 goto out;
1011         }
1012         error = 0;
1013
1014         /*
1015          * The buffer is already part of this transaction if b_transaction or
1016          * b_next_transaction points to it
1017          */
1018         if (jh->b_transaction == transaction ||
1019             jh->b_next_transaction == transaction)
1020                 goto done;
1021
1022         /*
1023          * this is the first time this transaction is touching this buffer,
1024          * reset the modified flag
1025          */
1026         jh->b_modified = 0;
1027
1028         /*
1029          * If the buffer is not journaled right now, we need to make sure it
1030          * doesn't get written to disk before the caller actually commits the
1031          * new data
1032          */
1033         if (!jh->b_transaction) {
1034                 JBUFFER_TRACE(jh, "no transaction");
1035                 J_ASSERT_JH(jh, !jh->b_next_transaction);
1036                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1037                 /*
1038                  * Make sure all stores to jh (b_modified, b_frozen_data) are
1039                  * visible before attaching it to the running transaction.
1040                  * Paired with barrier in jbd2_write_access_granted()
1041                  */
1042                 smp_wmb();
1043                 spin_lock(&journal->j_list_lock);
1044                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1045                 spin_unlock(&journal->j_list_lock);
1046                 goto done;
1047         }
1048         /*
1049          * If there is already a copy-out version of this buffer, then we don't
1050          * need to make another one
1051          */
1052         if (jh->b_frozen_data) {
1053                 JBUFFER_TRACE(jh, "has frozen data");
1054                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1055                 goto attach_next;
1056         }
1057
1058         JBUFFER_TRACE(jh, "owned by older transaction");
1059         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1060         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1061
1062         /*
1063          * There is one case we have to be very careful about.  If the
1064          * committing transaction is currently writing this buffer out to disk
1065          * and has NOT made a copy-out, then we cannot modify the buffer
1066          * contents at all right now.  The essence of copy-out is that it is
1067          * the extra copy, not the primary copy, which gets journaled.  If the
1068          * primary copy is already going to disk then we cannot do copy-out
1069          * here.
1070          */
1071         if (buffer_shadow(bh)) {
1072                 JBUFFER_TRACE(jh, "on shadow: sleep");
1073                 spin_unlock(&jh->b_state_lock);
1074                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1075                 goto repeat;
1076         }
1077
1078         /*
1079          * Only do the copy if the currently-owning transaction still needs it.
1080          * If buffer isn't on BJ_Metadata list, the committing transaction is
1081          * past that stage (here we use the fact that BH_Shadow is set under
1082          * bh_state lock together with refiling to BJ_Shadow list and at this
1083          * point we know the buffer doesn't have BH_Shadow set).
1084          *
1085          * Subtle point, though: if this is a get_undo_access, then we will be
1086          * relying on the frozen_data to contain the new value of the
1087          * committed_data record after the transaction, so we HAVE to force the
1088          * frozen_data copy in that case.
1089          */
1090         if (jh->b_jlist == BJ_Metadata || force_copy) {
1091                 JBUFFER_TRACE(jh, "generate frozen data");
1092                 if (!frozen_buffer) {
1093                         JBUFFER_TRACE(jh, "allocate memory for buffer");
1094                         spin_unlock(&jh->b_state_lock);
1095                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1096                                                    GFP_NOFS | __GFP_NOFAIL);
1097                         goto repeat;
1098                 }
1099                 jh->b_frozen_data = frozen_buffer;
1100                 frozen_buffer = NULL;
1101                 jbd2_freeze_jh_data(jh);
1102         }
1103 attach_next:
1104         /*
1105          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1106          * before attaching it to the running transaction. Paired with barrier
1107          * in jbd2_write_access_granted()
1108          */
1109         smp_wmb();
1110         jh->b_next_transaction = transaction;
1111
1112 done:
1113         spin_unlock(&jh->b_state_lock);
1114
1115         /*
1116          * If we are about to journal a buffer, then any revoke pending on it is
1117          * no longer valid
1118          */
1119         jbd2_journal_cancel_revoke(handle, jh);
1120
1121 out:
1122         if (unlikely(frozen_buffer))    /* It's usually NULL */
1123                 jbd2_free(frozen_buffer, bh->b_size);
1124
1125         JBUFFER_TRACE(jh, "exit");
1126         return error;
1127 }
1128
1129 /* Fast check whether buffer is already attached to the required transaction */
1130 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1131                                                         bool undo)
1132 {
1133         struct journal_head *jh;
1134         bool ret = false;
1135
1136         /* Dirty buffers require special handling... */
1137         if (buffer_dirty(bh))
1138                 return false;
1139
1140         /*
1141          * RCU protects us from dereferencing freed pages. So the checks we do
1142          * are guaranteed not to oops. However the jh slab object can get freed
1143          * & reallocated while we work with it. So we have to be careful. When
1144          * we see jh attached to the running transaction, we know it must stay
1145          * so until the transaction is committed. Thus jh won't be freed and
1146          * will be attached to the same bh while we run.  However it can
1147          * happen jh gets freed, reallocated, and attached to the transaction
1148          * just after we get pointer to it from bh. So we have to be careful
1149          * and recheck jh still belongs to our bh before we return success.
1150          */
1151         rcu_read_lock();
1152         if (!buffer_jbd(bh))
1153                 goto out;
1154         /* This should be bh2jh() but that doesn't work with inline functions */
1155         jh = READ_ONCE(bh->b_private);
1156         if (!jh)
1157                 goto out;
1158         /* For undo access buffer must have data copied */
1159         if (undo && !jh->b_committed_data)
1160                 goto out;
1161         if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1162             READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1163                 goto out;
1164         /*
1165          * There are two reasons for the barrier here:
1166          * 1) Make sure to fetch b_bh after we did previous checks so that we
1167          * detect when jh went through free, realloc, attach to transaction
1168          * while we were checking. Paired with implicit barrier in that path.
1169          * 2) So that access to bh done after jbd2_write_access_granted()
1170          * doesn't get reordered and see inconsistent state of concurrent
1171          * do_get_write_access().
1172          */
1173         smp_mb();
1174         if (unlikely(jh->b_bh != bh))
1175                 goto out;
1176         ret = true;
1177 out:
1178         rcu_read_unlock();
1179         return ret;
1180 }
1181
1182 /**
1183  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1184  * @handle: transaction to add buffer modifications to
1185  * @bh:     bh to be used for metadata writes
1186  *
1187  * Returns: error code or 0 on success.
1188  *
1189  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1190  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1191  */
1192
1193 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1194 {
1195         struct journal_head *jh;
1196         int rc;
1197
1198         if (is_handle_aborted(handle))
1199                 return -EROFS;
1200
1201         if (jbd2_write_access_granted(handle, bh, false))
1202                 return 0;
1203
1204         jh = jbd2_journal_add_journal_head(bh);
1205         /* We do not want to get caught playing with fields which the
1206          * log thread also manipulates.  Make sure that the buffer
1207          * completes any outstanding IO before proceeding. */
1208         rc = do_get_write_access(handle, jh, 0);
1209         jbd2_journal_put_journal_head(jh);
1210         return rc;
1211 }
1212
1213
1214 /*
1215  * When the user wants to journal a newly created buffer_head
1216  * (ie. getblk() returned a new buffer and we are going to populate it
1217  * manually rather than reading off disk), then we need to keep the
1218  * buffer_head locked until it has been completely filled with new
1219  * data.  In this case, we should be able to make the assertion that
1220  * the bh is not already part of an existing transaction.
1221  *
1222  * The buffer should already be locked by the caller by this point.
1223  * There is no lock ranking violation: it was a newly created,
1224  * unlocked buffer beforehand. */
1225
1226 /**
1227  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1228  * @handle: transaction to new buffer to
1229  * @bh: new buffer.
1230  *
1231  * Call this if you create a new bh.
1232  */
1233 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1234 {
1235         transaction_t *transaction = handle->h_transaction;
1236         journal_t *journal;
1237         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1238         int err;
1239
1240         jbd_debug(5, "journal_head %p\n", jh);
1241         err = -EROFS;
1242         if (is_handle_aborted(handle))
1243                 goto out;
1244         journal = transaction->t_journal;
1245         err = 0;
1246
1247         JBUFFER_TRACE(jh, "entry");
1248         /*
1249          * The buffer may already belong to this transaction due to pre-zeroing
1250          * in the filesystem's new_block code.  It may also be on the previous,
1251          * committing transaction's lists, but it HAS to be in Forget state in
1252          * that case: the transaction must have deleted the buffer for it to be
1253          * reused here.
1254          */
1255         spin_lock(&jh->b_state_lock);
1256         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1257                 jh->b_transaction == NULL ||
1258                 (jh->b_transaction == journal->j_committing_transaction &&
1259                           jh->b_jlist == BJ_Forget)));
1260
1261         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1262         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1263
1264         if (jh->b_transaction == NULL) {
1265                 /*
1266                  * Previous jbd2_journal_forget() could have left the buffer
1267                  * with jbddirty bit set because it was being committed. When
1268                  * the commit finished, we've filed the buffer for
1269                  * checkpointing and marked it dirty. Now we are reallocating
1270                  * the buffer so the transaction freeing it must have
1271                  * committed and so it's safe to clear the dirty bit.
1272                  */
1273                 clear_buffer_dirty(jh2bh(jh));
1274                 /* first access by this transaction */
1275                 jh->b_modified = 0;
1276
1277                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1278                 spin_lock(&journal->j_list_lock);
1279                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1280                 spin_unlock(&journal->j_list_lock);
1281         } else if (jh->b_transaction == journal->j_committing_transaction) {
1282                 /* first access by this transaction */
1283                 jh->b_modified = 0;
1284
1285                 JBUFFER_TRACE(jh, "set next transaction");
1286                 spin_lock(&journal->j_list_lock);
1287                 jh->b_next_transaction = transaction;
1288                 spin_unlock(&journal->j_list_lock);
1289         }
1290         spin_unlock(&jh->b_state_lock);
1291
1292         /*
1293          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1294          * blocks which contain freed but then revoked metadata.  We need
1295          * to cancel the revoke in case we end up freeing it yet again
1296          * and the reallocating as data - this would cause a second revoke,
1297          * which hits an assertion error.
1298          */
1299         JBUFFER_TRACE(jh, "cancelling revoke");
1300         jbd2_journal_cancel_revoke(handle, jh);
1301 out:
1302         jbd2_journal_put_journal_head(jh);
1303         return err;
1304 }
1305
1306 /**
1307  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1308  *     non-rewindable consequences
1309  * @handle: transaction
1310  * @bh: buffer to undo
1311  *
1312  * Sometimes there is a need to distinguish between metadata which has
1313  * been committed to disk and that which has not.  The ext3fs code uses
1314  * this for freeing and allocating space, we have to make sure that we
1315  * do not reuse freed space until the deallocation has been committed,
1316  * since if we overwrote that space we would make the delete
1317  * un-rewindable in case of a crash.
1318  *
1319  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1320  * buffer for parts of non-rewindable operations such as delete
1321  * operations on the bitmaps.  The journaling code must keep a copy of
1322  * the buffer's contents prior to the undo_access call until such time
1323  * as we know that the buffer has definitely been committed to disk.
1324  *
1325  * We never need to know which transaction the committed data is part
1326  * of, buffers touched here are guaranteed to be dirtied later and so
1327  * will be committed to a new transaction in due course, at which point
1328  * we can discard the old committed data pointer.
1329  *
1330  * Returns error number or 0 on success.
1331  */
1332 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1333 {
1334         int err;
1335         struct journal_head *jh;
1336         char *committed_data = NULL;
1337
1338         if (is_handle_aborted(handle))
1339                 return -EROFS;
1340
1341         if (jbd2_write_access_granted(handle, bh, true))
1342                 return 0;
1343
1344         jh = jbd2_journal_add_journal_head(bh);
1345         JBUFFER_TRACE(jh, "entry");
1346
1347         /*
1348          * Do this first --- it can drop the journal lock, so we want to
1349          * make sure that obtaining the committed_data is done
1350          * atomically wrt. completion of any outstanding commits.
1351          */
1352         err = do_get_write_access(handle, jh, 1);
1353         if (err)
1354                 goto out;
1355
1356 repeat:
1357         if (!jh->b_committed_data)
1358                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1359                                             GFP_NOFS|__GFP_NOFAIL);
1360
1361         spin_lock(&jh->b_state_lock);
1362         if (!jh->b_committed_data) {
1363                 /* Copy out the current buffer contents into the
1364                  * preserved, committed copy. */
1365                 JBUFFER_TRACE(jh, "generate b_committed data");
1366                 if (!committed_data) {
1367                         spin_unlock(&jh->b_state_lock);
1368                         goto repeat;
1369                 }
1370
1371                 jh->b_committed_data = committed_data;
1372                 committed_data = NULL;
1373                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1374         }
1375         spin_unlock(&jh->b_state_lock);
1376 out:
1377         jbd2_journal_put_journal_head(jh);
1378         if (unlikely(committed_data))
1379                 jbd2_free(committed_data, bh->b_size);
1380         return err;
1381 }
1382
1383 /**
1384  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1385  * @bh: buffer to trigger on
1386  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1387  *
1388  * Set any triggers on this journal_head.  This is always safe, because
1389  * triggers for a committing buffer will be saved off, and triggers for
1390  * a running transaction will match the buffer in that transaction.
1391  *
1392  * Call with NULL to clear the triggers.
1393  */
1394 void jbd2_journal_set_triggers(struct buffer_head *bh,
1395                                struct jbd2_buffer_trigger_type *type)
1396 {
1397         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1398
1399         if (WARN_ON(!jh))
1400                 return;
1401         jh->b_triggers = type;
1402         jbd2_journal_put_journal_head(jh);
1403 }
1404
1405 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1406                                 struct jbd2_buffer_trigger_type *triggers)
1407 {
1408         struct buffer_head *bh = jh2bh(jh);
1409
1410         if (!triggers || !triggers->t_frozen)
1411                 return;
1412
1413         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1414 }
1415
1416 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1417                                struct jbd2_buffer_trigger_type *triggers)
1418 {
1419         if (!triggers || !triggers->t_abort)
1420                 return;
1421
1422         triggers->t_abort(triggers, jh2bh(jh));
1423 }
1424
1425 /**
1426  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1427  * @handle: transaction to add buffer to.
1428  * @bh: buffer to mark
1429  *
1430  * mark dirty metadata which needs to be journaled as part of the current
1431  * transaction.
1432  *
1433  * The buffer must have previously had jbd2_journal_get_write_access()
1434  * called so that it has a valid journal_head attached to the buffer
1435  * head.
1436  *
1437  * The buffer is placed on the transaction's metadata list and is marked
1438  * as belonging to the transaction.
1439  *
1440  * Returns error number or 0 on success.
1441  *
1442  * Special care needs to be taken if the buffer already belongs to the
1443  * current committing transaction (in which case we should have frozen
1444  * data present for that commit).  In that case, we don't relink the
1445  * buffer: that only gets done when the old transaction finally
1446  * completes its commit.
1447  */
1448 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1449 {
1450         transaction_t *transaction = handle->h_transaction;
1451         journal_t *journal;
1452         struct journal_head *jh;
1453         int ret = 0;
1454
1455         if (is_handle_aborted(handle))
1456                 return -EROFS;
1457         if (!buffer_jbd(bh))
1458                 return -EUCLEAN;
1459
1460         /*
1461          * We don't grab jh reference here since the buffer must be part
1462          * of the running transaction.
1463          */
1464         jh = bh2jh(bh);
1465         jbd_debug(5, "journal_head %p\n", jh);
1466         JBUFFER_TRACE(jh, "entry");
1467
1468         /*
1469          * This and the following assertions are unreliable since we may see jh
1470          * in inconsistent state unless we grab bh_state lock. But this is
1471          * crucial to catch bugs so let's do a reliable check until the
1472          * lockless handling is fully proven.
1473          */
1474         if (jh->b_transaction != transaction &&
1475             jh->b_next_transaction != transaction) {
1476                 spin_lock(&jh->b_state_lock);
1477                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1478                                 jh->b_next_transaction == transaction);
1479                 spin_unlock(&jh->b_state_lock);
1480         }
1481         if (jh->b_modified == 1) {
1482                 /* If it's in our transaction it must be in BJ_Metadata list. */
1483                 if (jh->b_transaction == transaction &&
1484                     jh->b_jlist != BJ_Metadata) {
1485                         spin_lock(&jh->b_state_lock);
1486                         if (jh->b_transaction == transaction &&
1487                             jh->b_jlist != BJ_Metadata)
1488                                 pr_err("JBD2: assertion failure: h_type=%u "
1489                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1490                                        handle->h_type, handle->h_line_no,
1491                                        (unsigned long long) bh->b_blocknr,
1492                                        jh->b_jlist);
1493                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1494                                         jh->b_jlist == BJ_Metadata);
1495                         spin_unlock(&jh->b_state_lock);
1496                 }
1497                 goto out;
1498         }
1499
1500         journal = transaction->t_journal;
1501         spin_lock(&jh->b_state_lock);
1502
1503         if (jh->b_modified == 0) {
1504                 /*
1505                  * This buffer's got modified and becoming part
1506                  * of the transaction. This needs to be done
1507                  * once a transaction -bzzz
1508                  */
1509                 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1510                         ret = -ENOSPC;
1511                         goto out_unlock_bh;
1512                 }
1513                 jh->b_modified = 1;
1514                 handle->h_total_credits--;
1515         }
1516
1517         /*
1518          * fastpath, to avoid expensive locking.  If this buffer is already
1519          * on the running transaction's metadata list there is nothing to do.
1520          * Nobody can take it off again because there is a handle open.
1521          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1522          * result in this test being false, so we go in and take the locks.
1523          */
1524         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1525                 JBUFFER_TRACE(jh, "fastpath");
1526                 if (unlikely(jh->b_transaction !=
1527                              journal->j_running_transaction)) {
1528                         printk(KERN_ERR "JBD2: %s: "
1529                                "jh->b_transaction (%llu, %p, %u) != "
1530                                "journal->j_running_transaction (%p, %u)\n",
1531                                journal->j_devname,
1532                                (unsigned long long) bh->b_blocknr,
1533                                jh->b_transaction,
1534                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1535                                journal->j_running_transaction,
1536                                journal->j_running_transaction ?
1537                                journal->j_running_transaction->t_tid : 0);
1538                         ret = -EINVAL;
1539                 }
1540                 goto out_unlock_bh;
1541         }
1542
1543         set_buffer_jbddirty(bh);
1544
1545         /*
1546          * Metadata already on the current transaction list doesn't
1547          * need to be filed.  Metadata on another transaction's list must
1548          * be committing, and will be refiled once the commit completes:
1549          * leave it alone for now.
1550          */
1551         if (jh->b_transaction != transaction) {
1552                 JBUFFER_TRACE(jh, "already on other transaction");
1553                 if (unlikely(((jh->b_transaction !=
1554                                journal->j_committing_transaction)) ||
1555                              (jh->b_next_transaction != transaction))) {
1556                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1557                                "bad jh for block %llu: "
1558                                "transaction (%p, %u), "
1559                                "jh->b_transaction (%p, %u), "
1560                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1561                                journal->j_devname,
1562                                (unsigned long long) bh->b_blocknr,
1563                                transaction, transaction->t_tid,
1564                                jh->b_transaction,
1565                                jh->b_transaction ?
1566                                jh->b_transaction->t_tid : 0,
1567                                jh->b_next_transaction,
1568                                jh->b_next_transaction ?
1569                                jh->b_next_transaction->t_tid : 0,
1570                                jh->b_jlist);
1571                         WARN_ON(1);
1572                         ret = -EINVAL;
1573                 }
1574                 /* And this case is illegal: we can't reuse another
1575                  * transaction's data buffer, ever. */
1576                 goto out_unlock_bh;
1577         }
1578
1579         /* That test should have eliminated the following case: */
1580         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1581
1582         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1583         spin_lock(&journal->j_list_lock);
1584         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1585         spin_unlock(&journal->j_list_lock);
1586 out_unlock_bh:
1587         spin_unlock(&jh->b_state_lock);
1588 out:
1589         JBUFFER_TRACE(jh, "exit");
1590         return ret;
1591 }
1592
1593 /**
1594  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1595  * @handle: transaction handle
1596  * @bh:     bh to 'forget'
1597  *
1598  * We can only do the bforget if there are no commits pending against the
1599  * buffer.  If the buffer is dirty in the current running transaction we
1600  * can safely unlink it.
1601  *
1602  * bh may not be a journalled buffer at all - it may be a non-JBD
1603  * buffer which came off the hashtable.  Check for this.
1604  *
1605  * Decrements bh->b_count by one.
1606  *
1607  * Allow this call even if the handle has aborted --- it may be part of
1608  * the caller's cleanup after an abort.
1609  */
1610 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1611 {
1612         transaction_t *transaction = handle->h_transaction;
1613         journal_t *journal;
1614         struct journal_head *jh;
1615         int drop_reserve = 0;
1616         int err = 0;
1617         int was_modified = 0;
1618
1619         if (is_handle_aborted(handle))
1620                 return -EROFS;
1621         journal = transaction->t_journal;
1622
1623         BUFFER_TRACE(bh, "entry");
1624
1625         jh = jbd2_journal_grab_journal_head(bh);
1626         if (!jh) {
1627                 __bforget(bh);
1628                 return 0;
1629         }
1630
1631         spin_lock(&jh->b_state_lock);
1632
1633         /* Critical error: attempting to delete a bitmap buffer, maybe?
1634          * Don't do any jbd operations, and return an error. */
1635         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1636                          "inconsistent data on disk")) {
1637                 err = -EIO;
1638                 goto drop;
1639         }
1640
1641         /* keep track of whether or not this transaction modified us */
1642         was_modified = jh->b_modified;
1643
1644         /*
1645          * The buffer's going from the transaction, we must drop
1646          * all references -bzzz
1647          */
1648         jh->b_modified = 0;
1649
1650         if (jh->b_transaction == transaction) {
1651                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1652
1653                 /* If we are forgetting a buffer which is already part
1654                  * of this transaction, then we can just drop it from
1655                  * the transaction immediately. */
1656                 clear_buffer_dirty(bh);
1657                 clear_buffer_jbddirty(bh);
1658
1659                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1660
1661                 /*
1662                  * we only want to drop a reference if this transaction
1663                  * modified the buffer
1664                  */
1665                 if (was_modified)
1666                         drop_reserve = 1;
1667
1668                 /*
1669                  * We are no longer going to journal this buffer.
1670                  * However, the commit of this transaction is still
1671                  * important to the buffer: the delete that we are now
1672                  * processing might obsolete an old log entry, so by
1673                  * committing, we can satisfy the buffer's checkpoint.
1674                  *
1675                  * So, if we have a checkpoint on the buffer, we should
1676                  * now refile the buffer on our BJ_Forget list so that
1677                  * we know to remove the checkpoint after we commit.
1678                  */
1679
1680                 spin_lock(&journal->j_list_lock);
1681                 if (jh->b_cp_transaction) {
1682                         __jbd2_journal_temp_unlink_buffer(jh);
1683                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1684                 } else {
1685                         __jbd2_journal_unfile_buffer(jh);
1686                         jbd2_journal_put_journal_head(jh);
1687                 }
1688                 spin_unlock(&journal->j_list_lock);
1689         } else if (jh->b_transaction) {
1690                 J_ASSERT_JH(jh, (jh->b_transaction ==
1691                                  journal->j_committing_transaction));
1692                 /* However, if the buffer is still owned by a prior
1693                  * (committing) transaction, we can't drop it yet... */
1694                 JBUFFER_TRACE(jh, "belongs to older transaction");
1695                 /* ... but we CAN drop it from the new transaction through
1696                  * marking the buffer as freed and set j_next_transaction to
1697                  * the new transaction, so that not only the commit code
1698                  * knows it should clear dirty bits when it is done with the
1699                  * buffer, but also the buffer can be checkpointed only
1700                  * after the new transaction commits. */
1701
1702                 set_buffer_freed(bh);
1703
1704                 if (!jh->b_next_transaction) {
1705                         spin_lock(&journal->j_list_lock);
1706                         jh->b_next_transaction = transaction;
1707                         spin_unlock(&journal->j_list_lock);
1708                 } else {
1709                         J_ASSERT(jh->b_next_transaction == transaction);
1710
1711                         /*
1712                          * only drop a reference if this transaction modified
1713                          * the buffer
1714                          */
1715                         if (was_modified)
1716                                 drop_reserve = 1;
1717                 }
1718         } else {
1719                 /*
1720                  * Finally, if the buffer is not belongs to any
1721                  * transaction, we can just drop it now if it has no
1722                  * checkpoint.
1723                  */
1724                 spin_lock(&journal->j_list_lock);
1725                 if (!jh->b_cp_transaction) {
1726                         JBUFFER_TRACE(jh, "belongs to none transaction");
1727                         spin_unlock(&journal->j_list_lock);
1728                         goto drop;
1729                 }
1730
1731                 /*
1732                  * Otherwise, if the buffer has been written to disk,
1733                  * it is safe to remove the checkpoint and drop it.
1734                  */
1735                 if (!buffer_dirty(bh)) {
1736                         __jbd2_journal_remove_checkpoint(jh);
1737                         spin_unlock(&journal->j_list_lock);
1738                         goto drop;
1739                 }
1740
1741                 /*
1742                  * The buffer is still not written to disk, we should
1743                  * attach this buffer to current transaction so that the
1744                  * buffer can be checkpointed only after the current
1745                  * transaction commits.
1746                  */
1747                 clear_buffer_dirty(bh);
1748                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1749                 spin_unlock(&journal->j_list_lock);
1750         }
1751 drop:
1752         __brelse(bh);
1753         spin_unlock(&jh->b_state_lock);
1754         jbd2_journal_put_journal_head(jh);
1755         if (drop_reserve) {
1756                 /* no need to reserve log space for this block -bzzz */
1757                 handle->h_total_credits++;
1758         }
1759         return err;
1760 }
1761
1762 /**
1763  * int jbd2_journal_stop() - complete a transaction
1764  * @handle: transaction to complete.
1765  *
1766  * All done for a particular handle.
1767  *
1768  * There is not much action needed here.  We just return any remaining
1769  * buffer credits to the transaction and remove the handle.  The only
1770  * complication is that we need to start a commit operation if the
1771  * filesystem is marked for synchronous update.
1772  *
1773  * jbd2_journal_stop itself will not usually return an error, but it may
1774  * do so in unusual circumstances.  In particular, expect it to
1775  * return -EIO if a jbd2_journal_abort has been executed since the
1776  * transaction began.
1777  */
1778 int jbd2_journal_stop(handle_t *handle)
1779 {
1780         transaction_t *transaction = handle->h_transaction;
1781         journal_t *journal;
1782         int err = 0, wait_for_commit = 0;
1783         tid_t tid;
1784         pid_t pid;
1785
1786         if (--handle->h_ref > 0) {
1787                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1788                                                  handle->h_ref);
1789                 if (is_handle_aborted(handle))
1790                         return -EIO;
1791                 return 0;
1792         }
1793         if (!transaction) {
1794                 /*
1795                  * Handle is already detached from the transaction so there is
1796                  * nothing to do other than free the handle.
1797                  */
1798                 memalloc_nofs_restore(handle->saved_alloc_context);
1799                 goto free_and_exit;
1800         }
1801         journal = transaction->t_journal;
1802         tid = transaction->t_tid;
1803
1804         if (is_handle_aborted(handle))
1805                 err = -EIO;
1806
1807         jbd_debug(4, "Handle %p going down\n", handle);
1808         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1809                                 tid, handle->h_type, handle->h_line_no,
1810                                 jiffies - handle->h_start_jiffies,
1811                                 handle->h_sync, handle->h_requested_credits,
1812                                 (handle->h_requested_credits -
1813                                  handle->h_total_credits));
1814
1815         /*
1816          * Implement synchronous transaction batching.  If the handle
1817          * was synchronous, don't force a commit immediately.  Let's
1818          * yield and let another thread piggyback onto this
1819          * transaction.  Keep doing that while new threads continue to
1820          * arrive.  It doesn't cost much - we're about to run a commit
1821          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1822          * operations by 30x or more...
1823          *
1824          * We try and optimize the sleep time against what the
1825          * underlying disk can do, instead of having a static sleep
1826          * time.  This is useful for the case where our storage is so
1827          * fast that it is more optimal to go ahead and force a flush
1828          * and wait for the transaction to be committed than it is to
1829          * wait for an arbitrary amount of time for new writers to
1830          * join the transaction.  We achieve this by measuring how
1831          * long it takes to commit a transaction, and compare it with
1832          * how long this transaction has been running, and if run time
1833          * < commit time then we sleep for the delta and commit.  This
1834          * greatly helps super fast disks that would see slowdowns as
1835          * more threads started doing fsyncs.
1836          *
1837          * But don't do this if this process was the most recent one
1838          * to perform a synchronous write.  We do this to detect the
1839          * case where a single process is doing a stream of sync
1840          * writes.  No point in waiting for joiners in that case.
1841          *
1842          * Setting max_batch_time to 0 disables this completely.
1843          */
1844         pid = current->pid;
1845         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1846             journal->j_max_batch_time) {
1847                 u64 commit_time, trans_time;
1848
1849                 journal->j_last_sync_writer = pid;
1850
1851                 read_lock(&journal->j_state_lock);
1852                 commit_time = journal->j_average_commit_time;
1853                 read_unlock(&journal->j_state_lock);
1854
1855                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1856                                                    transaction->t_start_time));
1857
1858                 commit_time = max_t(u64, commit_time,
1859                                     1000*journal->j_min_batch_time);
1860                 commit_time = min_t(u64, commit_time,
1861                                     1000*journal->j_max_batch_time);
1862
1863                 if (trans_time < commit_time) {
1864                         ktime_t expires = ktime_add_ns(ktime_get(),
1865                                                        commit_time);
1866                         set_current_state(TASK_UNINTERRUPTIBLE);
1867                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1868                 }
1869         }
1870
1871         if (handle->h_sync)
1872                 transaction->t_synchronous_commit = 1;
1873
1874         /*
1875          * If the handle is marked SYNC, we need to set another commit
1876          * going!  We also want to force a commit if the transaction is too
1877          * old now.
1878          */
1879         if (handle->h_sync ||
1880             time_after_eq(jiffies, transaction->t_expires)) {
1881                 /* Do this even for aborted journals: an abort still
1882                  * completes the commit thread, it just doesn't write
1883                  * anything to disk. */
1884
1885                 jbd_debug(2, "transaction too old, requesting commit for "
1886                                         "handle %p\n", handle);
1887                 /* This is non-blocking */
1888                 jbd2_log_start_commit(journal, tid);
1889
1890                 /*
1891                  * Special case: JBD2_SYNC synchronous updates require us
1892                  * to wait for the commit to complete.
1893                  */
1894                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1895                         wait_for_commit = 1;
1896         }
1897
1898         /*
1899          * Once stop_this_handle() drops t_updates, the transaction could start
1900          * committing on us and eventually disappear.  So we must not
1901          * dereference transaction pointer again after calling
1902          * stop_this_handle().
1903          */
1904         stop_this_handle(handle);
1905
1906         if (wait_for_commit)
1907                 err = jbd2_log_wait_commit(journal, tid);
1908
1909 free_and_exit:
1910         if (handle->h_rsv_handle)
1911                 jbd2_free_handle(handle->h_rsv_handle);
1912         jbd2_free_handle(handle);
1913         return err;
1914 }
1915
1916 /*
1917  *
1918  * List management code snippets: various functions for manipulating the
1919  * transaction buffer lists.
1920  *
1921  */
1922
1923 /*
1924  * Append a buffer to a transaction list, given the transaction's list head
1925  * pointer.
1926  *
1927  * j_list_lock is held.
1928  *
1929  * jh->b_state_lock is held.
1930  */
1931
1932 static inline void
1933 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1934 {
1935         if (!*list) {
1936                 jh->b_tnext = jh->b_tprev = jh;
1937                 *list = jh;
1938         } else {
1939                 /* Insert at the tail of the list to preserve order */
1940                 struct journal_head *first = *list, *last = first->b_tprev;
1941                 jh->b_tprev = last;
1942                 jh->b_tnext = first;
1943                 last->b_tnext = first->b_tprev = jh;
1944         }
1945 }
1946
1947 /*
1948  * Remove a buffer from a transaction list, given the transaction's list
1949  * head pointer.
1950  *
1951  * Called with j_list_lock held, and the journal may not be locked.
1952  *
1953  * jh->b_state_lock is held.
1954  */
1955
1956 static inline void
1957 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1958 {
1959         if (*list == jh) {
1960                 *list = jh->b_tnext;
1961                 if (*list == jh)
1962                         *list = NULL;
1963         }
1964         jh->b_tprev->b_tnext = jh->b_tnext;
1965         jh->b_tnext->b_tprev = jh->b_tprev;
1966 }
1967
1968 /*
1969  * Remove a buffer from the appropriate transaction list.
1970  *
1971  * Note that this function can *change* the value of
1972  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1973  * t_reserved_list.  If the caller is holding onto a copy of one of these
1974  * pointers, it could go bad.  Generally the caller needs to re-read the
1975  * pointer from the transaction_t.
1976  *
1977  * Called under j_list_lock.
1978  */
1979 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1980 {
1981         struct journal_head **list = NULL;
1982         transaction_t *transaction;
1983         struct buffer_head *bh = jh2bh(jh);
1984
1985         lockdep_assert_held(&jh->b_state_lock);
1986         transaction = jh->b_transaction;
1987         if (transaction)
1988                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1989
1990         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1991         if (jh->b_jlist != BJ_None)
1992                 J_ASSERT_JH(jh, transaction != NULL);
1993
1994         switch (jh->b_jlist) {
1995         case BJ_None:
1996                 return;
1997         case BJ_Metadata:
1998                 transaction->t_nr_buffers--;
1999                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2000                 list = &transaction->t_buffers;
2001                 break;
2002         case BJ_Forget:
2003                 list = &transaction->t_forget;
2004                 break;
2005         case BJ_Shadow:
2006                 list = &transaction->t_shadow_list;
2007                 break;
2008         case BJ_Reserved:
2009                 list = &transaction->t_reserved_list;
2010                 break;
2011         }
2012
2013         __blist_del_buffer(list, jh);
2014         jh->b_jlist = BJ_None;
2015         if (transaction && is_journal_aborted(transaction->t_journal))
2016                 clear_buffer_jbddirty(bh);
2017         else if (test_clear_buffer_jbddirty(bh))
2018                 mark_buffer_dirty(bh);  /* Expose it to the VM */
2019 }
2020
2021 /*
2022  * Remove buffer from all transactions. The caller is responsible for dropping
2023  * the jh reference that belonged to the transaction.
2024  *
2025  * Called with bh_state lock and j_list_lock
2026  */
2027 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2028 {
2029         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2030         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2031
2032         __jbd2_journal_temp_unlink_buffer(jh);
2033         jh->b_transaction = NULL;
2034 }
2035
2036 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2037 {
2038         struct buffer_head *bh = jh2bh(jh);
2039
2040         /* Get reference so that buffer cannot be freed before we unlock it */
2041         get_bh(bh);
2042         spin_lock(&jh->b_state_lock);
2043         spin_lock(&journal->j_list_lock);
2044         __jbd2_journal_unfile_buffer(jh);
2045         spin_unlock(&journal->j_list_lock);
2046         spin_unlock(&jh->b_state_lock);
2047         jbd2_journal_put_journal_head(jh);
2048         __brelse(bh);
2049 }
2050
2051 /*
2052  * Called from jbd2_journal_try_to_free_buffers().
2053  *
2054  * Called under jh->b_state_lock
2055  */
2056 static void
2057 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2058 {
2059         struct journal_head *jh;
2060
2061         jh = bh2jh(bh);
2062
2063         if (buffer_locked(bh) || buffer_dirty(bh))
2064                 goto out;
2065
2066         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2067                 goto out;
2068
2069         spin_lock(&journal->j_list_lock);
2070         if (jh->b_cp_transaction != NULL) {
2071                 /* written-back checkpointed metadata buffer */
2072                 JBUFFER_TRACE(jh, "remove from checkpoint list");
2073                 __jbd2_journal_remove_checkpoint(jh);
2074         }
2075         spin_unlock(&journal->j_list_lock);
2076 out:
2077         return;
2078 }
2079
2080 /**
2081  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
2082  * @journal: journal for operation
2083  * @page: to try and free
2084  *
2085  * For all the buffers on this page,
2086  * if they are fully written out ordered data, move them onto BUF_CLEAN
2087  * so try_to_free_buffers() can reap them.
2088  *
2089  * This function returns non-zero if we wish try_to_free_buffers()
2090  * to be called. We do this if the page is releasable by try_to_free_buffers().
2091  * We also do it if the page has locked or dirty buffers and the caller wants
2092  * us to perform sync or async writeout.
2093  *
2094  * This complicates JBD locking somewhat.  We aren't protected by the
2095  * BKL here.  We wish to remove the buffer from its committing or
2096  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2097  *
2098  * This may *change* the value of transaction_t->t_datalist, so anyone
2099  * who looks at t_datalist needs to lock against this function.
2100  *
2101  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2102  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2103  * will come out of the lock with the buffer dirty, which makes it
2104  * ineligible for release here.
2105  *
2106  * Who else is affected by this?  hmm...  Really the only contender
2107  * is do_get_write_access() - it could be looking at the buffer while
2108  * journal_try_to_free_buffer() is changing its state.  But that
2109  * cannot happen because we never reallocate freed data as metadata
2110  * while the data is part of a transaction.  Yes?
2111  *
2112  * Return 0 on failure, 1 on success
2113  */
2114 int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
2115 {
2116         struct buffer_head *head;
2117         struct buffer_head *bh;
2118         bool has_write_io_error = false;
2119         int ret = 0;
2120
2121         J_ASSERT(PageLocked(page));
2122
2123         head = page_buffers(page);
2124         bh = head;
2125         do {
2126                 struct journal_head *jh;
2127
2128                 /*
2129                  * We take our own ref against the journal_head here to avoid
2130                  * having to add tons of locking around each instance of
2131                  * jbd2_journal_put_journal_head().
2132                  */
2133                 jh = jbd2_journal_grab_journal_head(bh);
2134                 if (!jh)
2135                         continue;
2136
2137                 spin_lock(&jh->b_state_lock);
2138                 __journal_try_to_free_buffer(journal, bh);
2139                 spin_unlock(&jh->b_state_lock);
2140                 jbd2_journal_put_journal_head(jh);
2141                 if (buffer_jbd(bh))
2142                         goto busy;
2143
2144                 /*
2145                  * If we free a metadata buffer which has been failed to
2146                  * write out, the jbd2 checkpoint procedure will not detect
2147                  * this failure and may lead to filesystem inconsistency
2148                  * after cleanup journal tail.
2149                  */
2150                 if (buffer_write_io_error(bh)) {
2151                         pr_err("JBD2: Error while async write back metadata bh %llu.",
2152                                (unsigned long long)bh->b_blocknr);
2153                         has_write_io_error = true;
2154                 }
2155         } while ((bh = bh->b_this_page) != head);
2156
2157         ret = try_to_free_buffers(page);
2158
2159 busy:
2160         if (has_write_io_error)
2161                 jbd2_journal_abort(journal, -EIO);
2162
2163         return ret;
2164 }
2165
2166 /*
2167  * This buffer is no longer needed.  If it is on an older transaction's
2168  * checkpoint list we need to record it on this transaction's forget list
2169  * to pin this buffer (and hence its checkpointing transaction) down until
2170  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2171  * release it.
2172  * Returns non-zero if JBD no longer has an interest in the buffer.
2173  *
2174  * Called under j_list_lock.
2175  *
2176  * Called under jh->b_state_lock.
2177  */
2178 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2179 {
2180         int may_free = 1;
2181         struct buffer_head *bh = jh2bh(jh);
2182
2183         if (jh->b_cp_transaction) {
2184                 JBUFFER_TRACE(jh, "on running+cp transaction");
2185                 __jbd2_journal_temp_unlink_buffer(jh);
2186                 /*
2187                  * We don't want to write the buffer anymore, clear the
2188                  * bit so that we don't confuse checks in
2189                  * __journal_file_buffer
2190                  */
2191                 clear_buffer_dirty(bh);
2192                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2193                 may_free = 0;
2194         } else {
2195                 JBUFFER_TRACE(jh, "on running transaction");
2196                 __jbd2_journal_unfile_buffer(jh);
2197                 jbd2_journal_put_journal_head(jh);
2198         }
2199         return may_free;
2200 }
2201
2202 /*
2203  * jbd2_journal_invalidatepage
2204  *
2205  * This code is tricky.  It has a number of cases to deal with.
2206  *
2207  * There are two invariants which this code relies on:
2208  *
2209  * i_size must be updated on disk before we start calling invalidatepage on the
2210  * data.
2211  *
2212  *  This is done in ext3 by defining an ext3_setattr method which
2213  *  updates i_size before truncate gets going.  By maintaining this
2214  *  invariant, we can be sure that it is safe to throw away any buffers
2215  *  attached to the current transaction: once the transaction commits,
2216  *  we know that the data will not be needed.
2217  *
2218  *  Note however that we can *not* throw away data belonging to the
2219  *  previous, committing transaction!
2220  *
2221  * Any disk blocks which *are* part of the previous, committing
2222  * transaction (and which therefore cannot be discarded immediately) are
2223  * not going to be reused in the new running transaction
2224  *
2225  *  The bitmap committed_data images guarantee this: any block which is
2226  *  allocated in one transaction and removed in the next will be marked
2227  *  as in-use in the committed_data bitmap, so cannot be reused until
2228  *  the next transaction to delete the block commits.  This means that
2229  *  leaving committing buffers dirty is quite safe: the disk blocks
2230  *  cannot be reallocated to a different file and so buffer aliasing is
2231  *  not possible.
2232  *
2233  *
2234  * The above applies mainly to ordered data mode.  In writeback mode we
2235  * don't make guarantees about the order in which data hits disk --- in
2236  * particular we don't guarantee that new dirty data is flushed before
2237  * transaction commit --- so it is always safe just to discard data
2238  * immediately in that mode.  --sct
2239  */
2240
2241 /*
2242  * The journal_unmap_buffer helper function returns zero if the buffer
2243  * concerned remains pinned as an anonymous buffer belonging to an older
2244  * transaction.
2245  *
2246  * We're outside-transaction here.  Either or both of j_running_transaction
2247  * and j_committing_transaction may be NULL.
2248  */
2249 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2250                                 int partial_page)
2251 {
2252         transaction_t *transaction;
2253         struct journal_head *jh;
2254         int may_free = 1;
2255
2256         BUFFER_TRACE(bh, "entry");
2257
2258         /*
2259          * It is safe to proceed here without the j_list_lock because the
2260          * buffers cannot be stolen by try_to_free_buffers as long as we are
2261          * holding the page lock. --sct
2262          */
2263
2264         jh = jbd2_journal_grab_journal_head(bh);
2265         if (!jh)
2266                 goto zap_buffer_unlocked;
2267
2268         /* OK, we have data buffer in journaled mode */
2269         write_lock(&journal->j_state_lock);
2270         spin_lock(&jh->b_state_lock);
2271         spin_lock(&journal->j_list_lock);
2272
2273         /*
2274          * We cannot remove the buffer from checkpoint lists until the
2275          * transaction adding inode to orphan list (let's call it T)
2276          * is committed.  Otherwise if the transaction changing the
2277          * buffer would be cleaned from the journal before T is
2278          * committed, a crash will cause that the correct contents of
2279          * the buffer will be lost.  On the other hand we have to
2280          * clear the buffer dirty bit at latest at the moment when the
2281          * transaction marking the buffer as freed in the filesystem
2282          * structures is committed because from that moment on the
2283          * block can be reallocated and used by a different page.
2284          * Since the block hasn't been freed yet but the inode has
2285          * already been added to orphan list, it is safe for us to add
2286          * the buffer to BJ_Forget list of the newest transaction.
2287          *
2288          * Also we have to clear buffer_mapped flag of a truncated buffer
2289          * because the buffer_head may be attached to the page straddling
2290          * i_size (can happen only when blocksize < pagesize) and thus the
2291          * buffer_head can be reused when the file is extended again. So we end
2292          * up keeping around invalidated buffers attached to transactions'
2293          * BJ_Forget list just to stop checkpointing code from cleaning up
2294          * the transaction this buffer was modified in.
2295          */
2296         transaction = jh->b_transaction;
2297         if (transaction == NULL) {
2298                 /* First case: not on any transaction.  If it
2299                  * has no checkpoint link, then we can zap it:
2300                  * it's a writeback-mode buffer so we don't care
2301                  * if it hits disk safely. */
2302                 if (!jh->b_cp_transaction) {
2303                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2304                         goto zap_buffer;
2305                 }
2306
2307                 if (!buffer_dirty(bh)) {
2308                         /* bdflush has written it.  We can drop it now */
2309                         __jbd2_journal_remove_checkpoint(jh);
2310                         goto zap_buffer;
2311                 }
2312
2313                 /* OK, it must be in the journal but still not
2314                  * written fully to disk: it's metadata or
2315                  * journaled data... */
2316
2317                 if (journal->j_running_transaction) {
2318                         /* ... and once the current transaction has
2319                          * committed, the buffer won't be needed any
2320                          * longer. */
2321                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2322                         may_free = __dispose_buffer(jh,
2323                                         journal->j_running_transaction);
2324                         goto zap_buffer;
2325                 } else {
2326                         /* There is no currently-running transaction. So the
2327                          * orphan record which we wrote for this file must have
2328                          * passed into commit.  We must attach this buffer to
2329                          * the committing transaction, if it exists. */
2330                         if (journal->j_committing_transaction) {
2331                                 JBUFFER_TRACE(jh, "give to committing trans");
2332                                 may_free = __dispose_buffer(jh,
2333                                         journal->j_committing_transaction);
2334                                 goto zap_buffer;
2335                         } else {
2336                                 /* The orphan record's transaction has
2337                                  * committed.  We can cleanse this buffer */
2338                                 clear_buffer_jbddirty(bh);
2339                                 __jbd2_journal_remove_checkpoint(jh);
2340                                 goto zap_buffer;
2341                         }
2342                 }
2343         } else if (transaction == journal->j_committing_transaction) {
2344                 JBUFFER_TRACE(jh, "on committing transaction");
2345                 /*
2346                  * The buffer is committing, we simply cannot touch
2347                  * it. If the page is straddling i_size we have to wait
2348                  * for commit and try again.
2349                  */
2350                 if (partial_page) {
2351                         spin_unlock(&journal->j_list_lock);
2352                         spin_unlock(&jh->b_state_lock);
2353                         write_unlock(&journal->j_state_lock);
2354                         jbd2_journal_put_journal_head(jh);
2355                         return -EBUSY;
2356                 }
2357                 /*
2358                  * OK, buffer won't be reachable after truncate. We just clear
2359                  * b_modified to not confuse transaction credit accounting, and
2360                  * set j_next_transaction to the running transaction (if there
2361                  * is one) and mark buffer as freed so that commit code knows
2362                  * it should clear dirty bits when it is done with the buffer.
2363                  */
2364                 set_buffer_freed(bh);
2365                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2366                         jh->b_next_transaction = journal->j_running_transaction;
2367                 jh->b_modified = 0;
2368                 spin_unlock(&journal->j_list_lock);
2369                 spin_unlock(&jh->b_state_lock);
2370                 write_unlock(&journal->j_state_lock);
2371                 jbd2_journal_put_journal_head(jh);
2372                 return 0;
2373         } else {
2374                 /* Good, the buffer belongs to the running transaction.
2375                  * We are writing our own transaction's data, not any
2376                  * previous one's, so it is safe to throw it away
2377                  * (remember that we expect the filesystem to have set
2378                  * i_size already for this truncate so recovery will not
2379                  * expose the disk blocks we are discarding here.) */
2380                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2381                 JBUFFER_TRACE(jh, "on running transaction");
2382                 may_free = __dispose_buffer(jh, transaction);
2383         }
2384
2385 zap_buffer:
2386         /*
2387          * This is tricky. Although the buffer is truncated, it may be reused
2388          * if blocksize < pagesize and it is attached to the page straddling
2389          * EOF. Since the buffer might have been added to BJ_Forget list of the
2390          * running transaction, journal_get_write_access() won't clear
2391          * b_modified and credit accounting gets confused. So clear b_modified
2392          * here.
2393          */
2394         jh->b_modified = 0;
2395         spin_unlock(&journal->j_list_lock);
2396         spin_unlock(&jh->b_state_lock);
2397         write_unlock(&journal->j_state_lock);
2398         jbd2_journal_put_journal_head(jh);
2399 zap_buffer_unlocked:
2400         clear_buffer_dirty(bh);
2401         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2402         clear_buffer_mapped(bh);
2403         clear_buffer_req(bh);
2404         clear_buffer_new(bh);
2405         clear_buffer_delay(bh);
2406         clear_buffer_unwritten(bh);
2407         bh->b_bdev = NULL;
2408         return may_free;
2409 }
2410
2411 /**
2412  * void jbd2_journal_invalidatepage()
2413  * @journal: journal to use for flush...
2414  * @page:    page to flush
2415  * @offset:  start of the range to invalidate
2416  * @length:  length of the range to invalidate
2417  *
2418  * Reap page buffers containing data after in the specified range in page.
2419  * Can return -EBUSY if buffers are part of the committing transaction and
2420  * the page is straddling i_size. Caller then has to wait for current commit
2421  * and try again.
2422  */
2423 int jbd2_journal_invalidatepage(journal_t *journal,
2424                                 struct page *page,
2425                                 unsigned int offset,
2426                                 unsigned int length)
2427 {
2428         struct buffer_head *head, *bh, *next;
2429         unsigned int stop = offset + length;
2430         unsigned int curr_off = 0;
2431         int partial_page = (offset || length < PAGE_SIZE);
2432         int may_free = 1;
2433         int ret = 0;
2434
2435         if (!PageLocked(page))
2436                 BUG();
2437         if (!page_has_buffers(page))
2438                 return 0;
2439
2440         BUG_ON(stop > PAGE_SIZE || stop < length);
2441
2442         /* We will potentially be playing with lists other than just the
2443          * data lists (especially for journaled data mode), so be
2444          * cautious in our locking. */
2445
2446         head = bh = page_buffers(page);
2447         do {
2448                 unsigned int next_off = curr_off + bh->b_size;
2449                 next = bh->b_this_page;
2450
2451                 if (next_off > stop)
2452                         return 0;
2453
2454                 if (offset <= curr_off) {
2455                         /* This block is wholly outside the truncation point */
2456                         lock_buffer(bh);
2457                         ret = journal_unmap_buffer(journal, bh, partial_page);
2458                         unlock_buffer(bh);
2459                         if (ret < 0)
2460                                 return ret;
2461                         may_free &= ret;
2462                 }
2463                 curr_off = next_off;
2464                 bh = next;
2465
2466         } while (bh != head);
2467
2468         if (!partial_page) {
2469                 if (may_free && try_to_free_buffers(page))
2470                         J_ASSERT(!page_has_buffers(page));
2471         }
2472         return 0;
2473 }
2474
2475 /*
2476  * File a buffer on the given transaction list.
2477  */
2478 void __jbd2_journal_file_buffer(struct journal_head *jh,
2479                         transaction_t *transaction, int jlist)
2480 {
2481         struct journal_head **list = NULL;
2482         int was_dirty = 0;
2483         struct buffer_head *bh = jh2bh(jh);
2484
2485         lockdep_assert_held(&jh->b_state_lock);
2486         assert_spin_locked(&transaction->t_journal->j_list_lock);
2487
2488         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2489         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2490                                 jh->b_transaction == NULL);
2491
2492         if (jh->b_transaction && jh->b_jlist == jlist)
2493                 return;
2494
2495         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2496             jlist == BJ_Shadow || jlist == BJ_Forget) {
2497                 /*
2498                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2499                  * instead of buffer_dirty. We should not see a dirty bit set
2500                  * here because we clear it in do_get_write_access but e.g.
2501                  * tune2fs can modify the sb and set the dirty bit at any time
2502                  * so we try to gracefully handle that.
2503                  */
2504                 if (buffer_dirty(bh))
2505                         warn_dirty_buffer(bh);
2506                 if (test_clear_buffer_dirty(bh) ||
2507                     test_clear_buffer_jbddirty(bh))
2508                         was_dirty = 1;
2509         }
2510
2511         if (jh->b_transaction)
2512                 __jbd2_journal_temp_unlink_buffer(jh);
2513         else
2514                 jbd2_journal_grab_journal_head(bh);
2515         jh->b_transaction = transaction;
2516
2517         switch (jlist) {
2518         case BJ_None:
2519                 J_ASSERT_JH(jh, !jh->b_committed_data);
2520                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2521                 return;
2522         case BJ_Metadata:
2523                 transaction->t_nr_buffers++;
2524                 list = &transaction->t_buffers;
2525                 break;
2526         case BJ_Forget:
2527                 list = &transaction->t_forget;
2528                 break;
2529         case BJ_Shadow:
2530                 list = &transaction->t_shadow_list;
2531                 break;
2532         case BJ_Reserved:
2533                 list = &transaction->t_reserved_list;
2534                 break;
2535         }
2536
2537         __blist_add_buffer(list, jh);
2538         jh->b_jlist = jlist;
2539
2540         if (was_dirty)
2541                 set_buffer_jbddirty(bh);
2542 }
2543
2544 void jbd2_journal_file_buffer(struct journal_head *jh,
2545                                 transaction_t *transaction, int jlist)
2546 {
2547         spin_lock(&jh->b_state_lock);
2548         spin_lock(&transaction->t_journal->j_list_lock);
2549         __jbd2_journal_file_buffer(jh, transaction, jlist);
2550         spin_unlock(&transaction->t_journal->j_list_lock);
2551         spin_unlock(&jh->b_state_lock);
2552 }
2553
2554 /*
2555  * Remove a buffer from its current buffer list in preparation for
2556  * dropping it from its current transaction entirely.  If the buffer has
2557  * already started to be used by a subsequent transaction, refile the
2558  * buffer on that transaction's metadata list.
2559  *
2560  * Called under j_list_lock
2561  * Called under jh->b_state_lock
2562  *
2563  * When this function returns true, there's no next transaction to refile to
2564  * and the caller has to drop jh reference through
2565  * jbd2_journal_put_journal_head().
2566  */
2567 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2568 {
2569         int was_dirty, jlist;
2570         struct buffer_head *bh = jh2bh(jh);
2571
2572         lockdep_assert_held(&jh->b_state_lock);
2573         if (jh->b_transaction)
2574                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2575
2576         /* If the buffer is now unused, just drop it. */
2577         if (jh->b_next_transaction == NULL) {
2578                 __jbd2_journal_unfile_buffer(jh);
2579                 return true;
2580         }
2581
2582         /*
2583          * It has been modified by a later transaction: add it to the new
2584          * transaction's metadata list.
2585          */
2586
2587         was_dirty = test_clear_buffer_jbddirty(bh);
2588         __jbd2_journal_temp_unlink_buffer(jh);
2589
2590         /*
2591          * b_transaction must be set, otherwise the new b_transaction won't
2592          * be holding jh reference
2593          */
2594         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2595
2596         /*
2597          * We set b_transaction here because b_next_transaction will inherit
2598          * our jh reference and thus __jbd2_journal_file_buffer() must not
2599          * take a new one.
2600          */
2601         WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2602         WRITE_ONCE(jh->b_next_transaction, NULL);
2603         if (buffer_freed(bh))
2604                 jlist = BJ_Forget;
2605         else if (jh->b_modified)
2606                 jlist = BJ_Metadata;
2607         else
2608                 jlist = BJ_Reserved;
2609         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2610         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2611
2612         if (was_dirty)
2613                 set_buffer_jbddirty(bh);
2614         return false;
2615 }
2616
2617 /*
2618  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2619  * bh reference so that we can safely unlock bh.
2620  *
2621  * The jh and bh may be freed by this call.
2622  */
2623 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2624 {
2625         bool drop;
2626
2627         spin_lock(&jh->b_state_lock);
2628         spin_lock(&journal->j_list_lock);
2629         drop = __jbd2_journal_refile_buffer(jh);
2630         spin_unlock(&jh->b_state_lock);
2631         spin_unlock(&journal->j_list_lock);
2632         if (drop)
2633                 jbd2_journal_put_journal_head(jh);
2634 }
2635
2636 /*
2637  * File inode in the inode list of the handle's transaction
2638  */
2639 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2640                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2641 {
2642         transaction_t *transaction = handle->h_transaction;
2643         journal_t *journal;
2644
2645         if (is_handle_aborted(handle))
2646                 return -EROFS;
2647         journal = transaction->t_journal;
2648
2649         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2650                         transaction->t_tid);
2651
2652         spin_lock(&journal->j_list_lock);
2653         jinode->i_flags |= flags;
2654
2655         if (jinode->i_dirty_end) {
2656                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2657                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2658         } else {
2659                 jinode->i_dirty_start = start_byte;
2660                 jinode->i_dirty_end = end_byte;
2661         }
2662
2663         /* Is inode already attached where we need it? */
2664         if (jinode->i_transaction == transaction ||
2665             jinode->i_next_transaction == transaction)
2666                 goto done;
2667
2668         /*
2669          * We only ever set this variable to 1 so the test is safe. Since
2670          * t_need_data_flush is likely to be set, we do the test to save some
2671          * cacheline bouncing
2672          */
2673         if (!transaction->t_need_data_flush)
2674                 transaction->t_need_data_flush = 1;
2675         /* On some different transaction's list - should be
2676          * the committing one */
2677         if (jinode->i_transaction) {
2678                 J_ASSERT(jinode->i_next_transaction == NULL);
2679                 J_ASSERT(jinode->i_transaction ==
2680                                         journal->j_committing_transaction);
2681                 jinode->i_next_transaction = transaction;
2682                 goto done;
2683         }
2684         /* Not on any transaction list... */
2685         J_ASSERT(!jinode->i_next_transaction);
2686         jinode->i_transaction = transaction;
2687         list_add(&jinode->i_list, &transaction->t_inode_list);
2688 done:
2689         spin_unlock(&journal->j_list_lock);
2690
2691         return 0;
2692 }
2693
2694 int jbd2_journal_inode_ranged_write(handle_t *handle,
2695                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2696 {
2697         return jbd2_journal_file_inode(handle, jinode,
2698                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2699                         start_byte + length - 1);
2700 }
2701
2702 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2703                 loff_t start_byte, loff_t length)
2704 {
2705         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2706                         start_byte, start_byte + length - 1);
2707 }
2708
2709 /*
2710  * File truncate and transaction commit interact with each other in a
2711  * non-trivial way.  If a transaction writing data block A is
2712  * committing, we cannot discard the data by truncate until we have
2713  * written them.  Otherwise if we crashed after the transaction with
2714  * write has committed but before the transaction with truncate has
2715  * committed, we could see stale data in block A.  This function is a
2716  * helper to solve this problem.  It starts writeout of the truncated
2717  * part in case it is in the committing transaction.
2718  *
2719  * Filesystem code must call this function when inode is journaled in
2720  * ordered mode before truncation happens and after the inode has been
2721  * placed on orphan list with the new inode size. The second condition
2722  * avoids the race that someone writes new data and we start
2723  * committing the transaction after this function has been called but
2724  * before a transaction for truncate is started (and furthermore it
2725  * allows us to optimize the case where the addition to orphan list
2726  * happens in the same transaction as write --- we don't have to write
2727  * any data in such case).
2728  */
2729 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2730                                         struct jbd2_inode *jinode,
2731                                         loff_t new_size)
2732 {
2733         transaction_t *inode_trans, *commit_trans;
2734         int ret = 0;
2735
2736         /* This is a quick check to avoid locking if not necessary */
2737         if (!jinode->i_transaction)
2738                 goto out;
2739         /* Locks are here just to force reading of recent values, it is
2740          * enough that the transaction was not committing before we started
2741          * a transaction adding the inode to orphan list */
2742         read_lock(&journal->j_state_lock);
2743         commit_trans = journal->j_committing_transaction;
2744         read_unlock(&journal->j_state_lock);
2745         spin_lock(&journal->j_list_lock);
2746         inode_trans = jinode->i_transaction;
2747         spin_unlock(&journal->j_list_lock);
2748         if (inode_trans == commit_trans) {
2749                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2750                         new_size, LLONG_MAX);
2751                 if (ret)
2752                         jbd2_journal_abort(journal, ret);
2753         }
2754 out:
2755         return ret;
2756 }